等比数列的通项公式1
等比数列的通项公式
等比数列的通项公式
等比数列通项公式为an=a1*q^(n-1)(1,n-1均为下标)。
等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。
这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0。
等比数列的通项公式形式可类比成为指数函数,故在进行增减性讨论时,可以借助指数函数的增减性,加之系数的正负,确定最终等比数列的增减性问题。
还应注意:
1、等比数列所有的奇数项同号。
2、等比数列所有的偶数项同号。
3、因为偶次方根有正负两解,所以已知等比数列的任意两项,等比数列并不确定。
等比数列的通项公式
等比数列的通项公式等比数列是数学中一个重要的概念,其中每一项与前一项的比值保持不变。
在解决等比数列问题时,掌握通项公式是至关重要的。
本文将详细介绍等比数列的通项公式,并给出相关的例子进行解析。
一、等比数列的定义与性质等比数列是指数列中,每一项与前一项的比值都是固定的常数。
数列的通项公式可以通过等比数列的性质推导出来。
设等比数列的首项为a₁,公比为r,则数列的通项公式可表示为:an = a₁ * r^(n-1)其中,an表示等比数列的第n项。
二、等比数列的通项公式推导接下来,我们通过一个简单的例子来推导等比数列的通项公式。
例1:已知等比数列的首项为2,公比为3,求第10项的值。
解:根据等比数列的定义,我们可以得到:a₁ = 2, r = 3代入通项公式an = a₁ * r^(n-1),则第10项的值为:a₁₀ = 2 * 3^(10-1) = 2 * 3^9通过计算,得到第10项的值为2 * 19683 = 39366。
三、等比数列的应用等比数列的通项公式在实际问题中有广泛的应用。
下面,我们通过一个实例来说明等比数列在日常生活中的应用。
例2:小明每天存钱,第一天存1元,之后每天存的金额是前一天的3倍,求30天内总共存了多少钱。
解:设第n天存的金额为an,根据题意,我们可以得到:a₁ = 1, r = 3代入通项公式an = a₁ * r^(n-1),则第30天存的金额为:a₃₀ = 1 * 3^(30-1) = 1 * 3^29通过计算,得到第30天存的金额为1 * 3^29 = 1 * 594,914,763 = 594,914,763元。
因此,小明在30天内总共存了594,914,763元。
四、等比数列的性质除了通项公式,等比数列还具有以下几个重要的性质:1. 任意项与其后第n项的比值为r^(n-1)。
2. 任意项与其前第n项的比值为r^(1-n)。
3. 任意连续两项的比值为相同的常数r。
4. 等比数列的前n项和公式为Sn = a₁ * (1 - r^n) / (1 - r)。
等比数列的性质与公式
等比数列的性质与公式数列是数学中常见的一种序列,根据元素之间的规律可以分为等差数列和等比数列等。
在本文中,我们将重点讨论等比数列的性质与公式。
一、等比数列的定义等比数列是指一个数列中的每一项与它的前一项的比值都相等的数列。
设等比数列的首项为a₁,公比为r,则数列的通项公式为:aₙ = a₁ * r^(n-1)其中aₙ表示第n项的值。
二、等比数列的性质1. 公比的性质公比为r的等比数列中,如果r>1,则数列是递增的;如果0<r<1,则数列是递减的;如果r=1,则数列是恒定的。
2. 通项公式等比数列的通项公式为aₙ = a₁ * r^(n-1),通过该公式可以求出任意项的值。
3. 首项、公比与项数的关系根据等比数列的通项公式aₙ = a₁ * r^(n-1),我们可以得到首项、公比和项数之间的关系:aₙ = a₁ * r^(n-1)a₂ = a₁ * rr = a₂ / a₁a₃ = a₁ * r^2...即等比数列的第n项等于首项乘以公比的n-1次方。
4. 等比数列的前n项和等比数列的前n项和记为Sₙ,可以通过以下公式计算:Sₙ = a₁ * (1 - rⁿ) / (1 - r)其中n表示项数。
三、等比数列的常见问题1. 求等比数列中某一项的值如果已知等比数列的首项a₁、公比r和项数n,我们可以通过通项公式aₙ = a₁ * r^(n-1)计算出该项的值。
