数列经典讲义教师版
高中数学 第1章 数列 1.1 数列的概念讲义教案 北师大版必修5
学习资料数列§1数列1.1数列的概念学习目标核心素养1.了解数列通项公式的概念.2.能根据通项公式确定数列的某一项.(重点) 3.能根据数列的前几项写出数列的一个通项公式.(重点、难点)1.通过数列基本概念的学习培养数学抽象素养.2.通过数列通项公式的应用培养逻辑推理及数学运算素养.1.数列的基本概念阅读教材P3~P4,完成下列问题.(1)数列的有关概念数列按一定次序排列的一列数叫作数列项数列中的每一个数叫作这个数列的项首项数列的第1项常称为首项通项数列中的第n项a n叫数列的通项(2)数列的表示①一般形式:a1,a2,a3,…,a n,…;②字母表示:上面数列也可记为{a n}.③数列的分类分类标准名称含义举例按项的个数有穷数列项数有限的数列1,2,3,4,…,n 无穷数列项数无限的数列1,4,9,…,n2,…思考:(1)[提示]数列1,2,3,4,5和数列5,4,3,2,1不是同一个数列,因为二者的项的排列次序不同.(2)数列的项和项数有何区别?[提示]数列的项是指数列中的某一个确定的数,而项数是指这个数在数列中的位置序号,如数列1,2,3,4,5中第1项为a1=1,其项数是1.2.通项公式阅读教材P5“抽象概括”以下至“例1"以上的内容,完成下列问题.(1)如果数列{a n}的第n项a n与n之间的函数关系可以用一个式子表示成a n=f(n),那么这个式子就叫作这个数列的通项公式.(2)数列可以看作是定义域为正整数集N+(或它的有限子集)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列.思考:(1)若a n=2n-1,则a2+a3的值是什么?[提示]因为a n=2n-1,所以a2=2×2-1=3,a3=2×3-1=5,则a2+a3=3+5=8.(2)数列的通项公式a n=f(n)与函数解析式y=f(x)有什么异同?[提示]数列可以看成以正整数集N+(或它的有限子集{1,2,3,…,n})为定义域的函数a n=f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.不同之处是定义域:数列中的n必须是从1开始且连续的正整数,函数的定义域可以是任意非空数集.1.已知数列{a n}的通项公式是a n=n2+1,则122是该数列的()A.第9项B.第10项C.第11项D.第12项C[由n2+1=122得n2=121,∴n=11.故选C.]2.数列3,4,5,6,…的一个通项公式为()A.a n=n B.a n=n+1C.a n=n+2 D.a n=2nC[经检验可知,它的一个通项公式为a n=n+2.]3.若数列{a n}的通项公式为a n=sin 错误!,则a2=________.0[a2=sin 错误!=sin π=0.]4.已知数列{a n}的通项公式为a n=(-1)n,n∈N+,则它的第8项是________,第9项是________.1-1[当n=8时,a8=(-1)8=1.当n=9时,a9=(-1)9=-1.]数列的概念【例1】(1A.数列0,1,2,3,…的首项是0B.数列{a n}中,若a1=3,则从第2项起,各项都不等于3C.数列中的每一项都是数D.如果已知数列的通项公式,那么可以写出该数列的任意一项(2)下列各组元素能构成数列吗?如果能,构成的数列是有穷数列,还是无穷数列?并说明理由.①8,8,8,8;②-3,-1,1,x,5,7,y,11;③当n取1,2,3,4,…时,(-1)n的值排成的一列数.(1)B[同一个数可以在一个数列中重复出现,故B错误.](2)[解]①能构成数列,且构成的是有穷数列.②当x,y代表数时是数列,此时构成的是有穷数列;当x,y中有一个不代表数时,便不能构成数列,这是因为数列必须是由一列数按一定的顺序排列组成的.③能构成数列,且构成的是无穷数列.所构成的数列是-1,1,-1,1,….数列及其分类的判定方法(1)判断所给的对象是否为数列,关键看它们是不是按一定次序排列的数.(2)判断所给的数列是有穷数列还是无穷数列,只需观察数列含有限项还是无限项,若数列含有限项,则是有穷数列,否则是无穷数列.错误!1.下列说法正确的是()A.1,2,3,4,…,n是无穷数列B.数列3,5,7与数列7,5,3是相同数列C.同一个数在数列中不能重复出现D.数列{2n+1}的第6项是13D[A错误,数列1,2,…,n,共n项,是有穷数列.B错误,数列是有次序的.C错误,数列中的数可以重复出现.D正确,当n=6时,2×6+1=13.]根据数列的前n项写出数列的通项公式(1)错误!,错误!,错误!,错误!,…;(2)错误!,2,错误!,8,错误!,…;(3)-1,2,-3,4,…;(4)2,22,222,2 222,….[解](1)分子均为偶数,分母分别为1×3,3×5,5×7,7×9,…是两个相邻奇数的乘积.故a n=错误!.(2)将分母统一成2,则数列变为错误!,错误!,错误!,错误!,错误!,…,其各项的分子为n2.∴a n=错误!.(3)该数列的前4项的绝对值与序号相同,且奇数项为负,偶数项为正,故a n=(-1)n·n.(4)通过观察分析可知所求通项公式为a n=错误!(10n-1).由数列的前几项求通项公式的思路(1)通过观察、分析、联想、比较,去发现项与序号之间的关系.(2)如果关系不明显,可将各项同时加上或减去一个数,或分解、还原等,将规律呈现,便于找通项公式.(3)要借助一些基本数列的通项,如正整数数列、正整数的平方数列、奇数列、偶数列等.(4)符号用(-1)n或(-1)n+1来调整.(5)分式的分子、分母分别找通项,还要充分借助分子、分母的关系.[跟进训练]2.(1)数列1,错误!,错误!,错误!,错误!,…的一个通项公式a n=()A.错误!B.错误!C.错误!D.错误!(2)根据以下数列的前4项写出数列的一个通项公式.①错误!,错误!,错误!,错误!,…;②-3,7,-15,31,…;③2,6,2,6,….(1)B[由已知得,数列可写成错误!,错误!,错误!,错误!,错误!,…,故通项公式为n2n-1.](2)[解]①均是分式且分子均为1,分母均是两因数的积,第一个因数是项数加上1,第二个因数比第一个因数大2,所以a n=1(n+1)(n+3).②正负相间,且负号在奇数项,故可用(-1)n来表示符号,各项的绝对值恰是2的整数(项数加1)次幂减1,所以a n=(-1)n(2n+1-1).③此数列为摆动数列,一般求两数的平均数错误!=4,而2=4-2,6=4+2,中间符号用(-1)n 来表示.所以a n =4+(-1)n ·2或a n =错误!通项公式的应用[探究问题]1.已知数列{a n }的通项公式,如何求数列的某一项?[提示] 把n 的值代入通项公式进行计算即可,相当于函数中,已知函数的解析式和自变量的值求函数值关于n 的方程.2.已知数列{a n }的通项公式,如何判断某一个数是否为该数列中的项?[提示] 假定这个数是数列中的第n 项,由通项公式可得关于n 的方程,解方程求得n ,若n 是正整数,则该数是数列中的项;若方程无解或n 不是正整数,则该数不是数列中的项.【例3】 数列{a n }的通项公式是a n =n 2-21n 2(n ∈N +).(1)0和1是不是数列{a n }中的项?如果是,那么是第几项?(2)数列{a n }中是否存在连续且相等的两项?若存在,分别是第几项? 思路探究:(1)错误!⇒错误!⇒错误!(2)假设存在连续且相等的两项⇒错误!⇒错误!⇒错误! [解] (1)若0是{a n }中的第n 项,则错误!=0, 因为n ∈N +,所以n =21.所以0是{a n }中的第21项. 若1是{a n }中的第n 项,则错误!=1, 所以n 2-21n =2, 即n 2-21n -2=0.因为方程n 2-21n -2=0不存在正整数解, 所以1不是{a n }中的项.(2)假设{a n }中存在第m 项与第m +1项相等,即a m =a m +1,解得m =10. 所以数列{a n }中存在连续的两项,即第10项与第11项相等.1.(变条件)在例3中,把“a n =错误!”改为“a n =n 2-3n ”,解答(1)(2)两题. [解] (1)若0是{a n }中的第n 项,则n 2-3n =0,因为n ∈N +,所以n =3,故0是{a n }中的第3项.若1是{a n }中的第n 项,则n 2-3n =1,即n 2-3n -1=0,因为方程n 2-3n -1=0不存在正整数解,所以1不是{a n }中的项.(2)假设{a n }中存在第m 项与第m +1项相等,即a m =a m +1,所以m 2-3m =(m +1)2-3(m +1),解得m =1.所以数列{a n }中存在连续的两项,第1项与第2项相等.2.(变结论)例3的条件不变,求a 3+a 4的值和a 2n .[解] a 3+a 4=32-21×32+错误!=-61,a 2n =错误!=2n 2-21n .1.由通项公式写出数列的指定项,主要是对n 进行取值,然后代入通项公式,相当于函数中,已知函数解析式和自变量的值求函数值.2.判断一个数是否为该数列中的项,其方法是可由通项公式等于这个数求方程的根,根据方程有无正整数根便可确定这个数是否为数列中的项.1.观察法写通项公式的注意事项据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征.并对此进行联想、转化、归纳.2.并非每一个数列均有通项公式,例如由错误!的不足近似值构成的数列1,1.4,1.41,1.414,…,便无通项公式.1.判断正误(正确的打“√”,错误的打“×”) (1)数列中的项不能相等.( ) (2)数列1,2,3,4,…,n -1,只有n -1项. ( ) (3)数列1,2,3,4,…,n 2是无穷数列. ( )[答案] (1)× (2)√ (3)×[提示] 数列中的项可以相等,故(1)错;数列1,2,3,4,…,n 2共n 2项,是有穷数列,故(3)错.2.在数列-1,0,19,错误!,…,错误!,…中0.08是它的( )A .第100项B .第12项C .第10项D .第8项C [由题意知,a n =错误!. 令a n =0.08,即错误!=错误!, 所以n =10,n =52(舍去),故选C .]3.若数列{a n }的通项公式是a n =3-2n ,则a 2n =________,错误!=________.3-4n错误![根据通项公式我们可以求出这个数列的任意一项.因为a n=3-2n,所以a2n=3-22n=3-4n,错误!=错误!=错误!.]4.已知数列{a n}的通项公式为a n=错误!.(1)写出数列的前三项;(2)错误!和错误!是不是数列{a n}中的项?如果是,是第几项? [解](1)数列的前三项:a1=错误!=1,a2=错误!=错误!=错误!,a3=错误!=错误!=错误!.(2)令错误!=错误!,则n2+3n-40=0,解得n=5或n=-8,注意到n∈N+,故n=-8舍去.所以错误!是数列{a n}的第5项.令错误!=错误!,则4n2+12n-27=0,解得n=错误!或n=-错误!,注意到n∈N+,所以错误!不是数列{a n}中的项.。
【苏教版】高中数学必修五第1课时:2.1《数列》课时讲义(江苏省启东中学)
【苏教版】高中数学必修五第2章数列§2.1 数列的概念及其通项公式课时讲义【三维目标】:一、知识与技能1.通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图像、通项公式),了解数列是一种特殊函数;认识数列是反映自然规律的基本数学模型;2.了解数列的分类,理解数列通项公式的概念,会根据通项公式写出数列数列的前几项,会根据简单数列的前几项写出数列的通项公式;3. 培养学生认真观察的习惯,培养学生从特殊到一般的归纳能力,提高观察、抽象的能力.二、过程与方法1.通过对具体例子的观察分析得出数列的概念,培养学生由特殊到一般的归纳能力;2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.3.通过类比函数的思想了解数列的几种简单的表示方法(列表、图象、通项公式);三、情感、态度与价值观1.体会数列是一种特殊的函数;借助函数的背景和研究方法来研究有关数列的问题,可以进一步让学生体会数学知识间的联系,培养用已知去研究未知的能力。
2.在参与问题讨论并获得解决中,培养观察、归纳的思维品质,养成自主探索的学习习惯;并通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。
【教学重点与难点】:重点:数列及其有关概念,通项公式及其应用。
难点:根据一些数列的前几项抽象、归纳数列的通项公式。
【学法与教学用具】:1. 学法:学生以阅读与思考的方式了解数列的概念;通过类比函数的思想了解数列的几种简单的表示方法;以观察的形式发现数列可能的通项公式。
2. 教学方法:启发引导式3. 教学用具:多媒体、实物投影仪、尺等.【授课类型】:新授课【课时安排】:1课时【教学思路】:一、创设情景,揭示课题1. 观察下列例子中的7列数有什么特点:(1)传说中棋盘上的麦粒数按放置的先后排成一列数:1,2,22,23,…,263(2)某种细胞,如果每个细胞每分钟分裂为2个,那么每过1分钟,1个细胞分裂的个数依次为1,2,4,8,16,…(3)π精确到0.01,0.001,0.0001…的不足近似值排成一列数:3.14,3.141,3.1415,3.14159,3.141592…(4)人们在1740年发现了一颗彗星,并推算出它每隔83年出现一次,则从出现那次算起,这颗彗星出现的年份依次为1740,1823,1906,1989,…(5)某剧场有10排座位,第一排有20个座位,后一排都比前一排多2个,则各排的座位数依次为:20,22,24,26,…,38(6)从1984年到今年,我国体育健儿共参加了6次奥运会,获得的金牌数依次排成一列数:15,5,16,16,28,32(7)"一尺之棰,日取其半,万世不竭"如果将"一尺之棰"视为1份,那么每日剩下的部分依次为1,12,14,18,116,... 这些数字能否调换顺序?顺序变了之后所表达的意思变化了吗?思考问题,并理解顺序变化后对这列数字的影响.(组织学生观察这7组数据后,启发学生概括其特点,教师总结并给出数列确切定义)注意:由古印度关于国际象棋的传说、生物学中的细胞分裂问题及实际生活中的某些例子导入课题,既激活了课堂气氛,又让学生体会到数列在实际生活中有着广泛的应用,提高学生学习的兴趣。
《等比数列的前 n 项和》 讲义
《等比数列的前 n 项和》讲义一、等比数列的定义如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。
这个常数叫做等比数列的公比,通常用字母 q 表示(q≠0)。
例如:数列 2,4,8,16,32,就是一个公比为 2 的等比数列。
二、等比数列的通项公式等比数列的通项公式为:\(a_n = a_1 \times q^{n 1}\),其中\(a_1\)为首项,\(n\)为项数。
通项公式的作用在于,只要知道等比数列的首项和公比,就可以求出任意一项的值。
三、等比数列的前 n 项和公式推导我们先来考虑一个简单的等比数列:\(a_1\),\(a_1q\),\(a_1q^2\),\(a_1q^3\),,\(a_1q^{n 1}\)。
其前 n 项和为:\(S_n = a_1 + a_1q + a_1q^2 + a_1q^3 ++a_1q^{n 1}\)①两边同乘以公比 q ,得到:\(qS_n = a_1q + a_1q^2 + a_1q^3 ++ a_1q^{n 1} + a_1q^n\)②由②①,可得:\\begin{align}qS_n S_n&=(a_1q + a_1q^2 + a_1q^3 ++ a_1q^{n 1} +a_1q^n) (a_1 + a_1q + a_1q^2 + a_1q^3 ++ a_1q^{n 1})\\(q 1)S_n&=a_1q^n a_1\\S_n&=\frac{a_1(q^n 1)}{q 1} (q ≠ 1)\end{align}\当 q = 1 时,等比数列变为常数列,\(S_n = na_1\)。
四、等比数列前 n 项和公式的特点1、当q ≠ 1 时,等比数列的前 n 项和公式是一个关于 n 的指数型函数。
2、当 q = 1 时,前 n 项和就是首项乘以项数。
五、等比数列前 n 项和公式的应用例 1:已知等比数列\(\{a_n\}\)的首项\(a_1 = 2\),公比\(q = 3\),求前 5 项的和\(S_5\)。
高中数学第一章数列1数列第1课时数列的概念课件北师大版必修5
[解析] (1)∵an=3n2-28n, ∴a4=3×42-28×4=-64,a6=3×62-28×6=-60. (2)令 3n2-28n=-49,即 3n2-28n+49=0, ∴n=7 或 n=73(舍). ∴-49 是该数列的第 7 项,即 a7=-49. 令 3n2-28n=68,即 3n2-28n-68=0, ∴n=-2 或 n=334. ∵-2∉N+,334∉N+, ∴68 不是该数列的项.
