菱形的性质与判定 提高练习(含答案)
1.1菱形的性质与判定(第3课时)课后作业(原卷版)

1.1菱形的性质与判定(第3课时)课后作业一.选择题1.如图,在□ABCD中,AC平分∠DAB,AB=2,则▱ABCD的周长为()A.4B.6C.8D.122.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A.米B.6米C.米D.3米3.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为菱形,则应添加的条件是()A.AB∥DC B.AD=BC C.AC⊥BD D.AC=BD4.如图,两张等宽的纸条交叉叠放在一起,重合部分构成四边形ABCD,且对角线AC=8,BD=6,则纸条的宽度是()A.9.6B.5C.4.8D.2.45.如图,△ABC中,AB=8cm,AC=6cm,BC=10cm,将△ABC沿着直线BC向右平移6cm到△DEF的位置,AC与DE相交于点G,连接AD.下列结论:①EC=6cm;②△DEF是直角三角形;③四边形ACFD的面积是28.8cm2;④四边形ACFD是菱形;⑤△ADG≌△CEG.其中正确结论的个数为()A.1个B.2个C.3个D.4个6.已知:如图,四边形ABCD是菱形,E、F是直线AC上两点,AF=CE.求证:四边形FBED是菱形.几名同学对这个问题,给出了如下几种解题思路,其中正确的是()甲:利用全等,证明四边形FBED四条边相等,进而说明该四边形是菱形;乙:连接BD,利用对角线互相垂直的平行四边形是菱形,判定四边形FBED是菱形;丙:该题目错误,根据已知条件不能够证明该四边形是菱形.A.甲、乙B.乙、丙C.甲.乙、丙D.甲、丙7.将2023个形状、大小均相同的菱形按照如图所示的方式排成一列,使得右侧菱形的顶点与左侧菱形的对角线交点重合,若这些菱形的边长均为4a,且有一个内角是45度,则阴影部分的面积总和等于()A.2023a2B.4046a2C.4042a2D.二.填空题8.已知菱形的周长是40cm,一条对角线长为16cm,则这个菱形的另一条对角线长是cm,面积是cm2.9.菱形ABCD的周长为20,该菱形一组对边的距离为3,则AC的长为.10.如图,在菱形ABCD中,对角线AC与BD相交于点O,且AC=16,BD=12,则菱形ABCD的高DH=.11.如图,已知菱形ABCD的周长为20,面积为15,动点P满足S△P AB=S菱形ABCD,则点P到A、B两点距离之和P A+PB的最小值为.12.如图所示,E,F分别在BC和CD上,AB=AE=AF=AD=BC=CD=EF,则∠D =°.13.如图,数学活动课上,老师给每位同学发放两根长度相等的木条和一根橡皮筋,要求大家根据所给的材料在平面内制作一个菱形.小明先用两根木条钉成一个角形框架∠AOB,然后将橡皮筋两端分别固定在点A,B处,拉动橡皮筋上到C处.当四边形OACB是菱形时,小明量得橡皮筋比固定时长了1倍,则∠AOB=°.14.如图,在四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD的延长线于点F,连接CF.若AD=1,CF=2,则BF为.15.如图所示,在四边形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=6,CD=8,E,F 分别是边AB、CD的中点,DH⊥BC于H,现有下列结论;①∠CDH=30°;②EF=4;③四边形EFCH是菱形;④S△EFC=3S△BEH.你认为结论正确的有.(填写正确的序号)16.将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展平纸片,如图(1);再次折叠该三角形纸片,使得点A与点D重合,折痕为EF,再次展平后连接DE、DF.如图2.解决下列问题:(1)四边形AEDF的形状是;(2)当∠BAC=60°时,=.三.解答题17.已知如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,BC的垂直平分线分别交BC 和AB于点D、E,点F在DE的延长线上,且AF=CE,求证:四边形ACEF是菱形.18.已知如图,在菱形ABCD中,EF分别是AB和BC上的点,且BE=BF,求证:(1)△ADE≌△CDF;(2)∠DEF=∠DFE.19.如图,在四边形ABCD中,AD=BC,点E、F、G、H分别是AB、CD、AC、BD的中点.求证:四边形EGFH是菱形.20.已知:如图,菱形ABCD对角线BD长6cm.AC的长为8cm求:(1)菱形ABCD的周长;(2)菱形ABCD的面积.21.【教材呈现】如下是北师大版九年级上册数学课本第6页的部分内容.(1)结合教材图1﹣4,完成这个定理证明;(2)应用上述定理解决实际问题周末,小辰和妈妈买回来一盏简单而精致的吊灯,其截面如图所示,四边形ABCD是一个菱形内框架,四边形AECF是其外部框架,且点E、B、D、F在同一直线上,BE=DF.①求证:四边形外框AECF是菱形;②若外框AECF的周长为80cm,EF=32cm,BE=7cm,直接写出AB的长.22.如图①,AE∥BF,AC平分∠BAD,交BF于点C,BD平分∠ABC,且交AC于点O,交AE于点D,连接CD.(1)求证:四边形ABCD是菱形.(2)若AC=6,BD=8,点P为射线AE上任意一点,连接PB和PC,如图②.求△PBC 的面积.。
2021-2022学年北师大版九年级数学上册《1-1菱形的性质与判定》寒假自主巩固提升训练(附答案)

2021-2022学年北师大版九年级数学上册《1.1菱形的性质与判定》寒假自主巩固提升训练(附答案)1.关于菱形,下列说法错误的是()A.四条边相等B.对角线互相垂直C.四个角相等D.对角线互相平分2.如图,将三角尺ABC沿边BC所在直线平移后得到△DCE,连接AD,下列结论正确的是()A.AD=AB B.四边形ABCD是平行四边形C.AD=2AC D.四边形ABCD是菱形3.如图,在平面直角坐标系xOy中,菱形OABC的顶点C在x轴的正半轴上.若点A的坐标是(3,4),则点B的坐标为()A.(5,4)B.(8,4)C.(5,3)D.(8,3)4.如图,在平面直角坐标系xOy中,四边形ABCD是菱形,∠ABC=120°,点B的坐标为(0,﹣2),则菱形ABCD的面积为()A.16B.32C.8D.165.如图,在菱形ABCD中,AB=5,AC=6,过点D作DE⊥BA,交BA的延长线于点E,则线段DE的长为()A.B.C.4D.6.如图,已知点E、F分别是四边形ABCD的边AD、BC的中点,G、H分别是对角线BD、AC的中点,要使四边形EGFH是菱形,则四边形ABCD需满足的条件是()A.AB=CD B.AC=BD C.AC⊥BD D.AD=BC7.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.B.C.12D.248.如图,菱形ABCD的周长为16,∠C=120°,E,F分别为AB,AD的中点,则EF的长为()A.B.C.4D.89.如图,菱形ABCD中,过顶点C作CE⊥BC交对角线BD于E点,已知∠A=134°,则∠BEC的大小为()A.23°B.28°C.62°D.67°10.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为()A.3B.4C.5D.611.如图,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点B的坐标是()A.(0,5)B.(0,6)C.(0,7)D.(0,8)12.如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是BC边上的一动点,则AP的最小值为()A.4B.4.8C.5D.5.513.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=33°,则∠OBC的度数为()A.33°B.57°C.59°D.66°14.已知平行四边形ABCD,下列条件中,能判定这个平行四边形为菱形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AC⊥BD15.如图,菱形ABCD对角线AO=4cm,BO=3cm,则菱形高DE长为()A.5cm B.10cm C.4.8cm D.9.6cm16.如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD的较大内角度数为()A.100°B.120°C.135°D.150°17.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.每条对角线平分一组对角D.对角互补18.如图菱形ABCD的两条对角线AC=80cm,BD=60cm,那么菱形的边长是()A.60cm B.50cm C.40cm D.80cm19.如图菱形ABCD中,∠ABC=120°,对角线AC=4,则菱形ABCD的周长为()A.12B.20C.8D.1620.如图,在菱形ABCD中,AC、BD相交于点O,∠BAD=60°,BD长为4,则菱形ABCD 的面积是.21.在菱形ABCD中,对角线AC=4cm,BD=7cm,则菱形的面积为cm2.22.如图,已知菱形ABCD的对角线AC与BD相交于点O,DB=4,AC=8,求菱形ABCD 的周长.23.如图,在菱形ABCD中,将对角线AC分别向两端延长到点E和F,使得AE=CF.连接DE,DF,BE,BF.求证:四边形BEDF是菱形.24.如图,在菱形ABCD中,∠A=60°,点E、F分别在边AB、BC上,△DEF是等边三角形.(1)求证:BE=CF;(2)若DG⊥AB,AD=6,AE=4,求EF的长.25.已知:如图,在四边形ABCD中,AC为对角线,AD∥BC,BC=2AD,∠BAC=90°,过点A作AE∥DC交BC于点E.(1)求证:四边形AECD为菱形;(2)若AB=AE=2,求四边形AECD的面积.26.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且DE:AC=1:2,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.27.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=100°,∠C=30°,求∠BDE的度数.28.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.29.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH.(1)求证:∠OHD=∠ODH;(2)若OC=4,BD=6,求菱形ABCD的周长和面积.30.如图,在Rt△ABC中,∠ACB=90°.CD⊥AB,AF平分∠CAB,交CD于点E,交BC于点F.过点F作FG⊥AB交AB于点G,连接EG.(1)求证:四边形CEGF是菱形;(2)若∠B=30°,AC=6,求CE的长.参考答案1.解:∵菱形的性质有四边相等,对角线互相垂直平分,∴四个角相等不是菱形的性质,故选:C.2.解:∵将三角尺ABC沿边BC所在直线平移后得到△DCE,∴AD=BC,AD∥BC,∴四边形ABCD是平行四边形,故选:B.3.解:∵点A的坐标是(3,4),∴OA=5,∵四边形OABC为菱形,∴OA=AB=5,则点B的坐标为(8,4).故选:B.4.解:∵点B的坐标为(0,﹣2),∴OB=2,∵四边形ABCD是菱形,∠ABC=120°,∴∠ABO=,∵∠AOB=90°,∴OA=OB•tan60°=2,∴AC=2OA=4,BD=2OB=4,∴,故选:C.5.解:如图.∵四边形ABCD是菱形,AC=6,∴AC⊥BD,OA=AC=3,BD=2OB,∵AB=5,∴OB==4,∴BD=2OB=8,∵S菱形ABCD=AB•DE=AC•BD,∴DE===.故选:D.6.解:∵点E、F分别是四边形ABCD的边AD、BC的中点,G、H分别是对角线BD、AC 的中点,∴EG=FH=AB,EH=FG=CD,∵当EG=FH=GF=EH时,四边形EGFH是菱形,∴当AB=CD时,四边形EGFH是菱形.故选:A.7.解:设AC与BD交于O,∵四边形ABCD是菱形,AC=8,DB=6,∴AC⊥BD,OA=AC=4,OB=BD=3,∴AB==5,∵S菱形ABCD=AC•BD=24,DH⊥AB,∴DH=24÷DH=.故选:B.8.解:连接AC,BD交于点O,∵四边形ABCD是菱形,∠BCD=120°,∴AB=BC,∠ABC=60°,AC⊥BD,∴△ABC是等边三角形,∴AB=BC=AC,∵菱形ABCD的周长为16,∴AB=AC=4,∴OA=2,∴OB===2,∴BD=2OB=4∵E、F分别是AB、AD的中点,∴EF=BD=2.故选:B.9.解:∵菱形ABCD,∠A=134°,∴∠ABC=180°﹣134°=46°,∴∠DBC=,∵CE⊥BC,∴∠BEC=90°﹣23°=67°,故选:D.10.解:∵ABCD是菱形,∴BO=DO=4,AO=CO,S菱形ABCD==24,∴AC=6,∵AH⊥BC,AO=CO=3,∴OH=AC=3.故选:A.11.解:∵A(12,13),∴OD=12,AD=13,∵四边形ABCD是菱形,∴BC=CD=AD=13,在Rt△ODC中,OC===5,∴OB=13﹣5=8.∴B(0,8).故选:D.12.解:设AC与BD的交点为O,∵点P是BC边上的一动点,∴AP⊥BC时,AP有最小值,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴BC===5,∵S菱形ABCD=×AC×BD=BC×AP,∴AP==4.8,故选:B.13.解:∵四边形ABCD是菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=33°,∴∠BCA=∠DAC=33°,∴∠OBC=90°﹣33°=57°,故选:B.14.解:A、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴平行四边形ABCD是矩形;故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴∠A=∠C;故选项B不符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD矩形;故选项C不符合题意;D、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形;故选项D符合题意;故选:D.15.解:∵四边形ABCD是菱形,∴AC⊥BD,AC=2OA=2×4cm=8cm,BD=2BO=2×3cm=6cm,在Rt△AOB中,由勾股定理得:AB===5(cm),菱形ABCD的面积=AC•BD=AB•DE,即×8×6=5DE,解得:DE=4.8(cm),故选:C.16.解:连接AC,如图:∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.17.解:A、菱形、平行四边形的对边平行且相等,故A选项不符合题意;B、菱形的对角线互相垂直平分、平行四边形的对角线互相平分,故B选项不符合题意;C、菱形的对角线互相垂直平分,且每一条对角线平分一组对角;平行四边形的对角线互相平分,故C选项符合题意;D、菱形、平行四边形的对角相等,故D选项不符合题意.故选:C.18.解:设AC、BD交于点O,如图所示:∵菱形ABCD的两条对角线AC=80cm,BD=60cm,∴AC⊥BD,BO=OD=BD=30cm,OA=OC=AC=40cm,∴AB===50(cm);故选:B.19.解:连接BD交AC于点O,如图:∴AB=BC=CD=AD,AC⊥BD,OA=OC=AC=2,∠ABD=∠CBD=∠ABC=60°,∴∠BAO=30°,∴OB=OA=2,AB=2OB=4,∴菱形ABCD的周长=4AB=16;故选:D.20.解:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,AO=CO,BO=DO=BD=2,∵∠BAD=60°,∴△ABD是等边三角形,∴AB=BD=4,∴AO===2,∴AC=4,∴菱形ABCD的面积=AC×BD=8,故答案为:8.21.解:如图所示:∵菱形ABCD中,对角线AC=4cm,BD=7cm,∴菱形ABCD的面积=AC×BD=×4×7=14(cm2);故答案为:14.22.解:∵四边形ABCD是菱形,∴OA=AC=4,OB=BD=2,AC⊥BD,∴AB===2,∴菱形ABCD的周长=4AB=8.23.证明:方法一:∵四边形ABCD是菱形,∴BC=CD,∠DCA=∠BCA,∴∠DCF=∠BCF,∵CF=CF,∴△CDF≌△CBF(SAS),∴DF=BF,∵AD∥BC,∴∠DAC=∠BCA,∴∠DAE=∠BCF,∵AE=CF,DA=BC,∴△DAE≌△BCF(SAS),∴DE=BF,同理可证:△DCF≌△BAE(SAS),∴DF=BE,∴四边形BEDF是平行四边形,∵DF=BF,∴平行四边形BEDF是菱形.方法二:∵ABCD为菱形,∴AB=BC=CD=AD,∠DAC=∠DCA=∠BCA=∠BAC,∴∠EAD=∠EAB=∠FCD=∠FCB,所以就能得到四个三角形全等,所以四条边相等,所以四边形BEDF为菱形.方法三:如图,连接BD交AC于点O,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,又∵AE=CF,∴OE=OF,∴四边形BEDF是菱形.24.解:(1)证明:∵四边形ABCD是菱形,∴AB=AD=BC=DC,∠C=∠A=60°,∴△ABD和△BCD是等边三角形,∴∠BDC=60°,DC=DB,∵△DEF是等边三角形,∴∠EDF=60°,DF=DE,∴∠CDF=∠BDE,∴△CDF≌△BDE(SAS),∴BE=CF;(2)∴△ABD是等边三角形,DG⊥AB,∴AG=BG=AB=AD=3,∴DG=AG=3,∴EG=AE﹣AG=1,在Rt△DGE中,根据勾股定理,得∴EF=DE=2.25.解:(1)∵AD∥BC,AE∥DC,∴四边形AECD为平行四边形,∴AD=EC,∵BC=2AD,∴BC=2EC.∴E为BC的中点∵∠BAC=90°,∴BC=2AE∴AE=EC,∵四边形AECD为平行四边形,∴四边形AECD为菱形;(2)解:连接DE,∵AB=AE=2,AE=BE,∴AB=AE=BE=2,∴△ABE是等边三角形.∴∠B=60°.∵AD=BE,AD∥BC,∴四边形ABED为平行四边形.∴DE=AB=2,∵∠B=60°,∠BAC=90°,AB=2,∴BC=4.∴.26.(1)证明:在菱形ABCD中,OC=AC.∵DE:AC=1:2,∴DE=OC,∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)解:在菱形ABCD中,∠ABC=60°,∴AC=AB=2.∴在矩形OCED中,CE=OD===.在Rt△ACE中,AE===.27.(1)证明:∵DE∥BC,DF∥AB∴四边形DEBF是平行四边形∵DE∥BC∴∠EDB=∠DBF∵BD平分∠ABC∴∠ABD=∠DBF=∠ABC∴∠ABD=∠EDB∴DE=BE且四边形BEDF为平行四边形∴四边形BEDF为菱形;(2)解:∵∠A=100°,∠C=30°,∴∠ABC=180°﹣100°﹣30°=50°,∵四边形BEDF为菱形,∴∠EDF=∠ABC=50°,∠BDE=∠EDF=25°.28.(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.29.(1)证明:∵四边形ABCD是菱形,∴OD=OB,AB∥CD,BD⊥AC,∵DH⊥AB,∴∠DHB=90°,∴OH=BD=OD,∴∠OHD=∠ODH;(2)∵四边形ABCD是菱形,∴OD=OB=BD=3,OA=OC=4,BD⊥AC,在Rt△OCD中,CD==5,∴菱形ABCD的周长=4CD=20,菱形ABCD的面积=×6×8=24.30.(1)证明:∵FG⊥AB,FC⊥AC,AF平分∠CAB,∴∠ACF=∠AGF=90°,CF=FG,在Rt△ACF与Rt△AGF中,,∴Rt△ACF≌Rt△AGF(HL),∴∠AFC=∠AFG,∵CD⊥AB,FG⊥AB,∴CD∥FG,∴∠CEF=∠EFG,∴∠CEF=∠CFE,∴CE=CF,∴CE=FG,∵CE∥FG,∴四边形CEGF是平行四边形,∵CE=CF,∴平行四边形CEGF菱形;(2)解:∵Rt△ACF≌Rt△AGF,∴AG=AC=6,∵∠B=30°,∠ACB=90°,∴AB=2AC=2×6=12,∴BG=AB﹣AG=12﹣6=6,在Rt△BGF中,tan∠B==,∴tan30°=,∴FG=6×tan30°=6×=2,∴CE=FG=2.。
北师大版初三上册数学菱形的性质与判定同步练习(附解析)

