完整版二项式定理高考题带答案

合集下载

二项式定理高考题(含答案)精选全文

二项式定理高考题(含答案)精选全文

精选全文完整版(可编辑修改)二项式定理高考题(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2二项式定理 高考真题一、选择题1.(2012·四川高考理科·T1)相同7(1)x +的展开式中2x 的系数是( D )(A )42 (B )35 (C )28 (D )212.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B )(A )80 (B )40 (C )20 (D )103.(2012·天津高考理科·T5)在5212x x ⎛⎫- ⎪⎝⎭的二项展开式中,x 的系数为 ( D ) (A)10 (B)-10(C)40 (D)-40 4.(2011.天津高考理科.T5)在6的二项展开式中,2x 的系数为 ( C )(A )154- (B )154(C )38- (D )38 5.(2012·重庆高考理科·T4)821⎪⎭⎫ ⎝⎛+x x 的展开式中常数项为( B ) (A)1635 (B)835 (C)435 (D)105 6.(2012·重庆高考文科·T4)5)31(x -的展开式中3x 的系数为( A )(A)270- (B)90- (C)90 (D)2707. (2013·大纲版全国卷高考理科·T7)()()8411++x y 的展开式中22x y 的系数是 ( D )A.56B.84C.112D.1688.(2011·新课标全国高考理科·T8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( D ) (A )-40 (B )-20 (C )20(D )409. (2011·重庆高考理科·T4)n x )31(+(其中n N ∈且6≥n )的展开式中5x 与6x 的系数相等,则=n ( B ) (A)6 (B)7 (C)8(D)93 10.(2011·陕西高考理科·T4)6(42)x x --(x ∈R )展开式中的常数项是 (C )(A )20- (B )15- (C )15 (D )20二、填空题11. (2013·天津高考理科·T10)6x ⎛- ⎝ 的二项展开式中的常数项为 15 . 12.(2011·湖北高考理科·T11)18x ⎛ ⎝的展开式中含15x 的项的系数为 17 .13.(2011·全国高考理科·T13)20的二项展开式中,x 的系数与x 9的系数之差为 0 .14.(2011·四川高考文科·T13)91)x +(的展开式中3x 的系数是 84 (用数字作答).15.(2011·重庆高考文科·T11)6)21(x +的展开式中4x 的系数是 240 . 16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x ++++=- (,则1110a a += 0 .17.(2011·广东高考理科·T10)72()x x x-的展开式中,4x 的系数是___84___ (用数字作答)18.(2011·山东高考理科·T14)若62x x ⎛- ⎝⎭的展开式的常数项为60,则常数a 的值为 4 .19.(2012·大纲版全国卷高考理科·T15)若n xx )1(+的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为__56_____. 20.(2013·安徽高考理科·T11)若8⎛+ ⎝x 的展开式中4x 的系数为7,则实数a ____12_____。

二项式定理高考试题及其答案总

二项式定理高考试题及其答案总

二项式定理历年高考试题荟萃(一)一、选择题 ( 本大题共 58 题)1、二项式的展开式中系数为有理数的项共有………()A.6项B.7项C.8项D.9项2、对于二项式(+x3)n(n∈N),四位同学作出了四种判断:…()①存在n∈N,展开式中有常数项;②对任意n∈N,展开式中没有常数项;③对任意n∈N,展开式中没有x的一次项;④存在n∈N,展开式中有x的一次项.上述判断中正确的是(A)①与③(B)②与③(C)②与④(D)④与①3、在(+x2)6的展开式中,x3的系数和常数项依次是…………()(A)20,20 (B)15,20(C)20,15 (D)15,154、(2x3-)7的展开式中常数项是………………………………………………………()A.14B.-14 C.42 D.-425、已知(x-)8展开式中常数项为1120,其中实数a是常数,则展开式中各项系数的和是……………………………………………………………()(A)28 (B)38 (C)1或38 (D)1或286.若(+)n展开式中存在常数项,则n的值可以是…………()A.8B.9C.10D.127 .(2x+)4的展开式中x3的系数是……………………………………()A.6B.12C.24D.488、(-)6的展开式中的常数项为…………………………………()A.15B.-15 C.20 D.-209、(2x3-)7的展开式中常数项是…………………………………………()A.14B.-14 C.42 D.-4210、若(+)n展开式中存在常数项,则n的值可以是………………()A.8B.9C.10D.1211、若展开式中含项的系数与含项的系数之比为-5,则n等于A.4 B.6 C.8D.1012、的展开式中,含x的正整数次幂的项共有()A.4项B.3项C.2项D.1项13.(x-y)10的展开式中x6y4项的系数是(A)840 (B)-840 (C)210 (D)-21014.的展开式中,含x的正整数次幂的项共有()A.4项 B.3项 C.2项 D.1项15、若展开式中含的项的系数等于含x的项的系数的8倍,则n等于()A.5B.7C.9D.1116、3.若的展开式中的系数是( )A B C D17、在的展开式中的系数是()A.-14B.14C.-28 D.2818、如果的展开式中各项系数之和为128,则展开式中的系数是()(A)7 (B)(C)21 (D)19、如果的展开式中各项系数之和为128,则展开式中的系数是()(A)7 (B)(C)21 (D)20、设k=1,2,3,4,5,则(x+2)5的展开式中x k的系数不可能是(A)10 (B)40 (C)50 (D)8021、7.在()n的二项展开式中,若常数项为60,则n等于A.3B.6C.9D.1222、已知()的展开式中第三项与第五项的系数之比为,则展开式中常数项是(A)-1 (B)1 (C)-45 (D)4523、的展开式中,x的幂的指数是整数的项共有A.3项 B.4项 C.5项 D.6项24、在二项式(x+1)6的展开式中,含x3的项的系数是(A)15 (B)20 (C)30 ( D)4025、(若多项式,则(A)9 (B)10 (C)-9 (D)-1026、(的值为()A.61 B.62 C.63D.6427、在(x-)2006的二项展开式中,含x的奇次幂的项之和为S,当x=时,S等于A.23008B.-23008C.23009D.-2300928.在()24的展开式中,x的幂的指数是整数的项共有A.3项 B.4项 C.5项 D.6项29、的展开式中含x的正整数指数幂的项数是(A)0 (B)2 (C)4 (D)630、在(x-)的展开公式中,x的系数为(A)-120 (B)120 (C)-15 (D)1531、(2x-3)5的展开式中x2项的系数为(A)-2160 (B)-1080 (C)1080 (D)216032.若(ax-1)5的展开式中x3的系数是80,则实数a的值是A.-2 B.2 C.D.233、的展开式中各项系数之和为64,则展开式的常数项为(A)-540 (B)-162 (C)162 (D)54034、已知的展开式中第三项与第五项的系数之比为-,其中i2=-1,则展开式中常数项是(A)-45i (B)45i (C)-45(D)4535.若对于任意的实数x,有x3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3,则a2的值为A.3B.6C.9D.136、在的二项展开式中,若只有的系数最大,则A.8B. 9C.10 D.1137、.的展开式中,常数项为15,则n=A.3B.4C.5D.638、若(x+)n展开式的二项式系数之和为64,则展开式的常数项为A.10B.20C.30D.12039、.已知(+)n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n等于A.4B.5C.6D.740、设(x2+1)(2x+1)9=a0+a1(x+2)+a2(x+2)2+…+a11(x+2)11,则a0+a1+a2+…+a11的值为A.-2B.-1 C.1 D.241、展开式中的常数项是(A) -36 (B)36 (C) -84 (D) 8442、如果的展开式中含有非零常数项,则正整数n的最小值为A.3B.5C.6D.1043、如果的展开式中含有非零常数项,则正整数n的最小值为A.10B.6C.5D.344、((2x+1)6展开式中x2的系数为(A)15 (B)60 (C)120(D)24045、(-)12展开式中的常数项为(A)-1320 (B)1320 (C)-220 (D)220 46、在的展开式中,含的项的系数是(A)-15 (B)85 (C)-120 (D)274 47、展开式中的常数项为A.1 B.C.D.48、在(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含x4的项的系数是(A)-15 (B)85 (C)-120 (D)27449、设则中奇数的个数为()A.2 B.3 C.4D.550、的展开式中含的项的系数为(A)4 (B)6 (C)10 (D)1251、展开式中的常数项为A.1 B.46 C.4245 D.424652、的展开式中的系数是()A. B. C.3 D .453、的展开式中含的项的系数为(A)4 (B)6 (C)10 (D)1254、的展开式中的系数为()A.10 B.5 C.D.155、的展开式中的系数是()A. B. C.3 D .456、设则中奇数的个数为()A.2 B.3 C.4D.557、若(x+)n的展开式中前三项的系数成等差数列,则展开式中x4项的系数为( )A.6B.7C.8D.958、的展开式中常数项是A.210B.C.D.-105二项式定理历年高考试题荟萃(二)一、填空题 ( 本大题共 55 题)1、在二项式(x-1)11的展开式中,系数最小的项的系数为.(结果用数值表示)2、展开式中的常数项是.3、在二项式(x-1)11的展开式中,系数最小的项的系数为 .(结果用数值表示)4、在代数式(4x2-2x-5)(1+)5的展开式中,常数项为______________.5、在(x-)6的二项展开式中,常数项为 .6、.(x+1)10的二项展开式中x3的系数为.7、若在()n的展开式中,第4项是常数项,则n= .8、(x2+1)(x-2)7的展开式中x3项的系数是.12、(x2-)9展开式中x9的系数是.17.若(1-2x)2004=a0+a1x+a2x2+…+a2004x2004(x∈R),则(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2004)= .(用数字作答)18、已知a为实数,(x+a)10展开式中x7的系数是-15,则a= .19、若在(1+ax)5展开式中x3的系数为-80,则a= .20、的展开式中各项系数的和是128,则展开式中x5的系数是 .(以数字作答)21.(x2+)9的展开式中的常数项为(用数字作答).22、若在二项式(x+1)10的展开式中任取一项,则该项的系数为奇数的概率是 .(结果用分数表示)23、(x-)8展开式中x5的系数为 .24、若在(1+ax)5展开式中x3的系数为-80,则a= .25、若(x3+)n的展开式中的常数项为84,则n= .26、若(x+-2)n的展开式中常数项为-20,则自然数n=.27、(x-)8展开式中x5的系数为 .28、如图,在由二项式系数所构成的杨辉三角形中,第行中从左至右第14与第15个数的比为2∶3.29、.在(1+x)+(1+x)2+…+(1+x)6的展开式中,x2项的系数是.(用数字作答)30、二项式的展开式中常数项为__________(用数字作答).31、. 若,且,则.32、(展开式中的常数项是(用数字作答).33、的展开式中,常数项为。

