第七章常用的氧化还原滴定法..

合集下载

第7章 氧化还原滴定法(8)

第7章  氧化还原滴定法(8)

) (
[O 2 ] [ R2 ]
)
n1
=
(E - E ) p 0 . 059
lg K =
( E1 - E 2 ) p 0 . 059
17
p为n1和n2的最小公倍数。
E 为氧化剂电对的标准电 极电位; E 2 为还原剂电对的标准电 极电位。
θ
θ 1
当反应正向进行时,
E1 E 2

E1 E 2 , lg K 0
( 2 )

计量点时
E 1 E 2 E sp
将(1)×n1+(2)n2得
0 .56 V 2 [ H 3 AsO 4 ][ H ] 0 . 059 解:E E As (V ) / As ( III ) lg 2 [ HAsO 2 ] 2 H AsO c H AsO [ H ] 0 . 059 E
As (V ) / As ( III )

E
12
0 . 87 V

Cu
2
/ Cu

E

/ Cu

即:还原态生成沉淀,条件电位增大。 氧化态生成沉淀,则条件电位减小。
12
3、生成配合物的影响
例:pH=3.0时,cF-=0.1 mol· -1,求Fe3+/Fe2+条 L 件电位。忽略离子强度的影响。形成常数 KHF=103.2 , Fe3+-F- 的 b1~b3 分 别 为 105.28 、 109.30、1012.06。 E Fe 3 / Fe 2 0 . 77 V 解:Fe3+ + e- = Fe2+
θ 1
E 当n1=n2=1时, 1

大学分析化学第七章氧化还原滴定

大学分析化学第七章氧化还原滴定

Fe3++e-
Fe2
E' Fe(III)/Fe(II)
0.68V
化学计量点 后
化学计量点 前
E
Eθ' Ce(IV)/Ce(III)
0.059Vlg
cCe(IV) cCe(III)
E
Eθ' Fe(III)/Fe(II)
0.059Vlg
cFe(III) cFe(II1)7
化学计量点
E sp n 1 E n 1 1 ' n n 2 2 E 2 ' ( 适 用 于 两 个 电 对 都 是 对 称 电 对 ) E sp11.4V 4 1 1 10.6V 81.06V
试剂存在,则从Eθ′的定义式可见,副反应系数必然改变。 副反应系数改变又必然引起Eθ′和E改变。
Eθ Fe3+/Fe2+
0.77V
2Fe3++2I-=2Fe2++I2
Eθ I2/I-
0.54V
10
(四)沉淀的生成
对于某一电对,如果加入一种可以与氧化型或还原 型生成沉淀的试剂时,将会改变氧化型或还原型的浓度, 从而改变电极电位.
n
c red red ox
E
E 0.059V lg ox red 0.059V lg cox
ox / red
ox / red
n
red ox
n
cred
E
E ' 0.059V lg cox
ox / red
ox / red
n
cred
6
E
E 0.059V lg ox red 0.059V lg cox
对上述滴定选用何种指示剂?

(分析化学课件)第七章氧化还原滴定法

(分析化学课件)第七章氧化还原滴定法

津 科 技
2MnO4- + 5C2O42- + 16H+ = 2Mn2+ + 10CO2↑+ 8H2O


②标准溶液标定时的注意“三度一点”
a.速度:该反应室温下反应速度极慢,利
用反应本身所产生的Mn2+起自身
催化作用加快反应进行。
b.温度:常将溶液加热到75~85℃。温度
高于90℃会使发生下述反应:
α为Fe的副反应系数
天 当电对的氧化态和还原态的分析浓度均 津 为1mol·L-1时,可得到:
科 技 大 学
EӨ′称为条件电势。
注意:
附录表16中列出部分氧化还原电对在不
同介质中的条件电势,均为实验测得值。
当缺乏相同条件下的条件电势时,可采用
天 条件相近的条件电势数据。

