关于数学悖论

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引言

数学常被视为严格、和谐、精确的学科.但纵观数学发展史的,数学的发展从来不是完全直线式的,它的体系不是永远和谐的,常常出现悖论. “悖论”一词来自希腊语“para+dokein”,意思是“多想一想”. 这个词的意义比较丰富,是指在某一一定的理论体系的基础上,根据合理的推理原则推出了两个互相矛盾的结论.数学悖论在数学发展史中占据了重要的地位,可以这样说:数学也正是在不断消除悖论,解决矛盾中向前发展的,这体现了矛盾是事物发展的基本动力这一原理.这里,首先对数学悖论进行一个概述,然后介绍数学史中三个著名的悖论产生、消除及其对数学发展的历史意义.

1 数学悖论的概述

值得注意的是,我们所说的悖论与通常的诡辩或谬论的含义是不同的,诡辩或谬论不仅从公认的理论明显看出它的错误,而且一般地还可以运用已有的理论、逻辑论述其错误的原因;而悖论就与此不同了,悖论虽然感到它是不妥的,但是从它所在的理论体系中,却不能自圆其说.

1.1 悖论的产生背景及定义

悖论问题是一个古老而又常新的话题.“悖论”由来已久,它的起源可以追溯到古希腊和中国的先秦时代.但严格意义下的悖论是在19世纪末、20世纪初的数学家在研究数学基础过程中发现的.当集合论成为数学的基础之后,随着人类对无穷集合认识的不断深入,就产生了许多悖论.1897年意大利数学家不拉里——弗蒂在超穷序数理论中发现了第一悖论,接着,集合论的创始人康托尔于1899年在基数理论中又发现了另一个悖论,1902年罗素在集合论概括原则的基础上又引出著名的“罗素悖论”.1918年,罗素在此基础上又提出一种通俗形式的悖论,即“理发师悖论”.由于一连串悖论的出现,使得许多科学家、数学家忧心忡忡.

那么,究竟什么是悖论呢?对此,当前流行的说法是:“悖论是一种导致逻辑矛盾的命题.这种命题,如果承认它是真的,那么它又是假的,如果承认它是假的,那么它又是真的.”又如“一个命题构成一个悖论,如果由它的真可以推出它的假,而由它的假又可以推出它的真.”诸如此类的定义法,有它合理的一面,又有不够全面的一面.这里认为,在研究悖论的准确定义时,以下几点必须加以明确:

(1)任何悖论总是相对于一定的理论系统而言的.例如,罗素悖论和说谎者悖论,就是分别相对朴素集合论和真理性理论而言的;

(2)悖论的最终表现总是体现为一定逻辑矛盾的揭示.这里所说的“逻辑矛盾”包括两种情况:一种是借助于语义学上的概念(真、假)而构成的,称为“语义学悖论”;另一种是借助于数学和逻辑符号得到的,称之为“逻辑-数学悖论”.例如:古代的说谎者悖论,现代集合论中的理查德悖论、格里林悖论等就属于第一类悖论;而康托尔悖论、罗素悖论就属于第二类悖论;

(3)对于悖论,不能仅从字面上把它理解为“悖理”或“诡辩”.因为悖论

与诡辩有含义上的不同.后者不仅从公认的理论明显看出是错误的,而且通过已有的理论逻辑可以论述其错误的原因,而前者虽感到其是不妥的,却不能阐明其错误的原因.

我们认为,布拉里——弗蒂与希尔伯特关于悖论的陈述是精确的,如果某一理论的公理和推理规则看上去是合理的,但是这个理论中推出了两个互相矛盾的命题,或者证明了这样一个复合命题,它表现为两个矛盾命题的等价式,那么,我们就说这个理论包含一个悖论.

数学悖论也叫“逆论”或“反论”,它包括一切与人的直觉和日常经验相矛盾的数学悖论.这些结论会让你无比的惊讶:他们有的看起来肯定是错了,但实际却是对的;有的看起来是对的,但实际是错的;还有的会让你陷入对也不是、错也不是的困境.数学悖论的出现,开始引起一些人们的好奇与思考,以后的逐步发展又动摇了某些数学基础,由于萌发了其内部的矛盾,进而引起人们的争辩.历史上人民对于数学危机的一次又一次解决或克服,往往给数学带来了新的内容,甚至引起革命性的变革.