2. 求等比数列的前n项和已知等比数列的首项a₁、公比r和项数n,可以通过前n项和的公式Sₙ = a₁ * (1 - rⁿ) / (1 - r)求得。
3. 求等比数列的项数已知等比数列的首项a₁、公比r和某一项的值aₙ,可以通过项数的对数形式求得:n = logₐ( aₙ / a₁ ) + 1其中logₐ表示以a为底的对数运算。
四、等比数列的应用等比数列在实际问题中有着广泛的应用。
例如在金融领域,利率、汇率等都可以用等比数列的形式来描述;在自然科学研究中,细胞分裂、物种繁殖等也常常涉及等比数列的计算。
高中数学等比数列公式是什么
高中数学等比数列公式是什么高中数学等比数列公式1、等比数列的通项公式是:An=A1__q^(n-1)2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N__,则有:ap·aq=am·an,等比中项:aq·ap=2arar则为ap,aq等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap__aq;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.高中数学解题方法与技巧1、不等式、方程或函数的题型,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2、在研究含有参数的初等函数的时候应该抓住无论参数怎么变化一些性质都不变的特点。
如函数过的定点、二次函数的对称轴等。
3、在求零点的函数中出现超越式,优先选择数形结合的思想方法。
4、恒成立问题中,可以转化成最值问题或者二次函数的恒成立可以利用二次函数的图像性质来解决,灵活使用函数闭区间上的最值,分类讨论的思想(在分类讨论中应注意不重复不遗漏)。
5、选择与填空中出现不等式的题,应优先选特殊值法。
6、在利用距离的几何意义求最值得问题中,应首先考虑两点之间线段最短,常用次结论来求距离和的最小值;三角形的两边之差小于第三边,常用此结论来求距离差的最大值。
等比数列的通项公式及性质
一、等比数列的通项公式
设等比数列{an
}的公比为q,则:
a2 q
a1
a3 q a2 a4 q
a…3 …
累乘法
an q an 1
累乘得: an qn1
a1
a 等比数列的通项公式: na1q 源自 1 法二: a2 a1q
a3 a2q (a1q)q a1q2
特别地,若m+n=2p,则aman ap2. m, n,p,q N
1、在等比数列中,
(1)若a2= 2,a10=20,则a5a7=
a6=
(2)若a3a5a8a10=16 ,则 a4a9=_____
(3)若a3a4a5a6a7=-32,则 a5=______
(5)若a3=-2,则等比数列的前5项的积为______
作业:P15---练习,P19---A组1,2,3,4,5
能力提升
例4:在数列an中,a1=1,an 3an1,
求数列的通项公式an。
二、性质
性质1:an amqnm
m, n N
可变形为:an am
q
nm
分例析2::1已数知列任{意an一}为项等am及比公数比列q即:可求出通项公式。
从第2项起,每一项与它前 概
一项的比等同一个常数 念
等差数列
从第2项起,每一项与它前
一项的差等同一个常数
公比(q)
常
数
q可正可负,但不可为零 性
质
an a1 qn1
通 项
通
an am qnm (m, n N*)
项 变
形
等比数列性质公式总结
等比数列性质公式总结引言在数学中,数列是由一系列有序的数字按一定规律排列而成的序列。
其中,等差数列和等比数列是两种常见的数列类型。
本文将重点总结等比数列的性质公式。
等比数列的定义等比数列是指一个数列中的每一项(除首项外)都与它前一项成等比关系的数列。
设等比数列的首项为a,公比为r,那么该数列的通项公式可以表示为:an = a * r^(n-1),其中an为第n项。
性质公式一:第n项公式等比数列的第n项公式可通过通项公式进行推导。