北师大版初三上册数学11.1菱形的性质与判定第1课时菱形的性质1.有一组__邻边__相等的平行四边形是菱形.2.菱形是__轴__对称图形,菱形的四边__相等__,菱形的对角线__互相垂直__.知识点一:菱形的定义1.已知四边形ABCD的对角线互相平分,要使它成为菱形,还需要添加一个条件,那个条件是(B)A.AB=CD B.AB=BCC.AD=BC D.AC=BD2.如图,在▱ABCD中,∵∠1=∠2,∴BC=DC.∴▱ABCD是菱形__有一组邻边相等的平行四边形是菱形__.(请在横线上填上理由)知识点二:菱形的性质3.若菱形两条对角线的长分别为6和8,则那个菱形的周长为(A) A.20B.16C.12D.104.(易错题)如图,在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是(B)A.AB∥DC B.AC=BDC.AC⊥BD D.OA=OC,第4题图),第5题图)5.如图,在菱形ABCD中,不一定成立的是(C)A.四边形ABCD是平行四边形B.AC⊥BDC.△ABC是等边三角形D.∠CAB=∠CAD6.在菱形ABCD中,已知∠A=60°,AB=5,则△ABD的周长是( C)A.10 B.12 C.15 D.207.菱形的一个内角为120°,边长为8,那么它较短的对角线长是(C )A.3 B.4 C.8 D.838.如图,菱形ABCD中,对角线AC,BD相交于点O,点H为AD 边中点,菱形ABCD的周长为28,则OH的长等于(A)A.3.5 B.4C.7 D.149.(2021·烟台)如图,在菱形ABCD中,点M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接OB.若∠DAC=28°,则∠OBC 的度数为(C)A.28°B.52°C.62°D.72°10.如图,四边形ABCD是菱形,对角线AC与BD相交于点O,AB =5,AO=4,求BD的长.解:∵四边形ABCD是菱形,∴AC⊥BD且BO=DO.在Rt△AOB 中,∵AB=5,AO=4,由勾股定理,得BO=3,∴BD=611.(2021·上海)如图,已知AC,BD是菱形ABCD的对角线,那么下列结论一定正确的是(B)A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍,第11题图),第12题图) 12.如图,已知菱形ABCD,其顶点A,B在数轴上对应的数分别为-4和1,则BC=__5__.13.如图是依照四边形的不稳固性制作的边长均为15 cm的可活动菱形衣架.若墙上钉子间的距离AB=BC=15 cm,则∠1=__120__°.,第13题图),第14题图)14.(2021·白银)如图,四边形ABCD是菱形,点O是两条对角线的交点,过点O的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__12__.15.(2021·宜宾)菱形的周长为20 cm,两个相邻的内角的度数之比为1∶2,则较长的对角线长度是__53__cm.16.如图,已知四边形ABCD是菱形,点E,F分别是边CD,AD的中点.求证:AE=CF.解:证明:∵四边形ABCD是菱形,∴AD=CD.∵点E,F分别是CD,AD的中点,∴DE=12CD,DF=12AD,∴DE=DF.又∵∠ADE=∠CDF,∴△AED≌△CFD(SAS),∴AE=CF17.如图,在菱形ABCD中,AC为对角线,点E,F分别是边BC,A D的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.解:(1)证明:∵四边形ABCD是菱形,∴AB=BC=AD=CD,∠B =∠D,∵点E,F分别是边BC,AD的中点,∴BE=DF,∴△ABE≌△C DF(SAS)(2)易得△ABC是等边三角形,点E为BC的中点,从而AE⊥BC,AE =2318.如图,在菱形ABCD中,点F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(1)求证:AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.解:(1)证明:连接AC.∵BD是菱形ABCD的对角线,∴BD垂直平分AC.∴AE=EC(2)点F是线段BC的中点.理由:∵ABCD是菱形,∴AB=CB.又∵∠ABC=60°,∴△ABC是等边三角形.∴∠BAC=60°.∵AE=EC,∴∠EAC=∠ACE.∵∠CEF=60°,∴∠EAC=30°.∴AF是△ABC的角平分线.又∵△ABC是等边三角形,∴BF=CF.∴点F是线段BC的中点第2课时菱形的判定对角线__互相垂直__的平行四边形是菱形;__四边相等__的四边形是菱形.知识点:菱形的判定1.小明和小亮在做一道习题,若四边形ABCD是平行四边形,请补充条件,使得四边形ABCD是菱形.小明补充的条件是AB=BC;小亮补充的条件是AC=BD,你认为下列说法正确的是(B)A.小明、小亮都正确B.小明正确,小亮错误C.小明错误,小亮正确D.小明、小亮都错误2.下列命题中正确的是(D)A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形D.对角线互相垂直的平行四边形是菱形3.如图,下列条件之一能使▱ABCD是菱形的是(D)①AC⊥BD;②∠BAD=90°;③AB=BC;④BD平分∠ABC.A.①③B.②③C.③④D.①③④,第3题图),第4题图)4.如图所示,在△ABC中,AB=AC,∠A<90°,BC,CA,AB的中点分别为点D,F,E,则四边形AFDE是(A)A.菱形B.长方形C.正方形D.以上都不对5.用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是(B)A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形,第5题图),第6题图)6.(易错题)如图,下列条件能判定四边形ABCD为菱形的有(C)①AB =BC =CD =DA ;②AC ,BD 互相垂直平分;③平行四边形AB CD ,且AC ⊥BD ;④平行四边形ABCD ,且AC =BD.A .1个B .2个C .3个D .4个7.(2021·淄博)已知▱ABCD ,对角线AC ,BD 相交于点O ,请你添加一个适当的条件,使▱ABCD 成为一个菱形,你添加的条件是__AD =D C(答案不唯独)__.8.如图,ABCD 是对角线互相垂直的四边形,且OB =OD ,请你添加一个适当的条件__OA =OC 或AD =BC 或AD ∥BC 或AB =BC__,使四边形ABCD 成为菱形.(只需添加一个即可)9.(2021·舟山)已知:如图,在▱ABCD 中,点O 为对角线BD 的中点,过点O 的直线EF 分别交AD ,BC 于E ,F 两点,连接BE ,DF.(1)求证:△DOE ≌△BOF ;(2)当∠DOE 等于多少度时,四边形BFDE 为菱形?请说明理由. 解:(1)证明:∵▱ABCD 中,点O 为对角线BD 的中点,∴BO =D O ,∠EDB =∠FBO ,在△EOD 和△FOB 中⎩⎪⎨⎪⎧∠EDO =∠OBF ,DO =BO ,∠EOD =∠FOB ,∴△DOE ≌△BOF(ASA) (2)当∠DOE =90°时,四边形BFDE 为菱形,理由:∵△DOE ≌△BOF ,∴BF =DE ,又∵BF ∥DE ,∴四边形EBFD 是平行四边形,∵BO =DO ,∠EOD =90°,∴EB =DE ,∴四边形BFDE 为菱形 10.(2021·徐州)若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( C )A .长方形B .对角线相等的梯形C .对角线相等的四边形D .对角线互相垂直的四边形11.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC ,作AC 的垂直平分线MN 分别交AD ,AC ,BC 于点M ,O ,N ,连接AN ,CM ,则四边形ANCM 是菱形.乙:分别作∠A ,∠B 的平分线AE ,BF ,分别交BC ,AD 于点E ,F ,连接EF ,则四边形ABEF 是菱形.依照两人的作法可判定( C )A .甲正确,乙错误B .乙正确,甲错误C .甲、乙均正确D .甲、乙均错误12.(2021·十堰)如图,在△ABC 中,点D 是BC 的中点,点E ,F 分别在线段AD 及其延长线上,且DE =DF.给出下列条件:①BE ⊥EC ;②BF ∥CE ;③AB =AC.从中选择一个条件使四边形BECF 是菱形,你认为那个条件是__③__.(只填写序号)13.(2021·新疆)如图,已知△ABC ,按如下步骤作图:①分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧交点P ,Q两点;②作直线PQ ,分别交AB ,AC 于点E ,D ,连接CE ;③过点C 作CF ∥AB 交PQ 于点F ,连接AF.(1)求证:△AED ≌△CFD ;(2)求证:四边形AECF 是菱形.解:(1)由作图知:PQ 为线段AC 的垂直平分线,∴AE =CE ,AD =CD ,∵CF ∥AB ,∴∠EAC =∠FCA ,∠CFD =∠AED ,在△AED 与△CF D 中,⎩⎪⎨⎪⎧∠EAC =∠FCA ,AD =CD ,∠CFD =∠AED ,∴△AED ≌△CFD(2)∵△AED ≌△CFD ,∴AE =CF ,∵EF 为线段AC 的垂直平分线,∴EC =EA ,FC =FA ,∴EC =EA =FC =FA ,∴四边形AECF 为菱形 14.(2021·南京)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,过点E 作EF ∥AB 交BC 于点F.(1)求证:四边形DBFE 是平行四边形;(2)当△ABC 满足什么条件时,四边形DBFE 是菱形?什么缘故? 解:(1)证明:∵点D ,E 分别是AB ,AC 的中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,又∵EF ∥AB ,∴四边形DBFE 是平行四边形 (2)当AB =BC 时,四边形是菱形.理由如下:∵点D 是AB 的中点,∴BD =12AB ,∵DE 是△ABC 的中位线,∴DE =12BC ,∵AB =BC ,∴BD =DE ,又∵四边形DBFE 是平行四边形,∴四边形DBFE 是菱形15.某校九年级学习小组在探究学习过程中,用两块完全相同的且含6 0°角的直角三角形ABC与AFE按如图①所示位置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图②,AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°,四边形ABPF是什么样的专门四边形?并说明理由.解:(1)证明:∵α+∠EAC=90°,∠NAF+∠EAC=90°,∴α=∠NAF.又∵∠B=∠F,AB=AF,∴△ABM≌△AFN,∴AM=AN(2)四边形ABPF是菱形.理由:∵α=30°,∠EAF=90°,∴∠BAF=120°.又∵∠B=∠F=60°,∴∠B+∠BAF=60°+120°=180°,∠F+∠B AF=60°+120°=180°.∴AF∥BC,AB∥EF.∴四边形ABPF是平行四边形.又∵AB=AF,∴四边形ABPF是菱形。
菱形的性质和判定(人教版)(含答案)

菱形的性质和判定(人教版)一、单选题(共9道,每道10分)1.下列说法错误的是( )A.菱形的对边互相平行B.菱形的对角相等C.菱形的对角线相等D.菱形的每一条对角线平分一组对角答案:C解题思路:试题难度:三颗星知识点:菱形的性质2.菱形具有而平行四边形不具有的性质是( )A.对角线互相平分B.邻角互补C.每条对角线平分一组对角D.对角相等答案:C解题思路:试题难度:三颗星知识点:菱形的性质3.如图,已知菱形ABCD的对角线AC,BD的长分别为6、8,AE⊥BC于点E,则AE的长是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:菱形的性质4.菱形ABCD的周长为8,高为1,则该菱形两邻角度数比为( )A.3:1B.4:1C.5:1D.6:1答案:C解题思路:试题难度:三颗星知识点:菱形的性质5.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,则∠CDE的度数为( )A.30°B.25°C.20°D.35°答案:A解题思路:试题难度:三颗星知识点:菱形的性质6.如图,等边△AEF的边长与菱形ABCD的边长相等,且它们有一个公共顶点A,E,F分别在BC,CD边上,则∠BAD等于( )A.90°B.80°C.120°D.100°答案:D解题思路:试题难度:三颗星知识点:菱形的性质7.如图,在菱形ABCD中,∠ADC=50°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数为( )A.40°B.50°C.60°D.80°答案:B解题思路:试题难度:三颗星知识点:菱形的性质8.在菱形ABCD中,AE⊥BC于E,AF⊥CD于F,且E,F分别为BC,CD的中点,则∠EAF的度数为( )A.75°B.60°C.45°D.30°答案:B解题思路:试题难度:三颗星知识点:菱形的性质9.如图,四边形ABCD是菱形,过点A作BD的平行线交CD的延长线于点E,则下列结论错误的是( )A.DA=DEB.BD=CEC.∠EAC=90°D.∠ABC=2∠E答案:B解题思路:试题难度:三颗星知识点:菱形的性质二、填空题(共1道,每道10分)10.如图,在菱形ABCD中,AB=BD,E,F分别是边AD,CD上的两个动点,且满足AE+CF=AB,则∠EBF为____度.答案:60解题思路:试题难度:知识点:菱形的性质。
菱形的性质和判定经典试题综合训练(含解析)