条件电极电势与标准电极电势差异很大。

科 若考虑副反应影响,则以K’代替K:
技 大 学
天 津 科 技 大 学
7.1.4 化学计量点时反应进行的程度
由化学计量点时氧化态与还原态浓度的 比值表示。
可以根据平衡常数求得。
天 津 科 技 大 学
例7.3 计算1mol/L HCl介质中,Fe3+与Sn2+ 反应的平衡常数及化学计量点时反应进行的 程度。已知 E F '3 /e F 2 e 0 .6V ,8 E S '4 n /S2 n 0 .1V 4
(3)间接碘法:利用I-的还原性。
①基本反应:
2I- - 2e → I2 I2 + 2S2O32-= S4O62-+2I-
(中性或弱酸性条件)连四硫酸根
天 津
P
H,S22IO234H2HO 2 SI2H22SH2O O 3

分析化学第五版 第7章 氧化还原滴定法

分析化学第五版 第7章 氧化还原滴定法
= E θ + 0.059 lg
θ
θ
aFe 3+ aFe 2+ γ Fe 3+ [ Fe 3+ ]
γ Fe 2+ [ Fe 2+ ]
γ Fe 3+ γ Fe 2+ αFe ( III ) • cFe 3+ • αFe ( II ) cFe 2+
cFe 3+ cFe 2+
= E + 0.059lg
θ
= E + 0.059lg
γ Fe 3+ αFe ( II ) γ Fe 2+ αFe ( III )
+ 0.059lg
= E + 0.059lg
θ'
c Fe 3+ c Fe 2+
影响条件电势的因素:
0.059 OxRed E =E + n lg Red Ox
离子强度: 酸效应: 络合效应: 沉淀:
+ 0.0592 lg
cCe 4+ cCe3+
E Fe3+
'
Fe 2 +
'
+ ECe 4+
'
Ce 3+
'
E sp
E Fe3+ Fe2+ + ECe4+ Ce3+ 2
1.06V
VCe mL 滴定分数 电势 V 说明 0.00 0.0000 不便计算 1.00 0.0500 0.60 E=EFe /Fe =0.68+0.059lgcFe /cFe 10.00 0.5000 0.68 12.00 0.6000 0.69 -0.1% E=EFe /Fe +0.0593 19.80 0.9900 0.80 19.98 0.9990 0.86 突 E =(EFe /Fe +ECe /cCe )/2 20.00 1.000 1.06 sp 跃 22.02 1.001 1.26 0.1% E=ECe /Ce -0.0593

12第7章 氧化还原滴定法及习题课2.

12第7章 氧化还原滴定法及习题课2.
2MnO4- + 6H+ + 5H2C2O4 = 2Mn2+ +10CO2+8H2O
计量关系:
1 k M n O4
~
5 2
H
2C2O4
~
5 Ca 2
wCa
( C V )K M n O4
5 2
1 0 0 0 ms
MCa
100%
操作条件:自学 沉淀、洗涤P243
(4)化学需氧量COD的测定 P244 Chemical Oxygen Demand
(2)自身指示剂-KMnO4 缺点(1)标准溶液不稳定;
(2)选择性较差(易发生副反应) 需严格控制滴定条件
3、KMnO4标准溶液的配制与标定
(1)配制:间接法
纯度99.0%~99.5%, 含有MnO2等杂质。
微沸约1h,放置2天
计算、粗称KMnO4溶于水
充分氧化还原性物质
用微孔玻璃漏斗滤去MnO2
mol.L-1 FeSO4标液返滴剩余的K2Cr2O7,用去了 15.00mL,求COD。
解:Cr2O72 6 e2Cr3,O2 4 e2H2O
F e2 e F e3
计量关系:1
C
r2O
2 7
~
6 F e2
~
3 2
O2
C O DCr
[ ( C V)K 2C r2O7
(
C
V
)
F
e2
1 6
]
3 2
V水 样
(2) 极强酸性介质中,在P2O74-或F-存在下
MnO4- + 3H2P2O72- + 8H+ + 4e = Mn(H2P2O7 )33- + 4H2O