高三数学二项式定理与性质试题答案及解析

高三数学二项式定理与性质试题答案及解析

高三数学二项式定理与性质试题答案及解析1.在二项式的展开式中,含的项的系数是()A.B.C.D.【答案】A【解析】由二项式定理可知,展开式的通项为,则令得,所以含项的系数为,故选【考点】二项式定理.2.已知(1+x)10=a0+a1(1-x)+a2(1-x)2+…+a10(1-x)10,则a8等于()A.180B.90C.-5D.5【答案】A【解析】(1+x)10=[2-(1-x)]10,其通项公式为Tr+1=210-r·(-1)r(1-x)r,a8是r=8时,第9项的系数.∴a8=22(-1)8=180.故选A.3.二项式(2-)6的展开式中所有有理项的系数和等于________.(用数字作答)【答案】365【解析】Tr+1=·(2)6-r·(-1)r·x-r=(-1)r·26-r,r=0,1,2,3,4,5,6,当r=0,2,4,6时,Tr+1=(-1)r26-r为有理项,则所有有理项的系数和为26+24+22+20=365.4.已知(1+kx2)6(k是正整数)的展开式中,x8的系数小于120,则k=________.【答案】1【解析】由Tr+1= (kx2)6-r=k6-r x2(6-r),得x8的系数为k4=15k4,由15k4<120得k4<8,因为k为正整数,所以k=1.5.的展开式中,的系数为15,则a=________.(用数字填写答案)【答案】【解析】因为,所以令,解得,所以=15,解得.【考点】本小题主要考查二项式定理的通项公式,求特定项的系数,题目难度不大,属于中低档. 6.的二项展开式中,的系数等于.【答案】15【解析】,时,,此时的系数等于.【考点】二项式系数7.二项式的展开式中系数最大的项是第项.【答案】9【解析】因为,而组合数中最大,所以展开式中系数最大的是,即第9项.【考点】组合数性质8.若(的展开式中第2项与第4项的二项式系数相等,则直线y=nx与曲线y=x2围成的封闭区域面积为()A.B.12C.D.36【答案】C【解析】展开式中第二项与第四项的二项式系数相等,所以,那么,与围成的封闭图形区域为,故选C.【考点】1.二项式系数;2.定积分.9.的展开式中各项系数的和为2,则该展开式中常数项为A.-40B.-20C.20D.40【答案】D【解析】令x=1得a=1.故原式=。

(完整版)二项式定理高考题(带答案)

(完整版)二项式定理高考题(带答案)

1.2018年全国卷Ⅲ理】的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C【解析】分析:写出,然后可得结果详解:由题可得,令,则,所以故选C.2.【2018年浙江卷】二项式的展开式的常数项是___________.【答案】7【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果.详解:二项式的展开式的通项公式为,令得,故所求的常数项为3.【2018年理数天津卷】在的展开式中,的系数为____________. 【答案】决问题的关键.4.【山西省两市2018届第二次联考】若二项式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为( )A. 2B.C.D. 【答案】B5.【安徽省宿州市2018届三模】的展开式中项的系数为__________.【答案】-132【解析】【解析】分析:分析:由题意结合二项式展开式的通项公式首先写出展开式,由题意结合二项式展开式的通项公式首先写出展开式,然后结合然后结合展开式整理计算即可求得最终结果.详解:的展开式为:,当,时,,当,时,,据此可得:展开式中项的系数为.6.【2017课标1,理6】621(1)(1)x x++展开式中2x 的系数为的系数为 A .15 B .20 C .30 D .35 【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为44262115C x x x⋅=,故2x 前系数为151530+=,选C. 情况,尤其是两个二项式展开式中的r 不同. 7.7.【【2017课标3,理4】()()52x y x y +-的展开式中x 3y 3的系数为的系数为A .80- B .40-C .40 D .80【答案】C 【解析】8.【2017浙江,13】已知多项式()1x +3()2x +2=5432112345xa x a x a x a x a +++++,则4a =________,5a =________.【答案计数. 9.【2017山东,理1111】】已知()13nx +的展开式中含有2x 项的系数是54,则n = . 【答案】4【解析】试题分析:由二项式定理的通项公式()1C3C 3rrr r rr nnx x +T ==⋅⋅,令2r =得:22C 354n⋅=,解得4n =.【考点】二项式定理10.【2015高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C【解析】二项式()1nx +的展开式的通项是1C rr r nx +T=,令2r =得2x 的系数是2C n,因为2x 的系数为15,所以2C 15n=,即2300n n --=,解得:6n =或5n =-,因为n +∈N ,所以6n =,故选C . 【考点定位】二项式定理.【名师点晴】【名师点晴】本题主要考查的是二项式定理,本题主要考查的是二项式定理,本题主要考查的是二项式定理,属于容易题.属于容易题.属于容易题.解题时一定要抓住重解题时一定要抓住重要条件“n +∈N ”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C kn kkk n ab -+T =.11.【2015高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C12.【2015高考湖北,理3】已知(1)nx +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A.122 B.112 C .102D .92【答案】D【解析】因为(1)nx +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n ,所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯.13.【2015高考重庆,理12】5312xx ⎛⎫+ ⎪⎝⎭的展开式中8x 的系数是________(用数字作答). 【答案】52【解析】二项展开式通项为71535215511()()()22k k kkkk k T C x C xx--+==,令71582k -=,解得2k =,因此8x 的系数为22515()22C =.14.【2015高考广东,理9】在4)1(-x 的展开式中,x 的系数为 . 【答案】6.【解析】由题可知()()()44214411r rr rrr r T CxC x--+=-=-,令412r-=解得2r =,所以展开式中x 的系数为()22416C -=,故应填入6.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.15.【2015高考天津,理12】在614xx ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 . 【答案】1516【解析】614xx ⎛⎫- ⎪⎝⎭展开式的通项为6621661144r rr r r rr T C x C x x --+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,由622r -=得2r =,所以222236115416T C x x ⎛⎫=-=⎪⎝⎭,所以该项系数为1516. 16.【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.【考点定位】二项式定理.17.【2015高考湖南,理6】已知5ax x ⎛⎫- ⎪⎝⎭的展开式中含32x 的项的系数为30,则a =( )A.3B.3-C.6 D-6 【答案】D.18.【2015高考上海,理11】在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示). 【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭L ,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C =19.(2016年北京高考)在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答)字作答)【答案】60.20.(2016年山东高考)若(a x2+1x)5的展开式中x5的系数是—80,则实数a=_______. 【答案】-221.(2016年上海高考)在nxx⎪⎭⎫⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________ 【答案】11222.(2016年四川高考)设i为虚数单位,则6(i)x+的展开式中含x4的项为的项为(A)-15x4(B)15x4(C)-20i x4(D)20i x4【答案】A23.(2016年天津高考)281()xx-的展开式中x2的系数为__________.(用数字作答)【答案】56-24.(2016年全国I高考)5(2)x x+的展开式中,x3的系数是的系数是 .(用数字填写答案)案) 【答案】10。

(完整版)二项式定理(习题含答案)

(完整版)二项式定理(习题含答案)

(完整版)⼆项式定理(习题含答案)⼆项式定理⼀、求展开式中特定项 1、在的展开式中,的幂指数是整数的共有() A .项 B .项 C .项 D .项【答案】C 【解析】,,若要是幂指数是整数,所以0,6,12,18,24,30,所以共6项,故选C .3、若展开式中的常数项为.(⽤数字作答)【答案】10【解】由题意得,令,可得展⽰式中各项的系数的和为32,所以,解得,所以展开式的通项为,当时,常数项为, 4、⼆项式的展开式中的常数项为.【答案】112【解析】由⼆项式通项可得,(r=0,1,,8),显然当时,,故⼆项式展开式中的常数项为112.5、的展开式中常数项等于________.【答案】.【解析】因为中的展开式通项为,当第⼀项取时,,此时的展开式中常数为;当第⼀项取时,,此时的展开式中常数为;所以原式的展开式中常数项等于,故应填. 6、设,则的展开式中常数项是.【答案】 332,30x 4567()r r rrr r x C x x C T 6515303303011--+?==30......2,1,0=r =r 2531()x x+1x =232n =5n =2531()x x+10515r rr T C x -+=2r =2510C=82)x3488838122rrr r rr r x C xx C --+-=-=)()()(T 2=r 1123=T 41(2)(13)x x--1441(2)(13)x x--4(13)x -4C (3)r rx -204C 1=21x-14C (3)12x -=-12141420sin 12cos 2x a x dx π=-+()622x ??+ ?332=-()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ??=-+=+=-+= ??的展开式的通项为,所以所求常数项为.⼆、求特定项系数或系数和7、的展开式中项的系数是()A .B .C .D .【答案】A【解析】由通式,令,则展开式中项的系数是.8、在x (1+x )6的展开式中,含x 3项的系数是.【答案】15【解】的通项,令可得.则中的系数为15.9、在的展开式中含的项的系数是.【答案】-55【解析】的展开式中项由和两部分组成,所以的项的系数为. 10、已知,那么展开式中含项的系数为.【答案】135【解析】根据题意,,则中,由⼆项式定理的通项公式,可设含项的项是,可知,所以系数为.11、已知,则等于()A .-5B .5C .90D .180【答案】D 因为,所以等于选D.12、在⼆项式的展开式中,只有第5项的⼆项式系数最⼤,则________;展开式中的第4项=_______.6(=6663166((1)2r r r r r rr r T C C x ---+==-??3633565566(1)22(1)2T C C --=-??+-?332=-8()x 62x y 5656-2828-r r r y x C )2(88--2=r 62x y 56)2(228=-C ()61x +16r r r T C x +=2r =2615C =()61x x +3x 6(1)(2)x x -?-3x 6(1)(2)x x -?-3x 336)(2x C -226)(x -x C -?)(3x 552-2636-=-C C dx xn 16e 1=nx x )(3-2x 66e111ln |6e n dx x x=?==n x x )(3-1r n r r r n T C a b -+=2x 616(3)r rr r T C x -+=-2r =269135C ?=()()()()10210012101111x a a x a x a x +=+-+-++-L 8a 1010(1)(21)x x +=-+-8a8210(2)454180.C -=?=1)2nx =n【答案】,.【解析】由⼆项式定理展开通项公式,由题意得,当且仅当时,取最⼤值,∴,第4项为. 13、如果,那么的值等于()(A )-1 (B )-2 (C )0 (D )2 【答案】A【解析】令,代⼊⼆项式,得,令,代⼊⼆项式,得,所以,即,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代⼊⼆项式,可得(﹣2)7 =﹣1, 15、(x ﹣2)(x ﹣1)5的展开式中所有项的系数和等于【答案】0 解:在(x ﹣2)(x ﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0,所以展开式中所有项的系数和等于0. 16、在的展开式中,所有项的系数和为,则的系数等于.【答案】【解析】当时,,解得,那么含的项就是,所以系数是-270. 17、设,若,则.【答案】0. 【解析】由81937x -21()(2)33111()()22n r n r r r r r r r nn T C x x C x -++=-?=-4n =r n C 8n =119(163)333381()72C x x +-=-7270127(12)x a a x a x a x -=++++L 017a a a +++L 1x =7270127(12)x a a x a x a x -=++++L 70127(12)1 a a a a -=++++=-L 0x =7270127(12)x a a x a x a x -=++++L 70(10)1a -==12711a a a ++++=-L 1272a a a +++=-L *3)()n n N -∈32-1x 270-1=x ()322--=n5=n x1()x x C 1270313225-=-(sin cos )k x x dx π=-?8822108)1(x a x a x a a kx ++++=-K 1238a a a a ++++=0(sin cos )(cos sin )k x x dx x x ππ=-=--?,令得:,即再令得:,即所以18、设(5x ﹣)n 的展开式的各项系数和为M ,⼆项式系数和为N ,若M ﹣N=240,则展开式中x 的系数为 . 【答案】150解:由于(5x ﹣)n 的展开式的各项系数和M 与变量x ⽆关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由⼆项式系数和为N=2n ,且M ﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0. 解得 2n =16,或 2n =﹣15(舍去),∴n=4. (5x ﹣)n 的展开式的通项公式为 T r+1=(5x )4﹣r ?(﹣1)r ?=(﹣1)r ?54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为(﹣1)r54﹣r=1×6×25=150,19、设,则.【答案】【解析】,所以令,得到,所以三、求参数问题20、若的展开式中第四项为常数项,则()A .B .C .D .【答案】B【解析】根据⼆项式展开公式有第四项为,第四项为常数,则必有,即,所以正确选项为B. 21、⼆项式的展开式中的系数为15,则()(cos sin )(cos0sin 0)2ππ=-----=1x =80128(121)a a a a -?=++++K 01281a a a a ++++=K 0x =80128(120)000a a a a -?=+?+? ++?K 01a =12380a a a a ++++=8877108)1(x a x a x a a x ++++=-Λ178a a a +++=L 255178a a a +++=L 87654321a a a a a a a a +-+-+-+-1-=x =82876543210a a a a a a a a a +-+-+-+-2551256-20887654321=-==+-+-+-+-a a a a a a a a a nn =456725333342)21()(---==n nn nxC xx C T 025=-n 5=n )()1(*N n x n ∈+2x =nA 、5B 、 6C 、8D 、10 【答案】B【解析】⼆项式的展开式中的通项为,令,得,所以的系数为,解得;故选B . 22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵,∴当,即时,. 23、若的展开式中的系数为10,则实数() A1 B .或1 C .2或 D .【答案】B.【解析】由题意得的⼀次性与⼆次项系数之和为14,其⼆项展开通项公式,∴或,故选B . 24、设,当时,等于()A .5B .6C .7D .8 【答案】C .【解析】令,则可得,故选C .四、其他相关问题25、20152015除以8的余数为( ) 【答案】7【解析】试题分析:先将幂利⽤⼆项式表⽰,使其底数⽤8的倍数表⽰,利⽤⼆项式定理展开得到余数.试题解析:解:∵20152015=2015=?20162015﹣?20162014+20162013﹣20162012+…+2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,)()1(*N n x n ∈+k n kn k x C T -+?=12=-k n 2-=n k 2x 152)1(22=-==-n n C C n n n 6=n 4r+14T =C r r r a x-43r -=1r =133324T =C 48,2ax ax x a ==∴=()()411x ax ++2x a =53-53-4(1)ax +14r r rr T C a x +=22144101C a C a a +=?=53-23(1)(1)(1)(1)n x x x x ++++++++2012n n a a x a x a x =++++012254n a a a a ++++=n 1x =2 312(21)22222225418721n nn n n +-++++==-=?+=?=-。

