第七章氧化还原滴定法

合集下载

分析化学课件 氧化还原滴定法

分析化学课件 氧化还原滴定法

(3) n1=n2=2
K= c(Ox2) c(Red1)106 c(Red2) c(Ox1)
=1
-2
=0.059lg106 =0.18V 2
>0.4V 反应就能定量进行
7.1氧化还原反应的方向和程度
一般认为,若两电对的条件电极电势之差大于0.4V, 反应就能定量进行,就有可能用于滴定分析。
但在某些氧化还原反应中,虽然两个电对的条件电 极电势相差足够大,符合上述要求,但是由于有副 反应发生,氧化剂和还原剂之间没有一定的化学计 量关系,这样的反应还是不能用于滴定分析。
7.2 氧化还原反应的速度
一、氧化还原反应的历程
有很多氧化还原反应是分布进行的,其 中只要有一步是慢的,就影响了总的反应速 度。
二、影响氧化还原反应速度的因素
1. 反应物浓度的影响 2. 温度的影响 3. 催化剂的影响 4. 诱导反应
7.1氧化还原反应的方向和程度
(1) n1=n2=1
Kc(Ox2)c(Red1)106 c(Red2) c(Ox1)
=120 .0 1 5 9lgK 0 .3 5 V
(2) n1=1, n2=2
K
=
c(Ox2) c(Red2)
c(Red1) c(Ox1)
2
109
=1
-2
=0.059lg109 =0.27V 2
n a(Red)
(标准电位)
a(Ox)=a(Red) =1时,
0.0 n 59lg((R O e x d ))0.0 n 59lg[[R O e x d ]]
c (浓度电位)
一般可知氧化剂和还原剂的分析浓度c
若有副反应发生:
0.05l9 g2 (o)x0.05l9 g [o 2]x

第七章 氧化还原滴定法YHHY

第七章 氧化还原滴定法YHHY
2013-7-25
[Fe2+]
Fe( III ) 3 ] Fe( III ) [ Fe Fe( III ) [ Fe3 ] Fe( III ) C C Fe( II ) 2 ] Fe( II ) [ Fe Fe( II ) 2 ] [ Fe Fe( II )
2013-7-25
五.氧化还原进行的程度
(一)用Eθ’( Eθ无副反应:绝对平衡常数K )计算K’ (K)的公式 1.有副反应时 有副反应:条件平衡常数K’ aOx1+bRed2 aRed1+bOx2
条件平衡常数
氧化剂 还原剂
2013-7-25
K

C
C C
a b Re d1 Ox2 a b Ox1 Re d 2
2013-7-25
Red
定义:在25℃,1标准大气压时,金属同该金属离子浓
度为1mol/L的溶液相接触(若有气体参加反应,则
气体压力应为1.013×105Pa)的电位称为该金属的
标准电极电位。 标准氢电位:
EH / H 0
2

注意:标准电极电位的大小与该电对本身的性质有 关,在一定温度下是常数。它不随外界其它条件的 改变而改变。
lg K lg

2013-7-25
C C
'
a Ox1
b Re d 2
lg(10 )
'
3 a b
n( E1 E2 ) lg K 0.059
'
3(a b)
2.无副反应时:
n( E1 E2 ) lg K (a+b) 3 0.059
►通常认为K’或K≥106 即△Eθ’ 或△Eθ ≥0.4V氧化 还原反应能满足滴定分析要求的条件。 (仅考虑 反应的完全程度)

第七章氧化还原滴定法课后习题和答案解析

第七章氧化还原滴定法课后习题和答案解析

第七章氧化还原滴定法计算在H2SO4介质中,H+浓度分别为1 mol·L-1和mol·L-1的溶液中VO2+/VO2+电对的条件电极电位。

(忽略离子强度的影响,已知= V)根据Hg22+/Hg和Hg2Cl2的溶度积计算Hg2Cl2/Hg。

如果溶液中Cl-浓度为mol·L-1,Hg2Cl2/Hg电对的电位为多少找出以下半反应的条件电极电位。

已知=,pH=7,抗坏血酸p K a1=,p K a2=。

在1 溶液中用Fe3+溶液滴定Sn2+时,计算:(1) 此氧化还原反应的平衡常数及化学计量点时反应进行的程度;(2) 滴定的电位突跃范围。

在此滴定中应选用什么指示剂用所选指示剂时滴定终点是否和化学计量点一致计算pH = ,c NH 3= 的溶液中Zn2+/Zn电对的条件电极电位(忽略离子强度的影响)。