01第7章-氧化还原滴定法-条件电位

01第7章-氧化还原滴定法-条件电位

E 1.61v
n2O1 n1R 2 n2R1 n1O2
Ce
4
Fe
2
Ce
3
Fe
3
几个术语
可逆电对
Fe / Fe , I 2 / I , Fe(CN) / Fe(CN) 6 6
2 2 3
3
2

3
4
不可逆电对 MnO4 / Mn ,Cr2O7 / Cr , S4O6 / S2O3
aO 2 n1 a R1 n2 lg K lg( ) ( ) aR2 aO 1
0
有关氧化还原电对的半反应
O1 n1e R1 O2 n2e R 2
0.059 aO1 E1 E1 lg n1 a R1 0.059 aO 2 0 E2 E2 lg n2 aR2
反应达到平衡时, E1 - E2 = 0 平衡常数K:
0.059n1 CO 2 0.059n2 CO1 lg lg n2 n1 CR2 n1n2 C R1
C C E1' E2 ' 0.059 lg( O 2 ) n1 ( R1 ) n2 n2 n1 CR2 CO1
电子的最小公倍 数,也即氧化还 原反应实际上的 转移的电子数。
E
'
可逆氧化还原电对的电极电位可用能斯特方程 来表示。 RT aO 0 EE ln nF aR
0.059 aO E lg n aR
0
2
2
(25C )
E0: 标准电极电位(电势) 热力学常数,温度的函数。
对称电对:氧化态与还原态系数相同
不对称电对:氧化态与还原态系数不同
2 MnO / Mn , Fe(CN) / Fe(CN) , Fe / Fe , 4 6 6

第七章常用的氧化还原滴定法汇总

第七章常用的氧化还原滴定法汇总

氧化还原滴定法
KMnO4标准溶液
剩余Na2C2O4溶液
过量Na2C2O4 剩余KMnO4溶液
过量KMnO4 酸化的水样
2020/6/26
氧化还原滴定法
2020/6/26
KMnO4标准溶液 KMnO4 c V1 V2
? 指示剂: 自身指示剂
Na2C2O4 c/ V/
COD
预处理的水样
氧化还原滴定法
4MnO4-+12H+→4MnO2 + O2↑+6H2O
氧化还原滴定法
指示剂: 自身指示剂 滴定终点: 微红色在0.5内不褪色 催化剂: Mn2+自动催化
2020/6/26
(1998年,同济大学)试述用Na2C2O4标定KMnO4 的标 定条件并写出求算KMnO4标准溶液浓度的数学表达式。
氧化还原滴定法
强酸性 (pH≤1)
MnO4- +5e Mn2+
Eθ=1.51V
弱酸性、中性、弱碱性
MnO4- + 3e MnO2
Eθ=0.59V
强碱性(pH>14)
MnO4- + e MnO42-
Eθ=0.56V
可见,不同条件下, 电子转移数不同,化学计量关系不同
适用条件:一般都在强酸性(1-2mol·L-1 H2SO4)条件下使用, 但测有机物时选碱性溶液中进行。
1.概述
高锰酸钾法:利用高锰酸钾的强氧化能力及氧化还原滴定 原理来测定其他物质的容量分析方法。
高锰酸钾:一种强氧化剂
氧化还原滴定法
2020/6/26
原理
➢ 强酸性 (pH≤1) MnO4- + 8H+ + 5e = Mn2+ + 4H2O

第七章氧化还原滴定法2

第七章氧化还原滴定法2

(一)、反应物浓度的影响
Cr2O72-+ 6I-+ 14H+ = 2Cr3+ + 3I2+ 7H2O C(H+)=0.4 mol/L KI过量5倍。 5 min 反应完成。


(二)温度的影响
例如: KMnO4滴定C2O42-
2MnO4-+ 5C2O42-+ 16H+ = 2Mn2+ + 10CO2↑+ 8H2O
1 C1 M ( Ca ) KMnO 4 1000 2 5 Ca含 量 = 100% G
VKMnO 4