菱形的性质和判定经典试题综合训练(含解析)一.选择题(共15小题)1.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC2.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②3.下列性质中菱形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形4.如图,菱形ABCD的对角线AC、BD的长分别是6cm、8cm,AE⊥BC于点E,则AE的长是()A.cm B.cm C.cm D.5cm5.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是菱形,则四边形ABCD需满足的条件是()A.AB=AD B.AC=BD C.AD=BC D.AB=CD6.如图,菱形ABCD的周长为16,面积为12,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于()A.6 B.3 C.1.5 D.0.757.若菱形的周长为52cm,面积为120cm2,则它的对角线之和为()A.14cm B.17cm C.28cm D.34cm8.如图,作菱形ABCD的高AE,E为CD的中点.AE=cm,则菱形ABCD的周长是()A.4cm B.4cm C.4cm D.8cm9.如图,菱形ABCD中,过A作BD的平行线交CD的延长线于点E,下列结论:(1)∠EAC=90°,(2)DA=DE,(3)∠ABC=2∠E,其中正确的有()A.0个B.1个C.2个D.3个10.如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、△BCE、△ACF,当△ABC 满足什么条件时,四边形ADEF是菱形?()A.AB=AC B.∠BAC=90°C.∠BAC=120°D.∠BAC=150°11.已知菱形的周长为4,两条对角线的和为6,则菱形的面积为()A.2 B.C.3 D.412.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC,这五个条件中任选三个,能使四边形ABCD是菱形的选法有()A.1种B.2种C.3种D.4种13.已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论不正确的是()A.DF⊥AB B.CG=2GA C.CG=DF+GE D.S四边形BFGC=﹣114.如图,O是菱形ABCD的对角线AC、BD的交点,E、F分别是OA、OC的中点.下列结论:①S△ADE=S;②四边形BFDE也是菱形;③四边形ABCD的面积为EF×BD;④∠ADE=∠EDO;⑤△DEF是轴对称△EOD图形.其中正确的结论有()A.5个B.4个C.3个D.2个15.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC 翻折,点P的对应点为点P′.设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为()A.B.2 C. D.3二.填空题(共9小题)16.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为cm.17.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD ∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是(只填写序号)18.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件.19.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是(只填写序号).20.如图,菱形ABCD的周长为40,面积为25,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于.21.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于度.22.如图,菱形ABCD和菱形ECGF的边长分别为3和4,∠A=120°,则图中阴影部分的面积.23.如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足条件时,四边形EFGH是菱形.24.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为正方形,则t的值为.三.解答题(共9小题)25.如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于E,交AC于F,求证:四边形AEDF是菱形.26.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.27.如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求证:四边形ABFE是菱形.28.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(2)若∠ADB=30°,BD=6,求AD的长.29.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.30.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,若BE⊥CD,试证明∠EFD=∠BCD.31.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.32.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(2)若AF=8,CF=6,求四边形BDFG的面积.33.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.菱形的性质和判定经典试题综合训练参考答案与试题解析一.选择题(共15小题)1.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC【分析】当BE平分∠ABC时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE 即可解决问题.【解答】解:当BE平分∠ABC时,四边形DBFE是菱形,理由:∵DE∥BC,∴∠DEB=∠EBC,∵∠EBC=∠EBD,∴∠EBD=∠DEB,∴BD=DE,∵DE∥BC,EF∥AB,∴四边形DBEF是平行四边形,∵BD=DE,∴四边形DBEF是菱形.其余选项均无法判断四边形DBEF是菱形,故选D.2.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②【分析】根据菱形是特殊的平行四边形以及等腰三角形的性质证明即可.【解答】证明:∵四边形ABCD是菱形,∴AB=AD,∵对角线AC,BD交于点O,∴BO=DO,∴AO⊥BD,即AC⊥BD,∴证明步骤正确的顺序是③→④→①→②,故选B.3.下列性质中菱形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形【分析】根据菱形的性质解答即可得.【解答】解:A、菱形的对角线互相平分,此选项正确;B、菱形的对角线互相垂直,此选项正确;C、菱形的对角线不一定相等,此选项错误;D、菱形既是轴对称图形又是中心对称图形,此选项正确;故选:C.4.如图,菱形ABCD的对角线AC、BD的长分别是6cm、8cm,AE⊥BC于点E,则AE的长是()A.cm B.cm C.cm D.5cm【分析】根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,∴S菱形ABCD==×6×8=24cm2,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=cm.故选:B.5.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是菱形,则四边形ABCD需满足的条件是()A.AB=AD B.AC=BD C.AD=BC D.AB=CD【分析】由点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,根据三角形中位线的性质,可得EF=GH=AB,EH=FG=CD,又由当EF=FG=GH=EH时,四边形EFGH是菱形,即可求得答案.【解答】解:∵点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,∴EF=GH=AB,EH=FG=CD,∵当EF=FG=GH=EH时,四边形EFGH是菱形,∴当AB=CD时,四边形EFGH是菱形.故选:D.6.如图,菱形ABCD的周长为16,面积为12,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于()A.6 B.3 C.1.5 D.0.75【分析】连AP,由菱形ABCD的周长为16,根据了菱形的性质得AB=AD=4,并且S菱形ABCD=2S△ABD,则S△=×12=6,由于S△ABD=S△APB+S△APD,再根据三角形的面积公式得到•PE•AB+•PF•AD=6,即可得到ABDPE+PF的值.【解答】解:连AP,如图,∵菱形ABCD的周长为16,∴AB=AD=4,∴S菱形ABCD=2S△ABD,∴S△ABD=×12=6,而S△ABD=S△APB+S△APD,PE⊥AB,PF⊥AD,∴•PE•AB+•PF•AD=6,∴2PE+2PF=6,∴PE+PF=3.故选B.7.若菱形的周长为52cm,面积为120cm2,则它的对角线之和为()A.14cm B.17cm C.28cm D.34cm【分析】作出图形,根据菱形的对角线互相垂直平分可得AC⊥BD,AO=CO=AC,BO=DO=BD,然后根据菱形的面积等于对角线乘积的一半列式整理可得AO•BO=60,根据菱形的周长求出AB=13,再利用勾股定理可得AO2+BO2=169,然后利用完全平方公式整理并求出AO+BO,再求解即可.【解答】解:如图,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=AC,BO=DO=BD,∵菱形的面积为120cm2,∴AC•BD=120,即×2AO•2BO=120,所以,AO•BO=60,∵菱形的周长为52cm,∴AB=13cm,在Rt△AOB中,由勾股定理得,AO2+BO2=AB2=132=169,所以,(AO+BO)2=AO2+2AO•BO+BO2=169+60×2=289,所以,AO+BO=17,所以,AC+BD=2(AO+BO)=2×17=34cm.故选D.8.如图,作菱形ABCD的高AE,E为CD的中点.AE=cm,则菱形ABCD的周长是()A.4cm B.4cm C.4cm D.8cm【分析】通过解直角三角形ADE得到边AD的长度,然后由菱形的周长公式进行解答.【解答】解:在菱形ABCD中,AD=CD.∵E为CD的中点,AE⊥CD,∴ED=CD=AD,∴∠DAE=30°,∵AE=cm,∴AD===2(cm),∴菱形ABCD的周长=4AD=8cm.故选:D.9.如图,菱形ABCD中,过A作BD的平行线交CD的延长线于点E,下列结论:(1)∠EAC=90°,(2)DA=DE,(3)∠ABC=2∠E,其中正确的有()A.0个B.1个C.2个D.3个【分析】根据菱形的性质、平行线的性质、平行四边形的判定和性质等知识一一判断即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,AB=AD,∠ABC=2∠ABD,∵AE∥BD,∴AE⊥AC,∴∠EAC=90°,故①正确,∵AB∥DE,AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE,∠E=∠ABD,∴AD=DE,故②正确,∴∠ABC=2∠E,故③正确,故选D.10.如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、△BCE、△ACF,当△ABC 满足什么条件时,四边形ADEF是菱形?()A.AB=AC B.∠BAC=90°C.∠BAC=120°D.∠BAC=150°【分析】根据等边三角形性质得出BD=AB,BE=BC,∠DBA=∠EBC=60°,求出∠DBE,证△DBE≌△ABC,推出DE=AC=AF,同理AD=EF得出平行四边形ADEF,根据菱形的判定判断即可.【解答】解:∵△ABD和△BCE是等边三角形,∴BD=AB,BE=BC,∠DBA=∠EBC=60°,∴∠DBE=∠CBA=60°﹣∠EBA,在△DBE和△ABC中,,∴△DBE≌△ABC(SAS),∴DE=AC,∵△AFC是等边三角形,∴AF=AC,∴AF=DE,同理AD=EF,∴四边形ADEF是平行四边形,当AB=AC时,∵AD=AB,AC=AF,∴AD=AF,∴四边形ADEF是菱形,故选A.11.已知菱形的周长为4,两条对角线的和为6,则菱形的面积为()A.2 B.C.3 D.4【分析】由菱形的性质和勾股定理得出AO+BO=3,AO2+BO2=AB2,(AO+BO)2=9,求出2AO•BO=4,即可得出答案.【解答】解:如图四边形ABCD是菱形,AC+BD=6,∴AB=,AC⊥BD,AO=AC,BO=BD,∴AO+BO=3,∴AO2+BO2=AB2,(AO+BO)2=9,即AO2+BO2=5,AO2+2AO•BO+BO2=9,∴2AO•BO=4,∴菱形的面积=AC•BD=2AO•BO=4;故选:D.12.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC,这五个条件中任选三个,能使四边形ABCD是菱形的选法有()A.1种B.2种C.3种D.4种【分析】由平行四边形的判定方法和菱形的判定方法得出能使四边形ABCD是菱形的选法有4种,即可得出结论.【解答】解:∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴①②③能使四边形ABCD是菱形;∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴①③⑤能使四边形ABCD是菱形;∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴③④⑤能使四边形ABCD是菱形;∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴②③④能使四边形ABCD是菱形;∴能使四边形ABCD是菱形的选法有4种.故选:D.13.已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论不正确的是()A.DF⊥AB B.CG=2GA C.CG=DF+GE D.S四边形BFGC=﹣1【分析】A、由四边形ABCD是菱形,得出对角线平分对角,求得∠GAD=∠2,得出AG=GD,AE=ED,由SAS证得△AFG≌△AEG,得出∠AFG=∠AEG=90°,即可得出A正确;B、由DF⊥AB,F为边AB的中点,证得AD=BD,证出△ABD为等边三角形,得出∠BAC=∠1=∠2=30°,由AC=2AB•cos∠BAC,AG=,求出AC,AG,即可得出B正确;C、由勾股定理求出DF=,由GE=tan∠2•ED求出GE,即可得出C正确;D、由S四边形BFGC=S△ABC﹣S△AGF求出数值,即可得出D不正确.【解答】解:∵四边形ABCD是菱形,∴∠FAG=∠EAG,∠1=∠GAD,AB=AD,∵∠1=∠2,∴∠GAD=∠2,∴AG=GD,∵GE⊥AD,∴GE垂直平分AD,∴AE=ED,∵F为边AB的中点,∴AF=AE,在△AFG和△AEG中,,∴△AFG≌△AEG(SAS),∴∠AFG=∠AEG=90°,∴DF⊥AB,∴A正确;∵DF⊥AB,F为边AB的中点,∴AF=AB=1,AD=BD,∵AB=AD,∴AD=BD=AB,∴△ABD为等边三角形,∴∠BAD=∠BCD=60°,∴∠BAC=∠1=∠2=30°,∴AC=2AB•cos∠BAC=2×2×=2,AG===,∴CG=AC﹣AG=2﹣=,∴CG=2GA,∴B正确;∵GE垂直平分AD,∴ED=AD=1,由勾股定理得:DF===,GE=tan∠2•ED=tan30°×1=,∴DF+GE=+==CG,∴C正确;∵∠BAC=∠1=30°,∴△ABC的边AC上的高等于AB的一半,即为1,FG=AG=,S四边形BFGC=S△ABC﹣S△AGF=×2×1﹣×1×=﹣=,∴D不正确;故选:D.14.如图,O是菱形ABCD的对角线AC、BD的交点,E、F分别是OA、OC的中点.下列结论:①S△ADE=S;②四边形BFDE也是菱形;③四边形ABCD的面积为EF×BD;④∠ADE=∠EDO;⑤△DEF是轴对称△EOD图形.其中正确的结论有()A.5个B.4个C.3个D.2个【分析】①正确,根据三角形的面积公式可得到结论.②根据已知条件利用菱形的判定定理可证得其正确.③正确,根据菱形的面积等于对角线乘积的一半即可求得.④不正确,根据已知可求得∠FDO=∠EDO,而无法求得∠ADE=∠EDO.⑤正确,由已知可证得△DEO≌△DFO,从而可推出结论正确.【解答】解:①正确∵E、F分别是OA、OC的中点.∴AE=OE.∵S△ADE=×AE×OD=×OE×OD=S△EOD∴S△ADE=S△EOD.②正确∵四边形ABCD是菱形,E,F分别是OA,OC的中点.∴EF⊥OD,OE=OF.∵OD=OD.∴DE=DF.同理:BE=BF∴四边形BFDE是菱形.③正确∵菱形ABCD的面积=AC×BD.E、F分别是OA、OC的中点.∴EF=AC.∴菱形ABCD的面积=EF×BD.④不正确,由已知可求得∠FDO=∠EDO,而无法求得∠ADE=∠EDO.⑤正确∵EF⊥OD,OE=OF,OD=OD.∴△DEO≌△DFO.∴△DEF是轴对称图形.∴正确的结论有四个,分别是①②③⑤,故选B.15.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC 翻折,点P的对应点为点P′.设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为()A.B.2 C. D.3【分析】首先连接PP′交BC于O,根据菱形的性质可得PP′⊥CQ,可证出PO∥AC,根据平行线分线段成比例可得=,再表示出AP、AB、CO的长,代入比例式可以算出t的值.【解答】解:连接PP′交BC于O,∵若四边形QPCP′为菱形,∴PP′⊥QC,∴∠POQ=90°,∵∠ACB=90°,∴PO∥AC,∴=,∵设点Q运动的时间为t秒,∴AP=t,QB=t,∴QC=6﹣t,∴CO=3﹣,∵AC=CB=6,∠ACB=90°,∴AB=6,∴=,解得:t=2,故选:B.二.填空题(共9小题)16.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为4cm.【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:根据作图,AC=BC=OA,∵OA=OB,∴OA=OB=BC=AC,∴四边形OACB是菱形,∵AB=2cm,四边形OACB的面积为4cm2,∴AB•OC=×2×OC=4,解得OC=4cm.故答案为:4.17.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD ∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是①②③④(只填写序号)【分析】根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案.【解答】解:因为l是四边形ABCD的对称轴,AB∥CD,则AD=AB,∠1=∠2,∠1=∠4,则∠2=∠4,∴AD=DC,同理可得:AB=AD=BC=DC,所以四边形ABCD是菱形.根据菱形的性质,可以得出以下结论:所以①AC⊥BD,正确;②AD∥BC,正确;③四边形ABCD是菱形,正确;④在△ABD和△CDB中∵∴△ABD≌△CDB(SSS),正确.故答案为:①②③④.18.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件AC=BD.【分析】添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG 和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形.【解答】解:添加的条件应为:AC=BD.证明:∵E,F,G,H分别是边AB、BC、CD、DA的中点,∴在△ADC中,HG为△ADC的中位线,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,则HG∥EF且HG=EF,∴四边形EFGH为平行四边形,又AC=BD,所以EF=EH,∴四边形EFGH为菱形.故答案为:AC=BD19.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是③(只填写序号).【分析】首先利用对角线互相平分的四边形是平行四边形判定该四边形为平行四边形,然后结合菱形的判定得到答案即可.【解答】解:由题意得:BD=CD,ED=FD,∴四边形EBFC是平行四边形,①BE⊥EC,根据这个条件只能得出四边形EBFC是矩形,②BF∥CE,根据EBFC是平行四边形已可以得出BF∥CE,因此不能根据此条件得出菱形,③AB=AC,∵,∴△ADB≌△ADC,∴∠BAD=∠CAD∴△AEB≌△AEC(SAS),∴BE=CE,∴四边形BECF是菱形.故答案为:③.20.如图,菱形ABCD的周长为40,面积为25,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于 2.5.【分析】直接利用菱形的性质得出AB=AD=10,S△ABD=12.5,进而利用三角形面积求法得出答案.【解答】解:∵菱形ABCD的周长为40,面积为25,∴AB=AD=10,S△ABD=12.5,∵分别作P点到直线AB、AD的垂线段PE、PF,∴×AB×PE+×PF×AD=12.5,∴×10(PE+PF)=12.5,∴PE+PF=2.5.故答案为:2.5.21.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于75度.【分析】连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故答案为:75.22.如图,菱形ABCD和菱形ECGF的边长分别为3和4,∠A=120°,则图中阴影部分的面积.【分析】作BM⊥FG于M,交EC于N,如图,根据菱形的性质得BC=CD=3,CG=GF=4,AB∥CE∥GF,∠ABC=∠BCD=∠CGF=120°,则∠BCN=∠BGM=60°,再根据含30度的直角三角形三边的关系,在Rt△BCN中可计算出BN=CN=,在Rt△BMG中可计算出BM=GM=,则MN=BM﹣BN=﹣=2,然后根据三角形面积公式和梯形面积公式,利用S阴影部分=S△BCD+S梯形CDFG﹣S△BGF进行计算即可.另一种解法为把阴影部分的面积转化为△BCD的面积进行计算.【解答】解:连接CF,如图,∵四边形ABCD和四边形CGFE为菱形,∠A=120°,∴∠DBC=∠FCG=30°,∴BD∥CF,∴S△FDB=S△CDB=S菱形ABCD=•2••32=.故答案为.23.如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足AB=CD条件时,四边形EFGH是菱形.【分析】首先利用三角形的中位线定理证出EF∥AB,EF=AB,HG∥AB,HG=AB,可得四边形EFGH是平行四边形,再根据邻边相等的平行四边形是菱形,添加条件AB=CD后,证明EF=EH即可.【解答】解:需添加条件AB=CD.∵E,F是AD,DB中点,∴EF∥AB,EF=AB,∵H,G是AC,BC中点,∴HG∥AB,HG=AB,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形,∵E,H是AD,AC中点,∴EH=CD,∵AB=CD,∴EF=EH,∴四边形EFGH是菱形.故答案为:AB=CD.24.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为正方形,则t的值为2.【分析】根据正方形的判定定理得到BQ=BP时,四边形QPBP′为正方形进行解答即可.【解答】解:由题意得,当△BPQ为等腰直角三角形时,四边形QPBP′为正方形,则BQ=BP,即6﹣t=×t,解得t=2.故答案为:2.三.解答题(共9小题)25.如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于E,交AC于F,求证:四边形AEDF是菱形.【分析】由已知易得四边形AEDF是平行四边形,由角平分线和平行线的定义可得∠FAD=∠FDA,∴AF=DF,∴四边形AEDF是菱形;【解答】证明:∵AD是△ABC的角平分线,∴∠EAD=∠FAD,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EAD=∠ADF,∴∠FAD=∠FDA∴AF=DF,∴四边形AEDF是菱形.26.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【分析】(1)连结DB 、DF .根据菱形四边相等得出AB=AD=FA ,再利用SAS 证明△BAD ≌△FAD ,得出DB=DF ,那么D 在线段BF 的垂直平分线上,又AB=AF ,即A 在线段BF 的垂直平分线上,进而证明AD ⊥BF ;(2)设AD ⊥BF 于H ,作DG ⊥BC 于G ,证明DG=CD .在直角△CDG 中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解答】(1)证明:如图,连结DB 、DF .∵四边形ABCD ,ADEF 都是菱形,∴AB=BC=CD=DA ,AD=DE=EF=FA .在△BAD 与△FAD 中,,∴△BAD ≌△FAD ,∴DB=DF ,∴D 在线段BF 的垂直平分线上, ∵AB=AF ,∴A 在线段BF 的垂直平分线上,∴AD 是线段BF 的垂直平分线,∴AD ⊥BF ;(2)如图,设AD ⊥BF 于H ,作DG ⊥BC 于G ,则四边形BGDH 是矩形,∴DG=BH=BF .∵BF=BC ,BC=CD ,∴DG=CD .在直角△CDG 中,∵∠CGD=90°,DG=CD ,∴∠C=30°,∵BC ∥AD ,∴∠ADC=180°﹣∠C=150°.27.如图,△ABC 中,AB=AC ,∠BAC=40°,将△ABC 绕点A 按逆时针方向旋转100°.得到△ADE ,连接BD ,CE 交于点F .(1)求证:△ABD ≌△ACE ;(2)求证:四边形ABFE 是菱形.【分析】(1)根据旋转角求出∠BAD=∠CAE ,然后利用“边角边”证明△ABD 和△ACE 全等.(2)根据对角相等的四边形是平行四边形,可证得四边形ABFE 是平行四边形,然后依据邻边相等的平行四边形是菱形,即可证得.【解答】(1)证明:∵ABC绕点A按逆时针方向旋转100°,∴∠BAC=∠DAE=40°,∴∠BAD=∠CAE=100°,又∵AB=AC,∴AB=AC=AD=AE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS).(2)证明:∵∠BAD=∠CAE=100°AB=AC=AD=AE,∴∠ABD=∠ADB=∠ACE=∠AEC=40°.∵∠BAE=∠BAD+∠DAE=140°,∴∠BFE=360°﹣∠BAE﹣∠ABD﹣∠AEC=140°,∴∠BAE=∠BFE,∴四边形ABFE是平行四边形,∵AB=AE,∴平行四边形ABFE是菱形.28.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=6,求AD的长.【分析】(1)由平行线的性质和角平分线定义得出∠ABD=∠ADB,证出AB=AD,同理:AB=BC,得出AD=BC,证出四边形ABCD是平行四边形,即可得出结论;(2)由菱形的性质得出AC⊥BD,OD=OB=BD=3,再由三角函数即可得出AD的长.【解答】(1)证明:∵AE∥BF,∴∠ADB=∠CBD,又∵BD平分∠ABF,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,同理:AB=BC,∴AD=BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,BD=6,∴AC⊥BD,OD=OB=BD=3,∵∠ADB=30°,∴cos∠ADB==,∴AD==2.29.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)设EF=x,AD=y,则x+y=7,进而得到x2+2xy+y2=49,再根据Rt△AOE中,AO2+EO2=AE2,得到x2+y2=36,据此可得xy=,进而得到菱形AEDF的面积S.【解答】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=AB=AE,Rt△ACD中,DF=AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形;(2)如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49,①∵AD⊥EF于O,∴Rt△AOE中,AO2+EO2=AE2,∴(y)2+(x)2=32,即x2+y2=36,②把②代入①,可得2xy=13,∴xy=,∴菱形AEDF的面积S=xy=.30.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,若BE⊥CD,试证明∠EFD=∠BCD.【分析】(1)先判断出△ABC≌△ADC得到∠BAC=∠DAC,再判断出△ABF≌△ADF得出∠AFB=∠AFD,最后进行简单的推算即可;(2)先由平行得到角相等,用等量代换得出∠DAC=∠ACD,最后判断出四边相等;(3)由(2)得到判断出△BCF≌△DCF,结合BE⊥CD即可.【解答】证明:(1)在△ABC和△ADC中.∴△ABC≌△ADC,∴∠BAC=∠DAC,在△ABF和△ADF中,∴△ABF≌△ADF,∴∠AFB=∠AFD,∵∠CFE=∠AFB,∴∠AFD=∠CFE,∴∠BAC=∠DAC,∠AFD=∠CFE;(2)∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠EFD=∠BCD.31.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.32.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:四边形BDFG是菱形;(2)若AF=8,CF=6,求四边形BDFG的面积.【分析】(1)首先可判断四边形BDFG是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可证明四边形BDFG是菱形;(2)首先过点B作BH⊥AG于点H,由AF=8,CF=6,可利用勾股定理求得AC的长,即可求得DF的长,然后由菱形的性质求得BG=GF=DF=5,再求出EF的长即可解决问题.【解答】证明:(1)∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CE⊥BD,∴CE⊥AG,又∵BD为AC的中线,∴BD=DF=AC,∴四边形BDFG是菱形,(2)∵AF=8,CF=6,CF⊥AG,∴AC==10,∴DF=AC=5,∵四边形BDFG是菱形,∴BD=GF=DF=5,∵DE∥AG,CD=AD,∴CE=EF=3∴S菱形BDFG=GF•EF=15.33.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.【分析】(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE ≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.【解答】(1)证明:连接AC,如下图所示,∵四边形ABCD为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF(ASA).∴BE=CF;(2)解:四边形AECF的面积不变,△CEF的面积发生变化.理由:由(1)得△ABE≌△ACF,则S△ABE=S△ACF,故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC=BC•AH=BC•=4,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大.∴S△CEF=S四边形AECF﹣S△AEF=4﹣×2×=.答:最大值是.。
1.1菱形的性质与判定(2)

