2012年高考数学复习专题---函数的单调性与最大(小)值
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.2 函数的单调性与最大(小)值 基础知识
要点梳理
1.函数的单调性 (1)单调函数的定义 增函数 减函数
自主学习
定 义
一般地,设函数f(x)的定义域为I.如果对于定 义域I内某个区间D上的任意两个自变量x1,x2
当x1<x2时,都有 定 义 f(x1)<f(x2) ,那 么就说函数f(x)在区 间D上是增函数
数则可以利用导数解之.
ax 知能迁移1 试讨论函数 f ( x) 2 , x∈(-1,1)的单 x 1 调性(其中a≠0).
解
方法一 根据单调性的定义求解.
设-1<x1<x2<1,
பைடு நூலகம்
ax1 ax2 2 x12 1 x2 1 a( x2 x1 )( x1 x2 1) . 2 2 ( x1 1)( x2 1) ∵-1<x1<x2<1,∴|x1|<1,|x2|<1,x2-x1>0, 则f ( x1 ) f ( x2 )
x2 2 x1 2 0, 于是f(x2)-f(x1)= a a x2 1 x1 1 故函数f(x)在(-1,+∞)上为增函数.
x2 x1
方法二
3 f ( x) a 1 (a 1), x 1
x
求导数得 f ' ( x) a x ln a
3 , 2 ( x 1)
∵a>1,∴当x>-1时,axln
3 0, a>0, 2 ( x 1)
f′(x)>0在(-1,+∞)上恒成立, 则f(x)在(-1,+∞)上为增函数. 探究提高 对于给出具体解析式的函数,判断或证明 其在某区间上的单调性问题,可以结合定义(基本步
骤为取点、作差或作商、变形、判断)求解.可导函
解析
依据增函数的定义可知,对于①③,当自变
量增大时,相对应的函数值也增大,所以①③可推 出函数y=f(x)为增函数.
题型分类
题型一 函数单调性的判断
x
深度剖析
x2 【例1】已知函数 f ( x) a (a 1). x 1 证明:函数f(x)在(-1,+∞)上为增函数.
思维启迪 证明 方法一 (1)用函数单调性的定义. 任取x1,x2∈(-1,+∞), (2)用导数法. 不妨设x1<x2,则x2-x1>0, a x2 x1 1且a x1 0,
以看出在(0,2)上都是减函数.
2.已知函数y=f(x)是定义在R上的增函数,则f(x)=0的 根 A.有且只有一个 C.至多有一个 B.有2个 D.以上均不对 (C )
解析
∵f(x)在R上是增函数,
∴对任意x1,x2∈R,若x1<x2,则f(x1)<f(x2), 反之亦成立.故若存在f(x0)=0,则x0只有一个. 若对任意x∈R都无f(x)=0,则f(x)=0无根.
0
条件
结论
M为最大值
M为最小值
基础自测
1.下列函数中,在区间(0,2)上为增函数的是 (B )
A.y=-x+1
B. y= x 2 2 C.y=x -4x+5 D. y x 2 2 解析 ∵y=-x+1,y=x -4x+5, y 分别为一次函 x 数、 二次函数、反比例函数,从它们的图象上可
2 x12 1 0, x2 1 0, | x1 x2 | 1,
即-1<x1x2<1,∴x1x2+1>0.
因此,当a>0时,f(x1)-f(x2)>0, 即f(x1)>f(x2),此时函数为减函数; 当a<0时,f(x1)-f(x2)<0,
( x2 x1 )( x1 x2 1) 0. 2 2 ( x1 1)( x2 1)
________ 区间D 叫做f(x)的单调区间.
2.函数的最值 前提 设函数y=f(x)的定义域为I,如果存在实数
M满足 ①对于任意x∈I, ①对于任意x∈I,都 f(x)≥M ; 都有___________ f(x)≤M ; 有____________ ②存在x0∈I,使得 ②存在x0∈I,使得 f ( x 0) = M _____________. f (x )=M _______________.
下几个命题: ①(x1-x2)[f(x1)-f(x2)]>0; ②(x1-x2)[f(x1)-f(x2)]<0;
f ( x1 ) f ( x2 ) ③ 0; x1 x2 ④ f ( x1 ) f ( x2 ) 0. x1 x2 ①③ 其中能推出函数y=f(x)为增函数的命题为________.
当x1<x2时,都有 f(x1)>f(x2) ,那么就 说函数f(x)在区间D 上是减函数
图 象 描 述
自左向右看图象是 ___________ 上升的
自左向右看图象是 __________ 下降的
(2)单调区间的定义 若函数f(x)在区间D上是________ 增函数 或________ 减函数 ,则称 函数f(x)在这一区间上具有(严格的)单调性,
又∵x1+1>0,x2+1>0,
a x2 a x1 a x1 (a x2 x1 1) 0,
x2 2 x1 2 ( x2 2)( x1 1) ( x1 2)( x2 1) x2 1 x1 1 ( x1 1)( x2 1) 3( x2 x1 ) 0, ( x2 1)( x1 1)
3.已知f(x)为R上的减函数,则满足 f (| 的实数x的取值范围是 A.(-1,1) B.(0,1)
1 |) f (1) x
(C)
C.(-1,0)∪(0,1)
D.(-∞,-1)∪(1,+∞)
1 解析 由已知条件:| | 1, x
| x | 1 不等式等价于 ,
解得-1<x<1,且x≠0.
x 0
4.函数y=(2k+1)x+b在(-∞,+∞)上是减函数,则 (D ) A. k 1 B. k 1 2 2 C. k 1 D. k 1 2 2 解析 使y=(2k+1)x+b在(-∞,+∞)上是减函数,
1 则2k+1<0,即 k . 2
5.设x1,x2为y=f(x)的定义域内的任意两个变量,有以
要点梳理
1.函数的单调性 (1)单调函数的定义 增函数 减函数
自主学习
定 义
一般地,设函数f(x)的定义域为I.如果对于定 义域I内某个区间D上的任意两个自变量x1,x2
当x1<x2时,都有 定 义 f(x1)<f(x2) ,那 么就说函数f(x)在区 间D上是增函数
数则可以利用导数解之.
ax 知能迁移1 试讨论函数 f ( x) 2 , x∈(-1,1)的单 x 1 调性(其中a≠0).