(三)、MnO2的测定-返滴定法

MnO2+ Na2C2O4+ 2H2SO4 = MnSO4+ Na2SO4+ 2CO2↑+ 2H2O

2MnO4-+ 5C2O42-+ 16H+ = 2Mn2++ 10CO2↑+ 8H2O
滴定。氧化还原滴定法是应用很广的一种滴定分析方法。
氧化还原反应的特点

K2Cr2O7与KI反应为: Cr2O72- + 14H+ + 6e = 2Cr3+ + 7H2O E0= +1.33 V


有些不能直接进行氧化还原反应的物质,还可以用 间接法进行滴定。 氧化还原滴定法是应用很广的一种滴定分析方法。

2、邻二氮菲

浅蓝色
深红色
(二)、自身指示剂


例如用KMnO4标准溶液滴定Fe2+.
2×10-6 mol/L MnO4- 粉红色

分析化学-氧化还原滴定法ppt课件

分析化学-氧化还原滴定法ppt课件

II. 进一步理解影响氧化还原反应的各种因素:包 括反应方向、反应次序、反应速度等,从而选 择和创造适当的反应条件,使氧化还原反应趋 于完全;
精选PPT课件
2
分析化学
III. 掌握氧化还原滴定过程中,溶液离子浓度和 电位变化的规律,为选择适当的指示剂确定 滴定终点提供依据;
IV. 掌握几种常用的氧化还原滴定方法:高锰酸 钾法、重铬酸钾法、碘量法和溴酸盐的特点、 反应条件和应用范围;
例如: Ag+/Ag A g ++e A g (s)
E Ag/
0.799V5
Ag
A g C l ( s ) + e A g ( s ) + C l -EAg/CAlg0.22V2
A g B r ( s ) + e A g ( s ) + B r -EAgB /Arg0.07V1
精选PPT课件
9
分析化学
EE RTlnaOx nF aRed
考虑离子强度 EERT lnO[xO]x nFRde[Rd]e
精选PPT课件
15
分析化学
考虑副反应 EEn RF T lnR OdcecxO Rdxe RO dex
对于实际电对, 其氧化型、还原型的分析浓度cox,
cred是可知的, 而rOx , rRed , Ox , Red需要根据溶液
E取决于:
E:电对的性质
表示在298K,参加电对反应的有关组分的活度为 1 mol/L( 或活度比为1),气体压力为1atm (1.013×105Pa)时,某电对相对于标准氢电极的电 极电势,与电对本质及温度相关。
精选PPT课件
8
分析化学
3. 关于Nernst方程的几点说明: A. 必须明确电对的氧化型和还原型

第七章 氧化还原滴定法

第七章   氧化还原滴定法

在应用能斯特方程式时还应注意下述两个因 素:首先,我们通常知道的是溶液中浓度而不是 活度,为简化起见,往往将溶液中离子强度的影 响加以忽略。其次,当溶液组成改变时,电对的 氧化型和还原型的存在形式也往往随之改变,从 而引起电极电位的改变。 因此,当我们利用能斯特方程式计算有关电 对的电极电位时,如果采用该电对的标准电极电 位,不考虑离子强度及氧化型和还原型的存在形 式,则计算结果与实际情况就会相差较大。
(4)即为条件电位(conditional potential)的 定义式,它表示特定条件下,氧化型与还原型的浓 度均为1mol· -1 时,校正了各种影响因素后的实际 L 电极电位,在条件不变时,为一常量。 标准电极电位与条件电位的关系,与络合反应 中绝对形成常数K和条件形成常数Kˊ的关系相似。 显然,分析化学中引入条件电位之后,处理实际问 题就比较简单,也比较符合实际情况。
三、氧化还原反应进行的程度
在定性分析的学习中,遇到的氧化还原反应很 多。但并非所有的氧化还原反应都能用于滴定分析。 滴定分析要求氧化还原反应要能定量地完成。对于 一般氧化还原反应,可以通过计算反应达到平衡时 的平衡常数来了解反应进行的程度。 氧化还原反应的平衡常数K,可以根据能斯特 方程式,从两电对的标准电位或条件电位来求得。 一般氧化还原反应: aOx1+bRed2 = cRed1+dOx2 lgK’=lgccRed1cdOX2/caOX1cbRed2=n(Eo’1- Eo’2 )/0.059 式中,E1o’、E2o’为氧化剂、还原剂电对的条件 电位,n为两电对转移电子数的最小公倍数。
∴ E = Eo’Ce(VI)/Cr(III) + (0.059/6)×lgcCr(VI)/c2Cr(III)
= 1.08+(0.059/6)×lg0.0500/(0.100)2 = 1.09V