已知锌氨配离子的各级累积稳定常数为:lg 1 =, lg 2 =, lg 3 =, lg 4 = ;NH4+的离解常数为K a =。

在酸性溶液中用高锰酸钾法测定Fe2+时,KMnO4溶液的浓度是mol·L-1,求用(1)Fe;(2) Fe2O3;(3)表示的滴定度。

称取软锰矿试样0.5000 g,在酸性溶液中将试样与0.6700 g纯Na2C2O4充分反应,最后以mol·L-1 KMnO4溶液滴定剩余的Na2C2O4,至终点时消耗mL。

计算试样中MnO2的质量分数。

称取褐铁矿试样0.4000g,用HCl溶解后,将Fe3+还原为Fe2+,用K2Cr2O7标准溶液滴定。

若所用K2Cr2O7溶液的体积(以mL为单位)与试样中Fe2O3的质量分数相等。

求K2Cr2O7溶液对铁的滴定度。

盐酸羟氨(NH2OH·HCl)可用溴酸钾法和碘量法测定。

量取mL KBrO3溶液与KI反应,析出的I2用溶液滴定,需用mL。

1 mL KBrO3溶液相当于多少毫克的NH2OH·HCl称取含KI之试样1.000g溶于水。

大学分析化学第七章氧化还原滴定

大学分析化学第七章氧化还原滴定

Fe3++e-
Fe2
E' Fe(III)/Fe(II)
0.68V
化学计量点 后
化学计量点 前
E
Eθ' Ce(IV)/Ce(III)
0.059Vlg
cCe(IV) cCe(III)
E
Eθ' Fe(III)/Fe(II)
0.059Vlg
cFe(III) cFe(II1)7
化学计量点
E sp n 1 E n 1 1 ' n n 2 2 E 2 ' ( 适 用 于 两 个 电 对 都 是 对 称 电 对 ) E sp11.4V 4 1 1 10.6V 81.06V
试剂存在,则从Eθ′的定义式可见,副反应系数必然改变。 副反应系数改变又必然引起Eθ′和E改变。
Eθ Fe3+/Fe2+
0.77V
2Fe3++2I-=2Fe2++I2
Eθ I2/I-
0.54V
10
(四)沉淀的生成
对于某一电对,如果加入一种可以与氧化型或还原 型生成沉淀的试剂时,将会改变氧化型或还原型的浓度, 从而改变电极电位.
n
c red red ox
E
E 0.059V lg ox red 0.059V lg cox
ox / red
ox / red
n
red ox
n
cred
E
E ' 0.059V lg cox
ox / red
ox / red
n
cred
6
E
E 0.059V lg ox red 0.059V lg cox
对上述滴定选用何种指示剂?

(分析化学课件)第七章氧化还原滴定法

(分析化学课件)第七章氧化还原滴定法

津 科 技
2MnO4- + 5C2O42- + 16H+ = 2Mn2+ + 10CO2↑+ 8H2O


②标准溶液标定时的注意“三度一点”
a.速度:该反应室温下反应速度极慢,利
用反应本身所产生的Mn2+起自身
催化作用加快反应进行。
b.温度:常将溶液加热到75~85℃。温度
高于90℃会使发生下述反应:
α为Fe的副反应系数
天 当电对的氧化态和还原态的分析浓度均 津 为1mol·L-1时,可得到:
科 技 大 学
EӨ′称为条件电势。
注意:
附录表16中列出部分氧化还原电对在不
同介质中的条件电势,均为实验测得值。
当缺乏相同条件下的条件电势时,可采用
天 条件相近的条件电势数据。

条件电极电势与标准电极电势差异很大。

科 若考虑副反应影响,则以K’代替K:
技 大 学
天 津 科 技 大 学
7.1.4 化学计量点时反应进行的程度
由化学计量点时氧化态与还原态浓度的 比值表示。
可以根据平衡常数求得。
天 津 科 技 大 学
例7.3 计算1mol/L HCl介质中,Fe3+与Sn2+ 反应的平衡常数及化学计量点时反应进行的 程度。已知 E F '3 /e F 2 e 0 .6V ,8 E S '4 n /S2 n 0 .1V 4
(3)间接碘法:利用I-的还原性。
①基本反应:
2I- - 2e → I2 I2 + 2S2O32-= S4O62-+2I-
(中性或弱酸性条件)连四硫酸根
天 津
P
H,S22IO234H2HO 2 SI2H22SH2O O 3