设等比数列的首项为a,公比为r,那么第n项an可表示为:an = a * r^(n-1)这个公式可以帮助我们在已知公比和首项的情况下,快速计算出任意一项的值。
性质公式二:前n项和公式等比数列的前n项和公式可以帮助我们计算等比数列前n项的和。
设等比数列的首项为a,公比为r,那么前n项的和Sn可表示为:Sn = a * (1 - r^n) / (1 - r)性质公式三:通项公式与首项之间的关系在等比数列中,通项公式与首项之间存在一定的关系。
设等比数列的通项公式为an = a * r^(n-1),那么首项a可表示为:a = an / r^(n-1)这个公式可以帮助我们在已知公比、任意一项的值以及项数的情况下,求解出首项的值。
性质公式四:公比和项数之间的关系在等比数列中,公比和项数之间也存在一定的关系。
设等比数列的通项公式为an = a * r^(n-1),那么公比r可表示为:r = (an / a)^(1 / (n-1))这个公式可以帮助我们在已知首项、任意一项的值以及项数的情况下,求解出公比的值。
性质公式五:等比数列的特殊性质等比数列还有一些特殊性质,如首项为1,公比为正数,则数列的前n项和公式可以简化为:Sn = (1 - r^n) / (1 - r)其中,r不等于1。
总结等比数列是数学中常见的数列类型之一,我们通过总结上述性质公式,可以更好地理解和应用等比数列。
这些性质公式包括了等比数列的第n项公式、前n项和公式以及通项公式与首项之间的关系等。
等比数列的定义和通项公式
等比数列的定义和通项公式一、等比数列的定义和通项公式1、等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列。
这个常数叫做等比数列的公比,公比通常用字母$q$表示$(q≠0)$,即$\frac{a_n}{a_{n-1}}=q(n\geqslant2)$。
(1)等比数列中任一项都不为0,且公比$q≠0$。
(2)若一个数列为常数列,则此数列一定是等差数列,但不一定是等比数列,如:0,0,0,0,$\cdots$。
2、等比数列的通项公式(1)通项公式若等比数列${a_n}$的首项为$a_1$,公比为$q$,则这个等比数列的通项公式是$a_n=a_1q^{n-1}(a_1,q≠0)$。
在记忆公式时,要注意$q$的指数比项数$n$小1这一特点。
注:由$a_n=a_1q^{n-1}$,$a_m=a_1q^{m-1}$,可推出$\frac{a_n}{a_m}=q^{n-m}$,即$a_n=a_mq^{n-m}$。
所以有:① 在已知等比数列${a_n}$中任一项$a_m$及公比$q$的前提下,可以使用$a_n=a_mq^{n-m}$求得等比数列中的任意项$a_n$。
②已知等比数列${a_n}$中的$a_m$和$a_n$两项,就可以使用$\frac{a_n}{a_m}=q^{n-m}$求出公比。
(2)等比数列中项的正负对于等比数列${a_n}$,若$q<0$,则${a_n}$中正负项间隔出现,如数列1,-2,4,-8,16,$\cdots$;若$q>0$,则数列${a_n}$各项同号。
综上,等比数列奇数项必同号,偶数项也同号。
3、等比中项如果在$a$与$b$中间插入一个数$G(G≠0)$,使$a$,$G$,$b$成等比数列,那么$G$叫做$a$与$b$的等比中项。
若$G$是$a$与$b$的等比中项,则$\frac{G}{a}=\frac{b}{G}$,即$G^2=ab$,$G=±\sqrt{ab}$。
等比数列的计算
等比数列的计算等比数列(Geometric Progression)是数列中每一项与前一项的比相等的数列。
以首项a和公比r来表示等比数列,数列的通项公式可以写作:an = a * r^(n-1),其中a表示首项的值,n表示项数,r表示公比。
等比数列的计算涉及到求和、求项数、求公比和求首项等操作。
1. 求和:等比数列的求和可以通过以下公式求解:Sn = a * (1 - r^n) / (1 - r),其中Sn表示等比数列的前n项和。