第7章 氧化还原滴定法

第7章 氧化还原滴定法

I3- + 2e- = 3I-
Eø=0.54V
H3AsO4+2H++3I-
[H+]=1mol· -1 L
pH=8
HAsO2+I3- +2H2O
(三) 生成络合物的影响

Fe3+/ Fe2+的条件电位
介质(1 mol/L)
E(Fe3+/Fe2+)=0.77 V H2SO4 0.68 H3PO4 0.44 HF 0.32
0.059 0.059 lg( 103n1103n 2 ) 3( n1 n 2 ) n 1n 2 n 1n 2
例7-4: 对于下列反应:n2O1+n1R2=n1O2+n2R1 当n1=n2=1。要使化学计量点时反应的完全程度达99.9%以 上,问lgK′至少应位多少?EØ1-EØ2又至少应为多少?若n1=
O ox/Red
0.059 γ ox α Red c ox 0.059 c ox O ' lg E ox/Red lg n γ Red α ox c Red n c Red
条件电位的计算公式为
E
O ' ox/Red
E
O ox/Red
0.059 γ ox α Red lg n γ Red α ox
O
Fe3 /Fe2
0.059lg
γ Fe3 [Fe ] γ Fe 2 [Fe ]
2
3
式一
E Fe3 /Fe2 E E Fe3 /Fe2 E
O
O
Fe3 /Fe2
0.059lg
γ Fe3 α Fe2 C Fe3 γ Fe2 α Fe3 C Fe2 0.059lg C Fe3 C Fe2

氧化还原滴定法

氧化还原滴定法

HAsO2
0.56V
I
3

/I
0.545V
已知H 3 AsO4的pK a1 ~ pK a 3分别为2.7, 7.0和11.5 HAsO2的pKa 9.2 2 0 . 059 [ H AsO ][ H ] 3 4 H 3 AsO4 HAsO2 lg 2 [ HAsO2 ]
一、滴定曲线
Ce (0.1000 mol / L) Fe (0.1000 mol / L, 20.00 mL)
Ce4+ + Fe2+
3
4
2
1mol/L H2SO4
` Fe
Ce3+ + Fe3+
Fe2
Ce
`
4
Ce
1.44V
3
0.68V
' ' n(1 2 ) 1.44 0.68 lg K ` 12.9 6 0.059 0.059
反应平衡常数 Fe3+ Sn4+ +e +2e Fe 2+ Sn 2+
` Fe
3
Fe2 Sn2
0.68V 0.14V
` Sn
4
2Fe3+ + Sn2+
' '
2Fe2+ + Sn4+
n (1 2 ) 2 (0.68 0.14) lg K ' 18.3 0.059 0.059
a Ox b Re d
a Ox b Re d
0.059 a Ox / Re d+ lg n a
(25C)
注:带入方程包括氧化型和还原型活度及参加 反应的其他成分(如H+、OH-和气体等), 固体a=1,气体用分压表示

第7章氧化还原滴定法

第7章氧化还原滴定法
I2与S2O32-反应
2.游离基反应
例:
3.活泼中间络合物生成 例:
(二)影响反应速度的因素 1.反应物浓度 根据质量作用定律:vCn, 2.温度 温度对反应速度影响特别显著,k=Ae 近似规则 v=kCn(决定慢反应)
表明,温度升高10C,反应速度一般增大2倍至多。 若升高100C,反应速度将以2 3.催化剂 (即210)倍增加。
Et0.1%, T 99.9%
lg K ' lg
CO 2C R1 C R 2CO1
lg K ' lg(103 103 ) 6
E ' lg K ' 6 0.059
问题:
E ' 6 0.059 0.36v
n1 = n2 = n = 2
n1 = 1, n2 = 2, n = 2
E=E
H3AsO4/ HAsO2+
lg
=E
H3AsO4/ HAsO2+
lg
当:C E
H3AsO4=C HAsO2=1
mol/L lg
H3AsO4/ HAsO2
=E
H3AsO4/ HAsO2+
这里:
HAsO2=
=
=10-0.03