分析化学第五版 第7章 氧化还原滴定法

分析化学第五版 第7章 氧化还原滴定法
= E θ + 0.059 lg
θ
θ
aFe 3+ aFe 2+ γ Fe 3+ [ Fe 3+ ]
γ Fe 2+ [ Fe 2+ ]
γ Fe 3+ γ Fe 2+ αFe ( III ) • cFe 3+ • αFe ( II ) cFe 2+
cFe 3+ cFe 2+
= E + 0.059lg
θ
= E + 0.059lg
γ Fe 3+ αFe ( II ) γ Fe 2+ αFe ( III )
+ 0.059lg
= E + 0.059lg
θ'
c Fe 3+ c Fe 2+
影响条件电势的因素:
0.059 OxRed E =E + n lg Red Ox
离子强度: 酸效应: 络合效应: 沉淀:
+ 0.0592 lg
cCe 4+ cCe3+
E Fe3+
'
Fe 2 +
'
+ ECe 4+
'
Ce 3+
'
E sp
E Fe3+ Fe2+ + ECe4+ Ce3+ 2
1.06V
VCe mL 滴定分数 电势 V 说明 0.00 0.0000 不便计算 1.00 0.0500 0.60 E=EFe /Fe =0.68+0.059lgcFe /cFe 10.00 0.5000 0.68 12.00 0.6000 0.69 -0.1% E=EFe /Fe +0.0593 19.80 0.9900 0.80 19.98 0.9990 0.86 突 E =(EFe /Fe +ECe /cCe )/2 20.00 1.000 1.06 sp 跃 22.02 1.001 1.26 0.1% E=ECe /Ce -0.0593

第七章常用的氧化还原滴定法..

第七章常用的氧化还原滴定法..
H2O2等。
氧化还原滴定法
2)间接滴定法
wCa
测定对象:非氧化性或还原性物质

(cV
) KMnO4

5 2
2020/3/2
M Ca 100%
1000ms
例:测定补钙制剂中Ca2+含量
过滤,洗涤
Ca2+ + C2O42- CaC2O4 H2SO4溶解
H2C2O4
KMnO4标准溶液
反应: Ca2 C2O42 CaC2O4
•温度: 70~85℃[低—反应慢, 高—H2C2O4分解(+)] H2C2O4→CO2↑+CO↑+H2O
•酸度: 0.5~1mol·L-1H2SO4(HNO3?、HCl?) [低—MnO2↓ (-), 高—H2C2O4分解(+)]
•滴定速度: 先慢后快(Mn2+催化)。 [快—KMnO4来不及反应而分解(-)]
3.应用示例:
2020/3/2
1)直接滴定法
• 测定对象:许多还原性物质 • 例:测定双氧水(H2O2)——消毒防腐药
5H2O2+2MnO4-+6H+ 5O2+2Mn2++ 8H2O
条件:常温,稀 H2SO4介质 。 说明:可直接测Fe2+、As(III)、Sb(III)、C2O42-、NO2-、

余Cr2O72
Fe2 滴定
氧化还原滴定法
2020/3/2
1.K2Cr2O7法测定铁矿中铁
Cr2O27-
Fe2O3 FeO
SnCl2 △浓HCl
Fe2+ + Sn2+(过量)
HgCl2

01第7章-氧化还原滴定法-条件电位

01第7章-氧化还原滴定法-条件电位

E 1.61v
n2O1 n1R 2 n2R1 n1O2
Ce
4
Fe
2
Ce
3
Fe
3
几个术语
可逆电对
Fe / Fe , I 2 / I , Fe(CN) / Fe(CN) 6 6
2 2 3
3
2