1.2研究数学悖论的意义

数学科学历来视为严格、和谐、精确的典型学科,但是数学的发展从来不是直线式的,它的体系并不是永远和谐的,而常常出现悖论,特别是一些重要悖论的产生,自然引起人们对数学基础的怀疑以及对数学可靠信仰的动摇.数学史上的三次数学危机皆由数学产生悖论而引起.悖论虽然看似荒诞,但却在数学史上产生过重要影响,一些著名的悖论曾使那些著名数学家和逻辑学家为之震惊,并引发人们长期艰难而深入的思考.可以说是悖论的研究对促进数学科学的发展是立过汗马功劳的.

悖论是一种思辨的方法,是研究问题的一种方式,也是历史上一种旧理论被新理论替代的前奏,数学少不了悖论,数学公理系统没有悖论就是不完备的,我们不是去容忍悖论,而是去消除悖论,在消除悖论的过程中提高认知水平.消除悖论的过程常常是完善、发展原有理论的过程.

悖论是一个涉及数理科学、哲学、逻辑学、语义学等非常广泛的论题,对科学发展的意义不言而喻.从数学方面来看,悖论对数学发展的影响是深刻的、巨大的.因而研究悖论的定义、悖论产生背景、解决方案以及对数学发展是非常必

要的.

数学悖论是一种特殊的逻辑矛盾,它的形成与客观对象的复杂性、多样性,每一代人认识的有限性和局限性,以及人类的主观认识与客观现实的不一致性相关.在数学发展的过程中,人的认识是不断深化的.在不同的历史阶段,人的认识具有一定的片面性和相对性,就会出现“悖论”.因此,它的发生是必然的、不可避免的.数学悖论的发现改变了人们以往的思维方式,迫使人们重新构建理论,从而,在数学认识史中具有积极的意义.

2 数学史上三个著名的悖论出现、消除及历史意义

数学拥有“美”的内容,也存在着“丑”的东西,数学悖论就是一种“丑”的表现,追求数学美能促进数学发展,同样的,为了消除它的“丑”必然也能推动数学自身的发展,数学三次危机的克服对数学发展的推动作用,就是历史事实.

数学发展是矛盾运动的结果.爱因斯坦指出:“提出问题比解决问题更重要.”问题就是矛盾,解决问题就是促使矛盾转化.数学探索与研究起源于数学问题,数学问题的源泉存在于自然科学、社会科学及数学自身的矛盾运动.数学问题一经提出,数学家一般要先经过各种尝试(如类比、归纳、演绎、分析、综合、试验等),经过长时期(甚至几代人)的不懈努力,最终目的促使数学问题得以解决,或说促使数学矛盾得以转化,从而创造出新的数学理论、新的数学成果及新的数学思想方法.数学的历史,就是不断解决数学矛盾又产生新的数学矛盾的过程.从哲学上看,数学是现实世界量的侧面在人们头脑中的反映,因为现实世界是充满着矛盾的,所以数学也必然充满了矛盾.正像恩格斯所指出的:不仅高等数学充满着矛盾,连初等数学也充满着矛盾.

比如:正与负、直与曲、平行与相交、已知与未知、常量与变量、有限与无限、连续与不连续、精确与近似、必然与或然、加法与减法、乘法与除法、乘方与开方、微分与积分、几何变换与其逆变换、数学算子与逆算子、实在的与虚构理性的,等等.当然在整个数学发展过程中还有许多深刻的矛盾.例如:有穷与无穷、连续与离散,乃至存在与构造、逻辑与直观、具体对象与抽象对象、概念与计算,等等.他们可以说贯穿了整个数学发展史,而这些大大小小矛盾的产生,发展到激化,到解决,总是不断为数学产生新的概念、新的方法、新的理论,也可能产生新的概念、新的方法、新的理论,也可能产生新的危机.

相关文档
最新文档