4.已知数列{an}的通项公式 an=nn1+2(n∈N+),则1120是这个数列的第_1_0_项. [解析] 令 an=1120,即nn1+2=1120, 解得 n=10 或 n=-12(舍去).
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你们休息一下眼 睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐对身体不好 哦~
1.数列的概念 (1)数列:一般地,按照一定 次序
排列的一列数叫作数列.
(2)项:数列中的每个数都叫作这个数列的 项 .
(3)数列的表示:数列的一般形式可以写成a1,a2,a3,…,an,…,简记 为: {an} .数列的第1项a1也称 首项 ,an是数列的第n项,叫数列的 通项 .
2.数列的分类 项数有限的数列叫作__有__穷__数__列__,项数无限的数列叫作___无__穷__数__列_______.
复习课件
高中数学第一章数列1数列第1课时数列的概念课件北师大版必修5
2021/4/17
高中数学第一章数列1数列第1课时数列的概念课件北师大
1
版必修5
第一章
数列
高斯(1777-1855)德国著名数学家
传说古希腊毕达哥拉斯学派的数学家在沙滩上研究数学问题.他们研究数 的概念时,喜欢把数描绘成沙滩上的小石子,小石子能够摆成不同的几何图 形,于是就产生一系列的形数.毕达哥拉斯发现,当小石子的数目是1、3、6、 10等数时,小石子都能摆成正三角形,他把这些数叫作三角形数;当小石子的 数目是1、4、9、16等数时,小石子都能摆成正方形,他把这些数叫作正方形 数,等等,每一系列有形状的数按顺序排列出来就称为数列.
(经典)讲义:等比数列及其前n项和
(经典)讲义:等比数列及其前n项和1.等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示.2.等比数列的通项公式设等比数列{a n}的首项为a1,公比为q,则它的通项a n=a1·q n-1.Sn=a1+a1q+a1q2+…+a1q n-1,同乘q得:qS n=a1q+a1q2+a1q3+…+a1q n,两式相减得(1-q)S n=a1-a1q n,∴S n=a1?1-q n?1-q(q≠1).7.1由a n+1=qa n,q≠0并不能立即断言{a n}为等比数列,还要验证a1≠0.7.2在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.8.等比数列的判断方法有:(1)定义法:若an+1an=q(q为非零常数)或anan-1=q(q为非零常数且n≥2且n∈N*),则{a n}是等比数列.(2)中项公式法:在数列{a n}中,a n≠0且a2n+1=a n·a n+2(n∈N*),则数列{a n}是等比数列.632++若已“知三求二”.1.,成公比为的公比为q,成等比数列理解例题1:在等比数列中, (1)已知13,2,a q ==求66,a S ;(2)已知1112.7,,,390n a q a =-=-=求n ;(3)已知141,64,a a =-=求q 和4S ;(4)已知3339,22a S ==求1,a q ;分析:在等比数列中有五个重要量1,,,,,n n a a q n S 只要已知任意三个,就可以求出其他两个.其中1a 和q 两个最重要的量,通常要先求出1a 和q . 解:(1)55613296a a q ==⋅=.66161S =(2)n a (3) (4) a S ⎧⎪⎪⎨⎪⎪⎩ (2 2∴ 当知识体验:已知等比数列的五个量1,,,,n n a a q n S 中的任意三个求其他两个时,要用等比数列的通项公式以其及前n 项和公式.理解例题分析: 解法一: 2m m S S ⎧=⎪⎪∴⎨⎪⎪⎩解法二: ②可利用等比数列中连续等段和成等比的性质即性质(1)求解.三、 例题(一) 题型分类全析1.等比数列前n 项和公式的基本运算例1:在等比数列的{}n a 中:31648,216,40,n a a a a S -=-==求公比q ,1a 及n . 思路直现:由已知两个条件,可建立关于1,a q 的方程组,分别解出1,a q 的值,代入n S 即可求出n .本题有关等比数列前n 项和的基本运算的考查.解:由已知可得 总结:在求数列的基本量问题时,把条件转化成基本量解方程是解决数列问题的基本方法.例2 已知数列{}n a 是等比数列,其前n 项和n S ,若3692S S S +=,求该数列的公比q .思路直现:由已知两个条件,可建立关于1,a q 的方程组,分别解出1,a q 的值,代入n S 即可求出n . 解: 若1q =,则1n S na =,36111369S S a a a ∴+=+=,91218S a =,此时3692S S S +≠∴96320q q q --=,即63210q q --=,即33 故2笔记不明确,转化为关于1,a q 的方程组求解. 本题考查了等比数列前n 项和公式的运用和分类讨论的思想.因不知q 的2例3思路直现:解: {n a2,S S ∴故4S 4,S ∴笔记:次k 项和,成等比数列来解决3,n n S S ,例4 首项为1的等比数列的和为思路: 解: q ∴=故8n =阅题笔记:利用等比数列奇、偶项数和的性质简单明了,运算量较低.增根. 本题考查了等比数列的性质. 注意S qS =偶奇这个性质是在项数为偶数这一前提下成立的. 建议:巧用特例,熟记等差等比数列奇偶项的一些性质.3.某些特殊数列的求和例5: (1)已知数列{}n a 的通项公式2n n a n =+,求该数列的前n 项和n S ; (2)已知数列{}n a 的通项公式23n n n a =+,求该数列的前n 项和n S . 解:(1)123n n S a a a a =++++ (2)笔记:例6思路:解:n S 笔记:的前n 考查数列的分组求和问题.例7:(2007天津)在数列{}n a 中,12a =,1431n n a a n +=-+,n ∈*N . (Ⅰ)证明数列{}n a n -是等比数列; (Ⅱ)求数列{}n a 的前n 项和n S ;(Ⅲ)证明不等式14n n S S +≤,对任意n N *∈皆成立.思路直现: (1)由递推关系式构造出数列n a n -,并证明其是等比数列. (2)利用分组求和法求出{}n a 的前n 项和. (3)考虑用作差法证明. (Ⅰ)证明:由题设1431n n a a n +=-+,得1(1)4()n n a n a n +-+=-,n N *∈.本小题考查等比数列的概念、等比数列的通项公式及前n 项和公式、不等式的证明 利用递推关所以数列{}n a n -是首项为111a -=,且公比为4的等比数列. (Ⅱ)解:由(Ⅰ)可知14n n a n --=, 14n n a n -∴=+.(Ⅲ)证明:对任意的n N *∈,1141(1)(2)41(1)443232n n n n n n n n S S ++⎛⎫-++-+-=+-+ ⎪⎝⎭21(34)02n n =-+-≤.所以不等式14n n S S +≤,对任意n N *∈皆成立.笔记: 本题实际上第一步的证明起到一个提示的作用,即应从递推关系出发构造出n a n -的形式,并证明其为等比数列.例8: (3414n n n n a a b a --⎧=⎪⎪⎨⎪=⎪⎩(I )令n c (II 思路:(1) (II 阅题: 解答本题的方法,应整体考虑.系式证明数列成等比. 利用分组求和法求和 利用作差比较法证明不等式. 建议:学会解题的技巧,有时候题目的四、习题一、选择题1.(2008福建) 设{}n a 是公比为正数的等比数列,若151,16a a ==,则数列{}n a 前7项的和为A.63B.64C.127D.128 2.(2008浙江)已知{}n a 是等比数列,25124a a ==,,则12231n n a a a a a a ++++=A.16(14)n --B.16(12)n --C.32(14)3n --D.32(12)3n --3.(2008海南)设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a = A. 2B. 4C.152 D. 1724.(2007陕西) 各项均为正数的等比数列{}n a 的前n 项和为n S ,若32,14n n S S == 则4n S 等于A.80B.30C. 26D.16 5.(2006辽宁) 在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于 A.122n +- B. 3n C. 2n D.31n -6.数列11111,2,3,4,24816的前n 项和为( )211n 111n -211n 11n 7.2n ++=B.112n --8.9 15n 712-2. C. 分析:{}n a 为等比数列,352a a q ∴=,311242q q ∴=⋅⇒=设1n n n b a a +=,{}n b ∴是首项为8,公比为14的等比数列.122311218[1()]324(14)1314n n n n na a a a a ab b b -+-+++=+++==--,3. C 分析: 414421(1)1215122a q S qa a q ---===-4. B 分析: {}n a 为等比数列,23243,,,n n n n n n n S S S S S S S ∴---成等比2322()()n n n nnS S S S S -=-即22222(14)(2)6n n n S S S -=-⇒=或24n S =-{}n a 各项均为正数,故2n n S S >,故26n S =,432,4,8,n n S S ∴-成等比,所以4316n n S S -=,430n S ∴=5. D 分析: 解:依题意,()f n 为首项为2,公比为328=的前4n +项和,根据等比数列的求和公式可得D6.C 分析:因数列{}n a 为等比,则12n n a q -=,因数列{}1n a +也是等比数列,则2212112221(1)(1)(1)22n n n n n n n n n n n n a a a a a a a a a a a a +++++++++=++⇒+=++⇒+=2(12)01n a q q q ⇒+-=⇒=,即2n a =,所以2n S n =,故选择答案C 。
数列专题讲义
教师辅导讲义(2)讲义编号:学员编号 年 级 高三 课 时 数学员姓名辅导科目数学学 科 教 师戴老师课 题 数列专题授课时间: 教学目标教学内容备考策略:数列问题历来是江苏卷压轴题的必考内容,解答题中难度很大,填空题基本上为基础题,所以在今后的复习中需要关注以下几点:1.等差、等比数列的基本量的求解.2.等差、等比数列的性质如等差(比)中项. 3.多采取从特殊到一般研究问题的角度. 4.恒等问题和不等关系基本论证的训练.数列通项及求和 主干知识整合:1.数列通项求解的方法(1)公式法;(2)根据递推关系求通项公式有:①叠加法;②叠乘法;③转化法.(3)不完全归纳法即从特殊到一般的归纳法;(4)用a n =⎩⎨⎧S 1(n =1)S n -S n -1(n ≥2)求解.2.数列求和的基本方法:(1)公式法;(2)分组法;(3)裂项相消法;(4)错位相减法;(5)倒序相加法. ► 探究点 一 公式法如果所给数列满足等差或者等比数列的定义,则可以求出a 1,d 或q 后,直接代入公式求出a n 或S n .例1 (1)已知正数数列{a n }对任意p ,q ∈N *,都有a p +q =a p ·a q ,若a 2=4,则a n =________. ,(2)数列{a n }为正项等比数列,若a 2=1,且a n +a n +1=6a n -1(n ∈N ,n ≥2),则此数列的前n 项和S n =________.(1)2n (2)2n -1-12 【解析】 (1)由a p +q =a p ·a q ,a 2=4,可得a 2=a 21=4⇒a 1=2,所以a p +1=a p ·a 1,即a p +1a p=a 1=2,即数列{a n }为等比数列,所以a n =a 1·q n -1=2·2n -1=2n .(2)设等比数列的公比为q ,由a n +a n +1=6a n -1知,当n =2时,a 2+a 3=6a 1.再由数列{a n }为正项等比数列,a 2=1,得1+q =6q ,化简得q 2+q -6=0,解得q =-3或q =2.∵q >0,∴q =2,∴a 1=12,∴S n =12(1-2n )1-2=2n -1-12.【点评】 这两题都是由“a p +q =a p ·a q ”和“a n +a n +1=6a n -1”推出其他条件来确定基本量,不过第(1)小问中首先要确定该数列的特征,而第(2)小问已经明确是等比数列,代入公式列方程求解即可. 已知{a n }是等差数列,a 10=10,前10项和S 10=70,则其公差d =________.23 【解析】 方法一:因为S 10=70,所以10(a 1+a 10)2=70,即a 1+a 10=14.又a 10=10,所以a 1=4,故9d =10-4=6,所以d =23.