3
4
不可逆电对 MnO4 / Mn ,Cr2O7 / Cr , S4O6 / S2O3
aO 2 n1 a R1 n2 lg K lg( ) ( ) aR2 aO 1
0
有关氧化还原电对的半反应
O1 n1e R1 O2 n2e R 2
0.059 aO1 E1 E1 lg n1 a R1 0.059 aO 2 0 E2 E2 lg n2 aR2
反应达到平衡时, E1 - E2 = 0 平衡常数K:
0.059n1 CO 2 0.059n2 CO1 lg lg n2 n1 CR2 n1n2 C R1
C C E1' E2 ' 0.059 lg( O 2 ) n1 ( R1 ) n2 n2 n1 CR2 CO1
电子的最小公倍 数,也即氧化还 原反应实际上的 转移的电子数。
E
'
可逆氧化还原电对的电极电位可用能斯特方程 来表示。 RT aO 0 EE ln nF aR
0.059 aO E lg n aR
0
2
2
(25C )
E0: 标准电极电位(电势) 热力学常数,温度的函数。
对称电对:氧化态与还原态系数相同
不对称电对:氧化态与还原态系数不同
2 MnO / Mn , Fe(CN) / Fe(CN) , Fe / Fe , 4 6 6

氧化还原滴定法

氧化还原滴定法

(二)标准溶液的配制和标定
直接碘量法的标准溶液是碘溶液;
间接碘量法的标准溶液是硫代硫钠溶

1.碘标准溶液的配制和标定
• (1)0.05mol/L碘溶液的配制
• 由于碘具有挥发性和腐蚀性,通常情况 下,碘标准溶液是采用间接法配制。 • 步骤:配制0.05mol/L,可在托盘天平 上称取碘13g和碘化钾36g,加适量纯化 水溶解后,再用纯化水稀释至1000ml, 摇匀,贮存于棕色试剂瓶中备用。 称量 溶解 稀释 定容 摇匀
(2)0.05mol/L碘标准溶液的标定:
用三氧化二砷(As2O3)为基准物质, 甲基红为指示剂,用待标定的碘标准 溶液滴定至终点。步骤见教材64页。
标定原理
As2O3 + 6NaOH =2Na3AsO3 + 3H2O Na3AsO3 + I2 + 2NaHCO3 2NaI + 2CO2↑+ H2O =Na3AsO4 +
• 1.高锰酸钾标准溶液的配制 • 市售KMnO4 试剂常含有杂质,而且在 光、热等条件下不稳定,会分解变质。 因此高锰酸钾标准溶液不能直接配制 使用,通常先配成浓溶液放置储存, 需要时再取适量稀释成近似浓度的溶 液,然后再标定使用。
2.KMnO4标准溶液的标定
常用于标定KMnO4的基准物是Na2C2O4。
测定方法
• 1.直接滴定法 由于高锰酸钾氧化能力强,可直接滴定具 有还原性的物质如Fe2+、H2O2、C2O42-等。 • 2.返滴定法 可测定一些不能直接用高锰酸钾滴定的氧化 性和还原性物质。 • 3.间接滴定法 有些非氧化性或还原性物质不能用直接滴 定法或返滴定法测定时,可采用此法。
Байду номын сангаас二)标准溶液的配制与标定

第七章氧化还原滴定法2

第七章氧化还原滴定法2

(一)、反应物浓度的影响
Cr2O72-+ 6I-+ 14H+ = 2Cr3+ + 3I2+ 7H2O C(H+)=0.4 mol/L KI过量5倍。 5 min 反应完成。


(二)温度的影响
例如: KMnO4滴定C2O42-
2MnO4-+ 5C2O42-+ 16H+ = 2Mn2+ + 10CO2↑+ 8H2O
1 C1 M ( Ca ) KMnO 4 1000 2 5 Ca含 量 = 100% G
VKMnO 4