思考题:
如图,AD∥BC,BD垂直平分AC,四边形 ABCD一定是菱形吗?若是,请说明理由。
答:四边形ABCD是菱形 理由:∵BD垂直平分AC ∴OA= OC ,∠AOD=∠BOC=90 ° D ∵AD∥BC ┐ ∴∠1= ∠2 A O ∴△AOD≌△BOC ∴AD= BC B ∴四边形ABCD是平行四边形 ∵ AC⊥BD. ∴四边形ABCD是菱形
∵ ∠AOE= ∠COF ∴ △AOE ≌ △COF
D
∴ AE = CF B ∵ AE∥CF ∴四边形ABCD是平行四边形 ∵ AC⊥EF. ∴四边形ABCD是菱形
O F C
明 溪 县 城 关 中 学
Ming xi cheng guan zhong xue
练习4:如图, ABCD中,BE平分∠ABC 交AD于点E,且CE平分∠DCB,若BC长10。 求平行四边形ABCD的周长,并说明理由
明 溪 县 城 关 中 学
Ming xi cheng guan zhong xue
例1:如下图,平行四边形ABCD的两条 对角线AC,BD相交于O点,AB= 5 , AO=2,OB=1.四边形ABCD是菱形吗? 为什么?
解:∵ AB= 5 ,AO=2,OB=1. ∴ AO2+OB2=4+1=5 AB2=5 ∴AB2=AO2+OB2 ∴ ∠AOB是直角 ∴AC⊥BD. ∵ 四边形ABCD是平行四边形 ∴四边形ABCD是菱形.
1.典型例题: 如图,四边形ABCD是边长为13cm 的菱形,其中对角线BD长为10cm. 求:(1)对角线AC的长度; (2)菱形ABCD的面积.
解:∵四边形ABCD是菱形 ∴DE=1/2BD=5,AC=2AE ,AC⊥BD. 在Rt△ADE中 ∴ AE2=AD2-DE2=169-25=144 ∴AE=12cm ∴ AC=2AE=24 cm ∴S菱形ABCD=1/2BD· AC=1/2× 10×24=120
初二数学下菱形(提高)知识讲解+巩固练习

菱形(提高)【学习目标】1. 理解菱形的概念.2. 掌握菱形的性质定理及判定定理.【要点梳理】要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积由两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.要点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【典型例题】类型一、菱形的性质1、如图所示,菱形ABCD中,E、F分别是BC、CD上的点,∠B=∠EAF=60°,∠BAE =18°.求∠CEF的度数.【思路点拨】由已知∠B=60°,∠BAE=18°,则∠AEC=78°.欲求∠CEF的度数,只要求出∠AEF的度数即可,由∠EAF=60°,结合已知条件易证△AEF为等边三角形,从而∠AEF=60°.【答案与解析】解:连接AC.∵四边形ABCD是菱形,∴ AB=BC,∠ACB=∠ACF.又∵∠B=60°,∴△ABC是等边三角形.∴∠BAC=∠ACB=60°,AB=AC.∴∠ACF=∠B=60°.又∵∠EAF=∠BAC=60°∴∠BAE=∠CAF.∴△ABE≌△ACF.∴ AE=AF.∴△AEF为等边三角形.∴∠AEF=60°.又∵∠AEF+∠CEF=∠B+∠BAE,∠BAE=18°,∴∠CEF=18°.【总结升华】当菱形有一个内角为60°时,连接菱形较短的对角线得到两个等边三角形,有助于求相关角的度数.在求角的度数时,一定要注意已知角与所求角之间的联系.2、已知:如图所示,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F.(1)求证:AM=DM;(2)若DF=2,求菱形ABCD的周长.【答案与解析】证明:(1)连接DB,则由菱形性质得BD⊥AC.又因为EF⊥AC,所以EF∥BD,即ME∥BD.又因为点E是AB的中点,所以点M是AD的中点.所以AM=DM.(2)由(1)得DB∥EF.又BE∥DF,所以四边形EFDB是平行四边形.所以BE=DF=2.又因为12BE AB,即AB=2BE=2×2=4.所以菱形ABCD的周长为4×4=16.【总结升华】菱形四边相等,对角线互相垂直平分. 举一反三:【变式】(春•潍坊期中)如图,在菱形ABCD中,对角线AC、BD相交于点O,E是AB 的中点,如果EO=2,求四边形ABCD的周长.【答案】解:∵四边形ABCD为菱形,∴BO=DO,即O为BD的中点,又∵E是AB的中点,∴EO是△ABD的中位线,∴AD=2EO=2×2=4,∴菱形ABCD的周长=4AD=4×4=16.类型二、菱形的判定3、(春•郑州校级月考)如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以lcm/s的速度运动,同时点F从点B出发沿线射BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)当t为多少时,四边形ACFE是菱形.【思路点拨】(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;(2)若四边形ACFE是菱形,则有CF=AC=AE=6,由E的速度求出E运动的时间即可.【答案与解析】(1)证明:∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,∴AD=CD,在△ADE和△CDF中,,∴△ADE≌△CDF(AAS);(2)解:①若四边形ACFE是菱形,则有CF=AC=AE=6,则此时的时间t=6÷1=6(s).故答案为:6s.【总结升华】此题考查了菱形的判定,全等三角形的判定与性质等知识,弄清题意是解本题的关键.举一反三:【变式】已知,在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.⑴求四边形AQMP的周长;⑵M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.【答案】解:(1)∵MQ∥AP,MP∥AQ,∴四边形AQMP是平行四边形∴QM=AP又∵AB=AC,MP∥AQ,∴∠2=∠C,△PMC是等腰三角形,PM=PC∴QM+PM=AP+PC=AC=a∴四边形AQMP的周长为2a(2)M位于BC的中点时,四边形AQMP为菱形.∵M位于BC的中点时,易证△QBM与△PCM全等,∴QM=PM,∴四边形AQMP为菱形类型三、菱形的综合应用4、如图所示,菱形ABCD中,AB=4,∠ABC=60°,∠EAF=60°,∠EAF的两边分别交BC、CD于E、F.(1)当点E、F分别在边BC、CD上时,求CE+CF的值.(2)当点E、F分别在CB、DC的延长线时,CE、CF又存在怎样的关系,并证明你的结论.【思路点拨】(1)由菱形的性质可知AB=BC,而∠ABC=60°,即联想到△ABC为等边三角形,∠BAC=60°,又∠EAF=60°,所以∠BAE=∠CAF,可证△BAE≌△CAF,得到BE=CF,所以CE+CF=BC.(2)思路基本与(1)相同但结果有些变化.【答案与解析】解:(1)连接AC.在菱形ABCD中,BC=AB=4,AB∥CD.∵∠ABC=60°,∴ AB=AC=BC,∠BAC=∠ACB=60°.∴∠ACF=60°,即∠ACF=∠B.∵∠EAF=60°,∠BAC=60°,∴∠BAE=∠CAF.∴△ABE≌△ACF(ASA),∴ BE=CF.∴ CE+CF=CE+BE=BC=4.(2)CE-CF=4.连接AC如图所示.∵∠BAC=∠EAF=60°,∴∠EAB=∠FAC.∵∠ABC=∠ACD=60°,∴∠ABE=∠ACF=120°.∵ AB=AC,∴△ABE≌△ACF(ASA),∴ BE=CF.∴ CE-CF=CE-BE=BC=4.【总结升华】(1)菱形的性质的主要应用是证明角相等、线段相等、两直线平行、两线段互相垂直、互相平分等.(2)注意菱形中的60°角的特殊性,它让菱形这个特殊的平行四边形变得更加特殊,常与等边三角形发生联系.【巩固练习】一.选择题1.下列命题中,正确的是( )A.两邻边相等的四边形是菱形B.一条对角线平分一个内角的平行四边形是菱形C.对角线垂直且一组邻边相等的四边形是菱形D.对角线垂直的四边形是菱形2. 菱形的周长为高的8倍,则它的一组邻角是()A.30°和150°B.45°和135°C.60°和120°D.80°和100°3.已知菱形的周长为40cm,两条对角线的长度比为3:4,那么两条对角线的长分别为()A.6cm,8cm B. 3cm,4cm C. 12cm,16cm D. 24cm,32cm4.(•青神县一模)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD 于点P,垂足为E,连接CP,则∠CPB的度数是()A.108°B.72°C.90°D.100°5. 如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为142cm ,四边形ABCD 面积是112cm ,则①②③④四个平行四边形周长的总和为( )A.48cmB.36cmC.24cmD.18cm6. 如图,菱形ABCD 和菱形ECGF 的边长分别为2和3,∠A =120°,则图中阴影部分的面积是( )A.3B.2C.3D.2二.填空题7. (•江西三模)将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB=3,则BC 的长为 .8.如图,已知菱形ABCD ,其顶点A 、B 在数轴上对应的数分别为-4和1,则BC =_____.9.如图,菱形ABCD 的边长是2cm ,E 是AB 中点, 且DE ⊥AB ,则菱形ABCD 的面积为FA B CDHE G①②③④⑤cm.______210.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,则菱形的两条对角线的长和面积分别是.11. 如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH=.12.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD中点,点P在x轴上移动,小明同学写出了两个使△POE为等腰三角形的P点坐标(-5,0)和(5,0).请你写出其余所有符合这个条件的P点坐标__________________.三.解答题13. (•建湖县一模)如图,△ABC中,∠ACB=60°,分别以△ABC的两边向形外作等边△BCE、等边△ACF,过A作AM∥FC交BC于点M,连接EM.求证:(1)四边形AMCF是菱形;(2)△ACB≌△MCE.14.如图,在平行四边形ABCD中,对角线AC、BD相交于O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.15.如图,菱形ABCD 的边长为2,BD =2,E 、F 分别是边AD ,CD 上的两个动点(不与端点重合),且满足AE +CF =2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围. 【答案与解析】 一.选择题 1.【答案】B ; 2.【答案】A ;【解析】由题意可知边长是高的2倍,所以一个内角为30°,另一个内角为150°. 3.【答案】C ;【解析】设两条对角线的长为6,8k k .所以有()()2223410k k +=,∴2k =,所以两条对角线的长为12 ,16.4.【答案】B ;【解析】连接PA ,如图所示: ∵四边形ABCD 是菱形,∴∠ADP=∠CDP=∠ADC=36°,BD 所在直线是菱形的对称轴, ∴PA=PC ,∵AD 的垂直平分线交对角线BD 于点P , ∴PA=PD , ∴PD=PC ,∴∠PCD=∠CDP=36°,∴∠CPB=∠PCD+∠CDP=72°; 故选:B .5.【答案】A ;【解析】菱形的面积等于11+142=18,设菱形边长为a ,则218,62a a ==,①②③④四个平行四边形周长的总和为菱形周长的2倍.6.【答案】A ;【解析】菱形的高分别是3和332,阴影部分面积=两个菱形面积-△ABD 面积-△DEF 面积-△BGF 面积=93152333333244+---=. 二.填空题7.【答案】. ;【解析】∵AECF 为菱形,∴∠FCO=∠ECO ,由折叠的性质可知,∠ECO=∠BCE ,又∠FCO+∠ECO+∠BCE=90°, ∴∠FCO=∠ECO=∠BCE=30°,在Rt △EBC 中,EC=2EB ,又EC=AE , AB=AE+EB=3,∴EB=1,EC=2,∴BC=.8.【答案】5;【解析】菱形四条边相等. 9.【答案】23【解析】由题意∠A =60°,DE 310.【答案】5;53253; 【解析】菱形一个内角为60°,边长为5,所以两条对角线长为5和53,面积为125553322⨯⨯=11.【答案】512;【解析】431255AO BO OH AB ⨯⨯===. 12.【答案】()258,0,,08⎛⎫⎪⎝⎭; 【解析】由在菱形ABCD 中,AC =12,BD =16,E 为AD 中点,根据菱形的性质与直角三角形的性质,易求得OE 的长,然后分别从①当OP =OE 时,②当OE =PE 时,③当OP =EP 时去分析求解即可求得答案.三.解答题 13.【解析】 证明:(1)∵△ACF 是等边三角形, ∴∠FAC=∠ACF=60°,AC=CF=AF , ∵∠ACB=60°, ∴∠ACB=∠FAC , ∴AF ∥BC , ∵AM ∥FC ,∴四边形AMCF 是平行四边形, ∵AM ∥FC ,∠ACB=∠ACF=60°, ∴∠AMC=60°, 又∵∠ACB=60°,∴△AMC 是等边三角形, ∴AM=MC ,∴四边形AMCF 是菱形;(2)∵△BCE 是等边三角形, ∴BC=EC ,在△ABC 和△MEC 中 ∵,∴△ABC ≌△MEC (SAS ).14.【解析】证明:∵四边形ABCD 是平行四边形∴AD ∥BC ,OB =OD ∵∠EDO =∠FBO, ∠OED =∠OFB ∴△OED ≌△OFB∴DE =BF 又∵ED ∥BF∴四边形BEDF 是平行四边形 ∵EF ⊥BD∴平行四边形BEDF 是菱形. 15.【解析】 解:(1)∵AE +CF =2=CD =DF +CF ∴AE =DF ,DE =CF , ∵AB =BD∴∠A =∠ADB =60° 在△BDE 与△BCF 中BD BC ADB C DE CF =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△BCF(2)由(1)得BE =BF ,∠EBD =∠CBF∴∠EBF =∠EBD +∠DBF =∠DBF +∠CBF =∠CBD =60°∴△BEF 是等边三角形(3)∵3≤△BEF 的边长<222S≤<S<11 / 11。
《6.1菱形的判定与性质》期末复习培优提升训练2020-2021学年鲁教版(五四制)八年级数学下册