方法二:由题意得⎩⎨⎧a 1+9d =10,10a 1+45d =70,解得⎩⎪⎨⎪⎧a 1=4,d =23. ► 探究点二 根据递推关系式求通项公式如果所给数列递推关系式,不可以用叠加法或叠乘法,在填空题中可以用不完全归纳法进行研究.例2 (1)已知数列{a n }满足a 1=2,a n +1=5a n -133a n -7(n ∈N *),则数列{a n }的前100项的和为________.(2)已知数列{a n },{b n }满足a 1=1,a 2=2,b 1=2,且对任意的正整数i ,j ,k ,l ,当i +j =k +l时,都有a i +b j =a k +b l ,则12010∑=+20101i i i )b (a 的值是________.(1)200 (2)2012 【解析】 (1)由a 1=2,a n +1=5a n -133a n -7(n ∈N *)得a 2=5×2-133×2-7=3,a 3=5×3-133×3-7=1,a 4=5×1-133×1-7=2,则{a n }是周期为3的数列,所以S 100=(2+3+1)×33+2=200.(2)由题意得a 1=1,a 2=2,a 3=3,a 4=4,a 5=5;b 1=2,b 2=3,b 3=4,b 4=5,b 5=6.归纳得a n =n ,b n =n +1;设c n =a n +b n ,c n =a n +b n =n +n +1=2n +1,则数列{c n }是首项为c 1=3,公差为2的等差数列,问题转化为求数列{c n }的前2010项和的平均数.所以12010∑=+20101i i i )b (a =12010×2010×(3+4021)2=2012.【点评】 根据数列的递推关系求数列的通项,除了常规的方法外,还可以用不完全归纳法进行研究,如数列周期性的研究.► 探究点三 数阵问题数阵问题主要指的是不仅仅是将数排成一列的数列,而是既有行的排列也有列的排列的数字规律变换的研究.例3 所有正奇数如下数表排列(表中下一行中的数的个数是上一行中数的个数的2倍): 第一行 1 第二行 3 5第三行 7 9 11 13 ……则第6行中的第3个数是________.67 【解析】 先计算第六行第三个数为正奇数排列的第几个数,由1+2+4+8+16+3=34得所求的数为第34个,所以2×34-1=67.【点评】 数阵问题中第m 行的第n 个数的研究,需要分两步研究,第一步研究每一行的数变换规律,第二步再研究列的变换规律.本题实为将一个等差数列分成了若干部分进行研究.下面的数组均由三个数组成,它们是:(1,2,3),(2,4,6),(3,8,11),(4,16,20),(5,32,37),…,(a n ,b n ,c n ).(1)请写出c n 的一个表达式,c n =________;(2)若数列{c n }的前n 项和为M n ,则M 10=________.(用数字作答)c n =n +2n 2101 【解析】 由1,2,3,4,5,…猜想a n =n ;由2,4,8,16,32,…猜想b n =2n ;由每组数都是“前两个之和等于第三个”猜想c n =n +2n .从而M 10=(1+2+…+10)+(2+22+…+210)=10×(10+1)2+2(210-1)2-1=2101.► 探究点四 数列的特殊求和方法数列的特殊求和方法中以错位相减法较为难掌握,其中通项公式{a n b n }的特征为{a n }是等差数列,{b n }是等比数列.例4 在各项均为正数的等比数列{a n }中,已知a 2=2a 1+3,且3a 2,a 4,5a 3成等差数列. (1)求数列{a n }的通项公式;(2)设b n =log 3a n ,求数列{a n b n }的前n 项和S n . 【解答】 (1)设{a n }公比为q ,由题意得q >0,且⎩⎨⎧ a 2=2a 1+3,3a 2+5a 3=2a 4,即⎩⎨⎧ a 1(q -2)=3,2q 2-5q -3=0,解得⎩⎨⎧a 1=3,q =3或⎩⎪⎨⎪⎧a 1=-65,q =-12(舍去),所以数列{a n }的通项公式为a n =3·3n -1=3n ,n ∈N *.(2)由(1)可得b n =log 3a n =n ,所以a n b n =n ·3n . 所以S n =1·3+2·32+3·33+…+n ·3n ,① 3S n =1·32+2·33+3·34+…+n ·3n +1.②②-①得,2S n =-3-(32+33+…+3n )+n ·3n +1 =-(3+32+33+…+3n )+n ·3n +1,=-3(1-3n )1-3+n ·3n +1=32(1-3n )+n ·3n +1=32+⎝ ⎛⎭⎪⎫n -123n +1.所以数列{a n b n }的前n 项和为S n =34+2n -143n +1.【点评】 本题考查等差数列、等比数列的基础知识,第(1)问求数列的通项公式,主要是用解方程组的方法求出首项和公比,注意取舍;第(2)问,求数列的前n 项和,主要考查错位相减法.错位相减时要注意各项的位置要错开,还要注意2S n的左边的系数要处理后,才算求出S n,最后还需要用n=1,2进行检验.规律技巧提炼1.数列通项公式的研究主要是研究相邻项之间的关系,江苏卷对递推关系的考查不多,填空题中出现复杂递推关系时,可以用不完全归纳法研究.在解答题中主要是转化为等差、等比数列的基本量的求解.2.数列求和问题中特殊求和方法在江苏卷的考查也不多,主要还是利用公式法求数列的前n项和,再论证和的性质,故不过多涉及求和的技巧以及项的变形.江苏真题剖析例 [2008·江苏卷] 将全体正整数排成一个三角形数阵:12 345 6789101112131415按照以上排列的规律,第n行(n≥3)从左向右的第3个数为________【分析】本题考查了推理能力,但其本质为分组求和.数阵问题中的某一项的求解,需要先求行的规律,再求列的规律.【答案】n2-n+62【解析】前n-1行共有正整数1+2+…+(n-1)个,即n2-n2个,因此第n行第3个数是全体正整数中第n2-n2+3个,即为n2-n+62.[2010·江苏卷] 函数y=x2(x>0)的图象在点(a k,a2k)处的切线与x轴交点的横坐标为a k+1,k为正整数,a1=16,则a1+a3+a5=________.21【解析】本题考查了导数的几何意义,该知识点在高考考纲中为B级要求.函数y=x2(x>0)在点(16,256)处的切线方程为y-256=32(x-16).令y=0得a2=8;同理函数y=x2(x>0)在点(8,64)处的切线方程为y-64=16(x-8),令y=0得a3=4;依次同理求得a4=2,a5=1.所以a1+a3+a5=21.专题十四等差、等比数列的性质主干知识整合:2.证明数列是等差或等比数列的方法(1)等差数列①定义法:a n+1-a n=d(n∈N*);②等差中项法:2a n+1=a n+a n+2(n∈N*).(2)等比数列①定义法:a n +1a n=q (n ∈N *);②等比中项:a 2n +1=a n ·a n +2(n ∈N *). 要点热点探究► 探究点一 等差、等比中项性质等差中项和等比中项不仅仅可以解决两项和(积)之间的等量关系,也可以进一步推广至若干项如,若m +n +p =r +s +t ,则等差数列有a m +a n +a p =a r +a s +a t ;等比数列有a m ·a n ·a p =a r ·a s ·a t .例1 (1)[2011·广东卷] 等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =________.(2)已知各项均为正数的等比数列{a n },a 1a 2a 3=5,a 7a 8a 9=10,则a 1a 2…a 9=________.(1)10 (2)5032 【解析】 (1)由S 9=S 4,所以a 5+a 6+a 7+a 8+a 9=0,即5a 7=0,所以a 7=0,由a 7=a 1+6d 得d =-16,又a k +a 4=0,即a 1+(k -1)⎝ ⎛⎭⎪⎫-16+a 1+3×⎝ ⎛⎭⎪⎫-16=0,即(k -1)×⎝ ⎛⎭⎪⎫-16=-32,所以k -1=9,所以k =10.(2)由等比数列的性质知a 1a 2a 3=(a 1a 3)·a 2=a 32=5,a 7a 8a 9=(a 7a 9)·a 8=a 38=10,所以a 2a 8=5013,所以a 1a 2…a 9=a 95=(a 2a 8)9=5032.【点评】 等差中项和等比中项的本质是整体思想运用,用来实现等量项之间的代换.这是在数列运用基本量研究外的一个重要的处理问题的手段.设等差数列{a n }的公差为正数,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=________.105 【解析】 由条件可知,a 2=5,从而a 1+a 3=10,a 1a 3=16,得a 1=2,a 3=8,公差为3,所以a 11+a 12+a 13=6+(10+11+12)×3=105. ► 探究点二 数列单调性的研究数列的单调性研究方法有三种:一是用数列的单调性的定义,如a n +1>a n ;二是若数列是等差或等比数列可以观察其通项的系数特征;三是可以构造相应的函数,通过函数单调性得到对应数列的单调性.例2 有n 个首项都是1的等差数列,设第m 个数列的第k 项为a mk (m ,k =1,2,3,…,n ,n ≥3),公差为d m ,并且a 1n ,a 2n ,a 3n ,…,a nn 成等差数列.且d m =(2-m )d 1+(m -1)d 2.(1)当d 1=1,d 2=3时,将数列{d m }分组如下:(d 1),(d 2,d 3,d 4),(d 5,d 6,d 7,d 8,d 9),…(每组数的个数构成等差数列). 设前m 组中所有数之和为(c m )4(c m >0),求数列{2c n d n }的前n 项和S n ;(2)设N 是不超过20的正整数,当n >N 时,对于(1)中的S n ,求使得不等式150(S n -6)>d n 成立的所有N 的值.【解答】 (1)当d 1=1,d 2=3时,d m =2m -1(m ∈N *).数列{d m }分组如下:(d 1),(d 2,d 3,d 4),(d 5,d 6,d 7,d 8,d 9),… 按分组规律,第m 组中有(2m -1)个奇数,所以第1组到第m 组共有1+3+5+…+(2m -1)=m 2个奇数. 注意到前k 个奇数的和为1+3+5+…+(2k -1)=k 2,所以前m 2个奇数的和为(m 2)2=m 4.即前m 组中所有数之和为m 4,所以(c m )4=m 4. 因为c m >0,所以c m =m ,从而2c m d m =(2m -1)·2m (m ∈N *). 所以S n =1·2+3·22+5·23+7·24+…+(2n -3)·2n -1+(2n -1)·2n ,2S n =1·22+3·23+5·24+…+(2n -3)·2n +(2n -1)·2n +1,故-S n =2+2·22+2·23+2·24+…+2·2n -(2n -1)·2n +1 =2(2+22+23+…+2n )-2-(2n -1)·2n +1=2×2(2n -1)2-1-2-(2n -1)·2n +1=(3-2n )2n +1-6.所以S n =(2n -3)2n +1+6.(2)由(1)知d n =2n -1(n ∈N *),S n =(2n -3)2n +1+6(n ∈N *).故不等式150(S n -6)>d n 就是(2n -3)2n +1>50(2n -1).考虑函数f (n )=(2n -3)2n +1-50(2n -1) =(2n -3)(2n +1-50)-100.当n =1,2,3,4,5时,都有f (n )<0, 即(2n -3)2n +1<50(2n -1).而f (6)=9(128-50)-100=602>0,注意到当n ≥6时,f (n )单调递增,故有f (n )>0. 因此当n ≥6时,(2n -3)2n +1>50(2n -1)成立, 即150(S n -6)>d n 成立.所以,满足条件的所有正整数N =6,7, (20)【点评】 本题第二小问构造了函数f (n )=(2n -3)(2n +1-50)-100,其中所构成的函数为一次函数与指数函数的乘积函数,由于g (n )=2n -3,h (n )=2n +1-50都是单调递增函数,但不是恒正,故只有当n ≥6时才能保证恒正,这样得到的函数f (n )才是单调递增函数,前五项的性质,可以代入后一一进行比较.(1)已知数列{a n }为等差数列,若a 5a 6<-1,则数列{|a n |}的最小项是第________项.(2)已知数列{a n }满足a 1=33,a n +1-a n =2n ,则a nn 的最小值为________.(1)6 (2)212 【解析】 (1)由a 5a 6<-1得,若a 6>0,则a 5<-a 6<0,此时等差数列为递增数列,|a 5|>|a 6|,此时{|a n |}中第6项最小;若a 6<0,则a 5>-a 6>0,此时等差数列为递减数列,|a 5|>|a 6|,仍然有{|a n |}中第6项最小.故{|a n |}中的最小项是第6项.