(三)、MnO2的测定-返滴定法

MnO2+ Na2C2O4+ 2H2SO4 = MnSO4+ Na2SO4+ 2CO2↑+ 2H2O

2MnO4-+ 5C2O42-+ 16H+ = 2Mn2++ 10CO2↑+ 8H2O
滴定。氧化还原滴定法是应用很广的一种滴定分析方法。
氧化还原反应的特点

K2Cr2O7与KI反应为: Cr2O72- + 14H+ + 6e = 2Cr3+ + 7H2O E0= +1.33 V


有些不能直接进行氧化还原反应的物质,还可以用 间接法进行滴定。 氧化还原滴定法是应用很广的一种滴定分析方法。

2、邻二氮菲

浅蓝色
深红色
(二)、自身指示剂


例如用KMnO4标准溶液滴定Fe2+.
2×10-6 mol/L MnO4- 粉红色

第七章 氧化还原滴定法

第七章   氧化还原滴定法

在应用能斯特方程式时还应注意下述两个因 素:首先,我们通常知道的是溶液中浓度而不是 活度,为简化起见,往往将溶液中离子强度的影 响加以忽略。其次,当溶液组成改变时,电对的 氧化型和还原型的存在形式也往往随之改变,从 而引起电极电位的改变。 因此,当我们利用能斯特方程式计算有关电 对的电极电位时,如果采用该电对的标准电极电 位,不考虑离子强度及氧化型和还原型的存在形 式,则计算结果与实际情况就会相差较大。
(4)即为条件电位(conditional potential)的 定义式,它表示特定条件下,氧化型与还原型的浓 度均为1mol· -1 时,校正了各种影响因素后的实际 L 电极电位,在条件不变时,为一常量。 标准电极电位与条件电位的关系,与络合反应 中绝对形成常数K和条件形成常数Kˊ的关系相似。 显然,分析化学中引入条件电位之后,处理实际问 题就比较简单,也比较符合实际情况。
三、氧化还原反应进行的程度
在定性分析的学习中,遇到的氧化还原反应很 多。但并非所有的氧化还原反应都能用于滴定分析。 滴定分析要求氧化还原反应要能定量地完成。对于 一般氧化还原反应,可以通过计算反应达到平衡时 的平衡常数来了解反应进行的程度。 氧化还原反应的平衡常数K,可以根据能斯特 方程式,从两电对的标准电位或条件电位来求得。 一般氧化还原反应: aOx1+bRed2 = cRed1+dOx2 lgK’=lgccRed1cdOX2/caOX1cbRed2=n(Eo’1- Eo’2 )/0.059 式中,E1o’、E2o’为氧化剂、还原剂电对的条件 电位,n为两电对转移电子数的最小公倍数。
∴ E = Eo’Ce(VI)/Cr(III) + (0.059/6)×lgcCr(VI)/c2Cr(III)
= 1.08+(0.059/6)×lg0.0500/(0.100)2 = 1.09V

第7章 氧化还原滴定法

第7章 氧化还原滴定法

I3- + 2e- = 3I-
Eø=0.54V
H3AsO4+2H++3I-
[H+]=1mol· -1 L
pH=8
HAsO2+I3- +2H2O
(三) 生成络合物的影响

Fe3+/ Fe2+的条件电位
介质(1 mol/L)
E(Fe3+/Fe2+)=0.77 V H2SO4 0.68 H3PO4 0.44 HF 0.32
0.059 0.059 lg( 103n1103n 2 ) 3( n1 n 2 ) n 1n 2 n 1n 2
例7-4: 对于下列反应:n2O1+n1R2=n1O2+n2R1 当n1=n2=1。要使化学计量点时反应的完全程度达99.9%以 上,问lgK′至少应位多少?EØ1-EØ2又至少应为多少?若n1=
O ox/Red
0.059 γ ox α Red c ox 0.059 c ox O ' lg E ox/Red lg n γ Red α ox c Red n c Red
条件电位的计算公式为
E
O ' ox/Red
E
O ox/Red
0.059 γ ox α Red lg n γ Red α ox
O
Fe3 /Fe2
0.059lg
γ Fe3 [Fe ] γ Fe 2 [Fe ]
2
3
式一
E Fe3 /Fe2 E E Fe3 /Fe2 E
O
O
Fe3 /Fe2
0.059lg
γ Fe3 α Fe2 C Fe3 γ Fe2 α Fe3 C Fe2 0.059lg C Fe3 C Fe2