例如,求等比数列1,2,4,8,16的前5项和:a = 1, r = 2, n = 5Sn = 1 * (1 - 2^5) / (1 - 2) = 312. 求项数:对于已知的等比数列的前n项和Sn,可以通过以下公式求项数n:Sn = a * (1 - r^n) / (1 - r)将已知的Sn带入公式,解方程得到n的值。
例如,对于等比数列1,3,9,27,81的前n项和为121:a = 1, Sn = 121, r = 3121 = 1 * (1 - 3^n) / (1 - 3)121(1 - 3) = 1 - 3^n-242 = -3^nn = log3(242) ≈ 4.363. 求公比:已知等比数列的相邻两项,可以通过以下公式求解公比r:r = an / a(n-1)例如,对于等比数列2,4,8,16,可以计算公比:r = 8 / 4 = 24. 求首项:已知等比数列的某一项和公比,可以通过以下公式求解首项a:a = an / r^(n-1)例如,对于等比数列1,5,25,125,可以计算首项:a = 1 / 5^(1-1) = 1等比数列的计算可以用于各种实际问题中,例如金融、几何、电路等领域。
掌握等比数列的计算方法,对于解决相关问题非常有帮助。
等比数列的通项公式
等比数列的通项公式
等比数列是数学中常见的数列类型,它的每一项与前一项的比值都
是固定的。
在等比数列中,可以求出每一项的通项公式,便于快速计算。
设等比数列的首项为a₁,公比为r,则等比数列的通项公式为:
an = a₁ * r^(n-1)
其中,an表示数列的第n项。
下面我们通过一个例子来说明如何使用等比数列的通项公式。
例题:求等比数列1,2,4,8,16的第n项。
解题过程:
已知等比数列的首项a₁=1,公比r=2,要求第n项an。
根据等比数列的通项公式,代入已知的值,我们有:
an = 1 * 2^(n-1)
因此,我们可以得到等比数列1,2,4,8,16的通项公式是:
an = 2^(n-1)
这样,我们就可以根据该通项公式来求解等比数列的任意项。
例如,要求该等比数列的第6项,我们可以将n=6代入通项公式中:a₆ = 2^(6-1)
= 2^5
= 32
因此,等比数列1,2,4,8,16的第6项为32。
总结:
等比数列的通项公式为an = a₁ * r^(n-1),其中an表示数列的第n 项,a₁表示首项,r表示公比。
通过该通项公式,我们可以轻松求解等比数列中任意项的值。
这种数列在数学和实际应用中具有广泛的用途,掌握其通项公式对于解题非常重要。
以上就是关于等比数列的通项公式的详细介绍。
通过理解和应用等
比数列的通项公式,我们可以更好地处理与等比数列相关的问题。
希
望本文对您有所帮助。
等比数列前n项和公式和通项的公式
等比数列前n项和公式和通项的公式下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!等比数列前n项和公式和通项的公式引言等比数列是数学中的一种重要概念,它的每一项与它的前一项之比都相等。
高中数学等比数列通项公式
高中数学等比数列通项公式高中数学等比数列通项公式大全学好数学的关键是公式的掌握,数学在多个不同领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。
下面是小编为大家整理的高中数学等比数列通项公式,希望能帮助到大家!等比数列通项公式an=a1__q’(n-1)(其中首项是a1,公比是q)an=Sn-S(n-1)(n≥2)前n项和当q≠1时,等比数列的前n项和的公式为Sn=a1(1-q’n)/(1-q)=(a1-a1__q’n)/(1-q)(q≠1)当q=1时,等比数列的前n项和的公式为Sn=na1高考数学应试技巧1、拓实基础,强化通性通法高考对基础知识的考查既全面又突出重点。
抓基础就是要重视对教材的复习,尤其是要重视概念、公式、法则、定理的形成过程,运用时注意条件和结论的限制范围,理解教材中例题的典型作用,对教材中的练习题,不但要会做,还要深刻理解在解决问题时题目所体现的数学思维方法。
2、认真阅读考试说明,减少无用功在平时练习或进行模拟考试时,高中英语,要注意培养考试心境,养成良好的习惯。
首先认真对考试说明进行领会,并要按要求去做,对照说明后的题例,体会说明对知识点是如何考查的,了解说明对每个知识的要求,千万不要对知识的要求进行拔高训练。