2021年鲁教版八年级数学下册《6.1菱形》期末复习培优提升训练(附答案)1.如图,四边形ABCD为菱形,A,B两点的坐标分别是(3,0),(0,),点C,D在坐标轴上,则菱形ABCD的周长等于()A.8B.4C.2D.42.如图,菱形ABCD的对角线AC,BD交于点O.过O作OE⊥AB于点E.延长EO交CD于点F,若AC=8,BD=6,则EF的值为()A.5B.C.D.3.下列说法中正确的是()A.对角线互相垂直的四边形菱形B.五边形的内角和为720°C.一条对角线平分一组对角的四边形是菱形D.三角形的外角和为360°4.菱形的面积为12cm2,一条对角线是6cm,那么菱形的另一条对角线长为()A.3cm B.4cm C.5cm D.6cm5.菱形ABCD的周长为16,∠ABC=120°,则AC的长为()A.4B.4C.2D.26.如图,菱形中,对角线、BD交于点O,E为AD边中点,菱形ABCD的面积为24,OA =3,则OE的长等于()A.B.C.5D.7.如图,菱形ABCD中,∠D=120°,则∠1=()A.30°B.25°C.60°D.15°8.如图,平行四边形ABCD的对角线AC、BD相交于点O,那么下列条件中,能判断平行四边形ABCD是菱形的为()A.AO=CO B.AO=BO C.∠AOB=90°D.∠BAD=∠ABC 9.如图,在菱形ABCD中,点E,F分别是AC,AB的中点,如果EF=3,那么菱形ABCD 的周长为()A.24B.18C.12D.910.在四边形ABCD中,对角线AC,BD相交于点O,且OA=OC,OB=OD.若要使四边形ABCD为菱形,则可以添加的条件是()A.∠AOB=60°B.AC⊥BD C.AC=BD D.AB⊥BC11.已知平行四边形ABCD,下列条件:①AC⊥BD;②∠BAD=90°;③AB=BC;④AC =BD.其中能使平行四边形ABCD是菱形的有()A.①③B.②③C.③④D.①②③12.如图,在菱形ABCD中,AC与BD相交于点O,AB的垂直平分线EF交AC于点F,连接DF.若∠BAD=80°,则∠CDF的度数为()A.100°B.80°C.60°D.40°13.若菱形的边长为2,较长的一条对角线长为2,则菱形两邻角的度数比为()A.5:1B.4:1C.3:1D.2:114.如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥BC于点H,连接OH,若OA=4,S菱形ABCD=24,则OH的长为()A.B.3C.D.15.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD中,AB=3,AC=2,则四边形ABCD的面积为()A.B.C.D.516.图1是用一种彭罗斯瓷砖平铺成的图案,它的基础部分是“风筝”和“飞镖”两部分,图2中的“风筝”和“飞镖”是由图3所示的特殊菱形制作而成.在菱形ABCD中,∠BAD=72°,在对角线AC上截取AE=AB,连接BE,DE,可将菱形分割为“风筝”(凸四边形ABED)和“飞镖”(凹四边形BCDE)两部分,则图2中的α=°.17.如图,菱形ABCD和菱形EFGH的面积分别为9cm2和64cm2,CD落在EF上,∠A=∠E,若△BCF的面积为4cm2,则△BDH的面积是cm2.18.如图,A(0,4),B(8,0),点C是x轴正半轴上一点,D是平面内任意一点,若以A、B、C、D为顶点的四边形是菱形,则点D的坐标为.19.如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,点P为边BC上一点,且P不与写B、C重合.过P作PE⊥AC于E,PF⊥BD于F,连接EF,则EF的最小值等于.20.如图,四边形ABCD为菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=25°,则∠DHO的度数是.21.如图,在菱形ABCD中,∠B=60°,E,H分别为AB,BC的中点,G,F分别为线段HD,CE的中点.若线段FG的长为2,则AB的长为.22.如图,在▱ABCD中,对角线AC与BD相交于点O,过点O的直线EF与BA、DC的延长线分别交于点E、F.(1)求证:AE=CF;(2)请再添加一个条件,使四边形BFDE是菱形,并说明理由.23.如图,在▱ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.(1)求证:△AEB≌△CFD;(2)当△ABD满足什么条件时,四边形EBFD是菱形,请说明理由.24.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=2,BD=4,求OE的长.25.如图,在四边形ABCD中,AB∥CD,AB=AD,AC平分∠BAD.(1)求证:四边形ABCD是菱形;(2)若菱形ABCD的边长为13,对角线AC=24,点E、F分别是边CD、BC的中点,连接EF并延长,与AB的延长线相交于点G,求EG的长.26.如图,点A、F、C、D在同一条直线上,点B、E分别在直线AD的两侧,且AB=DE,AB∥DE,AF=DC.(1)求证:四边形BCEF是平行四边形,(2)若∠ABC=90°,AB=8,BC=6,当AF=时,四边形BCEF 是菱形.27.如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)连接AC,过点D作DE∥AC,交BC的延长线于点E,若BC=5,BD=8,求ED 的长.28.如图,已知平行四边形ABCD.过A作AM⊥BC于点M.交BD于点E,过C作CN∥AM交AD于点N,交BD于点F,连接AF、CE.(1)求证:四边形AECF为平行四边形;(2)当四边形AECF为菱形,M点为BC的中点,且BC=3时,求CF的长.29.如图,在▱ABCD中,BC=2CD,E,F分别是AD,BC的中点,连接EF.(1)求证:四边形EFCD是菱形;(2)连接AF,若AF=2,∠DEF=60°,求EF的长和菱形EFCD的面积.30.如图,在▱ABCD中,E、F分别为AD、BC的中点,点M、N在对角线AC上,且AM =CN.(1)求证:四边形EMFN是平行四边形;(2)若AB⊥AC,求证:四边形EMFN是菱形.参考答案1.解:∵A,B两点的坐标分别是(3,0),(0,),∴OB=,OA=3,∴AB===2,∵四边形ABCD是菱形,∴AB=BC=CD=DA=2,∴菱形ABCD的周长等于=4×2=8,故选:A.2.解:在菱形ABCD中,BD=6,AC=8,∴OB=BD=3,OA=AC=4,AC⊥BD,∴AB===5,∵S菱形ABCD=AC•BD=AB•EF,即×6×8=5EF,∴EF=.故选:C.3.解:A、∵对角线互相垂直平分的四边形菱形,∴选项A不符合题意;B、∵五边形的内角和为(5﹣2)×180°=540°,∴选项B不符合题意;C、∵一条对角线平分一组对角的平行四边形是菱形,∴选项C不符合题意;D、∵三角形的外角和为360°,∴选项D符合题意;故选:D.4.解:设另一条对角线长为xcm,则×6•x=12,解得x=4.故选:B.5.解:如图,在菱形ABCD中,∠ABC=120°,∴∠ABE=60°,AC⊥BD,AB=AD,AE=BE,DE=BE,∴△ADB是等边三角形,∴AB=BD=AD,∵菱形ABCD的周长为16,∴AB=4,∴AD=BD=4,∴BE=DE=2,∴AE===2,故可得AC=2AE=4.故选:A.6.解:∵菱形的对角线、BD交于点O,OA=3,∴AC=2AO=6,∵菱形ABCD的面积为24,∴=24,∴BD=8,DO=4,又∵AC⊥BD,∴AD===5,又∵E为AD边中点,∴OE=AD=,故选:A.7.解:∵四边形ABCD是菱形,∴AB=BC,∠B=∠D=120°,∴∠1=30°,故选:A.8.解:A、∵四边形ABCD是平行四边形,∴AO=CO,故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵AO=BO,∴AC=BD,∴平行四边形ABCD是矩形,故选项B不符合题意;C、∵∠AOB=90°,∴AC⊥BD,∴平行四边形ABCD是菱形,故选项C符合题意;D、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BAD+∠ABC=180°,∵∠BAD=∠ABC,∴∠BAD=∠ABC=90°,∴平行四边形ABCD是矩形,故选项D不符合题意;故选:C.9.解:∵E、F分别是AC、AB的中点,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长=4×6=24.故选:A.10.解:∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,A、∵∠AOB=60°,∴不能得出四边形ABCD是菱形;选项A不符合题意;B、∵AC⊥BD,∴四边形ABCD是菱形,故选项B符合题意;C、∵AC=BD,∴四边形ABCD是矩形,故选项C不符合题意;D、∵AB⊥BC,∴四边形ABCD是矩形,故选项D不符合题意;故选:B.11.解:①▱ABCD中,AC⊥BD,根据对角线互相垂直的平行四边形是菱形,即可判定▱ABCD 是菱形;故①正确;②▱ABCD中,∠BAD=90°,根据有一个角是直角的平行四边形是矩形,即可判定▱ABCD是矩形,而不能判定▱ABCD是菱形;故②错误;③▱ABCD中,AB=BC,根据一组邻边相等的平行四边形是菱形,即可判定▱ABCD是菱形;故③正确;D、▱ABCD中,AC=BD,根据对角线相等的平行四边形是矩形,即可判定▱ABCD是矩形,而不能判定▱ABCD是菱形;故④错误.故选:A.12.解:连接BF,∵四边形ABCD是菱形,∠BAD=80°,∴∠DAC=40°,∠ADC=100°,AC⊥BD,DO=BO,∴BF=DF,∵EF垂直平分AB,∴AF=BF,∴AF=DF,∴∠F AD=∠ADF=40°,∴∠CDF=60°,故选:C.13.解:如图,∵四边形ABCD是菱形,∴AB=BC=2,AO=CO,BO=DO=,AC⊥BD,AD∥BC,∴AO===1,∴AC=2,∴AB=AC=BC=2,∴△ABC是等边三角形,∴∠ABC=60°,∵AD∥BC,∴∠BAD=120°,∴两邻角的度数比为2:1,故选:D.14.解:∵四边形ABCD是菱形,∴AC⊥BD,DO=BO,AO=OC,∵OA=4,∴AC=2OA=8,∵S菱形ABCD=24,∴8×BD=24,解得:BD=6,∵DH⊥BC,∴∠DHB=90°,∵DO=BO,∴OH=BD=6=3,故选:B.15.解:过点A作AE⊥CD于E,AF⊥BC于F,连接AC,BD交于点O,∵两条纸条宽度相同,∴AE=AF.∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AF=CD•AE.又∵AE=AF.∴BC=CD,∴四边形ABCD是菱形,∴AO=CO=1,BO=DO,AC⊥BD,∴BO===2,∴BD=4,∴四边形ABCD的面积==4,故选:A.16.解:∵四边形ABCD是菱形,∠BAD=72°,∴∠DAC=∠BAC=36°,AD=AB,∵AE=AB=AD,∴∠DEA=72°=∠AEB,∴∠α=72°+72°=144°,故答案为144.17.解:如图,连接FH,∵四边形ABCD是菱形,四边形EFGH是菱形,∠A=∠E,∴∠ADC=∠EFG,∠BDC=∠ADC=∠EFH=∠EFG,△BDC的面积=×S菱形ABCD=4.5(cm2),∴BD∥FH,∴△BDH的面积=△BDF的面积,∴△BDH的面积=S△BDC+S△BCF=8.5(cm2),故答案为8.5.18.解:当AB为菱形的对角线时,如图1,设菱形的边长为m,∵A(0,4),B(8,0),∴OA=4,OB=8,∵四边形ABCD为菱形,∴CA=AD=BC,AD∥BC,∴CA=CB=8﹣m,在Rt△AOC中,42+(8﹣m)2=m2,解得m=5,∴D(5,4);当AB为菱形的边时,如图2,AB==4,∵四边形ABCD为菱形,∴BC=AB=AD=4,AD∥BC,∴D(4,4),综上所述,D点坐标为(5,4)或(4,4).故答案为(5,4)或(4,4).19.解:连接OP,如图所示:∵四边形ABCD是菱形,AC=12,BD=16,∴AC⊥BD,BO=BD=8,OC=AC=6,∴BC===10,∵PE⊥AC,PF⊥BD,AC⊥BD,∴四边形OEPF是矩形,∴FE=OP,∵当OP⊥BC时,OP有最小值,此时S△OBC=OB×OC=BC×OP,∴OP==4.8,∴EF的最小值为4.8,故答案为:4.8.20.解:∵四边形ABCD是菱形,∴AD=AB,BO=OD,∠DAO=∠BAO=25°,AC⊥BD,∴∠ABD=65°,∵DH⊥AB,BO=DO,∴HO=DO,∴∠DHO=∠BDH=90°﹣∠ABD=25°,故答案为25°.21.解:如图,连接CG并延长,交AD于点M,连接EM,∵四边形ABCD为菱形,∠B=60°,∴AD∥BC,∴∠A=120°,∠MGD=∠CGH,∵点G为HD的中点,∴HG=DG,∵∠MGD=∠CGH,∴△MGD≌△CGH(ASA),∴MG=CG,MD=CH=BC=AD,∴点G为MC的中点,点M为AD的中点,∵F,G分别为CE和CM的中点,∴FG是△CEM的中位线,∴FG=EM,∴EM=2FG=4,∵E,M分别为AB和AD的中点,∴AE=AM,∵∠A=120°,∴EM=AE=4,∴AE=4,∴AB=2AE=8.故答案为:8.22.证明:(1)∵四边形ABCD是平行四边形,∴OA=OC,BE∥DF,∴∠E=∠F,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴AE=CF;(2)当EF⊥BD时,四边形BFDE是菱形,理由如下:如图:连结BF,DE,∵四边形ABCD是平行四边形,∴OB=OD,∵△AOE≌△COF,∴OE=OF,∴四边形BFDE是平行四边形,∵EF⊥BD,∴四边形BFDE是菱形.23.(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=BC,AB=CD.∵点E、F分别是AD、BC的中点,∴AE=DE=AD,BF=FC=BC.∴AE=CF.在△AEB与△CFD中,,∴△AEB≌△CFD(SAS);(2)解:当△ABD满足∠ABD=90°,四边形EBFD是菱形,理由如下:由(1)得:BF=DE,BF∥DE,∴四边形EBFD是平行四边形,∵∠ABD=90°,点E是AD的中点,∴BE=AD=DE,∴平行四边形EBFD是菱形.24.(1)证明:∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=AC=OA=OC,∵BD=4,∴OB=BD=2,在Rt△AOB中,AB=2,OB=2,∴OA==6,∴OE=OA=6.25.解:(1)∵AC平分∠BAD,AB∥CD.∴∠DAC=∠BAC,∠DCA=∠BAC.∴∠DAC=∠DCA.∴AD=DC.又∵AB∥CD,AB=AD.∴AB∥CD且AB=CD∴四边形ABCD是平行四边形.∵AB=AD.∴四边形ABCD是菱形.(2)连接BD,交AC于点O,如图:∵菱形ABCD的边长为13,对角线AC=24.∴CD=13,AO=CO=12.∵点E、F分别是边CD、BC的中点.∴EF∥BD(中位线).∵AC、BD是菱形的对角线.∴AC⊥BD,OB=OD.又∵AB∥CD,EF∥BD.∴DE∥BG,BD∥EG.∴四边形BDEG是平行四边形.∴BD=EG.在△COD中.∵OC⊥OD,CD=13,CO=12.∴.∴EG=BD=10.26.(1)证明:∵点A、F、C、D在同一条直线上,AB∥DE,∴∠BAF=∠EDC,在△AFB和△DCE中,,∴△AFB≌△DCE(SAS),∴FB=CE,∠AFB=∠DCE,∴∠BFC=∠ECF,∴FB∥CE,又∵FB=CE,∴四边形BCEF是平行四边形;(2)解:连接BE,交CF于点G,如图所示:∵四边形BCEF是平行四边形,∴当BE⊥CF时,四边形BCEF是菱形,∴FG=CG,∵∠ABC=90°,AB=8,BC=6,∴AC===10,∴FG=CG=,∴AF=CD=DF﹣2FG=10﹣=.故答案为:.27.解:(1)∵BD平分∠ABC,∴∠ABD=∠CBD,∵AD∥BC,∴∠ADB=∠CBD=∠ABD,∴AB=AD,又∵BA=BC,∴AD∥BC,且AD=BC,∴四边形ABCD为平行四边形,∵AB=AD,∴四边形ABCD为菱形.(2)∵四边形ABCD是菱形,∵DE∥AC,∴DE⊥BD,∵AD∥BC,DE∥AC,∴四边形ACED为平行四边形,∴CE=AD=BC=5,∴BE=BC+CE=10,在Rt△BDE中,由勾股定理得:DE==6.28.证明:(1)∵四边形ABCD是平行四边形,∴BC∥AD,AD=BC,∴∠ADE=∠CBD,又∵AM⊥BC,∴AM⊥AD;∵CN⊥AD,∵AM∥CN,∴AE∥CF;在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF,∴四边形AECF为平行四边形;(2)如图,连接AC交BF于点O,当四边形AECF为菱形时,则AC与EF互相垂直平分,∴AC与BD互相垂直平分,∴▱ABCD是菱形,∴AB=BC;∵M是BC的中点,AM⊥BC,∴AB=AC,∴△ABC为等边三角形,∴∠ABC=60°,∠CBD=30°,∴BC=CF=3,∴CF=.29.证明:(1)在▱ABCD中,BC=2CD,∴AD∥BC,AD=BC=2CD,∵E,F分别是AD,BC的中点,∴DE=CF=CD,又AD∥BC,∴四边形EFCD是平行四边形,又∵CD=DE,∴四边形EFCD是菱形;(2)如图,过点F作FH⊥AD于H,∵四边形EFCD是菱形,∴DE=EF=AE,∵∠DEF=60°,∴∠EFH=30°,∴EH=EF,FH=EH,∴AH=AE+EH=3EH,∵AF2=AH2+HF2,∴12=9EH2+3EH2,∴EH=1,∴EF=2=DE,HF=,∴菱形EFCD的面积=2×=2,故答案为:2,.30.证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAM=∠FCN,∵E、F分别为AD、BC的中点,∴AE=DE=BF=CF,在△AEM和△CFN中,,∴△AEM≌△CFN(SAS),∴EM=FN,∠AME=∠CNF,∴∠EMN=∠FNM,∴EM∥FN,∴四边形EMFN是平行四边形;(2)连接EF交AC于O,如图所示:由(1)得:AE∥BF,AE=BF,∴四边形AEFB是平行四边形,∴AB∥EF,∵AB⊥AC,∴∠BAC=90°,∴∠COF=∠BAC=90°,∴EF⊥MN,∴四边形EMFN是菱形.。
1.1 菱形的性质与判定 北师大版九年级数学上册同步练习(含解析)