第 7 章 氧化还原滴定法

第 7 章 氧化还原滴定法

第7 章氧化还原滴定法1. 解:查表得:lgK(NH3) =9.46E=EθZn2+/Zn+0.0592lg[Zn2+]/2=-0.763+0.0592lg([Zn(NH3)42+]/K[(NH3)]4)/2=-1.04V3. 解:E Hg22+/Hg=EθHg22+/Hg+0.5*0.0592lg[Hg2+]=0.793+0.5*0.0592lg(K sp/[Cl-]2)EθHg22+/Hg=0.793+0.0295lgK sp=0.265VE Hg22+/Hg=0.265+0.5*0.0592lg(1/[Cl-]2)=0.383V5. 解:E MnO4-/Mn2+= Eθ′MnO4-/Mn2++0.059*lg([MnO4-]/[Mn2+])/5当还原一半时:[MnO4-]=[Mn2+] 故E MnO4-/Mn2+= Eθ′MnO4-/Mn2+=1.45V[Cr2O72-]=0.005mol/L[Cr3+]=2*0.05=0.10mol/LE Cr2O72-/Cr3+= Eθ′Cr2O72-/Cr3++0.059/6*lg([Cr2O72-]/[Cr3+])=1.01V7. 解:Cu+2Ag+=Cu2++2AglgK=(0.80-0.337)*2/0.059=15.69K=1015.69=[Cu2+]/[ Ag+]2表明达到平衡时Ag+几乎被还原,因此=[ Ag+]/2=0.05/2=0.025mol/L[ Ag+]= ( [Cu2+]/K)0.5=2.3*10-9mol/L9. 解:2S2O32-+I-3=3I-+S4O62-(a)当滴定系数为0.50时,[I3-]=0.0500(20.00-10.00)/(20.00+10.00)=0.01667mol/L[I-]=0.500*2*10.00/(20.00+10.00)+1*20.00/30.00=0.700mol/L故由Nernst方程得:E=E I3-/ I-0.059/2* lg0.01667/0.700=0.506V(b) 当滴定分数为1.00时,由不对称的氧化还原反应得:E I-3/ I-=0.545+0.0295 lg[I-3]/[ I-]3(1)E S4O62/-S2O32-=0.080+0.0295 lg[S4O62-]/ [S2O32]2 (2)(1)*4+(2)*2得:6E sp=2.34+0.059 lg[I-3]2[S4O62-]/[ I-]6[S2O32-]2由于此时[S4O62-]=2[I-3],计算得[S4O62-]=0.025mol/L [ I-]=0.55mol/L,代入上式E sp=0.39=0.059/6* lg[S4O62-]/4[ I-]6=0.384V(c) 当滴定分数为1.5, E= E S4O62/-S2O32-=0.80+0.0295 lg[S4O62-]/ [S2O32]2 此时[S4O62-]=0.1000*20.00/100=0.0200mol/L[S2O32-]=0.100*10.00/50.00=0.0200mol/L故E=0.800+0.0295 lg0.200/(0.200)2=1.30V11.解:Ce4+Fe2+=Ce3++Fe3+终点时C Ce3+=0.05000mol/l, Fe2+=0.05000mol/l.所以C Ce4= C Ce3+*10(0.94-1.44)/0.059=1.7*10-10mol/lC Fe2+=C Fe3+*10(0.94-0.68)/0.059=2.0*10-6mol/l得E t=(1.7*10-10-2.0*10-6)/(0.0500+2.0*10-6)*100%=-0.004%13.解:Ce4++Fe2+=Ce3++Fe2+在H2SO4介质中,终点时E ep=0.48V,E sp=(1.48+0.68)/2=1.06V,E θ=1.44-0.68=0.76V, E=0.84-1.06=-0.22E t=(10-0.22/0.059-100.22/0.059)/100.76/2*0.059*100%=-0.19%在H2SO4+H3PO4介质中,∂Fe3+=1+103.5*0.5=5*102.5=103.2, ∂Fe2+=1+0.5*102.3=102.0 E Fe3+/Fe2+=0.68+0.059lg∂Fe3+=0.61VE sp=(1.44+0.617)/2=1.03VE=0.84-1.03=-0.19V E θ=0.83V,由林邦误差公式: E t=(10-0.19/0.059-100.19/0.059)/100.83/2*0.059*100%=0.015%15. 解:5VO2++MnO4-+6H2O=5VO3-+Mn2++12H+4Mn2++MnO4-+8H+=5Mn3++4H2O5V MnO4-,4Mn4Mn2+ MnO4-ω(V)=5*0.02000*2.50*50.49/1.000*1000*100%=1.27%ω(Mn)=(4*0.02000*4.00-0.02000*2.50)*54.94/(1.00*1000)*100%=1.48%17. 解:PbO2+H2C2O2+2H+=Pb2++2CO2+2H2O, PbO+2H+=Pb2++H2O,2MnO4-+5C2O42-+6H+=2Mn2++10CO2+8H2O∴5PbO25PbO 5C2O42-2MnO4-,设试样中PbO2为x克,PbO为y克。