(2)a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2[1+2+…+(n -1)]+33=n 2-n +33,所以a n n =n +33n -1,设函数f (x )=x +33x -1,则f ′(x )=1-33x 2,从而在(33,+∞)上函数f (x )为增函数,在(0,33)上函数f (x )为减函数,因为n ∈N +,所以a n n 在33附近的整数取得最小值,由于a 55=535,a 66=212,所以当n =6时,a n n 有最小值为212. ► 探究点三 等差、等比数列的证明等差、等比数列的证明方法有两种:一是用数列的定义;二是等差中项或等比中项,但其本质都是根据条件寻求相邻两项或几项之间的关系.例3 已知数列{a n },{b n }满足b n =a n +1-a n ,其中n =1,2,3,…. (1)若a 1=1,b n =n ,求数列{a n }的通项公式;(2)若b n +1b n -1=b n (n ≥2),且b 1=1,b 2=2.记c n =a 6n -1(n ≥1),求证:数列{c n }为等差数列. 【解答】 (1)当n ≥2时,有a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+b 1+b 2+…+b n -1=1+(n -1)×n 2=n 22-n2+1.又因为a 1=1也满足上式,所以数列{a n }的通项为a n =n 22-n2+1.(2)因为对任意的n ∈N *有b n +6=b n +5b n +4=1b n +3=b n +1b n +2=b n,所以c n +1-c n =a 6n +5-a 6n -1=b 6n -1+b 6n +b 6n +1+b 6n +2+b 6n +3+b 6n +4=1+2+2+1+12+12=7(n ≥1),所以数列{c n }为等差数列.【点评】 本题中{c n }是由{a n }构成,而数列{a n }又由数列{b n }构成,所以本题要证明数列{c n }是等差数列,其本质还是论证数列{b n }的特征,其中b n +6=b n 是数列周期性的证明.规律技巧提炼1.等差、等比数列性质很多,在江苏卷的考查中以等差中项和等比中项的考查为主,在运用该技巧时,要注意该等式两边的项数必须相等即两项与两项互换,三项与三项互换.2.在运用函数判断数列的单调性时,要注意函数的自变量为连续的,数列的自变量为不连续的,所以函数性质不能够完全等同于数列的性质.有些数列会出现前后几项的大小不一,从某一项开始才符合递增或递减的特征,这时前几项中每一项都必须研究.3.由一个数列构造生成的新数列,再证明其是否是等差或等比数列时,如果已经有通项公式,则可以直接由通项公式的特征判断,如果只有递推关系,则需要用定义来证明. 江苏真题剖析:例 [2009·江苏卷] 设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则6q =________.【答案】 -9【解析】 由条件知数列{a n }中连续四项在集合{-54,-24,18,36,81}中,由|q |>1,所以{a n }中连续四项可能为(1)-24,36,-54,81,q =-32,6q =-9;(2)18,-24,36,-54,(该数列不成等比数列,不合题意);其他情形都不符合.三个互不相等的实数成等差数列,适当交换这三个数的位置后,变成一个等比数列,则此等比数列的公比是________.-2或-12 【解析】 设这三个数分别为a -d ,a ,a +d (d ≠0),由于d ≠0,所以a -d ,a ,a +d 或a +d ,a ,a -d 不可能成等比数列; 若a -d ,a +d ,a 或a ,a +d ,a -d 成等比数列,则(a +d )2=a (a -d ),即d =-3a ,此时q =a a -3a=-12或q =a -3a a =-2;若a ,a -d ,a +d 或a +d ,a -d ,a 成等比数列,则(a -d )2=a (a +d ),即d =3a ,此时q =a -3a a =-2或q =a -3a a +3a=-12.故q =-2或-12.[2009·江苏卷] 设{a n }是公差不为零的等差数列,S n 为其前n 项和,满足a 22+a 23=a 24+a 25,S 7=7.(1)求数列{a n }的通项公式及前n 项和S n ;(2)试求所有的正整数m ,使得a m a m +1a m +2为数列{a n }中的项.解答】 (1)设公差为d ,则a 22-a 25=a 24-a 23,由性质得-3d (a 4+a 3)=d (a 4+a 3). 因为d ≠0,所以a 4+a 3=0,即2a 1+5d =0.又S 7=7得7a 1+7×62d =7,解得a 1=-5,d =2,所以{a n }的通项公式为a n =2n -7,前n 项和S n =n 2-6n .(2)解法1:a m a m +1a m +2=(2m -7)(2m -5)2m -3,设2m -3=t ,则a m a m +1a m +2=(t -4)(t -2)t =t +8t -6,所以t 为8的约数. 因为t 是奇数,所以t 可取的值为±1,当t =1,m =2时,t +8t -6=3,2×5-7=3,是数列{a n }中的项;当t =-1,m =1时,t +8t -6=-15,数列{a n }中的最小项是-5,不符合.所以满足条件的正整数m =2.解法2:因为a m a m +1a m +2=(a m +2-4)(a m +2-2)a m +2=a m +2-6+8a m +2为数列{a n }中的项,故8a m +2为整数,又由(1)知a m +2为奇数,所以a m +2=2m -3=±1,即m =1,2.经检验,符合题意的正整数m 为2. 专题十五 数列中的等量关系。
数学《数列极限》讲义
第二章数列极限1. 教学框架与内容教学目标①掌握数列极限概念,学会证明数列极限的基本方法.②掌握数列极限的主要性质,学会利用数列极限的性质求数列的极限.③掌握单调有界定理;理解柯西收敛准则.教学内容①数列极限的分析定义,数列发散、单调、有界和无穷小数列等有关概念与几何意义;利用放缩法证明数列收敛或发散.②数列极限性质(唯一性,有界性,保号性,保不等式性,迫敛性,四则运算法则)的证明与应用,数列的子列及有关子列收敛的定理.③单调有界定理的证明及应用;柯西收敛准则,用柯西收敛准则判别数列的敛散性.2. 重点和难点①数列极限的Nε-语言,数列极限证明中N的存在性.②数列极限性质的分析证明, 数列极限性质的应用.③数列单调有界定理的证明和应用,利用柯西收敛准则判别数列的敛散性.3. 研究性学习选题● 数列极限证明的技巧将书后习题分类,首先自己总结数列极限证明的技巧,然后进行小组交流和讨论.● 如何利用单调有界原理求迭代数列的极限课后自己总结单调有界原理求极限的方法与步骤,选用经典习题小组讨论,进行讲解并评分.4. 综合性选题,尝试写小论文:★不等式技巧在数列极限证明中的应用.★数列极限存在的常用结论.5. 评价方法◎课后作业,计20分.◎研究性学习选题计30分.◎小论文计20分.◎小测验计30分§1数列极限概念一、数列若函数f 的定义域为全体正整数集合Z +(或N ),则称:f N R → 或()f n n N ∈为数列. 通常记为()n a f n =.或 12,,,,n a a a ⋅⋅⋅⋅⋅⋅ .数列表示法:通项、递推公式、1{}n n a ∞=或0{}n n a ∞=.特殊数列:常数数列、单调数列、有界数列、等比数列、等差数列. 二、数列极限------反映变量在某个变化过程中的变化趋势 [作图]1{}n、(1){}n n -、 {}n 、{(1)}n -、 {(1)}n n - 变化趋势: 1) 有一定的变化趋势; 无限接近于某数a ----收敛;震荡、无限增大、无限减小----定向发散;2) 无一定变化趋势----不定向发散.数列{}n a 收敛于a ,||0n a a -→(n a 与a 的距离越来越接近). 1、定义下面我们首先给出数列收敛及其极限的精确定义.定义1 ()N ε- 设{}n a 为数列, a 为一定数, 若对任给的正数0ε>,总存在 正整数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ,而a 称为{}n a 的极限. 记作 lim n n a a →∞= 或 n a a →(n →∞).若数列{}n a 没有极限,则称{}n a 不收敛或发散, 也称{}n a 为发散数列.例1验证下列极限:1) 1lim 0n n →∞=;2) 1lim 02n n →∞=;3) lim 0n n q →∞=, ||1q <;4) 223lim 33n n n →∞=-.注1 ε的任意性.ε的作用在于刻画数列{}n a 与定数a 之间的接近程度.ε越小表示接近度越好,而正数ε—可任意小说明n a 与a 可以无限接近,ε虽具有任意性, 但一经给出,就可看作暂时固定的数,并由此确定N ,从而N 与ε有关系. 同时,ε主要用于刻画n a 与a 的逼近程度,因而n a a ε-<中的ε可用22εε,2,εk ε(0k >常数)等代替,同时n a a ε-<可改写成n a a ε-≤.注 2 N 的相应性. 前面说过N 与ε有关,可记作()N ε但并不意味着N 由ε唯一确定. 这里我们主要强调N 的存在性(一般来说,ε愈小,相应的N 越大),同时n N ≥时(对大于N 的任一n )有n a a ε-<.如对11,1000n a n ε==,相应的1001, 1002N =都可.例2 1) 0n →∞=;2) 1(1)n a =>;3) 1n =;4) 2lim 04n n n →∞=.思考 考虑1n =, 3lim 04n n n →∞=?2、几何意义 当n N >时,n a a ε-<d⇔所有下标大于N 的项n a 都落在a 的 邻域(,)U a ε内,而在(,)U a ε之外,数列{}n a 至多只有有限项(至多N 项). 定义1’任给0ε>,若在(,)U a ε之外{}n a 至多只有有限项,则称{}n a 收敛于a . 例3 改变或去掉数列的有限项,不改变数列的敛散性.例4 设n a a →,则n k a a +→. 这里k 为某固定的正整数.例5 设lim lim n n n n x y a →∞→∞==, 作数列{}n z 1122,,,,,,,n n x y x y x y ⋅⋅⋅⋅⋅⋅验证: lim n n z a →∞=. 思考 用N ε-定义如何证明?3、收敛的否定n a a →0, , ||dn N n N a a εε⇔∀>∃∀>-<:;0, (,)U a εε⇔∀>之外至多有{}n a 的有限项.n a →a 00000,, ||n N n N a a εε⇔∃>∀∃>-≥:; ⇔存在某00ε>,使数列{}n a 有无穷多项落在邻域0(,)U a ε之外.{}n a 收敛, 0, , ||n a R N n N a a εε⇔∃∈∀>∃∀>-<:. {}n a 发散0000, 0, , ||n a R N n N a a εε⇔∀∈∃>∀∃>-≥:.例6 验证 1) lim 01n nn →∞≠+;2) 2{}, {}n n (-1)为发散数列.4、N ε-定义的一些等价形式(变形)1D :20,, , (n N n N a a k εεε∀>∃≥-<:或. (k 为常数)2D :0(),, n c N n N a a εεε∀><∃>-<:. 3D :0,, n N n N a a εε∀>∃>-<有理数:. 4D :1,, n m N N n N a a m∀∈∃>-<:. 5、无穷小数列定义 若lim 0n n a →∞=,则称{}n a 为无穷小数列.定理 n a a →{}n a a ⇔-为无穷小数列.注 3 ||00n n a a →⇔→.例7 证明: 若lim n n a a →∞=,则lim ||||n n a a →∞=. 但反之未必成立,即||||n a a →⇒n a a →.习 题1. 用N -ε定义验证1) lim 12n nn →∞=+; 2) 2233lim 212n n n n →∞-=+;3) !lim 0n n n n →∞=; 4) limsin 0n nπ→∞=;5) lim cos1n nπ→∞=; 6) lim02nn n→∞=;2. 指出下列数列哪些是无穷小数列.; ; 11n ⎧⎫+⎨⎬⎩⎭; 32n n ⎧⎫⎨⎬⎩⎭; {}n n q α(,||1)R q α∈<.3. 证明:若a a n n =∞→lim ,则对任一正整数k , 有a a k n n =+∞→lim .4. 试用定义1'证明:1) 数列}1{n不以1为极限; 2) 数列}{)1(n n -发散.§2 收敛数列的性质一、收敛数列的性质1、唯一性 若数列{}n a 收敛,则它只有一个极限.2、有界性 若数列{}n a 收敛,则{}n a 为有界数列. 即0, , n M n N a M ∃>∀∈≤使得. (画图分析) 推论 无界数列必发散.