北师大版九上1.1菱形的性质与判定同步练习一、选择题(共10题)1. 菱形不具备的性质是( )A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形2. 菱形ABCD中,∠A:∠B=1:5,若其周长为8,则菱形ABCD的高为( )B.4C.1D.2 A.123. 菱形ABCD中,AB=2,∠D=120∘,则对角线AC的长为( )A.1B.3C.2D.234. 菱形ABCD中,AC=10,BD=24,则该菱形的周长等于( )A.13B.52C.120D.2405. 如图,菱形ABCD中,E,F分别是AB,AC的中点,若EF=3,则菱形ABCD的周长是( )A.12B.16C.20D.246. 已知O为平行四边形ABCD对角线的交点,下列条件能使平行四边形ABCD成为菱形的是( )A.AB=BC B.AC=BDC.OA=OC,OB=OD D.∠A=∠B=∠C=90∘7. 如图,B,C分别是锐角∠A两边上的点,AB=AC,分别以点B,C为圆心,以AB的长为半径画弧,两弧相交于点D,连接BD,CD,则根据作图过程判定四边形ABDC 是菱形的依据是( )A.一组邻边相等的四边形是菱形B.四条边都相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线平分一组对角的四边形是菱形8. 点E,F,G,H分别是四边形ABCD的边AB,BC,CD,AD的中点,AC,BD交于点O,当四边形ABCD的对角线满足( )条件时,四边形EFGH是菱形.A.AC⊥BD B.AC=BDC.OA=OC,OB=OD D.OA=OB9. 平面直角坐标系中,四边形ABCD的顶点坐标分别是A(―3,0),B(0,2),C(3,0),D(0,―2),则四边形ABCD是( )A.矩形B.菱形C.正方形D.平行四边形10. 如图,四边形ABCD的对角线AC,BD互相垂直,则下列条件能判定四边形ABCD为菱形的是( )A.BA=BC B.AC,BD互相平分C.AC=BD D.AB∥CD二、填空题(共10题)11. 如图,菱形ABCD的周长是8 cm,AB的长是cm.12. 已知菱形两条对角线的长分别为4和6,则菱形的边长为.13. 已知菱形的周长为20 cm,一条对角线长为6 cm,则这个菱形的面积是cm2.14. 如图,若菱形的边长为4,∠BAD=120∘,则较短对角线AC长为.15. 如图,菱形ABCD的对角线AC,BD交于点O,E为DC的中点,若OE=3,则菱形的周长为.16. 如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD于点E,反向延长交BC于点F,则EF的长为.17. 如图,菱形ABCD的对角线AC,BD相交于点O,已知OB=4,菱形ABCD的面积为24,则AC的长为.18. 如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②AB=AC;③BF∥CE.从中选择条件可使四边形BECF是菱形.19. 如图,在四边形ABCD中,AB≠CD,E,F,G,H分别是AB,BD,CD,AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是.20. 如图,在△ABC中,AD⊥BC于点D,点E,F分别是AB,AC边的中点,请你在△ABC中添加一个条件:,使得四边形AEDF是菱形.三、解答题(共7题)21. 【测试4】如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD,BC分别相交于点M,N.(1) 求证:四边形BNDM是菱形;(2) 若BD=24,MN=10,求菱形BNDM的周长.22. 已知:如图,在平行四边形ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1) 求证:△ABE≌△CDF;(2) 连接DG,若DG=BG,则四边形BECF是什么特殊四边形?请说明理由.23. 如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1) ∠CEB=∠CBE;(2) 四边形BCED是菱形.24. 如图,AC是平行四边形ABCD的对角线,∠BAC=∠DAC.(1) 求证AB=BC;(2) 若AB=2,AC=23,求平行四边形ABCD的面积.25. 在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF,求证:(1) △ABF≌△DAE.(2) DE=BF+EF.26. 在正方形ABCD中,对角线BD所在的直线上有两点E,F满足BE=DF,连接AE,AF,CE,CF,如图所示.(1) 求证:△ABE≌△ADF;(2) 试判断四边形AECF的形状,并说明理由.27. 如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC,AC=8,BD=6.(1) 求证:四边形ABCD是平行四边形;(2) 若AC⊥BD,求平行四边形ABCD的面积.答案一、选择题(共10题)1. 【答案】B2. 【答案】C3. 【答案】D4. 【答案】B5. 【答案】D6. 【答案】A7. 【答案】B8. 【答案】B9. 【答案】B10. 【答案】B二、填空题(共10题)11. 【答案】212. 【答案】1313. 【答案】2414. 【答案】415. 【答案】2416. 【答案】24517. 【答案】618. 【答案】②19. 【答案】AD=BC20. 【答案】如:AB=AC,答案不唯一三、解答题(共7题)21. 【答案】(1) ∵AD∥BC,∴∠DMO=∠BNO,∵MN 是对角线 BD 的垂直平分线,∴OB =OD ,MN ⊥BD ,在 △MOD 和 △NOB 中,∠DMO =∠BNO,∠MOD =∠NOB,OD =OB,∴△MOD ≌△NOB (AAS),∴OM =ON ,∵OB =OD ,∴ 四边形 BNDM 是平行四边形,∵MN ⊥BD ,∴ 四边形 BNDM 是菱形.(2) ∵ 四边形 BNDM 是菱形,BD =24,MN =10,∴BM =BN =DM =DN ,OB =12BD =12,OM =12MN =5,在 Rt △BOM 中,由勾股定理得:BM =OM 2+OB 2=52+122=13, ∴ 菱形 BNDM 的周长 =4BM =4×13=52.22. 【答案】(1) ∵ 四边形 ABCD 是平行四边形,∴AB =CD ,∠BAE =∠DCF ,在 △ABE 和 △CDF 中,AB =CD,∠BAE =∠DCF,AE =CF,∴△ABE ≌△CDF (SAS);(2) 四边形 BEDF 是菱形;理由如下:如图所示:∵ 四边形 ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∵AE =CF ,∴DE =BF ,∴ 四边形 BEDF 是平行四边形,∴OB =OD ,∵DG =BG ,∴EF ⊥BD ,∴ 四边形 BEDF 是菱形.23. 【答案】(1) ∵ △ABC ≌△ABD ,∴ ∠ABC =∠ABD .∵ CE ∥BD ,∴ ∠CEB =∠DBE ,∴ ∠CEB =∠CBE .(2) ∵ △ABC ≌△ABD ,∴ BC =BD .∵ ∠CEB =∠CBE ,∴ CE =CB ,∴ CE =BD .∵ CE ∥BD ,∴ 四边形 CEDB 是平行四边形.∵ BC =BD ,∴ 四边形 CEDB 是菱形.24. 【答案】(1) 因为四边形 ABCD 是平行四边形,所以 AD ∥BC ,所以 ∠DAC =∠BCA ,因为 ∠BAC =∠DAC ,所以 ∠BAC =∠BCA ,所以 AB =BC .(2) 连接 BD 交 AC 于点 O ,因为四边形 ABCD 是平行四边形,AB =BC ,所以四边形 ABCD 是菱形,所以 AC ⊥BD ,OA =OC =12AC =3,OB =OD =12BD ,所以 OB =AB 2―OA 2=22―(3)2=1,所以 BD =2OB =2,所以 S 平行四边形ABCD =12AC ⋅BD =12×23×2=23.25. 【答案】(1) ∵ 四边形 ABCD 是菱形,∴AB =AD ,AD ∥BC ,∴∠BOA =∠DAE ,∵∠ABC =∠AED ,∴∠BAF =∠ADE ,∵∠ABF =∠BPF ,∠BPA =∠DAE ,∴∠ABF =∠DAE ,∵AB =DA ,∴△ABF ≌△DAE (ASA).(2) ∵△ABF ≌△DAE ,∴AE =BF ,DE =AF ,∵AF =AE +EF =BF +EF ,∴DE =BF +EF .26. 【答案】(1) ∵ 正方形 ABCD ,∴AB =AD ,∠ABE =∠ADF =135∘,在 △ABE 和 △ADF 中,AB =AD,∠ABE =∠ADF,BE =DF,∴△ABE ≌△ADF (SAS).(2) 四边形 AECF 为菱形.证明:连接 AC ,∵△ABE ≌△ADF ,∴AE =AF ,∵正方形ABCD,∴EF垂直平分AC,∴EA=EC,FA=FC,∴EA=EC=FA=FC,∴四边形AECF是菱形.27. 【答案】(1) ∵O是AC的中点,∴OA=OC,∵AD∥BC,∴∠ADO=∠CBO.在△AOD和△COB中,∠ADO=∠CBO,∠AOD=∠COB,OA=OC,∴△AOD≌△COB,∴OD=OB,∴四边形ABCD是平行四边形.(2) ∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,∴平行四边形ABCD的面积=1AC⋅BD=24.2。
北师大九上数学菱形的性质和判定课堂讲义及练习(含答案)

1.1菱形的性质和判定【菱形的性质】1.菱形的定义有一组邻边相等的平行四边形叫做菱形.符号语言:∵四边形ABCD是平行四边形,且AB=BC,∴四边形ABCD是菱形 .温馨提示:①菱形必须满足两个条件:一是平行四边形;二是一组邻边相等;②菱形是特殊的平行四边形,即当一个平行四边形满足一组邻边相等时,该平行四边形是菱形,不能错误地认为有一组邻边相等的四边形就是菱形;③菱形的定义既提供了菱形的基本性质,也提供了基本判定方法。
2.菱形的性质(1)菱形具有平行四边形的所有性质.(2)菱形的四条边都相等.(3)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.(4)菱形是轴对称图形,它有两条对称轴,对角线所在直线就是它的对称轴.菱形又是中心对称图形,对角线的交点为对称中心.菱形中相等的线段:AB = CD = AD = BC.OA = OC ,OB = OD.菱形中相等的角:∠AOB = ∠DOC = ∠AOD = ∠BOC = 90°.∠ADC=∠ABC.∠DAB=∠DCB∠1 = ∠2 = ∠3 = ∠4,∠5 = ∠6 = ∠7 = ∠8.菱形中的全等三角形:全等的等腰三角形有:,全等的直角三角形有:点拨:有关菱形问题可转化为直角三角形或等腰三角形的问题来解决(转化思想).温馨提示:①菱形具有平行四边形的一切性质;②“菱形的对角线互相垂直”这一性质可用来证明两条线段互相垂直,“菱形的每一条对角线平分一组对角”这一性质可用来证明角相等;③菱形的两条对角线分菱形为四个全等的直角三角形。
1、下列四边形中不一定为菱形的是()A. 对角线相等的平行四边形B. 对角线平分一组对角的平行四边形C. 对角线互相垂直的平行四边形D. 用两个全等的等边三角形拼成的四边形2.如图,菱形的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是。
3.菱形ABCD的两条对角线长分别为6和8,则它的周长和面积分别为()A. 28、48B.20、24C.28、24D.20、484.如图,在菱形ABCD中,AB=5,∠B:∠BCD=1:2,则对角线AC等于()A. 5B. 10C. 15D. 205.如图,已知菱形ABCD的周长为16,面积为,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为( )A. 2B. 2C. 4D. 4第2题第3题第4题第5题6.如图,已知四边形ABCD是菱形,DE⊥AB,DF⊥BC,求证:△ADE≌△CDF.7.如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF .(1)求证:四边形AECF是平行四边形;(2)若四边形AECF是菱形,且BC=10,∠BAC=90°,求BE的长.8.如图,在菱形ABCD中,AC和BD相交于点O,过点O的线段EF与一组对边AB,CD分别相交于点E,F.(1)求证:AE=CF;(2)若AB=2,点E是AB中点,求EF的长.【菱形的判定】1. 菱形的判定定理(1)定义法:有一组邻边相等的平行四边形是菱形.(2)对角线互相垂直的平行四边形是菱形 .(3)四边相等的四边形是菱形 .①证明一个四边形是菱形,一般情况下,先证明它是一个平行四边形,然后要么证明“一组邻边相等”,要么证明“对角线互相垂直”.若要直接证明一个四边形是菱形,只要证明“四条边相等”即可;②对角线互相垂直平分的四边形是菱形;③对角线平分一个内角的平行四边形是菱形。
自学初中数学资料-菱形的性质及判定(资料附答案)