H3AsO4=
=10-6.8
lg =-0.11 v
EH3AsO4/
H3AsO4/ HAsO2
(2)间接碘量法:
H3AsO4 +2I-+2H+ I2+2S2O32 HAsO2+I2+2H2O 2I-+S4O62
HAsO2= H3AsO4 H3AsO4/
=
E
HAsO2=EH3AsO4/

常用的氧化还原滴定方法.

常用的氧化还原滴定方法.

3.在间接碘量法中,当析出碘的反应完成后,应 立即用Na2S2O3进行滴定(避免I2的挥发和I—被空气氧 化 )。 (二)应用实例 1.铜矿石中铜的测定 矿石经 HCl 、 HNO3 、溴水和尿素处理成溶液后、 用 NH4HF2 掩 蔽 试 样 中 的 Fe3+ , 使 其 形 成 稳 定 的 FeF63-络合物,并调节溶液的 pH为 3.5—4.0,加入KI 与Cu2+反应,析出的I2,用 Na2S2O3标准溶液滴定, 以淀粉为指示剂,反应式如下: 2Cu2++4I—=2CuI↓+I2 I2十2S2O32—=2I—+S4O62— 本法可测定矿石中0.5%以上的铜。

(二)应用实例 1、铁矿石中全铁含量的测定 试样一般用浓 HCl 加热分解,在热的浓 HCl 溶液中,用SnCl2将Fe(III)还原为Fe(II),过量 的SnCl2用HgCl2氧化,此时溶液中析出Hg2C12 丝 状 白 色 沉 淀 , 然 后 在 1-2mol/LH2SO4 H3PO4混合酸介质中,以二苯胺磺酸钠作指示剂, 用K2Cr2O7标准溶液滴定Fe(II)。 SnCl2+2HgCl2= SnCl4+2Hg2Cl2↓ Cr2O72-+6Fe2++14H+=2Cr3+6Fe3++7H2O


MnO2+C2O42—+4H+=
2Mn2++2CO2↑+2H2O
4.某些有机化合物含量的测定 甲醇、甘油、甲酸等有机化合物可用高 锰酸钾法在碱性溶液中进行测定。如甲醇的 测定,将一定量且过量的高锰酸钾标准溶液 加入待测物质的试液中,反应为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H2O2等。
氧化还原滴定法
2)间接滴定法
wCa
测定对象:非氧化性或还原性物质

(cV
) KMnO4

5 2
2020/3/2
M Ca 100%
1000ms
例:测定补钙制剂中Ca2+含量
过滤,洗涤
Ca2+ + C2O42- CaC2O4 H2SO4溶解
H2C2O4
KMnO4标准溶液
反应: Ca2 C2O42 CaC2O4
•温度: 70~85℃[低—反应慢, 高—H2C2O4分解(+)] H2C2O4→CO2↑+CO↑+H2O
•酸度: 0.5~1mol·L-1H2SO4(HNO3?、HCl?) [低—MnO2↓ (-), 高—H2C2O4分解(+)]
•滴定速度: 先慢后快(Mn2+催化)。 [快—KMnO4来不及反应而分解(-)]
3.应用示例:
2020/3/2
1)直接滴定法
• 测定对象:许多还原性物质 • 例:测定双氧水(H2O2)——消毒防腐药
5H2O2+2MnO4-+6H+ 5O2+2Mn2++ 8H2O
条件:常温,稀 H2SO4介质 。 说明:可直接测Fe2+、As(III)、Sb(III)、C2O42-、NO2-、