注 1 有界数列未必是收敛的(定理2.3的逆未必成立).3、保号性 若lim 0 (0)n n a a →∞=><或,则对任何(0,)r a ∈(,0))a ∈(或r , 存在N ,使得n N >时,0 0n n a r a r >><<(或).推论 若lim 0n n a a →∞=>,则存在N ,n N >时,0n a > (保符号).若lim 0n n a a →∞=≠,则存在N ,n N >时,||||02n a a >>. 注 2 由lim 0n n a →∞≥不能推出 , , 0n N n N a ∃>≥.4、保不等式性 设{}n a 和{}n b 为收敛数列,若存在,,N n N >使得时n n a b ≤,则lim lim n n n n a b →∞→∞≤. [直接证明或反证法]定理 设lim , lim , n n n n a a b b a b →∞→∞==>, 则存在N ,n N >时,n n a b >.注 3 在定理2.5中,不等式若为n n a b <, 则不能推出a b <.例1 设0, 1,2,n a n ≥=⋅⋅⋅. 若n a a →.5、迫敛性 若数列{}n a 、{}n b 和{}n c 满足n n n a c b ≤≤,n N ∀∈,, n n a a b a →→, 则n c a →.注 4 用得较多的是0, 0 0n n n n c b b c ≤≤→⇒→.例2 1) 1lim sin 0n n n →∞=2) lim 3n →∞= .... 一般形式?思考 上述定理中若{},{}n n a b 均发散, 能否推出{}n c 发散? 6、四则运算定理 若, n n a a b b →→,则1) n n a b a b +→+, 2) n n a b a b ⋅→⋅,3) 若还有0,0n b b ≠≠,则n n a ab b→.思考 若{},{}n n a b 均发散或其中之一发散, 上述结论又如何?例3 求 11101110lim , , 0, 0m m m m m k k k n k k a n a n a n a m k a b b n b n b n b ---→∞-++⋅⋅⋅++≤≠≠++⋅⋅⋅++.例4 求 lim 1nn n a a →∞+ (1a ≠-).例5 求 1) (31)(5)lim (12)(25)n n n n n →∞++-+;2) 268n ;3) n .例6 求1) 21)sin(21)n n →∞+;2) 1lim nn i →∞=;3)1)21n n →∞⋅⋅⋅++.二、子列的收敛性定义(子列) 设{}n a 为一数列,{}k n N ⊂为无限子集,且12k n n n <<⋅⋅⋅<<⋅⋅⋅, 则数列 12,,,,k n n n a a a ⋅⋅⋅⋅⋅⋅, 称为数列{}n a 的一个子列,记作{}k n a .注 5 {}k n a 选自{}n a 中且保持{}n a 中的顺序不变, 注意k n a 为{}k n a 中的第k 项, 是{}n a 的第k n 项,故k n k ≥. 注意子列的子列仍为子列. 例 7 数列{(1)}n -,奇子列21{}k a +与偶子列2{}k a .注 6 平凡子列是指数列{}n a 本身或者去掉有限项得到的数列,易见平凡子列与 数列{}n a 本身的性质(态)完全一样.定理 数列{}n a 收敛⇔{}n a 的任一子列(非平凡子列)均收敛.⇔{}n a 的任一子列(非平凡子列)均收敛于同一个数.注 7 我们通常用上述定理来证明数列{}n a 不收敛,只需找到某个发散子列或某两个子列收敛但极限不同. 如{(1)}n -. 三、利用上述性质讨论极限*例8 证明: 数列2(1){}31n n nn +-⋅+发散.例9 1) 22231lim(12...)n n n→∞+++; 2) n ;3) n 11lim ()n nn n n a b a b a b++→∞+≠-+.例10 1) 1321lim 242n n n →∞-⋅⋅⋅⋅⋅⋅; 2) lim[(1)]n n n αα→∞+- 01α<<;3) 22lim(1)(1)(1)nn ααα→∞++⋅⋅⋅+ 1α<.例11 设1,...,m a a 为m个正数,则1max{,,}m n a a =⋅⋅⋅.例12 设lim nn na b →∞存在,则若0n b →,必有0n a →.例13 若1||||n n a q a +≤,01q <<,则lim 0n n a →∞=.例14 若0n a >,1lim1nn n a L a →∞+=>,则lim 0n n a →∞=, 并利用其求2lim 4n n n →∞, 3lim n n n q →∞以及213lim 22n →∞+ 212n n -+⋅⋅⋅+. 一般常用结论: 若1lim ||1n n na l a +→∞=<, 则lim 0n n a →∞=.习题1. 求下列数列的极限1) limn→∞(n2) limn→∞3) limn→∞(1n4) limn→∞11(2)3(2)3n nn n++-+-+5) limn→∞212232n nnn++++6) limn→∞12()22n nn+++-+7)limn→∞8) limn→∞11(1)nkk k=+∑2. 设{}n a为无穷小数列, {}n b为有界数列, 证明: {}n na b⋅为无穷小数列.3. 求下列极限1)122lim(2sin cos)nnn n→+∞+2)1lim(arctan)nnn→+∞3) 11lim(1)n n n→∞- 4) 22)nn →∞⋅5) 1!2!!lim!n n n →∞+++ 6) 1321lim 242n n n→∞-⋅⋅⋅4. 说明下列数列发散1) (1)1nn n ⎧⎫-⎨⎬+⎩⎭ 2) {}(1)n n- 3) sin 4n π⎧⎫⎨⎬⎩⎭5. 证明: 若0>n a , 且1lim 1>=+∞→l a a n nn , 则.0lim =∞→n n a6.设a a n n =∞→lim , 证明:1) a nna n n =∞→][lim;2) 若0,0>>n a a , 则1lim =∞→n n n a .§3 数列极限存在条件考察数列极限问题,首先应考察其极限是否存在 (极限存在性问题), 若极限存在,则应考虑如何求极限值(极限的计算问题). 一、单调有界原理 (充分条件)定理 (单调有界定理) 有界的单调数列必有极限.[上(下)有界的单调递增(递减)数列必有极限且极限为其上(下)确界] 例1 设111123n a nααα=+++⋅⋅⋅+, (2)α≥, 证明: {}n a 收敛.例2 设12,n a a a ==⋅⋅⋅=n 重根号), 证明:{}n a 单调有界, 并求其极限.注 1 在具递推关系式的数列{}n a 中,如1()n n a f a +=,若要求其极限,则我们可首先假定极限存在设为a ,则有()a f a =.由此方程解出a (此值一般即为极限), 其次一方面可考察n a a -(考虑用N ε-定义);另一方面,可考察是否有n a a ≤ (或n a a ≥)? 若n a a ≤,则一般证n a 递增(如n a a ≥,则证n a 递减),此时应考察1n n a a +-的符号(或1n na a +与“1”的大小关系).例3 设1, 0a x >,11()2n n nax x x +=+,n N ∈, 求证: {}n x 收敛,并求其极限.例4 证明: 极限1lim (1)n n n→+∞+存在,并利用其来求下列极限1) 1lim (1)n k n n +→+∞+ 2) 31lim (1)2n n n →+∞+3) 1lim (1)n n n -→+∞- 4) 1lim (1)n n n →-∞+5) 3lim ()2n n n n →+∞++ 6) 31lim (1)2n n n→+∞-.二、Cauchy 准则定义 (Cauchy 列) 如果数列{}n a 满足:0,,,:m n N m n N a a εε∀>∃>-<,则称 数列{}n a 为Cauchy 列或基本列.注 2 {}n a 为Cauchy 列0,,,:dn p n N n N p N a a εε+⇔∀>∃∀>∀∈-<. 定理 (Cauchy 准则) {}n a 收敛⇔{}n a 为Cauchy 列.注 3 Cauchy 准则方便之处在于无需知道具体极限值的情况下,就可以直接 判断{}n a 是否收敛.例6 利用Cauchy 准则证明:{}n a 收敛, 其中22211112n a n =++⋅⋅⋅+.例7 利用Cauchy 准则叙述{}n a 发散的条件, 并证明1112n a n =++⋅⋅⋅+发散.例8 利用Cauchy 准则证明limsin n n →∞不存在.三、邻域的语言*a R ∈,a 的邻域,(,)U a a εε=-+; ∞的邻域,(,)M -∞-⋃(,)M +∞,0M ∀>+∞的邻域, (,)M +∞,0M ∀> -∞的邻域,(,)M -∞-,0M ∀>lim n n a a →∞=0,,:n N n N a a εε⇔∀>∃>-<.⇔对a 的任一邻域U ,∃+∞的邻域V ,:n n N V a U ∀∈⋂∈.lim n n a →∞=+∞0,,:n M N N n N a M ⇔∀>∃∈>>.⇔对+∞的任一邻域U ,∃+∞的邻域V ,:n n N V a U ∀∈⋂∈.lim n n a →∞=-∞⇔……记*{,}R R =⋃-∞+∞,*a R ∈.*lim n n a a R →∞=∈⇔对a 的任一邻域U ,存在+∞的邻域V ,:n n N V a U ∀∈⋂∈.习 题1. 证明}{n a 收敛,并求其极限,,其中11n a a +==1,2,n =.2. 设c a =1)0(>c , 11,2...n a n +==, 证明数列}{n a 极限存在并求其值.3. 求下列极限1) 1lim(1)nn n→∞-; 2) 21lim(1)n n n →∞+; 3) 241lim ()2n n n n +→+∞++.4. 证明: 若单调数列}{n a 含有一个收敛子列, 则}{n a 收敛.5. 证明: 若}{n a 为递增(递减)有界数列, 则{}{}).(inf sup lim n n n n a a a =∞→又问逆命题成立否?7. 应用Cauchy 准则证明{}n x 收敛,其中 1) 2sin1sin 2sin 222n n nx =++⋅⋅⋅+2) 0.90.090.0009n x =++⋅⋅⋅+⋅⋅⋅(n 个0)8. 利用Cauchy 准则叙述数列}{n a 发散的充要条件,并用它证明下列}{n a 发散:1) n a nn )1(-=; 2) 2sinπn a n =.习题课一、知识复习1、n a a →d⇔0,,:n N n N a a εε∀>∃>-< ⇔{}n a 的任一子列均收敛于a ⇔{}n a 的奇偶子列均收敛于a . n a a →⇔2、 {}n a 收敛 ⇔{}n a 的任一子列均收敛⇔{}n a 的任一子列均收敛并且收敛于同一个数.⇔0,,,:n m N m n N a a εε∀>∃>-<. {}n a 发散⇔3、单调有界数列必收敛 1lim(1)n n e n →∞+=.4、n a a →的几何意义.5、收敛数列的性质及其证明. 二、典型方法 1、求极限的方法 1) 利用定义a) 观察确定极限值,利用定义验证.b) 对递推数列,可先假定极限存在,利用递推关系,求得极限,再用定义验证.2) 利用10nα→ (0)α>,0n a → (1)a <, 1(0)a →>,1及四则运算法则.3) 利用已知极限,如1lim(1)n n e n →∞+=.4) 利用单调有界原理(如何求极限).5) 利用适当的变换或变形(拆项、插项、裂项).2、证明极限存在方法 1) 用定义(先求极限值). 2) 利用单调有界原理. 3) 利用Cauchy 准则.3、证明极限不存在的方法 1) 定义.2) 找一个发散子列或两个收敛子列但极限不等. 3) 利用Cauchy 准则.4、一些常用结论1) lim 0n n a →∞=,{}n b 有界,则lim 0n n n a b →∞=.2) limnn na b →∞存在,且lim 0n n b →∞=,则lim 0n n a →∞=. 3) 设1lim ||1n n na l a +→∞=<,则lim 0n n a →∞=.4) 若数列满足{}n a 满足1n n a a q a a +-≤-, 01q <<,则lim n n a a →∞=.5) 若{}n x 满足11n n n n x x q x x +--≤- 01q <<,则{}n x 收敛. 6) 1,...,m a a 为m个正数,则1lim max{,,}m n a a =⋅⋅⋅.思考: 设{}n a为有界正数列,则?n =. 7) 设n n x a y ≤≤,0n n x y -→,则,n n x a y a →→.8) 设{}n x ↑,{}n y ↓, 0n n x y -→, 则{},{}n n x y 均收敛,且极限相同. 9) 0,n n a a b b →>→,则n b b n a a →.10) , n n a a b b →→,则max{,}max{,}n n a b a b →, min{,}min{,}n n a b a b →. 11) 设lim n n a a →∞=,则i) 12limnn a a a a n→∞++⋅⋅⋅+=,ii) 若0n a >,则n a =.