自学资料一、菱形及其性质【知识探索】1.有一组邻边相等的平行四边形叫做菱形.【说明】菱形的面积还可用对角线乘积除以2求得.2.菱形的性质:(1)菱形的四条边都相等;(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角.【说明】(1)菱形具有平行四边形的所有性质;(2)菱形既是中心对称图形,又是轴对称图形.1个对称中心,对称中心是其对角线的交点;2条对称轴,对称轴是其对角线所在的直线.【错题精练】第1页共16页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训例1.(2002•杭州)如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A. 4B. 3C. 2D. 1【解答】C【答案】C【举一反三】1.菱形在平面直角坐标系中的位置如图所示,若,,则点的坐标是__________。
【解答】二、菱形的判定【知识探索】1.菱形的判定:(1)对角线互相垂直的平行四边形是菱形;(2)四条边都相等的四边形是菱形.第2页共16页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【错题精练】例1.如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A. AB=CDB. AD=BCC. AB=BCD. AC=BD【解答】C【答案】C例2.如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH 是菱形,四边形ABCD还应满足的一个条件是__________.【解答】菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.据此四边形ABCD还应满足的一个条件是AD=BC.等.答案不唯一.例3.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.第3页共16页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训【答案】例4.△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.(1)如图(a)所示,当点D在线段BC上时.①求证:△AEB≌△ADC;②探究四边形BCGE是怎样特殊的四边形?并说明理由;(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立;第4页共16页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.【解答】此题要熟练多方面的知识,特别是全等三角形和平行四边形和菱形的判定.证明:(1)①∵△ABC和△ADE都是等边三角形,∴AE=AD,AB=AC,∠EAD=∠BAC=60°.(1分)又∵∠EAB=∠EAD-∠BAD,∠DAC=∠BAC-∠BAD,∴∠EAB=∠DAC,∴△AEB≌△ADC(SAS).(3分)②方法一:由①得△AEB≌△ADC,∴∠ABE=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABE=∠BAC,∴EB∥GC.(5分)又∵EG∥BC,∴四边形BCGE是平行四边形.(6分)方法二:证出△AEG≌△ADB,得EG=AB=BC.(5分)∵EG∥BC,∴四边形BCGE是平行四边形.(6分)(2)①②都成立.(8分)(3)当CD=CB (∠CAD=30°或∠BAD=90°或∠ADC=30°)时,四边形BCGE是菱形.(9分)理由:方法一:由①得△AEB≌△ADC,∴BE=CD(10分)又∵CD=CB,∴BE=CB.(11分)由②得四边形BCGE是平行四边形,∴四边形BCGE是菱形.(12分)方法二:由①得△AEB≌△ADC,∴BE=CD.(9分)又∵四边形BCGE是菱形,∴BE=CB(11分)∴CD=CB.(12分)方法三:∵四边形BCGE是平行四边形,∴BE∥CG,EG∥BC,∴∠FBE=∠BAC=60°,∠F=∠ABC=60°(9分)∴∠F=∠FBE=60°,∴△BEF是等边三角形.(10分)第5页共16页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训又∵AB=BC,四边形BCGE是菱形,∴AB=BE=BF,∴AE⊥FG(11分)∴∠EAG=30°,∵∠EAD=60°,∴∠CAD=30度.(12分)例5.如图,四边形ABCD中,AD∥BC,AD=DC=BC,过AD的中点E作AC的垂线,交CB的延长线于F.求证:(1)四边形ABCD是菱形.(2)BF=DE.【解答】(1)有一组邻边相等的平行四边形为菱形,AD和BC既平行又相等,所以四边形ABCD为平行四边形,而AD=DC=BC,所以平行四边形ABCD为菱形;(2)要证BF=DE,而在原题中已知AE=DE,所以证明的方向就变为证BF=AE,而证BF=AE则可以通过证△FBM≌△EAM来实现.证明:(1)∵AD∥BC,AD=BC(已知),∴四边形ABCD为平行四边形.又邻边AD=DC,∴四边形ABCD为菱形;(3分)(2)证法一:如图:记EF与AC交点为G,EF与AB的交点为M.由(1)证得四边形ABCD为菱形,所以对角线AC平分∠A,即∠BAC=∠DAC.又∵EF⊥AC,AG=AG,∴△AGM≌△AGE,∴AM=AE.(6分)又∵E为AD的中点,四边形ABCD为菱形,∴AM=BM.∠MAE=∠MBF.又∵∠BMF=∠AME,∴△BMF≌△AME.∴BF=AE.第6页共16页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训∴BF=DE.(8分)证法二:如图:连接BD∵四边形ABCD为菱形∴BD⊥AC∵EF⊥AC∴EF∥BD∵BF∥DE∴四边形BDEF是平行四边形∴BF=DE(8分)【举一反三】1.如图,下列条件之一能使平行四边形ABCD是菱形的为()①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.A. ①③B. ②③C. ③④D. ①②③【答案】A2.(2002•咸宁)如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=1,BC=3,CD=4.梯形的高DH与中位线EF交于点G,则下列结论中:①△DGF≌△EBH;②四边形EHCF是菱形;③以CD为直径的圆与AB相切于点E.正确的有()A. 1个B. 2个C. 3个第7页共16页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训D. 0个【解答】C【答案】C3.如图,在等腰梯形ABCD中,AD∥BC,BD⊥CD,点E是BC的中点且DE∥AB,则∠BCD的度数是__________.【解答】首先根据BD⊥CD,点E是BC的中点可知DE=BE=EC=BC,又知DE∥AB,AD∥BC,可知四边形ABED是菱形,于是可得到AB=DE,再根据四边形ABCD是等腰梯形,可得AB=CD,进而得到DC=BC,然后可求出∠DBC=30°,最后求出∠BCD=60°.4.如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是__________.【解答】菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.据此四边形ABCD还应满足的一个条件是AD=BC.等.答案不唯一.5.如图,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA长度得到△EFA.(1)求△ABC所扫过的图形的面积;(2)试判断AF与BE的位置关系,并说明理由;(3)若∠BEC=15°,求AC的长.第8页共16页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【解答】(1)根据题意:易得△ABC≌△EFA,BA∥EF,且BA=EF,进而得出S平行四边形ABFE=2S△EAF,故可求出△ABC扫过图形的面积为S平行四边形ABFE;(2)根据平移的性质,可得四边形ABFE为菱形,故AF与BE互相垂直且平分;(3)根据题意易得:所以∠AEB=∠ABE=15°,BD•AC=3,可得AC•AC=3,进而可得AC的长度.6.如图,在∠ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.(1)求证:四边形BDEF是菱形;(2)若AB=12cm,求菱形BDEF的周长.【解答】(1)可根据菱形的定义“一组邻边相等的平行四边形是菱形”,先证明四边形BFED是平行四边形,然后再证明四边形的邻边相等即可.(2)F是AB的中点,有了AB的长也就求出了菱形的边长BF的长,那么菱形BDEF的周长也就能求出了.(1)证明:∵D、E、F分别是BC、AC、AB的中点,∴DE∥AB,EF∥BC,∴四边形BDEF是平行四边形,又∵DE=AB,EF=BC,且AB=BC,∴DE=EF,∴四边形BDEF是菱形;(2)7.如图,在平行四边形ABCD中,BE平分∠ABC交AD于点E.DF平分∠ADC交BC于F.第9页共16页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训(1)求证:△ABE≌△CDF;(2)若BD⊥EF,则判断四边形EBFD是什么特殊四边形,请证明你的结论.【解答】(1)由平行四边形ABCD可得出的条件有:①AB=CD,②∠A=∠C,③∠ABC=∠CDA;已知BE、CD分别是等角∠ABD、∠CDA的平分线,易证得∠ABE=∠CDF④;联立①②④,即可由ASA 判定所求的三角形全等;(2)由(1)的全等三角形,易证得DE=BF,那么DE和BF平行且相等,由此可判定四边形BEDF是平行四边形,根据对角线垂直的平行四边形是菱形即可得出EBFD的形状.(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,∠ABC=∠ADC,∵BE平分∠ABC,DF平分∠ADC,∴∠ABE=∠CDF(2分),∴△ABE≌△CDF(ASA);(4分)(2)1.如图,在菱形ABCD中,BC=3,点是BD的中点,延长BD到点E,使得BD=DE=2,连结CE,点M是CE的中点,则OM=.【答案】√17.22.如图,将矩形ABCD沿对角线BD翻折,点C落在C′处,BC′交AD于点E,DF∥BE交BC于点F.第10页共16页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训(1)求证:四边形BEDF是菱形.(2)若AB=4,AD=8,请求出菱形BEDF的边长.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠C=90∘,AD∥BC,∵DF∥BE,∴四边形BEDF是平行四边形,由折叠,得∠Capos;=∠C,DCapos;=DC,∴∠A=∠Capos;,AB=DCapos;,又∵∠AEB=∠Capos;ED,∴△AEB≌△C′ED(AAS),∴EB=ED,∴四边形BEDF是菱形;(2)解:设AE=x,则BE=8−x,在Rt△ABE中,由勾股定理,得42+x2=(8−x)2,解得x=3,∴BE=8−3=5,即菱形BEDF的边长为5.【答案】(1)略;(2)5.3.如图,菱形ABCD中,∠A是锐角,E为边AD上一点,△ABC沿着BE折叠,使点A的对应点F恰好落在边CD上,连接EF,BF,给出下列结论:①若∠A=70∘,则∠ABC=35∘;②若点F是CD的中点,则S△ABE=1S ABCD3下列判断正确的是()A. ①,②都对;B. ①,②都错;C. ①对,②错;D. ①错,②对.【答案】A4.如图,点E,F分别在▱ABCD的边BC,AD上.(1)若BE=DF,求证:四边形AECF是平行四边形;(2)请在图2中用圆规和直尺画出四边形AECF,使得四边形AECF是菱形.(不写作法,保留作图痕迹)【解答】(1)证明:四边形AECF为平行四边形.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=CE,∴四边形AECF为平行四边形;(2)解:如图,四边形AECF就是所求作的菱形.【答案】略.5.如图,在正三角形网格中,菱形M经过旋转变换能得到菱形N,下列四个点中能作为旋转中心的是()A. 点A;B. 点B;C. 点C;D. 点D.【答案】D6.如图,已知在Rt△ABC中,∠ACB=90∘,AC=6,BC=8,BE平分∠ABC交AC于点E,EF⊥AB,垂足为F.(1)求EF的长度;(2)作CD⊥AB,垂足为D,CD与BE相交于G,试说明:CE=CG;(3)连接FG,试说明:四边形CEFG是菱形.【解答】(1)解:∵BE平分∠ABC,∠ACB=90∘,EF⊥AB,垂足为F,∴EF=CE.在△BFE与△BCE中,∠C=∠BFE=90∘,{BE=BE,EF=EC∴△BFE≌△BCE,∴BF=BC=8.∵在Rt△ABC中,∠ACB=90∘,AC=6,BC=8,∴AB=10,∴AF=AB−BF=2.设EF=x,则CE=x,AE=6−x,在直角△AEF中,由勾股定理,得AE2=EF2+AF2,∴(6−x)2=x2+22,解得x=8;3(2)证明:∵在△BCE中,∠CEB=90∘−∠CBE,∠CGE=∠DGB=90∘−∠DBG,∴∠CEB=∠CGE,∴CE=CG;(3)证明:CD⊥AB,EF⊥AB,∴CD∥EF,∵EF=CE,CE=CG,∴EF=CG,∴四边形CEFG是平行四边形,又∵CE=CG,∴CEFG是菱形.;(2)略;(3)略.【答案】(1)837.如图,已知在Rt△ABC中,∠ACB=90∘,AC=6,BC=8,BE平分∠ABC交AC于点E,EF⊥AB,垂足为F.(1)求EF的长度;(2)作CD⊥AB,垂足为D,CD与BE相交于G,试说明:CE=CG;(3)连接FG,试说明:四边形CEFG是菱形.【解答】(1)解:∵BE平分∠ABC,∠ACB=90∘,EF⊥AB,垂足为F,∴EF=CE.在△BFE与△BCE中,∠C=∠BFE=90∘,{BE=BE,EF=EC∴△BFE≌△BCE,∴BF=BC=8.∵在Rt△ABC中,∠ACB=90∘,AC=6,BC=8,∴AB=10,∴AF=AB−BF=2.设EF=x,则CE=x,AE=6−x,在直角△AEF中,由勾股定理,得AE2=EF2+AF2,∴(6−x)2=x2+22,解得x=8;3(2)证明:∵在△BCE中,∠CEB=90∘−∠CBE,∠CGE=∠DGB=90∘−∠DBG,,∴∠CEB=∠CGE,∴CE=CG;(3)证明:CD⊥AB,EF⊥AB,∴CD∥EF,∵EF=CE,CE=CG,∴EF=CG,∴四边形CEFG是平行四边形,又∵CE=CG,∴CEFG是菱形.【答案】(1)8;(2)略;(3)略.3● 矩形。
2020年中考 菱形性质和证明 专练(含答案)

2020年中考菱形性质及证明专练(含答案)一、单选题(共有10道小题)1.在菱形ABCD中,不一定成立的是()A.四边形ABCD是平行四边形B.AC⊥BDC.∠CAB=∠CADD.△ABC是等边三角形2.边长为3 cm的菱形的周长是( )A.6 cmB.9 cmC.12 cmD.15 cm3.如图,在菱形ABCD中,AC=6,BD=8,∠ABD=β,则下列结论正确的是()A.4 sin5β= B.5cos4β= C.3cos5β= D.3tan4β=4.下列命题中,真命题是()A. 两对角线相等的四边形是矩形B. 两对角线互相平分的四边形是平行四边形C. 两对角线互相垂直的四边形是菱形D. 两对角线相等的四边形是等腰梯形5.如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论中正确的个数是()①AD=BC;②BD、AC互相平分;③四边形ACED是菱形A.0 B.1 C.2 D.36.如图,四边形ABCD的对角线AC与BD互相平分,则下列能判定四边形ABCD为菱形的条件是()A.AB=CDB.AC=BDC.AB=ADD.AB⊥ADCB DAβDFAB C7.如图,四边形ABCD 的四边相等,且面积为120cm 2,对角线AC =24cm ,则四边形ABCD 的周长为( )A.52 cmB.40 cmC.39 cmD.26 cm8.如图,|BD 是菱形ABCD 的对侥幸,CE ⊥AB 于点E ,交BD 于点F ,且点E 是AB 中点,则tan BFE ∠的值是( )A.12B.2C.3D.3 9.如图,用直尺和圆规作四边形ABCD ,能判定该四边形是菱形的依据是( )A.一组邻边相等的平行四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线分别平分一组对角的平行四边形是菱形10.如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥于H ,则DH 等于()A .524 B .512 C .5 D .4 二、填空题(共有7道小题)11.若菱形的周长20cm,则它的边长是 cm12.如图所示,平行四边形ABCD 的对角线AC 、BD 相交于点O ,试添加一个条件: ,使得平行四边形ABCD 为菱形.13.在菱形ABCD 中,O 是两条对角线的交点,AB=5,AO=4,则对角线AC 的长为 ,BD 的长为 。
人教版 八年级数学下册 第18章 菱形的性质和判定 专项练习题

人教版 八年级数学下册第18章 菱形的性质和判定 专项练习 (含答案)一、单选题(共有9道小题)1.菱形具有而一般平行四边形不具有的性质是( )A.对边平行B.对角线互相平分C.对边相等D.对角线互相垂直2.如图,在菱形ABCD 中, ∠BAD =120°. 已知△ABC 的周长是15,则菱形ABCD 的周长是()A .25B .20C .15D .103.如图,要使□ABCD 成为菱形,则需要添加的条件是( )A.AB=CDB.AC=BDC.AO=OCD.AC ⊥BD4.如图,已知某广场菱形花坛ABCD 的周长是24米,∠BAD=60°,则花坛对角线AC 的长等于( )米A.63B.6C.33D.35.下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线相等的平行四边形是矩形C .对角线垂直的四边形是菱形D .对角线垂直的平行四边形是菱形 6.以下四个命题正确的是( ) A. 任意三点可以确定一个圆 B. 菱形对角线相等C. 直角三角形斜边上的中线等于斜边的一半D. 平行四边形的四条边相等7.如图,四边形ABCD 中,E F ,分别是边AB CD ,的中点,则AD BC ,和EF 的关系是( )A .2AD BC EF +>B .2AD BC EF +≥ C .2AD BC EF +< D .2AD BC EF +≤BD A CABCD8.如图,矩形ABCD 中,AB=8,BC=4,点E 在AB 上,点F 在CD 上,点G 、H 在对角线AC 上,若四边形EGFH 是菱形,则AE 的长是( )A.B.C.5D.6 9.四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CD 上从C 向D 移动而点R 不动时,那么下列结论成立的是 ( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不变D .线段EF 的长与点P 的位置有关二、填空题(共有8道小题)10.已知菱形一个内角为120°,且平分这个内角的一条对角线长为8cm ,则这个菱形的周长为 。
《菱形的判定与性质》培优训练(附答案)

八年级数学下册《6.1菱形的判定与性质》培优训练(附答案)1.如图,在菱形ABCD 中,AC 与BD 相交于点O ,AB =4,BD =43,E 为AB 的中点,点P 为线段AC 上的动点,则EP+BP 的最小值为( )A .4B .25C .27D .82.如图,菱形ABCD 的边长为4,60,A E ∠=是边AD 的中点,F 是边AB 上的一个动点,将线段EF 绕着E 逆时针旋转60,得到EG ,连接EG CG 、,则BG CG +的最小值为( )A .33 B .27 C .43 D .223+3.如图,在菱形ABCD 中,AB=6,∠ABC=60°,点E 在AD 上,且AE=2,点P 是对角线BD 上的一个动点,则PE+PA 的最小值是 .4.如图,在四边形ABCD 中,AD ∥BC ,AB =BC ,对角线AC 、BD 交于点O ,BD 平分∠ABC ,过点D 作DE ⊥BC ,交BC 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若DC =25,AC =4,求OE 的长.5.如图,在Rt ABC ∆中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F(1)求证:四边形ADCF 是菱形(2)若4,5AC AB ==,求菱形ADCF 的面积6.在菱形ABCD 中,∠ABC =60°,P 是射线BD 上一动点,以AP 为边向右侧作等边△APE ,连接CE .(1)如图1,当点P 在菱形ABCD 内部时,则BP 与CE 的数量关系是 ,CE 与AD 的位置关系是 .(2)如图2,当点P 在菱形ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)如图2,连接BE ,若AB =23,BE =219,求AP 的长.7.如图,菱形ABCD 中,4AB =,E 为BC 中点,AE BC ⊥,AF CD ⊥于点F ,CG ∥AE ,CG 交AF 于点H ,交AD 于点G .(1)求菱形ABCD 的面积;(2)求CHA ∠的度数.8.四边形ABCD 为菱形,点E 在边AD 上,点F 在边CD 上(1) 若AE=CF ,求证:EB=BF(2) 若AD=4,DE=CF ,且△EFB 为等边三角形,求四边形DEBF 的面积(3) 若∠DAB=60°,点H 在边BC 上,且BH=HC=2.若∠DFA=2∠HAB ,直接写出CF 的长9.如图,在菱形ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,E 、F 在菱形的边BC ,CD 上.(1)证明:BE=CF .(2)当点E ,F 分别在边BC ,CD 上移动时(△AEF 保持为正三角形),请探究四边形AECF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.10.如图,在ABC ∆中,90ACB ∠=︒,CD AB ⊥于D ,AE 平分BAC ∠,分别交BC ,CD 于E ,F ,EH AB ⊥于H .连接FH ,求证:四边形CFHE 是菱形.11.在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE∥DB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若∠DAB=60°,且AB=4,求OE的长.12.如图,在菱形ABCD中,∠A=60°,点E,F分别是边AB,AD上的点,且满足∠BCE=∠DCF,连结EF.(1)若AF=1,求EF的长;(2)取CE的中点M,连结BM,FM,BF.求证:BM⊥FM.13.在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCFD 的面积.14.在菱形ABCD中,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF。
人教版八年级下册数学《菱形的性质与判定》同步练习(含答案)