3、抓住重点内容,注重能力培养高中数学主体内容是支撑整个高中数学最重要的部分,也是进入大学必须掌握的内容,这些内容都是每年必考且重点考的。
象关于函数(含三角函数)、平面向量、直线和圆锥曲线、线面关系、数列、概率、导数等,把它们作为复习中的重中之重来处理,要一个一个专题去落实,要通过对这些专题的复习向其他知识点辐射。
4、关心教育动态,注意题型变化由于新增内容是当前社会生活和生产中应用比较广泛的内容,而与大学接轨内容则是进入大学后必须具备的知识,因此它们都是高考必考的内容,因此一定要把诸如概率与统计、导数及其应用、推理与证明、算法初步与框图的基本要求有目的的进行复习与训练。
等比数列通项公式和前n项和公式
等比数列通项公式和前n项和公式等比数列是指数列中相邻两项的比值都相等的数列。
设等比数列的首项为a,公比为r,则其通项公式为:an = a * r^(n-1),其中n 为项数。
在等比数列中,前n项和的公式为:Sn = a * (1 - r^n) / (1 - r)。
英文:Geometric progression is a sequence in which the ratio of any two consecutive terms is the same. Let the first term of the geometric sequence be a, and the common ratio be r, then its general term formula is: an = a * r^(n-1), where n is the number of terms. In a geometric sequence, the formula for the sum of the first n terms is: Sn = a * (1 - r^n) / (1 - r).等比数列通项公式an= a1 * q^(n-1),其中q为公比。
英文:The general term formula of a geometric sequence is an=a1 * q^(n-1), where q is the common ratio.在等比数列中,首项为a1,通项公式为:an= a1*q^(n-1)。
其中an表示第n项,q为公比。
英文:In a geometric sequence, the first term is a1 and the general term formula is: an= a1*q^(n-1). Where an represents the nth term, and q is the common ratio.当公比小于1时,等比数列是一个收敛的数列。
史上最全的数列通项公式的求法15种
史上最全的数列通项公式的求法15种一、等差数列(Arithmetic sequence)1.基本公式:一个等差数列的通项公式为:an = a1 + (n-1)d其中an代表数列的第n项,a1代表数列的首项,d代表数列的公差。
2.另一种形式:等差数列的通项公式还可以表示为:an = a + (n-1) * (a2-a1)/2其中an代表数列的第n项,a代表数列的首项,a1代表数列的第二项,a2代表数列的前两项。
二、等比数列(Geometric sequence)1.基本公式:一个等比数列的通项公式为:an = a1 * r^(n-1)其中an代表数列的第n项,a1代表数列的首项,r代表数列的公比。
2.另一种形式:等比数列的通项公式也可以表示为:an = a * q^n其中an代表数列的第n项,a代表数列的首项,q代表数列的公比。
三、斐波那契数列(Fibonacci sequence)1.基本公式:一个斐波那契数列的通项公式为:Fn=(φ^n-(1-φ)^n)/√5其中Fn代表数列的第n项,φ代表黄金分割比(约1.618)。
2.矩阵法:斐波那契数列的通项公式还可以通过矩阵的形式表示:Fn=(A^n*F0),其中An是一个特定的矩阵,F0是初始向量。
四、调和数列(Harmonic sequence)1.基本公式:一个调和数列的通项公式为:an = 1/n其中an代表数列的第n项。