并考察下列极限(教材43页第四题)(1)1112n n ++⋅⋅⋅+(2) 0)a >(3)……12) (Stolz 定理) 设{},{}n n x y 满足i) 1n n y y +>, ii) lim n n y →∞=+∞,iii)11lim n n n n n x x l y y +→∞+-=-,(l 为有限数), 则lim n n nxl y →∞=.并利用Stolz 定理求下列极限 i) 设n x a →,求1222limnn x x nx n →∞++⋅⋅⋅+.ii) 112lim p p pp n n n +→∞++⋅⋅⋅+ (0)p >.iii)113(21)lim p p pp n n n+→∞++⋅⋅⋅+- (0)p >.利用单调有界原理或Cauchy 准则考察下列命题.13) 设10x >,13(1)3n n n x x x ++=+,证明: lim n n x →∞存在并求极限.14) 证明: 若}{n a 为递增数列,}{n b 为递减数列,且0)(lim =-∞→n n n b a , 则n n a ∞→lim 与n n b ∞→lim 都存在且相等.15) 设011>>b a , 记 211--+=n n n b a a , 11112----+=n n n n n b a b a b .,3,2 =n 证明: 数列}{n a 与}{n b 的极限都存在且等于11b a .16) 给定正数1a 与)(111b a b >,作出等差中项2112b a a +=与等比中项112b a b =, 一般地令 21n n n b a a +=+, n n n b a b =+1, ,2,1=n . 证明: n n a ∞→lim 与n n b ∞→lim 皆存在且相等.17) 设0,0>>σa ,1111(), (), 1,2,.22n n n n a a a a n a a σσ+=+=+=证明: 数列}{n a 收敛, 且其极限为σ.18) 设数列}{n a 满足: 存在正数M , 对一切n 有 .12312M a a a a a a A n n n ≤-++-+-=-证明: 数列}{n a 与}{n A 都收敛.19) 若单调数列有一子列收敛,则该数列收敛.20) 若S 为有界集,则存在数列{}n x S ⊂,使得sup n x S →.21) 若S 为有界集,如果sup S S ∉,那么存在严格递增数列{}n x S ⊂,使得sup n x S →.22) 设S 为无界集,则存在{}n x S ⊂,使得n x →∞23) 若S 为无上界集, 则存在严格增的{},n n x S x ⊂→+∞.24) 证明: 任一数列必有单调子列.25) 证明: 任一有界数列必有收敛子列.。
高中数学 第二章 数列 2.1 数列名师讲义
2。
1数列2.1.1 数列预习课本P25~27,思考并完成以下问题(1)什么是数列?什么叫数列的通项公式?(2)数列的项与项数一样吗?(3)数列与函数有什么关系,数列通项公式与函数解析式有什么联系?(4)数列如何分类?分类的标准是什么?错误!1.数列的概念(1)数列:按照一定次序排列起来的一列数称为数列.(2)项:数列中的每一个数叫做这个数列的项.(3)数列的表示:数列的一般形式可以写成a1,a2,a3,…,a n…简记为{a n}.[点睛](1)数列中的数是按一定顺序排列的.因此,如果组成两个数列的数相同而排列顺序不同,那么它们就是不同的数列.例如,数列4,5,6,7,8,9,10与数列10,9,8,7,6,5,4是不同的数列.(2)在数列的定义中,并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.例如:1,-1,1,-1,1,…;2,2,2,….2.数列的通项公式如果数列的第n项a n与n之间的关系可以用一个函数式a n=f(n)来表示,那么这个公式叫做这个数列的通项公式.[点睛]同所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.3.数列与函数的关系从映射、函数的观点看,数列可以看作是一个定义域为正整数集N+(或它的有限子集{1,2,3,…n})的函数,即当自变量从小到大依次取值时对应的一列函数值,而数列的通项公式也就是相应函数的解析式.数列作为一种特殊的函数,也可以用列表法和图象法表示.4.数列的分类(1)按项的个数分类:(2)按项的变化趋势分类:[小试身手]1.判断下列命题是否正确.(正确的打“√",错误的打“×”)(1)数列1,1,1,…是无穷数列( )(2)数列1,2,3,4和数列1,2,4,3是同一个数列( )(3)有些数列没有通项公式( )解析:(1)正确.每项都为1的常数列,有无穷多项.(2)错误,虽然都是由1,2,3,4四个数构成的数列,但是两个数列中后两个数顺序不同,不是同一个数列.(3)正确,某些数列的第n项a n和n之间可以建立一个函数关系式,这个数列就有通项公式,否则,不能建立一个函数关系式,这个数列就没有通项公式.答案:(1)√(2)×(3)√2.在数列-1,0,错误!,错误!,…,错误!,…中,0。
《数列》 讲义
《数列》讲义一、数列的定义在数学中,数列是按照一定顺序排列的一组数。
例如,1,3,5,7,9 就是一个数列;再比如,2,4,6,8,10 也是一个数列。
数列中的每一个数都被称为这个数列的项。
我们可以用符号 a₁,a₂,a₃,…,aₙ 来表示数列中的各项,其中 n 表示项数。
比如在数列 1,3,5,7,9 中,a₁= 1,a₂= 3,a₃= 5 等等。
二、数列的分类数列有多种分类方式。
1、按照项数的多少,数列可以分为有限数列和无限数列。
有限数列的项数是有限的,比如1,2,3,4,5 就是一个有限数列,它只有 5 项。
无限数列的项数是无限的,例如 1,2,4,8,16,… 就是一个无限数列,它的项数没有尽头。
2、按照数列的单调性,数列可以分为递增数列、递减数列、常数列和摆动数列。
递增数列是指从第二项起,每一项都大于它前一项的数列,比如1,2,3,4,5 。
递减数列是指从第二项起,每一项都小于它前一项的数列,例如5,4,3,2,1 。
常数列是指各项都相等的数列,像 3,3,3,3,3 。
摆动数列则是指从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列,比如 1,-1,1,-1,1,-1 。
三、数列的通项公式如果数列{aₙ}的第 n 项 aₙ 与 n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。
例如,数列 2,4,6,8,10,… 的通项公式可以表示为 aₙ = 2n 。
通过通项公式,我们可以很方便地求出数列中的任意一项。
但并不是所有的数列都有通项公式,有的数列的规律比较复杂,难以用一个简单的公式来表示。
四、等差数列1、定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
这个常数叫做等差数列的公差,通常用字母 d 表示。
例如,数列 3,5,7,9,11 就是一个公差为 2 的等差数列。
2、通项公式等差数列的通项公式为 aₙ = a₁+(n 1)d ,其中 a₁是首项,d是公差。
《等比数列》讲义
《等比数列》讲义(教师版)一.知识点1.等比数列的概念[定义]如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公差通常用字母q表示(q≠0).可表示为(其中n∈N*).2.等比数列的通项公式如果等比数列的首项是,公比是q,则等比数列的通项为.3.等比数列的前n项和① ()②()③()4.等比中项公式如果a,G,b成等比数列,那么G叫做a与b的等比中项.也就是,如果G是a,b的等比中项,那么,即.5.等比数列的性质(1)等比数列任意两项间的关系:如果是等比数列的第项,是等比数列的第项,且,公比为,则有.(2)对于等比数列,若,则.(3)是等比数列,则是等比数列(c≠0)(4)等间隔的k项和(或积)仍成等比数列.若数列是等比数列,是其前n项的和,那么,,成等比数列.(5)非零常数数列既是等差数列,又是等比数列;二.主要题型题型1.应用公式题1.(2008浙江文4)已知是等比数列,,,则公比=( )A. B. C.2 D.答案:D2.(2008福建理3)设是公比为正数的等比数列,若=1,=16,则数列前7项的和为( )A.63 B.64 C.127 D.128答案:C3.(2010北京理2)在等比数列中,,公比.若,则m=( )A.9 B.10 C.11 D.12答案:C ∵,∴4.(06湖南文11)若数列满足=1, =2,n=1,2,3,…,则++…+= .答案:题型2.等比数列的性质7.(2010重庆理1)在等比数列中,,则公比的值为() A.2 B.3 C.4 D.8 答案:A8.(2010江西文7)等比数列中,,,,则()A. B. C. D.答案:A9.(09广东文5)已知等比数列的公比为正数,且a3a9=2a52,,则( )A. B. C. D.答案:B ∵a3a9=2a52,,又>0,∴,∴.10.(2010大纲全国Ⅰ理4)已知各项均为正数的等比数列{}中,=5,=10,则=( )A.B.7 C.6 D.答案:A解法1:∵,,,∴,∴11.(2010安徽理10)设是任意等比数列,它的前项和,前项和与前项和分别为,则下列等式中恒成立的是( )A. B.C.D.答案:D。
高中数学 第1章 数列 1.2 数列的函数特性讲义教案 北师大版必修5
学习资料1.2 数列的函数特性学习目标核心素养1.了解递增数列、递减数列、常数列的概念.2.掌握判断数列增减性的方法.(重点)3.利用数列的增减性求最大值、最小值.(难点、易混点)1.通过数列的函数性质的学习培养学生的数学抽象素养.2.借助数列单调性的研究培养学生的逻辑推理素养.数列的单调性阅读教材P6~P7“例3”以上部分,完成下列问题.(1)数列的函数特性数列是一类特殊的函数,由于一般函数有三种表示方法,数列也不例外,有列表法、图像法和解析法.(2)数列的单调性名称定义判断方法递增数列从第2项起,每一项都大于它前面的一项a n+1>a n递减数列从第2项起,每一项都小于它前面的一项a n+1<a n常数列各项都相等a n+1=a n 思考:n,反之成立吗?[提示]若函数f(x)在[1,+∞)上单调递增,则函数a n=f(n)也单调递增,但反之不成立,例如f(x)=错误!错误!,数列a n=f(n)单调递增,但f(x)=错误!错误!在[1,+∞)上不是单调递增.(2)如何判断数列的单调性?[提示]比较数列中相邻的两项a n与a n+1的大小来确定其单调性.1.数列a n=n+1是()A.递增数列B.递减数列C.常数列D.不能确定A[a n+1-a n=[(n+1)+1]-(n+1)=1>0,故a n+1>a n,所以a n=n+1是递增数列.] 2.若数列{a n}为递增数列,其通项公式为a n=kn-2,则实数k的取值范围是________.(0,+∞)[由题意知a n+1-a n=[k(n+1)-2]-(kn-2)=k>0,即实数k的取值范围是(0,+∞).]3.下列数列:①1,2,22,23,…;②1,0.5,0.52,0.53,…;③7,7,7,7,…;④-2,2,-2,2,-2,….递增数列是________,递减数列是________,摆动数列是________,常数列是________.(填序号)[答案]①②④③4.判断数列错误!的单调性,并加以证明.[解]数列错误!是递增数列,证明如下:记a n=错误!,则错误!=错误!=错误!>错误!=1,又a n〉0,则a n+1〉a n.所以,错误!是递增数列.数列的图像【例1】n n(1)画出{a n}的图像;(2)根据图像写出数列{a n}的增减性.[解](1)列表n 123456789…a n-7-12-15-16-15-12-709…12),n(3,-15),(4,-16),(5,-15),(6,-12),(7,-7),(8,0),(9,9),…图像如图所示.(2)数列{a n}在[1,4]上是递减的,在[5,+∞)上是递增的.画数列的图像的方法,数列是一个特殊的函数,因此也可以用图像来表示,以项数n为横坐标,相应的项为纵坐标,即坐标为(n,a n)描点画图,就可以得到数列的图像。
2025数学大一轮复习讲义人教版 第六章 数列中的构造问题
命题点2 an+1=pan+qn+c(p≠0,1,q≠0) 例2 若a1=1,an+1=2an-3n,n∈N+,求数列{an}的通项公式.
当n≥2时,an+1=4an, 则a3=4a2=12,a4=4a3=48, 故 S4=13+3+12+48=1390,故 B 正确; 由an+1=3Sn+2, 得Sn+1-Sn=3Sn+2, 所以Sn+1=4Sn+2, 令Sn+1+λ=4(Sn+λ),
1 2 3 4 5 6 7 8 9 10
则Sn+1=4Sn+3λ, 所以 3λ=2,即 λ=23, 所以 Sn+1+23=4Sn+23,即SSn+n+1+2332=4, 故Sn+23是首项为 S1+23=a1+23=1, 公比为4的等比数列,故D正确.