菱形的性质与判定一 、填空题(本大题共6小题)1.如图,在菱形ABCD 中,60A ∠=︒,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD 的边长是 .2.如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是 .3.如图2,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离16cm AB BC ==,则1∠= 度.4.已知菱形的一个内角为60︒,一条对角线的长为23,则另一条对角线的长为________.5.菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较短的对角线的长度为6.已知菱形ABCD 的两条对角线AC BD ,的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是二 、解答题(本大题共7小题)DCAB 图21CBAE F DBCA7.如图,ACD ∆、ABE ∆、BCF ∆均为直线BC 同侧的等边三角形.已知AB AC =.⑴ 顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应 的条件.⑵ 当BAC ∠为 度时,四边形ADFE 为正方形.8.如图,在梯形纸片ABCD 中,//AD BC ,AD CD >,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C E '.求证:四边形CDC E '是菱形.9.如图,在四边形ABCD 中,E 为AB 上一点,ADE ∆和BCE ∆都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,证明四边形PQMN 为平行四边形且PQ PN =.10.已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBAC'DCB A EQEP NMDCBA11.如图,四边形ABCD 中,AB CD E F G H =,,,,分别是AD BC BD AC ,,,的中点,求证:EF GH ,相互垂直平分12.已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE ∆沿BC 方向平移,使点E 与点C 重合,得GFC ∆.若60B ∠=︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.13.已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBACDH GFEBAGF E DCBAFEDCBA菱形的性质与判定答案解析一 、填空题 1.42.AB AD AC BD =⊥,3.120︒;由题意可知:构成三角形为等边三角形4.2或65.56.150°;如图,过点A 作AE BC ⊥于E ,则12AC BD BC AE ⋅=⋅,又2AC BD AB ⋅=,得1302AE AB ABC =∠=︒,,150BAD ∠=︒二 、解答题7.⑴ 构成的图形有两类,一类是菱形,一类是线段.当图形为菱形时,∠ BAC ≠60°(或A 与F 不重合、△ABC 不为正三角形)(若写出图形为平行四边形时,不给分)当图形为线段时,∠BAC = 60°(或A 与F 重合、△ABC 为正三角形). ⑵ 150︒.8.根据题意可知则. ∵, ∴. ∴, ∴.∴, ∴四边形为菱形. 9.如图,连结AC 、BD .∵PQ 为ABC ∆的中位线EDCBA'CDE C DE ∆≅∆'''CD C D C DE CDE CE C E =∠=∠=,,//AD BC C DE CDE '∠=∠CDE CED ∠=∠CD CE =CD C D C E CE ''===CDC E 'QNMD C∴PQ AC ∥且12PQ AC = 同理MN AC ∥且12MN AC = ∴MN PQ ∥且MN PQ = ∴四边形PQMN 为平行四边形. 在AEC ∆和DEB ∆中AE DE =,EC EB =,60AED CEB ∠=︒=∠即AEC DEB ∠=∠ ∴AEC DEB ∆∆≌ ∴AC BD =∴1122PQ AC BD PN ===. 10.连接AC ,∵四边形ABCD 为菱形∴AB BC CD AD ===∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=︒, ∵60EAF ∠=︒ ∴BAE CAF ∠=∠ ∴ABE ACF △≌△ ∴AE AF = ∵60EAF ∠=︒ ∴AEF △为等边三角形 ∴60AEF ∠=︒∵AEC B BAE AEF CEF ∠=∠+∠=∠+∠ ∴18CEF ∠=︒在矩形、菱形的定理题中,有时也常连对角线,把四边形问题转化为三角形问题.11.连结EG GF FH HE ,,,,根据题意,EG HF ,分别是DAB CAB ∆∆,的中位线,所以12EG HF AB ==,同理可证:12GF EH CD ==,因为AB CD =,所以ABCDEFEG HF GF EH ===,则四边形EGFH 是菱形,所以EF GH ,相互垂直12.当32BC AB =时,四边形ABFC 是菱形.∵AB GF ∥,AG BF ∥ ∴四边形ABFG 是平行四边形 ∵Rt ABE ∆中,60B ∠=︒ ∴30BAE ∠=︒ ∴12BE AB =∵BE CF =,32BC AB = ∴12EF AB = ∴AB BF =∴四边形ABFG 是菱形.13.连接AC ,∵四边形ABCD 为菱形∴AB BC CD AD ===∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=︒, ∵60EAF ∠=︒ ∴BAE CAF ∠=∠ ∴ABE ACF △≌△ ∴AE AF = ∵60EAF ∠=︒ ∴AEF △为等边三角形 ∴60AEF ∠=︒∵AEC B BAE AEF CEF ∠=∠+∠=∠+∠ABEFGHD CABCDEF∴18∠=︒CEF分析:在矩形、菱形的定理题中,有时也常连对角线,把四边形问题转化为三角形问题.。
2023-2024学年北师大版九年级数学上册《第一章 菱形的性质与判定》同步练习题附含答案

2023-2024学年北师大版九年级数学上册《第一章菱形的性质与判定》同步练习题附含答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.顺次连结矩形各边中点所得的四边形是()A.矩形B.菱形C.正方形D.等腰梯形2.如图,菱形ABCD的周长为8,∠ABC=120°,则AC的长为()A.2 √3B.2 C.√3D.13.如图,在菱形ABOC中,对角线OA在y轴的正半轴上,且OA=4,直线y=23x+43过点C,则菱形ABOC的面积是 ( )A.4 B.323C.8 D.1634.如图,两条宽度都为3cm的纸条,交叉重叠放在一起,它们的交角α为60°,则它们重叠部分(阴影部分)的面积为()A.2√3cm2 B.3√3cm2 C.4√3cm2 D.6√3cm25.如图,菱形ABCD的周长为8cm,高AE长为√3cm,则对角线AC长和BD长之比为()A.1:2 B.1:3 C.1:√2D.1:√36.如图有一张长为12,宽为8的长方形(矩形)纸片,先将其上下对折,再左右对折,最后沿着虚线剪下一个直角三角形①,若该直角三角形①的直角边长为整数,将①展开可得一个四边形,则下列哪个选项不能作为该四边形的面积()A.18 B.24 C.28 D.307.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°8.如图,在▱ABCD中,对角线AC⊥AB,O为AC的中点,经过点O的直线交AD于E交BC于F,连结AF、CE,现在添加一个适当的条件,使四边形AFCE是菱形,下列条件:①OE=OA;②EF⊥AC;③E为AD中点,正确的有()个。
北师大版九年级上册数学1 1菱形的性质与判定练习题(附答案)

北师大版九年级上册数学菱形的性质与判定练习题(附答案)一、单选题1.下列命题中正确的是()A. 平分弦的直径垂直于弦B. 与直径垂直的直线是圆的切线C. 对角线互相垂直的四边形是菱形D. 联结等腰梯形四边中点的四边形是菱形2.菱形的周长为,高为,则该菱形两邻角度数比为()A. 5:1B. 4:1C. 3:1D. 2:13.如图,在边长为1的菱形ABCD中,∠ABC=120°,P是边AB上的动点,过点P作PQ⊥AB交射线AD于点Q,连接CP,CQ,则△CPQ面积的最大值是()A. B. C. D.4.如图,在平面直角坐标系中,已知点,若平移点到点,使以点为顶点的四边形是菱形,则正确的平移方法是( )A. 向左平移()个单位,再向上平移1个单位B. 向左平移个单位,再向下平移1个单位C. 向右平移个单位,再向上平移1个单位D. 向右平移2个单位,再向上平移1个单位5.下列说法中,错误的是( )A. 平行四边形的对角线互相平分B. 对角线互相垂直的四边形是菱形C. 菱形的对角线互相垂直D. 对角线互相平分的四边形是平行四边形二、填空题6.如图,在平面直角坐标系xOy中,已知点A,B,菱形ABCD的顶点C在x轴的正半轴上,其对角线BD的长为________.7.如图,直线l是四边形ABCD的对称轴,请再添加一个条件:________,使四边形ABCD成为菱形(不再标注其它字母)。
8.菱形ABCD中,∠B=60°,延长BC至E,使得CE=BC,点F在DE上,DF=6,AG平分∠BAF,与线段BC 相交于点G,若CG=2,则线段AB的长度为________.9.如图,在平行四边形ABCD中,∠ABC的平分线BF交AD于点F,FE∥AB.若AB=5,BF=6,则四边形ABEF 的面积为________ 。
10.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为________.三、解答题11.求证:顺次连接一个等腰梯形的各边中点,所得到的四边形是菱形.12.如图(1),在∆ABC中,AB=BC=5,AC=6,∆ABC沿BC方向平移得到△ECD,连接AE、AC和BE相交于点O。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
菱形的性质与判定提高练习一、选择题:1.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( )A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形2.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边的正方形ACEF的周长为( )A.14B.15C.16D.173.如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是( )A.0B.1C.2D.34.下列命题中错误的是( )A.平行四边形的对角线互相平分B.菱形的对角线互相垂直C.同旁内角互补D.矩形的对角线相等5..如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为( )A.22B.422C.6D.826.菱形的两条对角线长分别是6和8,则此菱形的边长是( )A.10B.8C.6D.57.如图所示,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为( )A.15°或30°B.30°或45°C.45°或60°D.30°或60°8.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的一半长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF,则可以得到四边形AEDF的形状( )A.仅仅只是平行四边形B.是矩形C.是菱形D.无法判断9.已知▱ABCD,给出下列条件:①AC=BD;②∠BAD=90°;③AB=BC;④AC⊥BD,添加其中之一能使▱ABCD成为菱形的条件是( )A.①③B.②③C.③④D.①②③10.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为( )A.4B.2.4C.4.8D.511.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-3,0),B(0,2),C(3,0),D(0,-2),则四边形ABCD是( )A.矩形B.菱形C.正方形D.梯形12.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是( )A.163B.16C.83D.8二、填空题:13.如图,已知矩形ABCD中,AB=8 cm,AD=10 cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的面积等于________cm2.14.如图,在菱形ABCD中,AC=6,BD=8,则这个菱形的边长为________.15.如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是________(写出一个即可).16.如图,已知矩形ABCD的对角线长为8 cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于________cm.17.如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为________.18.如图所示,在菱形ABCD中,AE垂直平分BC,垂足为E,AB=4 cm.那么,菱形ABCD的面积是________,对角线BD的长是________.19.在图中所示的方格纸中有一个菱形ABCD(A、B、C、D四点均为格点),若方格纸中每个小正方形的边长均为1,则该菱形的面积为________.20.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点.若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为________.三、解答题:21.如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则当BE=______时,四边形BFCE是菱形.22.如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.23.如图,已知在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=__________时,四边形MENF是正方形(只写结论,不需证明).24.(1)如图,纸片▱ABCD中,AD=5,S▱ABCD=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为( )A.平行四边形B.菱形C.矩形D.正方形(2)如图,在(1)中的四边形纸片AEE/D中,在EE/上取一点F,使EF=4,剪下△AEF,将它平移至△DE/F/的位置,拼成四边形AFF/D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.图1 图225.已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD 的中点时,有AF=DE,AF⊥DE成立.试探究下列问题:(1)如图17①,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论是否仍然成立?(请直接回答“成立”或“不成立”,不需要证明)(2)如图17②,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图17③,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.参考答案1.答案为:D ;2.答案为:C ;3.答案为:D ;4.答案为:C ;5.答案为:A ;6.答案为:D ;7.答案为:D ;解析:画出所剪的图形示意图如图.8.答案为:C ;9.答案为:C ;10.答案为:C ;11.答案为:B ;12.答案为:C ;13.答案为:4014.答案为:5;15.答案为:C ;B=BF 或BE ⊥CF 或∠EBF=60°或BD=BF(答案不唯一)16.答案为:16.17.答案为:24;18.答案为:83cm 2;43cm ;19.答案为:12;20.答案为:23-2解析:当等腰△PBC 以∠PBC 为顶角时,点P 在以B 为圆心,BC 为半径的圆弧AC 上.连接AC 、BD 相交于点O.若使PD 最短,则点P 在如图所示的位置处.∵四边形ABCD 是菱形,∴AC ⊥BD,∠ABO=21∠ABC=30°,∴AO=21AB=1, ∴BO=3,∴BD=2BO=23,∵PB=BC=2,∴PD=BD-PB=23-2.当等腰△PBC 以∠PCB 为顶角时,易知点P 与点D 重合(不合题意,舍去)或点P 与点A 重合,则PD=2.当等腰△PBC 以BC 为底边时,如图,作BC 的垂直平分线交BC 于点E,易知该直线过点A,则点P 在线段AE 上(不含点E).当P 与A 重合时,PD 最短,此时PD=2.∵2-2<2,∴PD 的最小值是2-2.21.(1)证明:∵AB=DC,∴AB+BC=DC+BC,∴AC=DB.在△AEC 和△DFB 中,AC=DB,∠A=∠D,AE=DF ∴△AEC ≌△DFB(SAS), ∴EC=BF,∠ACE=∠DBF.∴EC ∥BF,∴四边形BFCE 是平行四边形.(2)4.当四边形BFCE 是菱形时,BE=CE,∵AD=10,AB=CD=3,∴BC=10-3-3=4,∵∠EBD=60°,∴BE=BC=4,∴当BE=4时,四边形BFCE 是菱形.22.证明:∵AF ∥BC,∴∠EAF=∠ECD,∠EFA=∠EDC,又∵E 是AC 的中点,∴AE=CE,∴△AEF ≌△CED.∴AF=CD,又AF ∥CD,∴四边形ADCF 是平行四边形.∵AC=2AB,E 为AC 的中点,∴AE=AB,由已知得∠EAD=∠BAD,又AD=AD,∴△AED ≌△ABD.∴∠AED=∠B=90°,即DF ⊥AC.∴四边形ADCF 是菱形.23.解:(1)证明:∵四边形ABCD 是矩形,∴AB=DC,∠A=∠D=90°. ∵M 为AD 的中点,∴AM=DM.在△ABM 和△DCM 中,AM=DM,∠A=∠D,AB=CD ∴△ABM ≌△DCM(SAS).(2)四边形MENF 是菱形.∵N 、E 、F 分别是BC 、BM 、CM 的中点,∴NE ∥CM,NE=21CM,MF=21CM,∴NE=FM,∴四边形MENF 是平行四边形. ∵△ABM ≌△DCM,∴BM=CM. ∵E 、F 分别是BM 、CM 的中点,∴ME=21BM,MF=21MC,∴ME=MF, ∴平行四边形MENF 是菱形.(3)2:1.24.解:(1)C.(2)①证明:∵AD=BC=5,S ▱ABCD =15,AE ⊥BC,∴AE=3.如图,∵EF=4,∴在Rt △AEF 中,AF=5.∴AF=AD=5.又△AEF 经平移得到△DE'F',∴AF ∥DF',AF=DF',∴四边形AFF'D 是平行四边形.又AF=AD,∴四边形AFF'D 是菱形.②如图,连接AF',DF.在Rt △DE'F 中,∵E'F=E'E-EF=5-4=1,DE'=3,∴DF=10.在Rt △AEF'中,∵EF'=E'E+E'F'=5+4=9,AE=3,∴AF'=310. ∴四边形AFF'D 的两条对角线长分别为10,310.25解:(1)成立.(2)成立.理由:∵四边形ABCD 为正方形,∴AD=DC,∠BCD=∠ADC=90°. 在△ADF 和△DCE 中,DF=CE,∠ADC=∠BCD,AD=CD ∴△ADF ≌△DCE(SAS), ∴AF=DE,∠DAF=∠CDE.∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF ⊥DE.(3)四边形MNPQ 是正方形.理由:如图,设MQ 交AF 于点O,PQ 交DE 于点H,∵点M,N,P,Q 分别为AE,EF,FD,AD 的中点,∴MQ=PN=21DE,PQ=MN=21AF,MQ ∥DE ∥PN,PQ ∥AF ∥MN, ∴四边形GHQO 是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ 是菱形.∵AF ⊥DE,∴∠AGD=90°,∴∠HQO=∠AOQ=∠AGD=90°,∴四边形MNPQ 是正方形.。