高考专题 二项式定理(全解析)

高考专题 二项式定理(全解析)

1 / 4二项式定理一、选择题1.(求项的系数)5(2x +的展开式中,4x 的系数是( )A .40B .60C .80D .100【答案】C【解析】5(2x二项展开式的通项为5552155(2)2k k kkk kk T C x C x---+=⋅⋅=⋅⋅.令542k-=,得2k =. 因此,二项展开式中4x 的系数为235280C ⋅=,故选C .2.(知常数项求某一项的系数)若在(a +3x )(1−√x 3)8关于x 的展开式中,常数项为4,则x 2的系数是( ) A .56 B .-56 C .112 D .-112【答案】B【解析】由题意得(1−√x 3)8展开式的通项为T r+1=C 8r (−√x 3)r=(−1)r C 8r x r3,r =0,1,2,⋯,8, ∴(a +3x )(1−√x 3)8展开式的常数项为(−1)0C 8⋅a =a =4, ∴(4+3x )(1−√x 3)8展开式中x 2项为4⋅(−1)6C 86x 63+3x ⋅(−1)3C 83x 33=−56x 2∴展开式中x 2的系数是−56. 故选B3.(直常数项求参数)若6ax ⎛- ⎝展开式的常数项为60,则a 值为( )A .4B .4±C .2D .2±【答案】D【解析】因为6ax ⎛ ⎝展开式的通项为()()3666622166T 11k k k k k k k k k k C a x x C a x -----+=-=-,令3602k -=,则4k =,所以常数项为()44646160C a --=,即21560a =,所以2a =±. 故选D2 / 44.(奇数项系数的和)记6260126(1)(1)(1)...(1)x a a x a x a x -=+++++++,则0246a a a a +++=( )A .81B .365C .481D .728【答案】B【解析】令x=0得1=0126...a a a a ++++,令x=-2得601234563=a a a a a a a -+-+-+,所以0246a a a a +++=1+729=3652. 故选B5.(由系数二项式系数的和求参数)已知n的展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于 A .4 B .5 C .6 D .7【答案】C【解析】二项式n的各项系数的和为()1+34n n=,二项式n的各项二项式系数的和为()1+12n n=, 因为各项系数的和与其各项二项式系数的和之比为64,所以4=2642n nn =,6n =,故选C .二、填空题6.(集合关系判断)若)22nx -展开式中只有第六项的二项式系数最大,则展开式中的常数项是____.【答案】180【解析】因为)22nx -展开式中只有第六项的二项式系数最大,所以10n =,展开式的通项公式为5510221101022r rrr rrr r TC xC x---+=⋅⋅⋅=⋅⋅,令5502r-=,解得3 / 42r,所以展开式的常数项为22101280C ⋅=.7.(求系数最大项)61x x ⎛⎫- ⎪⎝⎭的展开式中,系数最大的项为第__________项.【答案】3或5【解析】61x x ⎛⎫- ⎪⎝⎭的展开式中系数与二项式系数只有符号差异,又中间项的二项式系数最大,中间项为第4项其系数为负,则第3,5项系数最大. 8.(二项展开式系数的性质应用)在()()25132x x +-的展开式中,所有的奇次幂的系数和为__________.【答案】478- 【解析】设()()25223456701234567132x x a a x a x a x a x a x a x a x +-=+++++++令1x =,得:0123456716a a a a a a a a =+++++++……① 令1x =-,得:01234567972a a a a a a a a =-+-+-+-……② ①-②得:()13579562a a a a -=+++ 解得:1357478a a a a +++=- 本题正确结果:478-9.(二项式与数列)已知数列{}n a 满足11a k=,k *∈N ,[]n a 表示不超过n a 的最大整数(如[]1,61=,记[]n n b a =,数列{}n b 的前n 项和为n T ).①若数列{}n a 是公差为1的等差数列,则4T =__________; ②若数列{}n a 是公比为1k +的等比数列,则n T =__________.【答案】6 ()211nk kn k+--【解析】①若数列{}n a 是公差为1的等差数列,且11a k =,*2k k N ≥∈,,则11(1,)n a n n n k=+-∈-,所以[]1n n b a n ==-,则401236T =+++=;故填6.4 / 4②若数列{}n a 是公比为1k +的等比数列,且11a k=,*2k k N ≥∈,,则 1112131211(1)(1)n n n n n n n a k k C k C kk k------=⋅+=⋅+++⋅⋅⋅+,则213111n n k n n n b k C k C -----=++⋅⋅⋅+, 221311101(2)(33)()n n k n n n T k k k k C k C -----=+++++++⋅⋅⋅+++⋅⋅⋅+22223332341451[123(1)](1?)(1)n n n n C C C k C C C k---=+++⋅⋅⋅+-++++⋅⋅+++++⋅⋅⋅++⋅⋅⋅+3422(1))2n n n n n n n C k C k C k --=+++⋅⋅⋅+ 223321()n n n n n C k C k C k k =++⋅⋅⋅+ 21[(1)1]n k nk k =+--;故填21[(1)1]n k nk k+--. 10.(二项式与函数)已知二进制和十进制可以相互转化,例如65432108912021212020212=⨯+⨯+⨯+⨯+⨯+⨯+⨯,则十进制数89转化为二进制数为2(1011001).将n 对应的二进制数中0的个数,记为n a (例如:24(100)=,251(110011)=,289(1011001)=,则42a =,512a =,893a =),记()2n a f n =,则2018201820182019(2)(21)(22)...(21)f f f f ++++++-=__________. 【答案】20183【解析】由题意得20182018201820192212221++-,,,,共201920182018222-=个数中所有的数转换为二进制后,总位数都为2019,且最高位都为1而除最高位之外的剩余2018位中,每一位都是0或者1 设其中的数x ,转换为二进制后有k 个0(0k 2018≤≤) ∴()2kf x =在这20182个数中,转换为二进制后有k 个0的数共有2018kC 个 ∴()()()()201820182018201820192018022122 (2)12k kk f f f f C =++++++-=∑由二项式定理,()201820182018201802123k kk C ==+=∑。

高三数学二项式定理与性质试题答案及解析

高三数学二项式定理与性质试题答案及解析

高三数学二项式定理与性质试题答案及解析1. S=++…+除以9的余数为()A.8B.7C.6D.5【答案】B【解析】依题意S=++…+=227-1=89-1=(9-1)9-1=×99-×98+…+×9--1=9(×98-×97+…+)-2.∵×98-×97+…+是正整数,∴S被9除的余数为7.2.的二项展开式中,的系数等于.【答案】15【解析】,时,,此时的系数等于.【考点】二项式系数3.的二项展开式中,常数项为______.【答案】【解析】二项式的通项,令,得,故展开式中常数项为.【考点】二项式定理.4.设,若,则()A.-1B.0C.l D.256【答案】B【解析】,令,则有,又令得,,故.【考点】定积分,二项展开式的系数.)的展开式中含有常数项的最小的n为( )5.使n(n∈N+A.4B.5C.6D.7【答案】B【解析】T+1=3x)n-r=3n-r xn-r,当T r+1是常数项时,n-r=0,当r=2,rn=5时成立.6.使的展开式中含有常数项的最小的n为( )A.4B.5C.6D.7【答案】B【解析】此二项式之通项为若是常数,则,即.当,1时,,不满足条件;当时,,所以常数项的最小的.7.已知二项式的展开式中第2项为常数项,其中,且展开式按的降幂排列.(1)求及的值.(2)数列中,,,,求证:能被4整除.【答案】(1),;(2))证明过程详见解析.【解析】(1)由展开式中第2项为常数项,则可根据二项式展开式的第2项展开式中未知数的指数为0,从而求出的值,将的值代回第2项展式可求出的值;(2)可利用数学归纳法来证明,①当时,,,能被4整除,显然命题成立;②假设当n=k时,能被4整除,即.那么当n =k+1时,===显然是非负整数,能被4整除.由①、②可知,命题对一切都成立.试题解析:(1), 2分故,,. 4分(2)证明:①当时,,,能被4整除.②假设当n=k时,能被4整除,即,其中p是非负整数.那么当n =k+1时,===显然是非负整数,能被4整除.由①、②可知,命题对一切都成立. 10分【考点】1.二项式定理;2.数学归纳法.8.已知展开式各项的系数和比各项的二次式系数和大992,则展开式中系数最大的项是第项.【答案】5【解析】各项的系数和令,为,二项式系数和为,所以,解得,设展开式中第项的系数最大,则,, 所以,故是第5项.【考点】二项式展开式的系数与二项式系数9.在(x-)10的展开式中,x6的系数是________.【答案】1890【解析】T+1=x10-r(-)r,令10-r=6,r=4,T5=9x6=1890x6.r10.已知关于的展开式中,二项式系数和等于512,则展开式的系数之和为 .【答案】【解析】因为展开式中二项式系数和等于512,所以因此展开式的系数之和为【考点】二项展开式中二项式系数及项的系数11.已知关于的展开式中,只有第项的二项式系数最大,则展开式的系数之和为 .【答案】【解析】因为只有第项的二项式系数最大,所以因此展开式的系数之和为【考点】二项式系数性质12.在的二项展开式中,按的降幂排列,只有第项的系数最大,则各项的二项式系数之和为________(答案用数值表示).【答案】256【解析】由的二项展开式中,项的系数与二项式系数相等,因为只有第项的系数最大.即第五项的二项式系数最大.所展开式中共有9项,即.各项的二项式系数之和为.【考点】1.二项式定理展开式公式.2.二项式系数与二次项系数的关系.3.二项式系数的大小分布.13.二项式的展开式中的常数项是 .【答案】15【解析】二项式的展开式中的常数项是.【考点】二项式定理.14.的展开式中,常数项是______________.【答案】【解析】由二项式定理得,,令,得,故展开式中的常数项为.【考点】二项式定理.15. (2x-1)5的展开式x3项的系数是__________.(用数字作答)【答案】80【解析】根据二项式定理可得(2x-1)5的第项展开式为,则n=3时,得到展开式x3项为,所以系数为80,故填80【考点】二项式定理16.二项展开式中的常数项为( )A.56B.-56C.112D.-112【答案】C【解析】∵,∴令,即,∴常数项为,选C.【考点】二项式定理.17.设(1+x)n=a0+a1x+…+anx n,若a1+a2+…+an=63,则展开式中系数最大的项是()A.15x2B.20x3C.21x3D.35x3【答案】B【解析】令x=1,则(1+1)n=++…+=64.∴n=6.故(1+x)6的展开式中系数最大的项为T4=x3=20x3.18. (x +2)8的展开式中x 6的系数是( ) A .28 B .56C .112D .224【答案】C【解析】该二项展开式的通项为T r +1=x 8-r 2r =2rx 8-r ,令r =2,得T 3=22x 6=112x 6,所以x 6的系数是112. 19. 设的展开式的各项系数之和为,二项式系数之和为,若,则展开式中的常数项_________. 【答案】-20 【解析】依题意,,解得,.令得.故常数项为.故填-20【考点】二项式定理 20. 5展开式中的常数项为( ).A .80B .-80C .40D .-40【答案】C【解析】T r +1=C 5r (x 2)5-rr=C 5r (-2)r x 10-5r ,令10-5r =0得r =2.∴常数项为T 3=C 52(-2)2=40.21. 若(其中、为有理数),则 .【答案】169【解析】应用二项式定理把展开化简即可得,.【考点】二项式定理.22. 若4=a +b (a ,b 为有理数),则a +b =( ). A .36 B .46 C .34D .44【答案】D【解析】二项式的展开式为1+()1+()2+()3+()4=1+4+18+12+9=28+16,所以a =28,b =16,a +b =28+16=44.23. 设(1-x )(1+2x )5=a 0+a 1x +a 2x 2+…+a 6x 6,则a 2=________. 【答案】30【解析】(1+2x )5的展开式的通项公式为T k +1=(2x )k =·2k ·x k ,所以x 2的系数为1×·22-·21=30,即a 2=30. 24. 若展开式的常数项是60,则常数a 的值为 .【答案】4 【解析】展开式的常数项是.【考点】二项式定理.25.二项式的展开式中,含的项的系数是___________.【答案】-126【解析】利用二项展开式通项公式可得,,令,可得,代入可得所求系数为.【考点】二项展开式通项公式.26.二项式的展开式中,仅有第5项的二项式系数最大,则其常数项是.【答案】70【解析】因为二项式的展开式中,仅有第5项的二项式系数最大,所以,由的展开式中,常数项为,令,,所以,常数项是,答案为.【考点】二项式定理,二项式系数的性质.27.在的展开式中,若第项的系数为,则 .【答案】【解析】由可得.【考点】二项式定理展开式28.若展开式中各项的二项式系数之和为32,则该展开式中含的项的系数为【答案】-80【解析】由题意可知,,所以n=5,T=,由解得,所以该展开式中含的项的系数为=-80.【考点】二项定理及其性质.29.设函数,则当时,表达式的展开式中常数项为()A.-15B.20C.-20D.15【答案】C【解析】当时, .所以常数项为.【考点】二项式定理.30.若展开式的常数项是,则常数的值为 .【答案】4【解析】,由,得,所以,解得.【考点】二项式定理.31.求展开式中的常数项.【答案】15【解析】在二项式展开式的通项中,令的指数为0,可求得常数项所在的项数,进而求出常数项.试题解析:展开式的通项公式为,令,得,故该展开式中的常数项为.【考点】二项式定理.32.在二项式的展开式中,常数项为_________. (用数字作答)【答案】160【解析】通项,令,则,故常数项为.【考点】二项式定理.33.二项式的展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )A.180B.90C.45D.360【答案】A【解析】因为的展开式中只有第六项的二项式系数最大,所以,,令,则,.【考点】1.二项式定理;2.组合数的计算.34.的展开式中含的项的系数为 (用数字作答).【答案】.【解析】的展开式中第项为,令,解得,故的展开式中含的项的系数为.【考点】二项式定理35.若,则的值为()A.40B.-40C.80D.-80【答案】B【解析】即,所以,-40,故选B。