氧化还原滴定法

氧化还原滴定法

HAsO2
0.56V
I
3

/I
0.545V
已知H 3 AsO4的pK a1 ~ pK a 3分别为2.7, 7.0和11.5 HAsO2的pKa 9.2 2 0 . 059 [ H AsO ][ H ] 3 4 H 3 AsO4 HAsO2 lg 2 [ HAsO2 ]
一、滴定曲线
Ce (0.1000 mol / L) Fe (0.1000 mol / L, 20.00 mL)
Ce4+ + Fe2+
3
4
2
1mol/L H2SO4
` Fe
Ce3+ + Fe3+
Fe2
Ce
`
4
Ce
1.44V
3
0.68V
' ' n(1 2 ) 1.44 0.68 lg K ` 12.9 6 0.059 0.059
反应平衡常数 Fe3+ Sn4+ +e +2e Fe 2+ Sn 2+
` Fe
3
Fe2 Sn2
0.68V 0.14V
` Sn
4
2Fe3+ + Sn2+
' '
2Fe2+ + Sn4+
n (1 2 ) 2 (0.68 0.14) lg K ' 18.3 0.059 0.059
a Ox b Re d
a Ox b Re d
0.059 a Ox / Re d+ lg n a
(25C)
注:带入方程包括氧化型和还原型活度及参加 反应的其他成分(如H+、OH-和气体等), 固体a=1,气体用分压表示

第7章氧化还原滴定法

第7章氧化还原滴定法
I2与S2O32-反应
2.游离基反应
例:
3.活泼中间络合物生成 例:
(二)影响反应速度的因素 1.反应物浓度 根据质量作用定律:vCn, 2.温度 温度对反应速度影响特别显著,k=Ae 近似规则 v=kCn(决定慢反应)
表明,温度升高10C,反应速度一般增大2倍至多。 若升高100C,反应速度将以2 3.催化剂 (即210)倍增加。
Et0.1%, T 99.9%
lg K ' lg
CO 2C R1 C R 2CO1
lg K ' lg(103 103 ) 6
E ' lg K ' 6 0.059
问题:
E ' 6 0.059 0.36v
n1 = n2 = n = 2
n1 = 1, n2 = 2, n = 2
E=E
H3AsO4/ HAsO2+
lg
=E
H3AsO4/ HAsO2+
lg
当:C E
H3AsO4=C HAsO2=1
mol/L lg
H3AsO4/ HAsO2
=E
H3AsO4/ HAsO2+
这里:
HAsO2=
=
=10-0.03

H3AsO4=
=10-6.8
lg =-0.11 v
EH3AsO4/
H3AsO4/ HAsO2
(2)间接碘量法:
H3AsO4 +2I-+2H+ I2+2S2O32 HAsO2+I2+2H2O 2I-+S4O62
HAsO2= H3AsO4 H3AsO4/
=
E
HAsO2=EH3AsO4/
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章 氧化还原滴定法
Oxidation-reduction titration
4.1 氧化还原平衡 4.2 氧化还原滴定原理 4.3 氧化还原滴定的预处理 4.4 氧化还原滴定法的应用
1
4.1 氧化还原平衡
4.1.1 概述
* 可逆电对:在反应的任一瞬间,能建立起平 衡,符合能斯特公式。 Fe3+/Fe2+, I2/I-, Fe(CN)63-/Fe(CN)4-6
10
例 碘量法测Cu2+时, 样品中含Fe3+.
已知:
(Fe3+/Fe2+) = 0.77V, (I2/I-) = 0.54V
pH=3.0, [F]=0.1mol·L-1时,
(Fe3+/Fe2+ ) = 0.32V
Fe3+不再氧化I-,Fe3+的干扰被消除。
11
4. 溶液酸度的影响
1. [H+]或[OH-]参加电极反应, 包括在 Nernst方程中, 直接影响电位值.
S2O3 2-
2Cu2+ + 4I- = 2CuI +I2
[I- ] = 1.0molgL-1 时
( Cu2+/Cu+)= 0.86 V > (I2/I- ) 9
3.生成络合物的影响
Fe3+/ Fe2+的条件电位
(Fe3+/Fe2+)=0.77 V
介质(1 mol/L) HClO4 HCl
H2SO4 H3PO4
n2O1 n1R2 n1O2 n2R1
n2 n1
lg a a R1 O2
lg K '
(E1'
E2' )n
a a n2 n2 R2 O1
0.059V
15
二、氧化还原反应进行的程度
对于氧化还原滴定反应:
n2Ox1 n1Red 2 n2Red1 n1Ox 2
1.6
´
0.3619 0.3814 0.4094 0.4584
实际计算中,忽略离子强度的影响
即:
= + 0.059 lg [Ox]
n [Red]
8
2.生成沉淀的影响 (改变浓度比值)
Ox , , 还原性 ; Red , , 氧化性 .
例如,碘量法测铜 (例 5.1)
Cu2+/Cu+ = 0.17 V, I2 / I- = 0.54 V
E E 0.059 lg Fe3 FeII E Fe2 FeIII
E 称为条件电势。它是在特定条件下,氧化
态与还原态的分析浓度都为1mol/L时,校 正了离子强度与各种副反应影响后的实际 电位,在条件一定时为常数。
6
此时,能斯特方程为:
EOX / Red
E
0.059 lg n
aOX aRe d
EOX / Red
E
0.059 lg COX
n
CRe d
采用条件电位后,不用再求活度 系数,直接代入C,更为方便
7
补充内容: 决定条件电位的因素 1. 离子强度的影响
aOx=[Ox]·Ox, aRed=[Red]·Red
(Fe(CN)36- /Fe(CN)64-) = 0.355V
I
0.00064 0.00128 0.112
HF
θ'(Fe3 /Fe2 )
0.75
0.70
0.68
0.44
0.32
与Fe3+的络合作用增强
氧化态形成的络合物更稳定,结果是电位降低
特例:邻二氮菲(ph), lgb(Fe(ph)33+)= 14.1 lgb(Fe(ph)32+)= 21.3
(Fe(ph)33+ /Fe(ph)32+ ) = 1.06 V (1molgL-1 H2SO4 )
* 不可逆电对:不能在反应的任一瞬间建立起 平衡,实际电势与理论电势相差较大。以能 斯特公式计算所得的结果,仅作参考。 MnO4-/Mn2+,Cr2O72-/Cr3+,S4O62-/S2O32-
2
* 对称电对:氧化态与还原态的系数相同。 如: Fe3+ + e = Fe2+
MnO4- + 8H+ + 5e = Mn2+ + 43I-
HAsO2+I3- +2H2O
pH=8 13
[例] 巴黎绿(含砷杀虫剂)的主要 成分(Cu2+、As(III))的测定
3CuO·3As2O3·Cu(C2H3O2)2 醋酸亚砷酸铜
I2
Cu2+ P2O74- Cu(P2O7)26As(III) pH 8 As(III) 淀粉