解
方法一 根据单调性的定义求解.
设-1<x1<x2<1,
பைடு நூலகம்
ax1 ax2 2 x12 1 x2 1 a( x2 x1 )( x1 x2 1) . 2 2 ( x1 1)( x2 1) ∵-1<x1<x2<1,∴|x1|<1,|x2|<1,x2-x1>0, 则f ( x1 ) f ( x2 )
x2 2 x1 2 0, 于是f(x2)-f(x1)= a a x2 1 x1 1 故函数f(x)在(-1,+∞)上为增函数.
x2 x1
方法二
3 f ( x) a 1 (a 1), x 1
x
求导数得 f ' ( x) a x ln a
3 , 2 ( x 1)
∵a>1,∴当x>-1时,axln
3 0, a>0, 2 ( x 1)
f′(x)>0在(-1,+∞)上恒成立, 则f(x)在(-1,+∞)上为增函数. 探究提高 对于给出具体解析式的函数,判断或证明 其在某区间上的单调性问题,可以结合定义(基本步
骤为取点、作差或作商、变形、判断)求解.可导函
解析
依据增函数的定义可知,对于①③,当自变
量增大时,相对应的函数值也增大,所以①③可推 出函数y=f(x)为增函数.
题型分类
题型一 函数单调性的判断
x
深度剖析
x2 【例1】已知函数 f ( x) a (a 1). x 1 证明:函数f(x)在(-1,+∞)上为增函数.
思维启迪 证明 方法一 (1)用函数单调性的定义. 任取x1,x2∈(-1,+∞), (2)用导数法. 不妨设x1<x2,则x2-x1>0, a x2 x1 1且a x1 0,
以看出在(0,2)上都是减函数.
2.已知函数y=f(x)是定义在R上的增函数,则f(x)=0的 根 A.有且只有一个 C.至多有一个 B.有2个 D.以上均不对 (C )
解析
∵f(x)在R上是增函数,
∴对任意x1,x2∈R,若x1<x2,则f(x1)<f(x2), 反之亦成立.故若存在f(x0)=0,则x0只有一个. 若对任意x∈R都无f(x)=0,则f(x)=0无根.
0
条件
结论
M为最大值
M为最小值
基础自测
1.下列函数中,在区间(0,2)上为增函数的是 (B )
A.y=-x+1
B. y= x 2 2 C.y=x -4x+5 D. y x 2 2 解析 ∵y=-x+1,y=x -4x+5, y 分别为一次函 x 数、 二次函数、反比例函数,从它们的图象上可
2 x12 1 0, x2 1 0, | x1 x2 | 1,
即-1<x1x2<1,∴x1x2+1>0.
因此,当a>0时,f(x1)-f(x2)>0, 即f(x1)>f(x2),此时函数为减函数; 当a<0时,f(x1)-f(x2)<0,
( x2 x1 )( x1 x2 1) 0. 2 2 ( x1 1)( x2 1)
________ 区间D 叫做f(x)的单调区间.
2.函数的最值 前提 设函数y=f(x)的定义域为I,如果存在实数
M满足 ①对于任意x∈I, ①对于任意x∈I,都 f(x)≥M ; 都有___________ f(x)≤M ; 有____________ ②存在x0∈I,使得 ②存在x0∈I,使得 f ( x 0) = M _____________. f (x )=M _______________.
下几个命题: ①(x1-x2)[f(x1)-f(x2)]>0; ②(x1-x2)[f(x1)-f(x2)]<0;
f ( x1 ) f ( x2 ) ③ 0; x1 x2 ④ f ( x1 ) f ( x2 ) 0. x1 x2 ①③ 其中能推出函数y=f(x)为增函数的命题为________.
当x1<x2时,都有 f(x1)>f(x2) ,那么就 说函数f(x)在区间D 上是减函数
图 象 描 述
自左向右看图象是 ___________ 上升的
自左向右看图象是 __________ 下降的
(2)单调区间的定义 若函数f(x)在区间D上是________ 增函数 或________ 减函数 ,则称 函数f(x)在这一区间上具有(严格的)单调性,
又∵x1+1>0,x2+1>0,
a x2 a x1 a x1 (a x2 x1 1) 0,
x2 2 x1 2 ( x2 2)( x1 1) ( x1 2)( x2 1) x2 1 x1 1 ( x1 1)( x2 1) 3( x2 x1 ) 0, ( x2 1)( x1 1)
3.已知f(x)为R上的减函数,则满足 f (| 的实数x的取值范围是 A.(-1,1) B.(0,1)
1 |) f (1) x
(C)
C.(-1,0)∪(0,1)
D.(-∞,-1)∪(1,+∞)
1 解析 由已知条件:| | 1, x
| x | 1 不等式等价于 ,
解得-1<x<1,且x≠0.
x 0
4.函数y=(2k+1)x+b在(-∞,+∞)上是减函数,则 (D ) A. k 1 B. k 1 2 2 C. k 1 D. k 1 2 2 解析 使y=(2k+1)x+b在(-∞,+∞)上是减函数,
1 则2k+1<0,即 k . 2
5.设x1,x2为y=f(x)的定义域内的任意两个变量,有以