2023年高考数学真题分训练 排列组合、二项式定理(理)(含答案含解析)

2023年高考数学真题分训练   排列组合、二项式定理(理)(含答案含解析)

专题 30 排列组合、二项式定理(理)年 份题号 考 点考 查 内 容2011 理 8 二项式定理 二项式定理的应用,常数项的计算 2023 理 2排列与组合 简单组合问题卷 1 理 9 二项式定理 二项式定理的应用以及组合数的计算 2023卷 2理 5 二项式定理 二项式定理的应用 卷 1 理 13 二项式定理 二项式展开式系数的计算2023卷 2 理 13 二项式定理 二项式展开式系数的计算 卷 1 理 10 二项式定理 三项式展开式系数的计算2023卷 2 理 15 二项式定理 二项式定理的应用卷 1 理 14 二项式定理 二项式展开式指定项系数的计算 卷 2 理 5 排列与组合 计数原理、组合数的计算2023卷 3理 12 排列与组合 计数原理的应用 卷 1 理 6 二项式定理 二项式展开式系数的计算 卷 2 理 6 排列与组合 排列组合问题的解法2023卷 3理 4 二项式定理 二项式展开式系数的计算 卷 1 理 15 排列与组合 排列组合问题的解法2023 卷 3 理 5 二项式定理 二项式展开式指定项系数的计算2023卷 3 理 4 二项式定理 利用展开式通项公式求展开式指定项的系数 卷 1 理 8 二项式定理 利用展开式通项公式求展开式指定项的系数2023 卷 3理 14二项式定理利用展开式通项公式求展开式常数项考点出现频率2023 年预测考点 102 两个计数原理的应用 23 次考 2 次 考点 103 排列问题的求解 23 次考 0 次 考点 104 组合问题的求解23 次考 4 次 考点 105 排列与组合的综合应用 23 次考 2 次 考点 106 二项式定理23 次考 11 次命题角度:(1)分类加法计数原理;(2)分步乘法计数原 理;(3)两个计数原理的综合应用.核心素养:数学建模、数学运算考点102 两个计数原理的应用1.(2023 全国II 理)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A.24 B.18 C.12 D.9(答案)B(解析)由题意可知E →F 有6 种走法,F →G 有3 种走法,由乘法计数原理知,共有6 ⨯ 3 = 18 种走法,应选B.2.(2023 新课标理1 理)4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A.18B.3824 - 2 7C.58D.78(答案)D(解析)P ==.24 83.(2023 湖北理)回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249 等.显然2位回文数有9 个:11,22,33,…,99.3 位回文数有90 个:101,111,121,…,191,202,…,999.则(Ⅰ)4 位回文数有个;(Ⅱ) 2n +1 (n ∈N+) 位回文数有个.(解析)(Ⅰ)4 位回文数只用排列前面两位数字,后面数字就可以确定,但是第—位不能为0,有9(1~9)种情况,第二位有10(0~9)种情况,所以4 位回文数有9 ⨯10 = 90 种.答案:90(Ⅱ)解法一:由上面多组数据研究发觉,2n +1 位回文数和2n + 2 位回文数的个数相同,所以可以算出2n + 2位回文数的个数.2n + 2 位回文数只用看前n +1位的排列情况,第—位不能为0 有9 种情况,后面n 项每项有10 种情况,所以个数为9 ⨯10n .解法二:可以看出2 位数有9 个回文数,3 位数90 个回文数。

(完整版)二项式定理(习题含答案)

(完整版)二项式定理(习题含答案)

二项式定理一、求展开式中特定项1、在30的展开式中,x 的幂指数是整数的共有( )A .4项 B .5项 C .6项 D .7项【答案】C【解析】()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=,30......2,1,0=r ,若要是幂指数是整数,所以=r 0,6,12,18,24,30,所以共6项,故选C . 3、若2531()x x +展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令1x =,可得展示式中各项的系数的和为32,所以232n =,解得5n =,所以2531()x x +展开式的通项为10515r r r T C x -+=,当2r =时,常数项为2510C =,4、二项式82x的展开式中的常数项为 .【答案】112【解析】由二项式通项可得,3488838122rrr r rr r x C xx C --+-=-=)()()(T (r=0,1,,8),显然当2=r 时,1123=T ,故二项式展开式中的常数项为112.5、41(23)x x--的展开式中常数项等于________.【答案】14.【解析】因为41(2)(13)x x--中4(13)x -的展开式通项为4C (3)r r x -,当第一项取2时,04C 1=,此时的展开式中常数为2;当第一项取1x-时,14C (3)12x -=-,此时的展开式中常数为12;所以原式的展开式中常数项等于14,故应填14.6、设20sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰,则()622x ⎛-⋅+ ⎝的展开式中常数项是 .【答案】332=-332()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰,6(=6的展开式的通项为663166((1)2r r rr r r r r T C C x ---+==-⋅⋅,所以所求常数项为3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-.二、求特定项系数或系数和7、8()x -的展开式中62x y 项的系数是( )A .56B .56-C .28D .28-【答案】A【解析】由通式r r r y x C )2(88--,令2=r ,则展开式中62x y 项的系数是56)2(228=-C .8、在x (1+x )6的展开式中,含x 3项的系数是 .【答案】15【解】()61x +的通项16r rr T C x +=,令2r =可得2615C =.则()61x x +中3x 的系数为15.9、在6(1)(2)x x -⋅-的展开式中含3x 的项的系数是 .【解析】6(1)(2)x x -⋅-的展开式中3x 项由336)(2x C -和226)(x -x C -⋅)(两部分组成,所以3x 的项的系数为552-2636-=-C C .10、已知dx x n 16e 1⎰=,那么nxx (3-展开式中含2x 项的系数为 .【答案】135【解析】根据题意,66e111ln |6e n dx x x=⎰==,则n x x )(3-中,由二项式定理的通项公式1r n r rr n T C a b -+=,可设含2x 项的项是616(3)r r r r T C x -+=-,可知2r =,所以系数为269135C ⨯=.11、已知()()()()10210012101111x a a x a x a x +=+-+-++-L ,则8a 等于( )A .-5B .5C .90D .180【答案】D 因为1010(1)(21)x x +=-+-,所以8a 等于8210(2)454180.C -=⨯=选D.12、在二项式1)2nx -的展开式中,只有第5项的二项式系数最大,则=n ________;展开式中的第4项=_______.【答案】8,1937x -.【解析】由二项式定理展开通项公式21()(2)33111()()22n r n r r r r r rr nn T C x x C x -++=-⋅=-,由题意得,当且仅当4n =时,rn C 取最大值,∴8n =,第4项为1193)333381()72C x x +-=-.13、如果7270127(12)x a a x a x a x -=++++ ,那么017a a a +++ 的值等于( )(A )-1 (B )-2 (C )0 (D )2【解析】令1x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70127(12)1a a a a -=++++=- ,令0x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70(10)1a -==,所以12711a a a ++++=- ,即1272a a a +++=- ,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1,15、(x﹣2)(x﹣1)5的展开式中所有项的系数和等于 【答案】0解:在(x﹣2)(x﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0,所以展开式中所有项的系数和等于0.16、在*3)()n n N ∈的展开式中,所有项的系数和为32-,则1x 的系数等于.【答案】270-【解析】当1=x 时,()322--=n,解得5=n ,那么含x1的项就是()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯,所以系数是-270.17、设0(sin cos )k x x dx π=-⎰,若8822108)1(x a x a x a a kx ++++=- ,则1238a a a a +++⋅⋅⋅+= .【答案】0.【解析】由0(sin cos )(cos sin )k x x dx x x ππ=-=--⎰(cos sin )(cos 0sin 0)2ππ=-----=,令1x =得:80128(121)a a a a -⨯=++++ ,即01281a a a a ++++= 再令0x =得:80128(120)000a a a a -⨯=+⨯+⨯++⨯ ,即01a =所以12380a a a a +++⋅⋅⋅+=18、设(5x﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M﹣N=240,则展开式中x 的系数为 .【答案】150解:由于(5x﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0.解得 2n =16,或 2n =﹣15(舍去),∴n=4.(5x﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r ?=(﹣1)r?54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r?54﹣r =1×6×25=150,19、设8877108)1(x a x a x a a x ++++=- ,则178a a a +++= .【答案】255【解析】178a a a +++= 87654321a a a a a a a a +-+-+-+-,所以令1-=x ,得到=82876543210a a a a a a a a a +-+-+-+-,所以2551256-20887654321=-==+-+-+-+-a a a a a a a a a 三、求参数问题20、若n的展开式中第四项为常数项,则n =( )A .4B .5C .6D .7【答案】B【解析】根据二项式展开公式有第四项为2533333342)21()(---==n nn nxC xx C T ,第四项为常数,则必有025=-n ,即5=n ,所以正确选项为B.21、二项式)()1(*N n x n ∈+的展开式中2x 的系数为15,则=n ( )A 、5 B 、 6 C 、8 D 、10【答案】B【解析】二项式)()1(*N n x n ∈+的展开式中的通项为k n kn k x C T -+⋅=1,令2=-k n ,得2-=n k ,所以2x 的系数为152)1(22=-==-n n C C n n n ,解得6=n ;故选B .22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵4r+14T =C r r r a x -,∴当43r -=,即1r =时,133324T =C 48,2ax ax x a ==∴=.23、若()()411x ax ++的展开式中2x 的系数为10,则实数a =( )A1 B .53-或1 C .2或53- D. 【答案】B.【解析】由题意得4(1)ax +的一次性与二次项系数之和为14,其二项展开通项公式14r r rr T C a x +=,∴22144101C a C a a +=⇒=或53-,故选B .24、设23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+,当012254n a a a a +++⋅⋅⋅+=时,n 等于( )A .5B .6C .7D .8【答案】C. 【解析】令1x =,则可得2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-,故选C .四、其他相关问题25、20152015除以8的余数为( )【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数.试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,。