S2O32-
Cu(P2O7)26- pH4
As(V)
I-
KI


I2+CuI↓ 粉白
可以利用各种因素改变
, 提高测定的选择性
测As(III)
测Cu
14
4.1 氧化还原平衡
3 氧化还原平衡常数 (例5)
氧化还原反应进行的程度,由反应的 平衡常数来衡量。K越大,反应越彻底。 氧化还原反应的平衡常数,可以用有关电 对的标准电势或条件电势求得。
4
二、 条件电极电势
以Fe3+/Fe2+为例: E E 0.059 lg aFe3 a Fe2
E 0.059 lg Fe3 Fe3 Fe2
Fe2
E 0.059 lg c Fe3 Fe( II ) Fe3 c Fe2 Fe( III) Fe2
5
当电对的氧化态与还原态分析浓度均为1mol /L时
0.2
(7.0)
(11.5)
-
II3-II3- -
HAsO42-
AsO43-
0
-0.2 -0.4 -0.6
0
HAsO2
246 pH
AsO2(9.2) 8 10 12
酸度影响反应方向 pH 8-9时,
I3- 可定量氧化As(III) 4 mol/L HCl介质中,
As(V)可定量氧化I - I3-
[H+]=4mol·L-1
* 不对称电对:氧化态与还原态系数不同。 如: I2 + 2e = 2 ICr2O72- + 14H+ + 6e = 2Cr3+ + 7H2O (例1)
3
4.1.2 条件电势
一、 能斯特方程和标准电极电位
EOX / Red
E
0.059 lg n
aOX aRe d
(25o C,1atm)
E0标准电极电位,是当a ox与a Red均为1mol/L时, 该电对相对于标准氢电极为0时的电位, E0大 小仅与电对的本性和温度有关。
例 H3AsO4+2H++2e=HAsO2+2H2O
=
As(V)/As(III)
+
0.059 2
lg
[H+ ]2[H3AsO4 [HAsO2 ]
]
2. 影响Ox或Red的存在形式
12
(As(V)/As(III))与pH的关系
/V
(2.2) 0.8 0.6 H3AsO4 H2AsO4-
0.4 0.3
相关文档
最新文档