则a2=3S1+2=3a1+2,
所以 a1=13,故 A 正确;
因为an+1=3Sn+2,
①
所以当n≥2 时,an=3Sn-1+2,
②
①-②得,an+1-an=3an,即an+1=4an, 当 n=1 时,a1=13,不满足 a2=4a1,
故数列{an}不是等比数列,故C错误;
1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10
3.已知数列{an}中,a1=1,2an+1an=(n+1)an-nan+1,则数列{an}的 通项公式为
A.an=2n1-1
B.an=2n1+1
√C.an=2nn-1
D.an=2nn+1
1 2 3 4 5 6 7 8 9 10
北师版数学必修5讲义: 第1章 1.1 数列的概念
§1数列1.1数列的概念1.了解数列通项公式的概念.2.能根据通项公式确定数列的某一项.(重点)3.能根据数列的前几项写出数列的一个通项公式.(重、难点)[基础·初探]教材整理1数列的基本概念阅读教材P3~P4,完成下列问题.1.数列的有关概念2.(1)一般形式:a1,a2,a3,…,a n,…;(2)字母表示:上面数列也记为{a n}.3.数列的分类判断(正确的打“√”,错误的打“×”) (1)1,2,-2,5,-3可以构成数列.( ) (2)1,2,3,4,5,6,7是无穷数列.( ) (3)数列中的项不能相等.( )【解析】 (1)由数列的概念知该列数可以构成数列. (2)是有穷数列,要表示无穷数列,应把“…”放在“7”后. (3)由数列的概念知,数列中的项可以相等. 【答案】 (1)√(2)× (3)× 教材整理2 通项公式阅读教材P 5“抽象概括”以下至“例1”以上的内容,完成下列问题. 1.如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个式子表示成a n =f (n ),那么这个式子就叫作这个数列的通项公式,数列的通项公式就是相应函数的解析式.2.数列可以看作是定义域为正整数集N +(或它的有限子集)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列.(1)数列{a n }的通项公式为a n =3n 2+2n +1,则数列中的第4项为________. (2)若数列的通项公式为an =2n -1,则a n +1=________. 【解析】 (1)当n =4时,a 4=3×42+2×4+1=57. 【答案】 57(2)a n +1=2(n +1)-1=2n +1. 【答案】 2n +1[小组合作型]。
《数列》 讲义
《数列》讲义一、数列的定义在数学的广袤天地中,数列就像是一串有规律排列的数字精灵。
简单来说,数列就是按照一定次序排列的一列数。
例如:1,3,5,7,9 就是一个数列;再比如 2,4,6,8,10 也是一个数列。
数列中的每一个数都被称为这个数列的项。
第一个数称为第 1 项,通常记作 a₁;第二个数称为第 2 项,记作 a₂;以此类推,第 n 个数就称为第 n 项,记作 aₙ 。
二、数列的分类数列有多种分类方式,常见的有以下几种:1、按照项数的多少,数列可以分为有限数列和无限数列。
有限数列就是项数有限的数列,比如 1,2,3,4,5 就是一个有限数列,它只有 5 项。
而无限数列则是项数无限的数列,像自然数列 1,2,3,4,5,……就是一个无限数列,它的项数没有尽头。
2、按照数列中项与项之间的关系,数列可以分为等差数列和等比数列。
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的数列。
比如 2,4,6,8,10 就是一个公差为 2 的等差数列。
等比数列则是指从第二项起,每一项与它的前一项的比值等于同一个常数的数列。
例如2,4,8,16,32 就是一个公比为2 的等比数列。
三、等差数列1、等差数列的通项公式对于一个等差数列{aₙ},如果首项为 a₁,公差为 d,那么它的第 n 项 aₙ 可以用通项公式表示为:aₙ = a₁+(n 1)d 。
例如,在等差数列 3,5,7,9,11 中,首项 a₁= 3,公差 d = 2 。
那么第 5 项 a₅就可以通过通项公式计算:a₅= 3 +(5 1)×2 = 11 。
2、等差数列的前 n 项和公式等差数列的前 n 项和 Sₙ 可以用公式表示为:Sₙ = n(a₁+ aₙ) /2 或者 Sₙ = na₁+ n(n 1)d / 2 。
假设我们有等差数列 1,3,5,7,9 ,要求它的前 5 项和。
首项a₁= 1 ,第 5 项 a₅= 9 ,项数 n = 5 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列和数列的练习一、数列及其相关概念1. 数列:按照一定次序排列起来的一列数叫做数列,它可以有限,也可以无限.2.数列的项及通项:数列中的每个数叫做这个数列的项,各项依次叫做这个数列的第1项(首项),第2项,…,第n 项. 数列的一般形式可以写成:123n a a a a ,,,,,或简记为{}n a ,其中n a 是数列的第n 项,又称为数列的通项. 3.数列的通项公式如果数列{}n a 的第n 项与序号n 之间的关系可以用一个函数式()n a f n =来表示,则称这个公式为这个数列的通项公式. 4.数列的分类数列的分类方式一般有三种:(1)项数有限的数列称为有穷数列,项数无限的数列称为无穷数列;(2)从第2项起每一项都比它的前一项大的数列称为递增数列;从第2项起,每一项都比它的前一项小的数列称为递减数列;这两种数列统称为单调数列.各项都相等的数列称为常数列;既不是单调数列,又不是常数列的,称为摆动数列,即有些项小于它的前一项,有些项大于它的前一项;(3)如果数列的任一项的绝对值都小于某个正数,则称此数列为有界数列,否则称为无界数列. 5.数列的表示方法数列是定义域为正整数集(或它的一个有限子集{123}n ,,,,)的一类特殊的函数()f n ,数列的通项公式也就是函数的解析式.数列的表示方法通常有三种:(1)通项公式法(对应函数的解析式法);(2)图象法(无限多个或有限多个孤立的点,取决于是无穷数列,还是有穷数列); (3)列表法.6.数列和函数、集合的区别(1)数列和函数:数列是以正整数集*N (或它的有限子集){}1234n ,,,,,为定义域的函数()n a f n =. (2)数列和集合的区别和联系:集合是没有顺序的,数列是有顺序的7.数列的递推公式如果已知数列的第一项,且从第二项开始的任一项n a 与它的前一项1n a -间的关系可以用一个公式来表示,那么这个公式就叫这个数列的递推公式.例如,1112(2)n n a a a n -==-,≥.给出递推公式和初始值的数列是一个确定的数列,所以递推公式也是给出数列的一种方法,即递推法. 8 数列的前n 项和数列{}n a 的前n 项和定义为:123n n S a a a a =++++.数列的前n 项和构成了一个新的数列{}n S ,且11(1)(2)n n n S n a S S n -=⎧=⎨-⎩≥.一、数列的基本概念1. (2010年东城一模7) 已知数列{}n a 的通项公式3log ()1n na n n =∈+*N ,设其前n 项和为n S ,则使4n S <- 成立的最小自然数n 等于( )A .83B .82C .81D .802. (2011年海淀二模5)已知正项数列{}n a 中,11=a ,22=a ,222112(2)n n n a a a n +-=+≥,则6a 等于( )A.16 B.8 C.22 D.43. 数列{}n a 满足1111(2)3n n a a n n N a +-==-≥∈,,,则2008a 等于( )A .13B .3C . 13- D .-34. (2011年东城区期末理11)在数列{}n a 中,若12a =,且对任意的正整数,p q 都有q p q p a a a =+,则8a 的值为 .5. (2010年东城二模6)已知函数6(3)3,7(),7.x a x x f x a x ---≤⎧=⎨>⎩,若数列{}n a 满足*()()n a f n n =∈N ,且{}n a 是递增数列,则实数a 的取值范围是 ( )A .9[3)4,B .9(3)4,C .(2,3)D .(1,3)6. 已知()f x 是定义在R 上不恒为零的函数,对于任意的x y ∈R ,,都有()()()f x y xf y yf x ⋅=+成立.数列{}n a 满足(2)n n a f =()n ∈*N ,且12a =.则数列的通项公式n a =__________________ .二、数列的递推公式7. (2006年重庆12)在数列{}n a 中,若11123(1)n n a a a n +==+≥,,则该数列的通项n a =8. 数列{}n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ⋅⋅⋅⋅=,求数列{}n a 的通项公式n a .9. 若数列{}n a 中,13a =,且2+1n n a a =(n 是正整数),则数列的通项公式时n a =10. 已知数列{}n a ,满足112311+2+3+1)(2)n n a a a a a n a n -==-≥,(,则{}n a 的通项 11)(2)n n a n =⎧=⎨≥⎩(11. 求满足下列条件的数列{}n a 的通项公式(1)已知{}n a 满足+11211+412n n a a a n ==-,,求n a (2)已知{}n a 满足+13n n n a a =,且13a =,求n a二、n a 与n S 的关系12. (2011年四川9)数列{}n a 的前n 项和为n S ,若1113(1)n n a a S n -==≥,,则6a =( )A .3 ×44B .3 ×44+1C .44D .44+113. 设数列{}n a 的前n 项和为111,1(1)3n n n S a a S n +==≥,,则n a =______14. 已知下列个数列{}n a 的前n 项和n S 的公式,求{}n a 的通项公式 (1)=n n S n (-1);(2)=32n n S -;(3)21=(2)1n n S n a n a ≥=,15. 已知下列个数列{}n a 的前n 项和n S 的公式,求{}n a 的通项公式 (1)2=231n S n n --(2)2=10n S n n -等差数列二、等差数列1.等差数列的定义:一般地,如果一个数列从第..2.项起..,每一项与它的前一项的差都等于同一个常数..,那么这个数列就叫等差数列....,这个常数叫做等差数列的公差..,公差通常用字母d 表示. 用递推公式表示为a n - a n - 1 = d (n ≥ 2)或a n + 1 - a n = d (n ∈ N *). 2.等差数列的通项公式:a n = a 1 + (n - 1)d = a m + (n - m )d . 3.等差中项的概念:定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.....其中2a bA +=. 说明:a ,A ,b 成等差数列 ⇔ 2a bA +=. 4.等差数列的前n 和公式:11()(1)22n n n a a n n S na d +-==+.5.等差数列的性质:(1) 在等差数列{a n }中,从第2项起,每一项是它相邻两项的等差中项. (2) 在等差数列{a n }中,相隔等距离的项组成的数列是等差数列. 如:a 1,a 3,a 5,a 7,…;a 3,a 8,a 13,a 18,….(3) 在等差数列{a n }中,对任意m ,n ∈ N *,a n = a m + (n - m )d ,n ma a d n m-=-(n ≠ m ). (4) 在等差数列{a n }中,若m + n = s + t (m ,n ,s ,t ∈ N *),则a m + a n = a s + a t . (5) 等差数列{a n }中,公差为d ,若d > 0,则{a n }是递增数列;若d = 0,则{a n }是常数列;若d < 0,则{a n }是递减数列. 6.数列最值:(1) a 1 > 0,d < 0时,S n 有最大值;a 1 < 0,d > 0时,S n 有最小值. (2) S n 最值的求法:① 若已知S n ,可用二次函数最值的求法(n ∈ N *); ② 若已知a n ,则S n 取最值时n 的值(n ∈ N *)可如下确定100n n a a +≥⎧⎨≤⎩或10n n a a +≤⎧⎨≥⎩.1. (1) 求等差数列8,5,2,…的第20项;(2) - 401是不是等差数列- 5,- 9,- 13,…的项?如果是,是第几项? 解:(1) 由a 1 = 8,d = 5 - 8 = - 3,n = 20,得a 20 = 8 + (20 - 1) ⨯ (- 3) = - 49. (2) 由a 1 = - 5,d = - 9 - (- 5) = - 4,得数列通项公式为:a n = - 5 - 4(n - 1),由题意可知,本题是要回答是否存在正整数n ,使得- 401 = - 5 - 4(n - 1)成立,解之得n = 100,即- 401是这个数列的第100项.2. (2011湖南理12)设S n 是等差数列{a n }(n ∈ N *),的前n 项和,且a 1 =1,a 4 = 7,则S 5 = .【答案】25【解析】由a 1 =1,a 4 = 7可得a 1 =1,d = 2,a 5 = 9,所以5(19)5252S +⨯==.3. (2012辽宁理6)在等差数列{a n }中,已知a 4 + a 8 = 16,则该数列前11项和S 11 = ( B )A .58B .88C .143D .176 【解析】在等差数列中,∵a 1 + a 11 = a 4 + a 8 = 16,∴1111111()882a a S ⨯+==,答案为B .4. (2012江西理12) 设数列{a n },{b n }都是等差数列,若a 1 + b 1 = 7,a 3 + b 3 = 21,则a 5 + b 5 = .【答案】35【考点】本题考查等差数列的概念和运算.考查等差中项的性质及整体代换的数学思想. 【解析】(解法一)因为数列{a n },{b n }都是等差数列,所以数列{a n + b n }也是等差数列.故由等差中项的性质,得(a 5 + b 5) + (a 1 + b 1) = 2(a 3 + b 3),即(a 5 + b 5) + 7 = 2 ⨯ 21,解得a 5 + b 5 = 35. (解法二)设数列{a n },{b n }的公差分别为d 1,d 2,因为a 3 + b 3 = (a 1 + 2d 1) + (b 1 + 2d 2) = (a 1 + b 1) + 2(d 1 + d 2) = 7 + 2(d 1 + d 2) = 21, 所以d 1 + d 2 = 7.所以a 5 + b 5 = (a 3 + b 3) + 2(d 1 + d 2) = 35.5. 等差数列{a n }的前n 项和记为S n ,若a 2 + a 4 + a 15的值是一个确定的常数,则数列{S n }中也为常数的项是( C )A .S 7B .S 8C .S 13D .S 15【解析】设a 2 + a 4 + a 15 = p (常数),∴3a 1 + 18d = p ,即a 7 =31p .∴S 13 =2)(13131a a +⨯= 13a 7 =313p .6. (2012浙江理7)设S n 是公差为d (d ≠ 0)的无穷等差数列{a n }的前n 项和,则下列命题错误的是( C )A.若d < 0,则数列{S n}有最大项B.若数列{S n}有最大项,则d < 0C.若数列{S n}是递增数列,则对任意n∈N*,均有S n > 0D.