高三数学二项式定理与性质试题答案及解析

高三数学二项式定理与性质试题答案及解析

高三数学二项式定理与性质试题答案及解析1.若则= .【答案】【解析】由于是展开式中第四项的系数,而.所以,=.【考点】二项式定理.2.的展开式中的系数是___________.【答案】56【解析】原二项式展开式的通项公式为令r=2,得,系数为56.考点:二项式定理3.在的展开式中,含项的系数为()A.B.C.D.【答案】C【解析】,所以含项的系数为15.选C【考点】二项式定理.4.(5分)(2011•重庆)(1+2x)6的展开式中x4的系数是.【答案】240【解析】利用二项展开式的通项公式求出展开式的通项;令x的指数为4,求出展开式中x4的系数.解:展开式的通项为Tr+1=2r C6r x r令r=4得展开式中x4的系数是24C64=240故答案为:240点评:本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.5.在二项式的展开式中恰好第5项的二项式系数最大,则展开式中含项的系数是()A.-56B.-35C.35D.56【答案】A【解析】在二项式的展开式中恰好第5项的二项式系数最大,即只有第5项的二项式系数最大即.所以二项式的展开式的通项为..所以项的系数是.故选A【考点】1.二项式定理.2.归纳推理的数学思想.3.组合数的计算.6.的展开式的中间一项是__________.【答案】-20【解析】展开式的中间一项为.【考点】二项式定理.7.若=x n+…+ax3+bx2+…+1(n∈N*),且a∶b=3∶1,那么n=_____.【答案】11【解析】,由已知有.8.若,则= .【答案】【解析】令,由通项公式可得,令,=()==.【考点】1二项式定理;2赋值法。

9.二项式的展开式中含项的系数值为_______________.【答案】35【解析】.依题意可得.所以展开式中含项的系数值为35.【考点】1.二项式定理的展开式.2.项的系数的概念.10.若展开式中所有项的二项式系数之和为64,则展开式中含项的系数是()A.192B.182C.-192D.-182【答案】C【解析】由题意可知,得,则二项展开式的通项公式为,令,得,含项的系数是.【考点】二项式定理.11.在的二项展开式中,按的降幂排列,只有第项的系数最大,则各项的二项式系数之和为________(答案用数值表示).【答案】256【解析】由的二项展开式中,项的系数与二项式系数相等,因为只有第项的系数最大.即第五项的二项式系数最大.所展开式中共有9项,即.各项的二项式系数之和为.【考点】1.二项式定理展开式公式.2.二项式系数与二次项系数的关系.3.二项式系数的大小分布.12.在的二项展开式中,按的降幂排列,只有第项的系数最大,则各项的二项式系数之和为________(答案用数值表示).【答案】256【解析】由的二项展开式中,项的系数与二项式系数相等,因为只有第项的系数最大.即第五项的二项式系数最大.所展开式中共有9项,即.各项的二项式系数之和为.【考点】1.二项式定理展开式公式.2.二项式系数与二次项系数的关系.3.二项式系数的大小分布.13.二项式的展开式中的常数项是 .【答案】15【解析】二项式的展开式中的常数项是.【考点】二项式定理.14.展开式中只有第六项二项式系数最大,则展开式中的常数项是()A.180B.90C.45D.360【答案】A【解析】因为的展开式中只有第六项二项式系数最大,所以,则由,令,解得,所以展开式中的常数项是,故正确答案选A.【考点】二项式理及展开式通项公式.15.的展开式中x3的项的系数是____(用数字作答)【答案】80【解析】∵,令,∴,∴.【考点】二项式定理.16.二项式展开式中的常数项是( )A.第7项B.第8项C.第9项D.第10项【答案】C【解析】根据二项式定理可得的第项展开式为,要使得为常数项,要求,所以常数项为第9项.【考点】二项式定理17.二项展开式中的常数项为( )A.56B.-56C.112D.-112【答案】C【解析】∵,∴令,即,∴常数项为,选C.【考点】二项式定理.18.若(1-2x)2 013=a0+a1x+…+a2 013x2 013(x∈R),则++…+的值为()A.2B.0 C.-1D.-2【答案】C【解析】令x=0,则a=1;令x=,则a+++…+=0.∴++…+=-1.19. 5展开式中的常数项为().A.80B.-80 C.40D.-40【答案】C【解析】Tr+1=C5r (x2)5-r r=C5r(-2)r x10-5r,令10-5r=0得r=2.∴常数项为T3=C52(-2)2=40.20.n展开式中只有第六项的二项式系数最大,则展开式的常数项是().A.360B.180C.90D.45【答案】B【解析】二项式系数为,只有第六项最大,即最大,则n=10,所以Tr+1= ()10-rr=,由5-r=0得r=2,故常数项为T3=22=180.21.若展开式中存在常数项,则n的值可以是()A.B.C.D.【答案】C【解析】二项展开式的通向,当时,为常数项。