五、多项式数列(Polynomial sequence)一个多项式数列的通项公式为:an = an-1 + an-2 + ... + an-m其中an代表数列的第n项,an-1为前一项,an-2为前两项,an-m为前m项。
六、余弦数列(Cosine sequence)1.基本公式:一个余弦数列的通项公式为:an = a + b * cos(cn)其中an代表数列的第n项,a、b为常数,c为常数。
2.幂函数法:余弦数列的通项公式还可以表示为:an = a + b * cos(nθ)其中an代表数列的第n项,a、b为常数,θ为角度。
等比数列的通项
等比数列的通项等比数列是数学中非常重要的一种数列,它的通项公式与等差数列的通项公式相似,但它们的增量是相乘而非相加的。
在本文中,我们将介绍等比数列的通项公式及其性质。
一、等比数列的定义等比数列是一个由各项元素乘以同一个比例数得出的数列,这个比例数叫做等比数列的公比。
用符号 q 来表示公比,第 n 项为 $a_n$ 则有:$$a_n = a_1 q^{n-1}$$其中,$a_1$ 是等比数列的首项。
二、等比数列的通项公式等比数列的通项公式可以通过递推公式及通项公式推导出来。
1. 递推公式等比数列的递推公式可以表示为:$$a_{n+1}=q\\times a_n$$该公式说明了等比数列中的每一项都是前一项乘以公比。
例如,第二项是第一项乘以公比,第三项是第二项乘以公比,以此类推。
2. 通项公式由递推公式可以得到以下的推导过程:$$a_{n+1}=q\\times a_n$$$$a_n=q\\times a_{n-1}$$$$a_{n-1}=q\\times a_{n-2}$$将第二个式子代入第一个式子中,可以得到:$$a_{n+1}=q\\times q\\times a_{n-1} = q^2\\times a_{n-2}$$继续将第三个式子代入第二个式子中,可以得到:$$a_{n+1}=q\\times q\\times q\\times a_{n-2} = q^3\\times a_{n-3}$$ 以此类推,可以得到通项公式:$$a_n=a_1 \\times q^{n-1}$$三、等比数列的性质1. 通项公式的说明等比数列的通项公式表明,每一项是上一项乘以公比而得。
这说明等比数列是一个不断等比放大的过程,每一项都是前一项的一定倍数。
2. 公比 q 的作用公比 q 决定了等比数列的增量。
如果 q 大于 1,则等比数列是一个不断增长的数列;如果 q 小于 1,则等比数列是一个递减的数列;如果 q 等于 1,则等比数列是一个常数序列。
数列求通项公式的9种方法
例14
已知 满足+2 = 3+1 − 2 ,2 = 2, 1 = 1,求 的通项公式
九、奇偶分项求通项公式
核心思想:
n为奇数时,设n=2k-1
n为偶数时,设n=2k
例15 数列 满足 = ቊ
2,为奇数时
,求 的通项公式。
2 ,为偶数时
变式训练15
n2
a n ,求 {an } 的通项公式.
n
变式训练 6 已知数列 {an } 满足 a1 1 , an1 2n an ,求 {an } 的通项公式.
变式训练 7 已知数列 {an } 满足 a1 1 , an n(an1 an ) ,求 {an } 的通项公式.
四、加法构造
数列求通项公式常见的9种方法
知识复习
1、等差数列通项公式: an=a1+ (n-1)d
an=am+(n-m)d
2、等比数列通项公式: an= a1·
qn-1
am= a1·qn-m
一、利用 an 与 Sn 关系求 an
S1,
n=1,
an=
Sn-Sn-1, n≥2.
例1
n+3.
已知数列{an}的前n项和Sn,求数列{an}的通项公式.(1)Sn=2n-1;(2)Sn=2n2+
17
3
变式训练 10 已知数列 {an } 满足 a1
, an an1 5( n 2) ,求 {an } 的通项公式.
2
2
五、倒数构造
型如 an1
m an
(m pq 0) 的数列直接取倒数
pan q
例 8 已知数列 {an } 满足 a1 1 , an1