若对任意n∈N*,均有S n > 0,则数列{S n}是递增数列【解析】选项C显然是错的,举出反例:- 1,1,3,5,7,….满足数列{S n}是递增数列,但是S n > 0不恒成立.故选C.7.把正整数按下列方法分组:(1),(2,3),(4,5,6),…,其中每组都比它的前一组多一个数,设S n表示第n组中所有各数的和,那么S21等于( B )A.1113 B.4641 C.5082 D.53361【分析】第21组共有21个数,构成一个等差数列,公差为1,首项比第20组的最后一个数大1,所以先求前20组一共有多少个数.解:因为第n组有n个数,所以前20组一共有1 + 2 + 3 + … + 20 = 210个数,于是第21组的第一个数为211,这组一共有21个数,S21 = 21 ⨯ 211 +21202⨯⨯ 1 = 4641,故选B.【说明】认真分析条件,转化为数列的基本问题.8.已知数列{a n}的前n项和S n = 10n-n2 (n∈N*),又b n = | a n |,求b n的前n项和T n.解:由题可得:a1 = 9,当n > 1时a n = S n-S n- 1 = - 2n + 11,若使a n = - 2n + 11 ≥ 0,则n≤ 5.5,即数列的前5项非负,以后各项均负,∴当n≤ 5时,T n = S n = 10n-n2,当n≥ 6时,T n = a1 + a2 + … + a5- (a6 + a7 + … + a n)= 2(a1 + a2 + … + a5) - (a1 + a2 + … + a n)= 2S5-S n = 50- (10n-n2),∴2210(0510505nn n nTn n n⎧-+<≤⎪=⎨-+>⎪⎩)().故第n组的第一个数是(n2-n- 1) + 2 = n2-n + 1.9.设等差数列{a n}的首项a1及公差d都为整数,前n项和为S n.(1) 若a11 = 0,S14 = 98,求数列{a n}的通项公式;(2) 若a1≥ 6,a11 > 0,S14≤ 77,求所有可能的数列{a n}的通项公式.解:(1) 由S14 = 98,得2a1 + 13d = 14,又a11 = a1 + 10d = 0,解得d = - 2,a1 = 20,所以数列{a n}的通项公式是:a n = 22 - 2n.(2) 由14111776Saa≤⎧⎪>⎨⎪≥⎩,得111213111006a da da+≤⎧⎪+>⎨⎪≥⎩,即111213112200212a da da+≤⎧⎪--<⎨⎪-≤-⎩①②③由① + ②得- 7d < 11,即117d>-,① + ③得113d≤-,∴111713d-<≤-,又d∈Z,∴d = - 1,从而得10 < a1≤ 12,由a1∈Z,得a1 = 11或a1 = 12,故所有可能的数列{a n}的通项公式是:a n = 12 -n和a n = 13 -n.等比数列三、等比数列1.等比数列的定义:一般地,如果一个数列从第.2.项起..,每一项与它的前一项的比都等于同一个常数..,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比.公比通常用字母q 表示(q ≠ 0),即:a n + 1∶a n = q (q ≠ 0).注意条件“从第2项起”、“常数”q .由定义可知:等比数列的公比和项都不为零. 2.等比数列的通项公式为:a n = a 1q n - 1 (a 1 ≠ 0,q ≠ 0).说明:(1) 由等比数列的通项公式可知:当公比q = 1时,该数列既是等比数列也是等差数列; (2) 由等比数列的通项公式知:若{a n }为等比数列,则nma a = q n - m ,即a n = a m q n - m . 3.等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.其中G 2 = ab,即G = 说明:两个符号相同的非零实数,都有两个等比中项,它们互为相反数.4.等比数列前n 项和公式:11,1,(1), 1.1n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩(错位相减法).说明:(1) a 1,q ,n ,S n 中已知三个可求第四个;(2) 注意求和公式中是q n ,通项公式中是q n - 1,不要混淆; (3) 应用求和公式时,必要时应分q ≠ 1和q = 1的情况讨论. 5.等比数列的性质:(1) 等比数列任意两项间的关系:如果a n 是等比数列的第n 项,a m 是等比数列的第m 项,公比为q ,则有a n = a m q n - m . (2) 对于等比数列{a n },若m + n = s + t (m ,n ,s ,t ∈ N *),则a m ⋅ a n = a s ⋅ a t .(3) 若{a n }是等比数列,S n 是其前n 项的和,m ∈ N *,那么当q ≠ -1或m 为奇数时,S m ,S 2m - S m ,S 3m - S 2m 成等比数列.(4) 等比数列{a n }中,a n + 1 = a n q ,a n + 12 = a n a n + 2. (5) 等比数列{a n }中,若公比为q ,则① 当a 1 > 0,q > 1或a 1 < 0,0 < q < 1时为递增数列; ② 当a 1 < 0,q > 1或a 1 > 0,0 < q < 1时为递减数列;③ 当q < 0时为摆动数列; ④ 当q = 1时为常数列.10. 求下列各等比数列的通项公式:(1) a 1 = - 2,a 3 = - 8; (2) a 1 = 5,且2a n + 1 = - 3a n .解:(1) a 3 = a 1q 2 ⇒ q 2 = 4 ⇒ q = ± 2,∵a n = a 1q n - 1,∴a n = - 2n ,或a n = (- 2)n .(2) ∵132n n a q a +==-,又a 1 = 5,∴135()2n n a -=⨯-.11. 已知a 1,a 2,a 3,…,a 8是各项均为正数的等比数列,公比q ≠ 1,则( A )A .a 1 + a 8 > a 4 + a 5B .a 1 + a 8 < a 4 + a 5C .a 1 + a 8 = a 4 + a 5D .a 1 + a 8与a 4 + a 5的大小关系不确定【分析】比较两数大小用到作差比较法.解:a 1 + a 8 = a 1 + a 1q 7 = a 1(1 + q 7),a 4 + a 5 = a 1q 3 + a 1q 4 = a 1(q 3 + q 4),a 1 + a 8 - (a 4 + a 5) = a 1(1 + q 7) - a 1(q 3 + q 4)= a 1(1 + q 7 - q 3 - q 4) = a 1(1 - q 3) (1 - q 4).∵a 1,a 2,a 3,…,a 8的各项均为正数,∴a 1 > 0,q > 0.当q > 1时有q 3 > 1,q 4 > 1,a 1(1 - q 3) (1 - q 4) > 0;当0 < q < 1时有q 3 < 1,q 4 < 1,也有a 1(1 - q 3) (1 - q 4) > 0,∴对任意正数q ≠ 1都有a 1 + a 8 - (a 4 + a 5) > 0,即a 1 + a 8 > a 4 + a 5,故选A .12. (2012浙江理13)设公比为q (q > 0)的等比数列{a n }的前n 项和为S n .若S 2 = 3a 2 + 2,S 4 = 3a 4 + 2,则q =______________. 【答案】32【解析】将S 2 = 3a 2 + 2,S 4 = 3a 4 + 2两个式子全部转化成用a 1,q 表示的式子,即111233*********a a q a q a a q a q a q a q +=+⎧⎨+++=+⎩,两式作差得:a 1q 2 + a 1q 3 = 3a 1q (q 2 - 1),∵a 1 ≠ 0,q ≠ 0,∴q + q 2 = 3(q 2 - 1),又q > 0,∴可得q = 3(q - 1),解之得:32q =. 13. 在各项均为正数的等比数列{a n }中,若a 5a 6 = 9,则log 3a 1 + log 3a 2 + …+ log 3a 10 = ( B )A .12B .10C .8D .2 + log 35【解析】log 3a 1 + log 3a 2 + …+ log 3a 10 = log 3(a 1a 2…a 10) = log 3(a 5a 6)5 = log 395 = 10.14. 若等比数列{a n }的公比q < 0,前n 项和为S n ,则S 8a 9与S 9a 8的大小关系是( A )A .S 8a 9 > S 9a 8B .S 8a 9 < S 9a 8C .S 8a 9 = S 9a 8D .不确定【解析】由等比数列通项公式与前n 项和公式得S 8·a 9 - S 9·a 8 = -q q a --1)1(81·a 1q 8 -q q a --1)1(91·a 1q 7 =qa q q q a ----1)]()[(16716821 =qq q a --1)(7821= - a 12q 7. 又q < 0,则S 8·a 9 - S 9·a 8 > 0,即S 8·a 9 > S 9·a 8.15. (2012辽宁理14)已知等比数列{a n }为递增数列,且25a = a 10,2(a n + a n + 2) = 5a n + 1,则数列{a n }的通项公式为a n = ______________.【答案】2n【考点】本题主要考查等比数列的通项公式及方程思想和逻辑推理能力,属于中档题.【解析】∵25a = a 10,∴ (a 1q 4)2 = a 1q 9,∴a 1 = q ,故a n = q n ,∵2(a n + a n + 2) = 5a n + 1,∴2a n (1 + q 2) = 5a n q ,∴2(1 + q 2) = 5q ,解得q = 2或q =12(舍去),∴a n = 2n . 16. (2011北京理11) 在等比数列{a n }中,若112a =,a 4 = - 4,则公比q = ;| a 1 | + | a 2 | + … + | a n | = .【答案】- 2;1122n . 【解析】由{a n }是等比数列得a 4 = a 1q 3,又112a =,a 4 = - 4,所以- 4 =12q 3 ⇒ q = - 2, {| a n |}是以12为首项,以2为公比的等比数列, | a 1 | + | a 2 | + … + | a n | 11(12)122122n n --==--.17.(2011江西理18) 已知两个等比数列{a n},{b n},满足a1 = a (a > 0),b1-a1 = 1,b2-a2 = 2,b3-a3 = 3.(1) 若a = 1,求数列{a n}的通项公式;(2) 若数列{a n}唯一,求a的值.解:(1) 当a = 1时,设{a n}的公比为q,则b1 = 1 + a = 2,b2 = 2 + aq = 2 + q,b3 = 3 + aq2 = 3 + q2,又{b n}为等比数列,则b1,b2,b3成等比数列,得(2 + q)2 = 2(3 + q2),即q2- 4q + 2 = 0,解得q1,或q2 = 2 ,所以:a n)n- 1,或a n = (2 )n- 1.(2) 设{a n}的公比为q,则由(2 + aq)2 = (1 + a)(3 + aq2),得aq2- 4aq + 3a- 1 = 0,∵a > 0,∴△ = (4a)2- 4a(3a- 1) = 4a(a + 1) > 0,故方程有两个不同的实根,∵{a n}唯一,∴方程必有一根为0,将q = 0代入方程得,13a=.等差、等比数列综合18. (2010北京文16) (本小题共13分) 已知{a n }为等差数列,且a 3 = - 6,a 6 = 0.(Ⅰ)求{a n }的通项公式;(Ⅱ)若等比数列{b n }满足b 1 = - 8,b 2 = a 1 + a 2 + a 3,求{b n }的前n 项和公式. 解:(Ⅰ) 设等差数列{a n }的公差为d .因为a 3 = - 6,a 6 = 0,所以112650a d a d +=-⎧⎨+=⎩,解得a 1 = - 10,d = 2, 所以a n = - 10 + 2(n - 1) = 2n - 12.或:由a 6 = a 3 + 3d ,及a 3 = - 6,a 6 = 0,得d = 2,a n = a 6 + 2(n - 6) = 2n - 12.或a n = a 3 + 2(n - 3) = 2n - 12.(Ⅱ) 设等比数列{b n }的公比为q ,因为b 2 = a 1 + a 2 + a 3 = - 24,b 1 = - 8,所以- 8q = - 24,即q = 3,所以{b n }的前n 项和公式为1(1)1n n b q S q-=-= 4(1 - 3n ).19. 等差数列{a n }中,a 4 = 10且a 3,a 6,a 10成等比数列,求数列{a n }前20项的和S 20.解:设数列{a n }的公差为d ,则a 3 = a 4 - d = 10 - d ,a 6 = a 4 + 2d = 10 + 2d ,a 10 = a 4 + 6d = 10 + 6d .由a 3,a 6,a 10成等比数列得a 3a 10 = a 62,即(10 - d )(10 + 6d ) = (10 + 2d )2,整理得10d 2 - 10d = 0,解得d = 0或d = 1.当d = 0时,S 20 = 20a 4 = 200.当d = 1时,a 1 = a 4 - 3d = 10 - 3 ⨯ 1 = 7,于是2012019202S a d ⨯=+= 20 ⨯ 7 + 190 = 330.20. (2012广东理19) (本小题满分14分)设数列{a n }的前n 项和为S n ,满足2S n = a n + 1 - 2n + 1 + 1,n ∈ N *,且a 1,a 2 + 5,a 3成等差数列.(1) 求a 1的值;(2) 求数列{a n }的通项公式;(3) 证明:对一切正整数n ,有1211132n a a a +++<. 【解析】本题考查由数列的递推公式求通项公式,不等式证明问题,考查了学生的运算求解能力与推理论证能力,难度一般.(1) 解:2S n = a n + 1 - 2n + 1 + 1,2S n + 1 = a n + 2 - 2n + 2 + 1,相减得:a n + 2 = 3a n + 1 + 2n + 1,2S 1 = a 2 - 3 ⇒ a 2 = 2a 1 + 3,a 3 = 3a 2 + 4 = 6a 1 + 13,a 1,a 2 + 5,a 3成等差数列⇒ a 1 + a 3 = 2(a 2 + 5) ⇒ a 1 = 1.(2) 解:a 1 = 1,a 2 = 5,得a n + 1 = 3a n + 2n 对∀n ∈ N *均成立,a n + 1 = 3a n + 2n ⇒ a n + 1 + 2n + 1 = 3(a n + 2n ),∴{a n + 2n }是以a 1 + 21 = 3为首项,以3 为公比的等比数列,∴a n + 2n = 3n ,即a n = 3n - 2n .(3) 证明:当n = 1时,11312a =<, 当n ≥ 2时,233()()222n ≥> ⇔ 3n > 2 ⨯ 2n ⇔ 112n n a <. ∴231211111111311222222n n n a a a +++<++++=+-<, 综上得:对一切正整数n ,有1211132n a a a +++<. 或:∵a n = 3n - 2n = 3 ⨯ 3n - 1 - 2n = 3n - 1 + 2(3n - 1 - 2n - 1) ≥ 3n - 1,∴1113n n a -≤, ∴21121111111131331(1)132233313n n n n a a a --+++<++++==-<-.。