二项式定理高考试题及其答案

二项式定理高考试题及其答案

二项式定理历年高考试题荟萃(一)一、选择题 ( 本大题共 58 题)1、二项式的展开式中系数为有理数的项共有………()A.6项B.7项C.8项D.9项2、对于二项式(+x3)n(n∈N),四位同学作出了四种判断:…()①存在n∈N,展开式中有常数项;②对任意n∈N,展开式中没有常数项;③对任意n∈N,展开式中没有x的一次项;④存在n∈N,展开式中有x的一次项.上述判断中正确的是(A)①与③(B)②与③(C)②与④(D)④与①3、在(+x2)6的展开式中,x3的系数和常数项依次是…………()(A)20,20 (B)15,20(C)20,15 (D)15,154、(2x3-)7的展开式中常数项是………………………………………………………()A.14B.-14C.42D.-425、已知(x-)8展开式中常数项为1120,其中实数a是常数,则展开式中各项系数的和是……………………………………………………………()(A)28 (B)38 (C)1或38 (D)1或286.若(+)n展开式中存在常数项,则n的值可以是…………()A.8B.9C.10D.127 .(2x+)4的展开式中x3的系数是……………………………………()A.6B.12C.24D.488、(-)6的展开式中的常数项为…………………………………()A.15B.-15C.20D.-209、(2x3-)7的展开式中常数项是…………………………………………()A.14B.-14C.42D.-4210、若(+)n展开式中存在常数项,则n的值可以是………………()A.8B.9C.10D.1211、若展开式中含项的系数与含项的系数之比为-5,则n等于A.4 B.6 C.8 D.1012、的展开式中,含x的正整数次幂的项共有()A.4项B.3项C.2项D.1项13.(x-y)10的展开式中x6y4项的系数是(A)840 (B)-840 (C)210 (D)-21014.的展开式中,含x的正整数次幂的项共有()A.4项 B.3项 C.2项 D.1项15、若展开式中含的项的系数等于含x的项的系数的8倍,则n等于()A.5B.7C.9D.1116、3.若的展开式中的系数是( )A B C D17、在的展开式中的系数是()A.-14B.14C.-28D.2818、如果的展开式中各项系数之和为128,则展开式中的系数是()(A)7 (B)(C)21 (D)19、如果的展开式中各项系数之和为128,则展开式中的系数是()(A)7 (B)(C)21 (D)20、设k=1,2,3,4,5,则(x+2)5的展开式中x k的系数不可能是(A)10 (B)40 (C)50 (D)8021、7.在()n的二项展开式中,若常数项为60,则n等于A.3B.6C.9D.1222、已知()的展开式中第三项与第五项的系数之比为,则展开式中常数项是(A)-1 (B)1 (C)-45 (D)4523、的展开式中,x的幂的指数是整数的项共有A.3项 B.4项 C.5项 D.6项24、在二项式(x+1)6的展开式中,含x3的项的系数是(A)15 (B)20 (C)30 (D)4025、(若多项式,则(A)9 (B)10 (C)-9 (D)-10 26、(的值为()A.61 B.62 C.63 D.6427、在(x-)2006的二项展开式中,含x的奇次幂的项之和为S,当x=时,S等于 A.23008 B.-23008 C.23009 D.-2300928.在()24的展开式中,x的幂的指数是整数的项共有A.3项 B.4项 C.5项 D.6项29、的展开式中含x的正整数指数幂的项数是(A)0 (B)2 (C)4 (D)630、在(x-)的展开公式中,x的系数为(A)-120 (B)120 (C)-15 (D)1531、(2x-3)5的展开式中x2项的系数为(A)-2160 (B)-1080 (C)1080 (D)216032.若(ax-1)5的展开式中x3的系数是80,则实数a的值是A.-2 B.2 C. D.233、的展开式中各项系数之和为64,则展开式的常数项为(A)-540 (B)-162 (C)162 (D)54034、已知的展开式中第三项与第五项的系数之比为-,其中i2=-1,则展开式中常数项是(A)-45i (B)45i (C)-45 (D)4535.若对于任意的实数x,有x3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3,则a2的值为A.3B.6C.9D.136、在的二项展开式中,若只有的系数最大,则A.8B. 9C. 10D.1137、.的展开式中,常数项为15,则n=A.3B.4C.5D.638、若(x+)n展开式的二项式系数之和为64,则展开式的常数项为A.10B.20C.30D.12039、.已知(+)n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n等于A.4B.5C.6D.740、设(x2+1)(2x+1)9=a0+a1(x+2)+a2(x+2)2+…+a11(x+2)11,则a0+a1+a2+…+a11的值为A.-2B.-1C.1D.241、展开式中的常数项是(A) -36 (B)36 (C) -84 (D) 8442、如果的展开式中含有非零常数项,则正整数n的最小值为A.3B.5C.6D.1043、如果的展开式中含有非零常数项,则正整数n的最小值为A.10B.6C.5D.344、((2x+1)6展开式中x2的系数为(A)15 (B)60 (C)120 (D)24045、(-)12展开式中的常数项为(A)-1320 (B)1320 (C)-220 (D)22046、在的展开式中,含的项的系数是(A)-15 (B)85 (C)-120 (D)27447、展开式中的常数项为A.1 B. C. D.48、在(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含x4的项的系数是(A)-15 (B)85 (C)-120 (D)27449、设则中奇数的个数为()A.2 B.3 C.4 D.5 50、的展开式中含的项的系数为(A)4 (B)6 (C)10 (D)1251、展开式中的常数项为A.1 B.46 C.4245 D.424652、的展开式中的系数是()A. B. C.3 D.453、的展开式中含的项的系数为(A)4 (B)6 (C)10 (D)1254、的展开式中的系数为()A.10 B.5 C. D.155、的展开式中的系数是()A. B. C.3 D.456、设则中奇数的个数为()A.2 B.3 C.4 D.557、若(x+)n的展开式中前三项的系数成等差数列,则展开式中x4项的系数为( )A.6B.7C.8D.958、的展开式中常数项是A.210B.C.D.-105二项式定理历年高考试题荟萃(一)答案一、选择题 ( 本大题共 58 题, 共计 290 分)1、D2、D3、C4、A5、C6、C7、C8、A9、A10、C11、B解析:设展开式的第r1+1项含,第r2+1项含,则由已知得r、r2、n∈N*,试根得n=6.112、B解析:由通项T r+1=C x.x=C x,其中r=0,1,2, (12)为正整数,∴r=0,6,12.13、A解析:由通项公式T r+1=C x10-r(-y)r=(-)r·C x10-r y r,当r=4时,T r+1=(-)4·C·x6y4=840x6y4.14、B解析:由通项T r+1=C x.x=C x,其中r=0,1,2, (12)为正整数,∴r=0,6,12.15、A解析:通项T r+1=C1n-r·(2x)r=2 r C x r.依题有:23C=8·2C,即C=2n.易知n=5.16、B解析:(x-1)(x+1)8=(x-1)(1+x)8,∴含x5的项为x·C x4+(-1)C x5=14x5,∴x5的系数是14,故选B.17、B解析:(x-1)(x+1)8=(x-1)(1+x)8,∴含x5的项为x·C x4+(-1)C x5=14x5,∴x5的系数是14,故选B.18、C解析:令x=1得展开式各项系数之和为(3-1)n=128,∴n=7.则(3x-)7展开式的通项公式T r+1=C(3x)7-r·(-)r令7-r=-3,解得r=6.故的系数是(-1)6·C·37-6=7×3=21.19、C解析:令x=1得展开式各项系数之和为(3-1)n=128,∴n=7.则(3x-)7展开式的通项公式T=C(3x)7-r·(-)r令7-r=-3,解得r=6.r+1故的系数是(-1)6·C·37-6=7×3=21.20、C解析:(2+x)5展开式的通项公式T r+1=C·25-r·x r.当k=1,即r=1时,系数为C·24=80;当k=2,即r=2时,系数为C·23=80;当k=3,即r=3时,系数为C·22=40;当k=4,即r=4时,系数为C·2=10;当k=5,即r=5时,系数为C·20=1.综合知,系数不可能是50.21、B解析:设常数项为T r+1=()n-r·=·2r·x=2r··x=60∴…①∵为非负整数∴r=0,1,2当r=0时:①式左边=1,右边=60,左≠右(舍去)当r=1时:①式左边=3,右过=30,左≠右(舍去)当r=2时:①式左边=15,右边=15,左=右.故选(B)22、D解析:依题可得:化简解得n=10 n=-5(舍)∴通项Tr+1=令20-r=0 r=8 ∴常数项为T9=C·(-1)8=45.23、C解析:由通项公式T r+1=C r24·=C r24x显然r=0,6,12,18,24.24、B解:设T r+1项含x3则T r+1=C x6-r1r∵6-r=3 ∴r=3∴x3的系数为C=2025、D解析:解得a9=-1026、B解析:∵C06+ C16+ C26+ C36+ C46+ C56+ C66= 26故C16+ C26+ C36+ C46+ C56= 26- 2=6227、B 解析:当x=时,S=C20062005(-)1+C32006(-)2003·()3+…+C1(-)2005=(C2006+C32006+…+C)(-2)1003=·22006(-2)1003=-23008,故选B28、C解析:由通项公式T r+1=C r24·=C r24x显然r=0,6,12,18,24.29、B解析:通项T r-1= ()10-r·(-)r=(-)r·=(-)r·试根易得B.30、C解析:该展开式中通项为令10-2r=4,∴r=3 故x4的系数为(-)3C=-1531、B解析:利用T r+1=a n-r b r代入相应数值即可.32、D (ax-1)5的展开式x3的系数为80∴T r+1=(ax)5-r(-1)r当r=2时有T3=a3x3其系数a3=80∴a=233、A解析:令x=1,得2n=64,得n=6.设常数项为T r+1= C r6(3)6-r·(-)r=C r636-r·(-1)r·x3-r令3-r=0得r=3.∴常数项T4=-540.34、D解析:解得n=10,n=-5(舍)∴(x2+)10和通项Tr+1=C(x)10-r·(i·x)r=C·i r·x令20-r=0r=8 ∴T9=C·i8=C=45.35、B解析:x3=[(x-2)+2]3= (x-2)3·20+ (x-2)2·21+ (x-2)1·22+ (x -2)0·23,∴a2=·21=6.36、C解析:x5的系数是C,当只有C最大时,n=10.37、答案:D解析:T r+1==(-1)r,∵常数项为15,∴r=n.∴=15代入验证即可.38、答案:B解析:(x+)n展开式的二项式系数和为C+C+C+…+C=2n=64,∴n=6. 设T r+1为展开式常数项,则T r+1=C x6-r·()r=C·x6-2r,∴6-2r=0.∴r=3.∴T r+1=T4=C=20.39、答案:C解析:由题意知=64,即=64,∴n=6.40、A解析:令x=-1,a0+a1+…+a11=-2.41、C解析:T r+1=()9-r(-)r=(-x)–r=(-1)r·,令Tr +1=0,得r=3,∴T4=(-1)3=-84.42、答案:B解析:T r+1=C3n-r(-2)r x2n-5r,∴2n-5r=0.∴r=.∵r是整数,∴n最小是5.43、C解析:T r+1=C3n-r(-2)r x2n-5r,∴2n-5r=0.∴r=.∵r是整数,∴n最小是5.44、B解析:T r+1=C(2x)6-r.令6-r=2,得r=4.∴含x2项的系数为C4622=60.45、C 解析:由通项公式T()r=(-1)r,令12r=0解得r=9.∴T10=-220.选C46、A 解析:x4系数(-1)+(-2)+(-3)+(-4)+(-5)=-15.47、D原式=(1++x+1)10=(+)20,设通项为()20-r()r,则r-20+r=0,则r=10.∴常数项为.48、A x4系数(-1)+(-2)+(-3)+(-4)+(-5)=-15.49、A∵(1+x)8=+x1+x2+…+x8=a0+a1x+…+a8x8,∴a0,a1,a2,…,a8,即为,,,…,.∴奇数的个数为,共2个.50、答案:C解析:,故展开式中含项的系数为.51、D解析:由二项式定理及多项式乘法知常数项分别为()0··()0=1,()3··()4=4 200,()6··()8=45,∴原式常数项为1+4 200+45=4 246.52、 A(1-)4(1+)4=[(1-)(1+)]4=x4-4x3+6x2-4x+1,∴x的系数为-4.53、答案:C解析:,故展开式中含项的系数为.54、C(1+)5的展开式中通项为T r+1=()r=·()r·x r.当r=2时,T3=··x2,系数为.55、B 解析:化简原式=[(1-)4(1+)4]·(1-)2=[(1-)(1+)]4·(1-)2=(1-x)4·(1-)2=(1-4x+6x2-4x3+x4)(1-2+x).故系数为1-4=-3,选B.56、A解析:∵(1+x)8=+x1+x2+…+x8=a0+a1x+…+a8x8,∴a0,a1,a2,…,a8,即为,,,…,.∴奇数的个数为,共2个.57、答案:B 由二项式定理知:T1=1,T2=T3=,由题意知:2T2=T1+T3,即n=1+,解之,得n=8或n=1(舍去).故二项式的通项为·x8-r·()r=·x8-2r·2-r=·2-r·x8-2r, 令8-2r=4,则r=2.故含x4的项的系数为·2-2=7.58、B ∵T r+1=(2x3)10-r(-)r=(-)r210-r x30-5r,令30-5r=0r=6,∴常数项为(-)624=.。

高二数学二项式定理与性质试题答案及解析

高二数学二项式定理与性质试题答案及解析

高二数学二项式定理与性质试题答案及解析1.已知,则.【答案】31【解析】令,可得;令,可得;两式结合可得.【考点】二项式定理的应用.2.在的二项式展开式中,只有第5项的二项式系数最大,则A.6B.7C.8D.9【答案】C【解析】因为在的二项式展开式中,只有第5项的二项式系数最大所以由此可得:,即所以即.【考点】二项式系数的应用.3.在二项式的展开式中(1)求展开式中含项的系数;(2)如果第项和第项的二项式系数相等,试求的值.【答案】(1)264;(2)或【解析】(1)写出二项式的展开式的特征项,当x的指数是3时,把3代入整理出的值,就得到这一项的系数的值.(2)根据上一问写出的特征项和第项和第项的二项式系数相等,表示出一个关于的方程,解方程即可.解题的关键是写出展开式的特征项,利用特征项的特点解决问题,注意代数式的整理,特别是当分母上带有变量时,注意整理.试题解析:(1)展开式第项:令,解得,∴展开式中含项的系数为(2)∵第项的二项式系数为,第项的二项式系数∴故或解得或【考点】(1)展开式项的系数;(2)二项式系数.4.在的展开式中,x6的系数是()A.﹣27B.27C.﹣9D.9【答案】D【解析】在的展开式中通项为,故x6为r=6,即第7项.代入通项公式得系数为.,故选D.【考点】二项式定理及二项式系数的性质.5.展开式中的常数项为.(用数字作答)【答案】40【解析】由二项式定理可知为常数项,则即,所以常数项为,答案为40.【考点】二项式定理)的展开式中含有常数项为第( )项6.(n∈N+A.4B.5C.6D.7【答案】B【解析】由二项展开式公式:,当,即时,为常数项,所以常数项为第5项.故选B【考点】二项展开式的应用.7.如果的展开式中各项系数之和为128,则展开式中的系数是()A.-2835B.2835C.21D.-21【答案】A【解析】由二项式定理可知展开式中各项系数和为解得,,由得,因此系数为,答案选A。

高中数学2二项式定理(带答案)

高中数学2二项式定理(带答案)