余Cr2O72
Fe2 滴定
氧化还原滴定法
2020/3/2
1.K2Cr2O7法测定铁矿中铁
Cr2O27-
Fe2O3 FeO
SnCl2 △浓HCl
Fe2+ + Sn2+(过量)
HgCl2
有汞法
Hg2Cl2↓ 除去过量Sn2+
磷硫混酸?
Fe2+
二苯胺磺酸钠
终点:浅绿→紫红
滴定前应稀释
(cV ) M 反应:2Fe3 Sn2 2Fe2 Sn4 W 2HgCl2 Sn2 Hg 2Cl2 Sn4 2Cl
6
Fe

K 2Cr 2O7
Fe
mS
Cr O 2 6Fe 2 14H 2Cr 3 6Fe 3 7H O
27
2
氧化还原滴定法
2020/3/2
Cr2O27-
Fe2O3 SnCl2 FeO △浓HCl
Fe2+ + Sn2+(过量)
HgCl2
磷硫混酸?
Fe2+
二苯胺磺酸钠
终点:浅绿→紫红
包括:试剂性质、 方法特点,标准溶 液的配制和标定, 注意滴定条件,实 际应用。
氧化还原滴定法
2020/3/2
化学耗氧量(COD):在一定条 件下,用化学氧化剂处理水样时 所消耗的氧化剂的量——水质污 染程度的一个重要指标
高锰酸钾法 重铬酸钾法
氧化还原滴定法
2020/3/2
7.4.1 高锰酸钾法
H+,歧化 MnO4- +MnO2 Fe2+(过) Fe2+(剩)
KMnO4标准溶液
说明:此法可用于测定甘油、甲酸、甲醇、柠檬酸、苯 酚、水杨酸、甲醛、葡萄糖等有机物的含量。
氧化还原滴定法
2020/3/2
c.测定环境水COD (高锰酸盐指数):
(地表水、饮用水、生活污水) 工业废水中COD的测定要用 K2Cr2O7法

5 2
(cV
)M nO4
]
M
M
nO2
ms
100%
(0.7500 5 0.0200030.00103)86.94
126.07 2
100% 77.36%
0.5000
55
氧化还原滴定法
2020/3/2
b.测定有机物
碱性, △
有机物+KMnO4(过)
CO32- + MnO42-+MnO4-
2020/3/2
滴定条件 ?
➢ 酸度: 强酸 H2SO4 (~1mol/L)介质。(HCl? HNO3 ?)
MnO4- 可以氧化Cl-, HNO3 ,具有氧化性,产生干扰
➢ 温度: 70~85℃ 低— 反应慢
高— H2C2O4分解
➢ 滴定速度: 先慢后快 快— KMnO4来不及反应而分解 Mn2+的自催化作用
氧化还原滴定法
无汞定铁:SnCl2-TiCl3联合预处理
2020/3/2
Fe2O3 滴加SnCl2 FeO 热浓HCl
Fe2+ + Fe3+(少量)滴加TiCl3 Fe2++Ti3+(少量)
Na2WO4 钨蓝W(V)
Cr2O72-滴定 至蓝色消失
Fe2++Ti4+ Cr2O72-滴定
Fe3++Ti4+
优点: a.纯、稳定、直接配制标准溶液,易保存 b.氧化性适中, 选择性好 c.可在HCl溶液中进行滴定(滴定Fe2+时不诱 导Cl-反应)—污水中COD测定
缺点: 氧化能力不如KMnO4强;需外加指示剂;六 价铬有毒,致癌物。
指示剂: 二苯胺磺酸钠, 邻苯氨基苯甲酸
氧化还原滴定法
应用: 1. 铁的测定(典型反应)
氧化还原滴定法
2020/3/2
Байду номын сангаас
第7章 氧化还原滴定法
7.1 氧化还原反应及平衡 7.2 氧化还原滴定基本原理 7.3 氧化还原滴定中的预处理 7.4 常用的氧化还原滴定法 7.5 氧化还原滴定结果的计算
氧化还原滴定法
7.4 常用氧化还原滴定法
2020/3/2
7.4.1 高锰酸钾法 7.4.2 重铬酸钾法 7.4.3碘量法 7.4.4 其他O-R滴定法
cKMnO4