高中数学2二项式定理(带答案)高中数学2二项式定理(带答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN二项式定理一.二项式定理1.右边的多项式叫做()na b +的二项展开式2.各项的系数rn C 叫做二项式系数3.式中的r n r r n C a b -叫做二项展开式的通项,它是二项展开式的第1r +项,即1(0,1,2,,).r n r r r n T C a b r n -+==4.二项展开式特点:共1r +项;按字母a 的降幂排列,次数从n 到0递减;二项式系数rnC 中r 从0到n 递增,与b 的次数相同;每项的次数都是.n 二.二项式系数的性质性质1 ()na b +的二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即m n m n n C C -=性质2 二项式系数表中,除两端以外其余位置的数都等于它肩上两个数之和,即11m m m n n n C C C -++=性质3 ()na b +的二项展开式中,所有二项式系数的和等于2n ,即012.nn nn n C C C +++=(令1a b ==即得,或用集合的子集个数的两种计算方法结果相等来解释)性质4 ()na b +的二项展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和,即022132112.rr n nn n n n n C C C C C C +-++++=++++=(令1,1a b ==-即得)性质5 ()na b +的二项展开式中,当n 为偶数时,中间一项的二项式系数2n nC 取得最大值;当n 为奇数时,中间两项的二项式系数12,n nC -12n nC+相等,且同时取得最大值.(即中间项的二项式系数最大)【题型精讲】题型一、展开式中的特殊项1.21()n x x-的展开式中,常数项为15,则n =A .3B .4C .5D .62.在()()1nx n N *+∈的二项展开式中,若只有5x 的系数最大,则n =A .8B . 9 C. 10 D .113.如果2323nx x ??- ??的展开式中含有非零常数项,则正整数n 的最小值为()A.3 B.5 C.6 D.10题型二、展开式的系数和 1.已知()()()()100210001210012111.x a a x a x a x +=+-+-++-求:(1)0a ;(2)012100a a a a ++++(3)13599a a a a ++++;2.(江西理4)已知n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于()A.4 B.5 C.6 D.73.(江西文5)设2921101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++++,则01211a a a a ++++的值为()A.2-B.1-C.1D.24.(安徽文12)已知45235012345(1)x a a x a x a x a x a x -=+++++, ())(531420a a a a a a ++++ 的值等于 .题型三、一项展开:拆成两项1.233除以9的余数是()A .1B .2C .4D .8题型四、多项展开: 1.(|x |+||1x -2)3展开式中的常数项是() A .12B .-12C .20D .-202.求()()()2111nx x x ++++++ 展开式中3x 项的系数.二项式定理1、展开式中的特殊项1.解.21()n x x-的展开式中,常数项为15,则223331()()15n n nn C x x -=,所以n 可以被3整除,当n=3时,13315C =≠,当n=6时,2615C =,选D 。

二项式定理-高考题(含答案)汇编

二项式定理-高考题(含答案)汇编

二项式定理高考真题一、选择题1.(2012·四川高考理科·T1)相同7(1)x 的展开式中2x 的系数是( D)(A )42(B )35(C )28(D )212.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B )(A )80 (B )40 (C )20 (D )103.(2012·天津高考理科·T5)在5212x x 的二项展开式中,x 的系数为( D )(A)10 (B)-10 (C)40 (D)-404.(2011.天津高考理科.T5)在62()2x x 的二项展开式中,2x 的系数为( C )(A )154(B )154(C )38(D )385.(2012·重庆高考理科·T4)821xx 的展开式中常数项为( B )(A)1635(B)835(C)435(D)1056.(2012·重庆高考文科·T4)5)31(x 的展开式中3x 的系数为( A )(A)270(B)90(C)90(D)2707. (2013·大纲版全国卷高考理科·T7)8411+x y 的展开式中22x y 的系数是( D )A.56B.84C.112D.1688.(2011·新课标全国高考理科·T8)512ax x x x 的展开式中各项系数的和为2,则该展开式中常数项为( D )(A )-40 (B )-20 (C )20 (D )409. (2011·重庆高考理科·T4)n x)31((其中nN 且6n )的展开式中5x 与6x 的系数相等,则n ( B ) (A)6(B)7(C)8(D)910.(2011·陕西高考理科·T4)6(42)x x (x R )展开式中的常数项是(C )(A )20(B )15(C )15 (D )20二、填空题11. (2013·天津高考理科·T10)61x x 的二项展开式中的常数项为15 .12.(2011·湖北高考理科·T11)1813x x 的展开式中含15x 的项的系数为17 .13.(2011·全国高考理科·T13)(1-x )20的二项展开式中,x 的系数与x 9的系数之差为0 .14.(2011·四川高考文科·T13)91)x (的展开式中3x 的系数是84 (用数字作答).15.(2011·重庆高考文科·T11)6)21(x 的展开式中4x 的系数是240 . 16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x (,则1110a a = 0 . 17.(2011·广东高考理科·T10)72()x x x的展开式中,4x 的系数是___84___ (用数字作答)18.(2011·山东高考理科·T14)若62ax x 的展开式的常数项为60,则常数a 的值为 4 .19.(2012·大纲版全国卷高考理科·T15)若n x x )1(的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为__56_____. 20.(2013·安徽高考理科·T11)若83ax x 的展开式中4x 的系数为7,则实数a =____12_____。

高考数学《二项式定理》真题含答案

高考数学《二项式定理》真题含答案

高考数学《二项式定理》真题含答案一、选择题1.(x +1)6的展开式中的第二项为( )A .6xB .15x 2C .6x 5D .15x 4答案:C2.⎝⎛⎭⎫x 2-2x 3 5 的展开式中的常数项为( ) A .80 B .-80C .40D .-40答案:C解析:由二项展开式通项知T k +1=(-2)k C k 5 ·(x 2)5-k ⎝⎛⎭⎫1x 3 k=(-2)k C k 5 x 10-5k ,令10-5k =0,得k =2.∴常数项为T 3=(-2)2C 25 =40.3.(多选)已知(a +2b )n 的展开式中第6项的二项式系数最大,则n 的值可能为( )A .8B .9C .10D .11答案:BCD4.若(x +2)⎝⎛⎭⎫a x -x 5 展开式中的常数项为80,则a =( )A .-2B .2C .±2D .4答案:B解析:⎝⎛⎭⎫a x -x 5 的展开式的通项公式为T k +1=C k 5 ·(-1)k ·a 5-k ·x 2k -5,显然,2k -5为奇数,故(x +2)⎝⎛⎭⎫a x -x 5 展开式中的常数项为C 25 ·a 3=80,所以a =2. 5.若(x -2y )6的展开式中的二项式系数和为S ,x 2y 4的系数为P ,则P S为( ) A .152 B .154C .120D .240答案:B解析:由题意得S =26=64,P =C 46 (-2)4=15×16=240,∴P S =24064 =154. 6.在二项式⎝⎛⎭⎫x +3x n 的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B =72,则展开式中常数项的值为( )A .6B .9C .12D .18答案:B解析:在⎝⎛⎭⎫x +3x n的展开式中令x =1,得A =4n ,各项二项式系数之和为B =2n ,由 4n +2n =72,得n =3,∴⎝⎛⎭⎫x +3x n =⎝⎛⎭⎫x +3x 3 ,其通项为T k +1=C k 3 (x )3-k ⎝⎛⎭⎫3x k =3k C k 3 x 3-3k 2,令3-3k 2=0,得k =1,故展开式的常数项为T 2=3C 13 =9. 7.⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数为( ) A .5 B .10C .15D .20答案:C解析:要求⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数,只要分别求出(x +y )5的展开式中x 2y 3和x 4y 的系数再相加即可,由二项式定理可得(x +y )5的展开式中x 2y 3的系数为C 35 =10,x 4y 的系数为C 15 =5,故⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数为10+5=15.故选C. 8.设S =(x -1)4+4(x -1)3+6(x -1)2+4(x -1)+1,则S =( )A .(x -2)4B .(x -1)4C .x 4D .(x +1)4答案:C解析:S =C 04 (x -1)4+C 14 (x -1)3+C 24 (x -1)2+C 34 (x -1)1+C 44 (x -1)0=(x -1+1)4=x 4.9.(多选)已知(2+x )(1-2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则( )A .a 0的值为2B .a 5的值为16C .a 1+a 2+a 3+a 4+a 5+a 6的值为-5D .a 1+a 3+a 5的值为120答案:ABC解析:对于A ,令x =0,得a 0=2×1=2,故A 正确;对于B ,(1-2x )5的展开式的通项T k +1=C k 5 (-2x )k =(-2)k C k 5 x k ,所以a 5=2×(-2)5C 55 +1×(-2)4C 45 =-64+80=16,故B 正确;对于C ,令x =1,得(2+1)(1-2×1)5=a 0+a 1+a 2+a 3+a 4+a 5+a 6 ①,即a 1+a 2+a 3+a 4+a 5+a 6=-3-a 0=-3-2=-5,故C 正确;对于D ,令x =-1,得(2-1)[1-2×(-1)]5=a 0-a 1+a 2-a 3+a 4-a 5+a 6 ②,由①②解得a 1+a 3+a 5=-123,故D 不正确.综上所述,选ABC.二、填空题10.[2024·全国甲卷(理)](13+x )10的展开式中,各项系数中的最大值为______. 答案:5解析:方法一 二项式(13 +x )10的展开式的通项为T k +1=C k 10 (13)10-k x k . 由⎩⎨⎧Ck 10 (13)10-k >C k -110 (13)11-k ,C k 10 (13)10-k >C k +110 (13)9-k ,解得294 <k <334. 又k ∈N *,所以k =8.所以所求系数的最大值为C 810 (13 )2=5.方法二 展开式中系数最大的项一定在下面的5项中:C 510 (13 )5x 5,C 610 (13)4x 6,C 710 (13 )3x 7,C 810 (13 )2x 8,C 910 (13 )1x 9,计算可得,所求系数的最大值为C 810 (13)2=5. 11.在二项式(2 +x )9的展开式中,常数项是________,系数为有理数的项的个数是______________.答案:162 5解析:该二项展开式的第k +1项为T k +1=C k 9 (2 )9-k x k ,当k =0时,第1项为常数项,所以常数项为(2 )9=162 ;当k =1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.12.在(x -1x)7的展开式中,系数最大的是第________项. 答案:5解析:二项式⎝⎛⎭⎫x -1x 7的展开式的通项为T k +1=C k 7 ·x 7-k ·(-1)k x -k =(-1)k C k 7 x 7-2k ,故第k +1项的系数为(-1)k C k 7 ,当k =0,2,4,6时,系数为正,因为C 07 <C 67 <C 27 <C 47 ,所以当k =4时,系数最大,是第5项.。

高三数学二项式定理与性质试题答案及解析

高三数学二项式定理与性质试题答案及解析

高三数学二项式定理与性质试题答案及解析1.已知(-)n的展开式中,前三项系数的绝对值依次成等差数列.(1)证明:展开式中没有常数项;(2)求展开式中所有的有理项.【答案】(1)见解析(2)T1=x4,T5=x,T9=x-2.【解析】依题意,前三项系数的绝对值是1, ()1, ()2,且2·=1+ ()2,即n2-9n+8=0,∴n=8(n=1舍去).(1)若Tr+1为常数项,当且仅当=0,即3r=16.∵r∈Z,∴这不可能.∴展开式中没有常数项.(2)若Tr+1为有理项,当且仅当为整数,∵0≤r≤8,r∈Z,∴r=0,4,8,即展开式中的有理项共有三项,它们是T1=x4,T5=x,T9=x-2.2. (x-2)的展开式中的系数为 .(用数字作答)【答案】-160【解析】Tr+1=C,由6-r=3得,r=3,所以展开式中x3的系数为=-8×20=-160.【考点】二项式定理.3.用代表红球,代表蓝球,代表黑球,由加法原理及乘法原理,从1个红球和1个篮球中取出若干个球的所有取法可由的展开式表示出来,如:“1”表示一个球都不取、“”表示取出一个红球,面“”用表示把红球和篮球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的篮球都取出或都不取出的所有取法的是A.B.C.D.【答案】A【解析】依题意所有的篮球都取出或都不取出.所以要有或不含的式子.所以符合.故选A.【考点】1.新定义.2.二项式展开式.4.设是大于1的自然数,的展开式为.若点的位置如图所示,则.【答案】【解析】由图易知,则,即,解得.【考点】1.二项展开式的应用.5.(5分)(2011•湖北)(x﹣)18的展开式中含x15的项的系数为.(结果用数值表示)【答案】17【解析】利用二项展开式的通项公式求出通项,令x的指数为15,求出展开式中含x15的项的系数.解:二项展开式的通项为令得r=2所以展开式中含x15的项的系数为故答案为17点评:本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.6.二项式的展开式中含一次幂的项是第项.【答案】8【解析】因为,所以由得因此二项式的展开式中含一次幂的项是第8项.【考点】二项式定理7.二项式的展开式中常数项为()A.-15B.15C.-20D.20【答案】B【解析】二项展开式的通项为,令,得,故常数项为.【考点】二项式定理.8.的二项展开式中,常数项为______.【答案】【解析】二项式的通项,令,得,故展开式中常数项为.【考点】二项式定理.9.对于,将表示为,当时,,当时,为0或1.记为上述表示中为0的个数,(例如,:故)则(1)(2)【答案】(1)2;(2)【解析】(1)因,故;(2)在2进制的位数中,没有0的有1个,有1个0的有个,有2个0的有个,……有个0的有个,……有个0的有个。