(m M
) Na2C22O0420/352/2 mol L1 VKMnO4
基准物: Na2C2O4, H2C2O4·2H2O,(NH4)2Fe(SO4)2·6H2O, 纯Fe丝等.
2MnO-4 + 5C2O24- +16H+ = 2Mn2+ +10CO2 + 8H2O
标定条件(三度一点):
5C2O42-+2MnO4- +16H+=2Mn2++10CO2+8H2O
5MnO2 5C2O42 2KMnO4
(CV ) (CV ) M
wMnO2
5 2 Na 2C 2O4
ms
KMnO4
MnO2
氧化还原滴定法
2020/3/2
例:称取软锰矿试样0.5000g,加入0.7500g H2C2O4·2H2O及稀 H2SO4,加热至反应完全。过量的草酸用30.00mL 0.0200mol · L-1KMnO4滴定至终点,求软锰矿的氧化能力(以 MnO2表示)
H2SO4-H3PO4介质 指示剂:二苯胺磺酸钠
终点:浅绿→紫红
指示剂
氧化还原滴定法
2020/3/2
2.利用Cr2O72- -Fe2+反应测定其他物质
(1) 测定氧化剂:NO3-、ClO3- 等 NO3- Fe2+(过)NO +Fe3+ +Fe2+(剩)
Cr2O72-
(2) 测定强还原剂:Ti3+、Sn2+等 Ti4+ 预还原器 Ti3+ Fe3+ Ti4+ +Fe2+
强酸性 (pH≤1)
MnO4- +5e Mn2+
Eθ=1.51V
弱酸性、中性、弱碱性
MnO4- + 3e MnO2
Eθ=0.59V
强碱性(pH>14)
MnO4- + e MnO42-
Eθ=0.56V
可见,不同条件下, 电子转移数不同,化学计量关系不同
适用条件:一般都在强酸性(1-2mol·L-1 H2SO4)条件下使用, 但测有机物时选碱性溶液中进行。
Cr2O72-
(3) 测定非氧化、还原性物质:Ba2+、Pb2+
1.概述
高锰酸钾法:利用高锰酸钾的强氧化能力及氧化还原滴定 原理来测定其他物质的容量分析方法。
高锰酸钾:一种强氧化剂
氧化还原滴定法
2020/3/2
原理
➢ 强酸性 (pH≤1) MnO4- + 8H+ + 5e = Mn2+ + 4H2O
➢ 弱酸性、中性、弱碱性 MnO4- + 2H2O + 3e = MnO2 + 4OH-
测铁:Cr2O72 6Fe2 14H 6Fe3 2Cr 3 7H2O
2020/3/2
K 2.63 1030
2. 利用Cr2O72- — Fe2+反应测定其他物质
氧化性物质+过量 Fe2 (标液) 余Fe2 Cr2O72 滴定
还原性物质+过量
K2Cr2O7 (标液)
化学需氧量 (COD)是指水体中的还原性物质消耗氧化剂的量。
水样+ KMnO4(过)
H2SO4, △ KMnO4(剩)
KMnO4
Na2C2O4(过) H2C2O4(剩) 结果表示:换算成氧的质量浓度 COD(O2mg·L-1)=?
思考:根据方程式和计量关系写出COD(O2mg·L-1)的计算公式。
43
Hg2Cl2↓ 除去过量Sn2+
滴定前应稀释
加H
2SO
4-H
3PO
的作用:
4
加入硫酸:控制酸度
加入H3PO4:络合Fe3+生成无色稳定的Fe(HPO4)2- , a.降低 Fe3+/ Fe2+条件电势,增大滴定突跃; b.消除Fe3+黄色 (厦门大学1999,南开大学2001) 用K2Cr2O7法测定Fe2+时,滴定前为什么要加入H2SO4-H3PO4?
相关文档
最新文档