高三数学二项式定理与性质试题答案及解析

高三数学二项式定理与性质试题答案及解析

高三数学二项式定理与性质试题答案及解析1.已知(1+x)10=a0+a1(1-x)+a2(1-x)2+…+a10(1-x)10,则a8等于()A.180B.90C.-5D.5【答案】A【解析】(1+x)10=[2-(1-x)]10,其通项公式为Tr+1=210-r·(-1)r(1-x)r,a8是r=8时,第9项的系数.∴a8=22(-1)8=180.故选A.2. (1+x)10(1+)10展开式中的常数项为()A.1B.()2C.D.【答案】D【解析】因为(1+x)10(1+)10=[(1+x)(1+)]10=(2+x+)10=(+)20(x>0),所以Tr+1=()20-r·()r=x10-r,由10-r=0,得r=10,故常数项为T11=,选D.3.已知(-)n的展开式中,第五项与第三项的二项式系数之比为14∶3,求展开式中的常数项.【答案】180【解析】依题意∶=14∶3,即3=14,∴=,∴n=10.设第r+1项为常数项,又Tr+1= ()10-r(-)r=(-2)r令=0,得r=2.∴T3= (-2)2=180,即常数项为180.4.用代表红球,代表蓝球,代表黑球,由加法原理及乘法原理,从1个红球和1个篮球中取出若干个球的所有取法可由的展开式表示出来,如:“1”表示一个球都不取、“”表示取出一个红球,面“”用表示把红球和篮球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的篮球都取出或都不取出的所有取法的是A.B.C.D.【答案】A【解析】依题意所有的篮球都取出或都不取出.所以要有或不含的式子.所以符合.故选A.【考点】1.新定义.2.二项式展开式.5.的展开式中的常数项为,则直线与曲线围成图形的面积为;【答案】=,【解析】的展开式的通项公式为 Tr+1令3r-3=0,r=1,故展开式的常数项为 a=3.则直线y=ax即 y=3x,由求得直线y=ax与曲线y=x2围成交点坐标为(0,0)、(3,9),故直线y=ax与曲线y=x2围成图形的面积为=,故选C.【考点】二项式定理;定积分在求面积中的应用.6.设,使的展开式中含有常数项的最小的为()A.4B.5C.6D.7【答案】B【解析】由可得.所以可化为,展开式的通项公式可得.依题意可得到.因为.所以当时n的最小值为5.故选B.【考点】1.定积分的概念.2.二项展开式的公式.3.整除问题.7.设函数则当x>0时,表达式的展开式中常数项为( )A.-20B.20C.-15D.15【答案】A【解析】当x>0时,f,所以,其展开式的通项为,所以由题意知,,即,所以展开式中常数项为.8. 1.若,则的值为()A.1B.-1C.0D.2【答案】A【解析】∵令,则令,则∴.9.已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=________.【答案】-1【解析】已知(1+ax)(1+x)5的展开式中x2的系数为+a·=5,解得a=-110.设,则的值是.【答案】40【解析】由题意【考点】二项式定理。

(完整版)高考数学二项式定理专题复习(专题训练)

(完整版)高考数学二项式定理专题复习(专题训练)

(a
x )n
Cn0a n x0
Cn1a n 1x
C
2 n
a
n
2 x2
L
C
n n
a
0
x
n
a0 a1x 1 a 2 x 2
( x a)n
Cn0a 0 xn
Cn1ax n 1
C
2 n
a
2
x
n
2
L
C
n n
a
n
x
0
an xn L
a2 x2
令 x 1, 则 a0 a1 a2 a3L an (a 1)n

令 x 1,则 a0 a1 a2 a3 L an (a 1)n

① ②得 , a0 a2 a4 L
n
n
an (a 1) ( a 1) (奇数项的系数和 )
2
① ②得 , a1 a3 a5L
an ( a 1)n (a 1)n (偶数项的系数和 ) 2
L anx n a1x1 a0
( 5)二项式系数的最大项 :如果二项式的指数 n 是偶数时,则中间项为第 ( n 1)项的二项式 2
( 6)系数的最大、最小项的求法:求 (a bx) n 展开式中最大、最小项,一般采用待定系数
法。设展开式中各项系数分别为 A1 , A2 , , An 1 ,设第 r 1 项系数最大,应有:
Ar 1 Ar 且 Ar 1 Ar 2 ;如果设第 r 1 项系数最小,应有 Ar 1 Ar 且 Ar 1 Ar 2 ,从而解出 r 的范围。
与 (b a)n 的二项展开式是不同的。
( 3)二项式项数共有 (n 1) 项,是关于 a 与 b 的齐次多项式。
( 4)二项式系数:展开式中各项的系数为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2018 年全国卷Ⅲ理】的展开式中的系数为
A. 10
B. 20
C. 40
D. 80
【答案】C
【解析】分析:写出,然后可得结果
详解:由题可得,令, 则,
所以
故选 C.
2. 【2018 年浙江卷】二项式的展开式的常数项是___________..
【答案】7
【解析】分析: 先根据二项式展开式的通项公式写出第r +1 项,再根据项的次数
为零解得r ,代入即得结果.
详解:二项式的展开式的通项公式为
,
令得,故所求的常数项为
3. 【2018 年理数天津卷】在的展开式中,的系数为____________.
【答案】
决问题的关键.
4.【山西省两市2018 届第二次联考】若二项式中所有项的系
数之和为,所有项的系数的绝对值之和为,则的最小值为()
A. 2
B.
C.
D.
【答案】B
5.【安徽省宿州市2018 届三模】的展开式中项的系数为
__________..
【答案】-132
【解析】分析:由题意结合二项式展开式的通项
公式首先写出展开式,然后结合
展开式整理计算即可求得最终结果. 详解:的展开式为:,当,时,,当,时,
,据此可得:展开式中项的系数为.
6.【2017 课标1,理6】(1
1 6 展开式中 2
的系数为
x 2 )(1 x) x
A.15 B.20
C.30
D.35
【答案】 C
【解析】
试题分析:因为(1
12 )(1
x)6 1 (1 x)6
12 (1 x)6,则(1 x)6展开式中含x2的项为x
x
1 C62x2
15 x2,12(1 x) 6展开式中含x2
的项为12C64 x4 15x2,故x2前系数为x
x
15 15 30 ,选 C.
情况,尤其是两个二项式展开式中的r 不同.
7. 【2017 课标3,理4】x y 2x
5
y的展开式中x 3y3的系数为
A.80
B.40
C.40
D.80
【答案】 C
【解析】
8. 【2017 浙江,13 】已知多项式x 13x 2 2= x5 a1x4a2 x3a3x2a4 x1a5,则
a4=________,a5=________..
【答案
计数.
9.【2017 山东,理11】已知 1 3x n
2
54 ,则n
.
的展开式中含有x 项的系数是
【答案】 4
C nr r
C nr 3r x r,令r
2 得:【解析】试题分析:由二项式定理的通项公式r 1 3x
C n232 54 ,解得n 4
【考点】二项式定理
10.【2015 高考陕西,理4】二项式( x1)n (n N ) 的展开式中x2的系数为15,
则n()
A.4
B.5
C.6
D.7
【答案
C
【解析】二项式
x
1 n的展开式的通项是
r 1
C rn x r,令r
2 得x2的系数是
C 2n,

x2的系数为15,所以
C 2n
15 ,即
n2
n 30
0 ,解得:n
6 或n
5 ,因
为n
,所以
n
6 ,故选
C.
【考点定位】二项式定理.
【名师点晴】本题主要考查的是二项式定理,属于容易题.解题时一定要抓住重
要条件“n”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,
即二项式 a b n的展开式的通项是k 1
C nk a n k b k .
11.【2015 高考新课标1,理10】( x2 x y)5的
展开式中,x5 y2的系数为( ) (A)10 (B)20
(C)30
(D)60
【答案】C
12.【2015 高考湖北,理3】已知(1x) n的展开式中第4项与第8项的二项式系
数相等,则奇数项的二项式
系数和为() A. 212
B.211 C.210
D.29
【答案】D
【解析】因为(1 x)n的展开式中第4 项与第8 项的二项式系数相等,所以C n3 C n7,
解得n 10 ,
所以二项式(1
x)10中奇数项的二项式系数和为1
210
29.
2
1
5
13.【2015 高考重庆,理12】x3
x 的展开式中x8的系数是________(用数2
【答案】5
2
C5k (x3) 5 k ( 1 )k
15 7 k
【解析】二项展开式通项为T k
1
( 1 )k C5k x
2
,令15 7k 8 ,
2 x 2
2
解得k 2 ,因此x8的系数为(1)2C52 5 .
2
2 【高考广东,理】在
( x 1) 4
的展开式中,x 的系数为
.
14. 2015 9

4 r
4 r
C4r
r C4r
r
,令4
r
【解析】由题可知T r 1
x
1
x 2
1解得
r
2 , 1
2
所以展开式中x 的系数为C42 2
6 ,故应填入6
1
【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.
1
6
15.【2015 高考天津,理12】在x
的展开式中,x2的系数为.
4 x
【答案】15
16
6 r r
【解析】x
1 展开式的通项为T r 1 C6r x6 r1
1 C6r x6
2 r,由
4x
4 x
4
1 2
15 x2,所以该项系数为15 .
6 2r 2 得r
2 ,所以T
C 2 x2
3
4 6
16 16
16.【2015 高考新课标2,理15】( a x)(1 x)4的展开式中x 的奇数次幂项的系
数之和为32,则 a __________..
【答案】3
【解析】由已知得(1 x)4 1 4x 6x2 4 x3
x4,故(a x)(1 x) 4的展开式中x
的奇数次幂项分别为
4ax ,
4ax 3,x , 3 ,5,其系数之和为4a 4a 1+6+1=32,
6x x
解得a3 .
【考点定位】二项式定理.
a
5
3
17.【2015 高考湖南,理6】已知x
的展开式中含x 2的项的系数为30,x
则 a ()
A.
3
B. 3
C.6
D-6
【答案】D.
1
10
18.【2015 高考上海,理11】在 1
x 的展开式中,x2项的系数为
x2015
(结果用数值表示).
【答案】45
1
10
1 10
C101 (1 x)9 1
【解析】因为 1 x
(1 x)
(1 x)10
L

x2015 x 2015 x2015
所以x2项只能在(1 x)10展开式中,即为C108 x2,系数为C108
45.
19.(2016 年北京高考)在(1
2x) 6的展开式中,x2的系数为__________________.(用数
字作答)
【答案】60.
20.(2016 年山东高考)若(ax2+1
)5的展开式中x5的系数是—80,则实数
a=_______.
x
21.(2016 年上海高考)在 3
x
2 x
n
的二项式中,所有项的二项式系数之和为256,则常
数项等于_________
【答案】112
22.(2016 年四川高考)设i 为虚数单位,则(x
i) 6的展开式中含x4的项为
(A )-15x4 (B )15x4 (C)-20i x4 (D )20i x4
【答案】 A
23.(2016
年天津高考)( x21 )8
的展开式中x2的系数为__________.(用数字作答) x
24.(2016
年全国I 高考)(2 x
x )5的展开式中,x3的系数是.(用数字填写答案)
【答案】10。

相关文档
最新文档