函数的单调性与最大(小)值

合集下载

高等数学自考3.3函数的单调性与极值

高等数学自考3.3函数的单调性与极值

上单调增加; 在 上单调增加 (i)如果在 b)内f ′(x) > 0,则f (x)在[a, b]上单调增加; )如果在(a, 内 , 上单调减少。 (ii)如果在 b)内f ′(x) <0,则f (x)在[a, b]上单调减少。 )如果在(a, 内 , 在 上单调减少
例1 讨论函数 y = e x − x − 1的单调性 . 的单调性 解 Q y′ = e x − 1. 又 Q D : ( −∞ ,+∞ ).
的极值点与极值。 例4 求 f (x) = (x −1) x 的极值点与极值。
3 2

定义域( 定义域(−,+)
2 5x − 2 f ′( x) = x + ( x −1) x = 3 , 3 3 x 2 当 x = 时 , f ′( x ) = 0; 5 当 x = 0时 , f ′( x )不存在
4 3
′(x) = 12x3 −12x2 = 12x2 ( x −1), 解 f
令 得驻点: f ′( x) = 0 得驻点 x = 0, 1.
′′( x) = 36x2 − 24x = 12x(3x − 2) f
f ′′(0) = 0, f ′′(1) = 12 > 0.
由极值第二判别法, 由极值第二判别法 ξ=1时, 时 f (ξ)有极小值 f (1)=4. 有极小值: ξ 有极小值 由于 f ′′( 0 ) = 0 所以,需用极值第一判别法判定 所以 需用极值第一判别法判定: 需用极值第一判别法判定
O x
y = x3
定理2 极值存在的一阶充分条件) 定理2(极值存在的一阶充分条件) 在该邻域( 可除外)可导, 在该邻域(x0可除外)可导, 设f (x)在x0的某邻域内连续, 在 的某邻域内连续, 不存在的点。 x0为f (x)的驻点或使 ′(x) 不存在的点。 的驻点或使f 的驻点或使 (i) 若当 < x0 时,f ′(x) > 0;当x > x0 时,f ′(x) < 0, 若当x ; , 则 f (x0) 是f (x)的极大值; 的极大值; 的极大值 (ii) 若当 < x0 时,f ′(x) < 0; 当x > x0 时,f ′(x) >0, 若当x ; , 的极小值; 则 f (x0) 是f (x)的极小值; 的极小值 (iii) 若在 0的两侧,f ′(x)不变号, 若在x 的两侧, 不变号, 不变号 不是极值。 则f (x0)不是极值。 不是极值

函数的单调性与最大(小)值

函数的单调性与最大(小)值
A.(-∞,-3]B.[1,+∞)C.(-∞,-1)D.[-1,+∞)
2.()下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()
A.y=B.y=e-xC.y=-x2+1D.y=lg|x|
3.()设f(x)为定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值()
2.函数单调性的判断
(1)常用的方法有:定义法、导数法、图象法及复合函数法.
(2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数;
(3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性;
(4)复合函数的单调性:如果y=f(u)和u=g(x)的单调性相同,那么y=f[g(x)]是增函数;如果y=f(u)和u=g(x)的单调性相反,那么y=f[g(x)]是减函数.在应用这一结论时,必须注意:函数u=g(x)的值域必须是y=f(u)的单调区间的子集.
8. ()若函数f(x)=ax(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)在[0,+∞)上是增函数,则a=_________.
类型三 抽象函数的单调性
已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-.
(1)求证:f(x)在R上是减函数;
(2)求f(x)在[-3,3]上的最大值和最小值.
()f(x)的定义域为(0,
+∞),且对一切x>0,y>0都有f=f(x)-f(y),当x>1时,有f(x)>0.
<0⇔f(x)在(a,b)内是减函数.
(2)(x1-x2)[f(x1)-f(x2)]>0⇔f(x)在(a,b)内是增函数;(x1-x2)[f(x1)-f(x2)]<0⇔f(x)在(a,b)内是减函数.

函数的单调性与最大(小)值

函数的单调性与最大(小)值

函数的单调性与最大(小)值
函数的单调性是指函数的图像从某一点开始递增或者递减,而不发生变化。

最大值是指在函数定义域内,函数图像达到最高点时所对应的函数值,它和函数的单调性有关。

最小值是指在函数定义域内,函数图像达到最低点时所对应的函数值,它也和函数的单调性有关。

计算单调性和求函数最大(小)值的方法需要根据单调函数的特性来考虑:
对于在x=a点处连续可导的单调函数,有f'(a)>0时,f(x)在[a,+∞)上单调递增,f(a)为此区间内的极大值;
对于在x=a点处连续可导的单调函数,有f'(a) < 0时,f(x)在(-∞,a]上单调递减,f(a)为此区间的极小值。

另外,如果函数在整个定义域内单调,则可以通过比较函数的值来确定其最大/最小值。

专题2.2 函数的单调性与最值(重难点突破)(解析版)

专题2.2 函数的单调性与最值(重难点突破)(解析版)

专题2.2 函数的单调性与最值(重难点突破)(理科)一、考纲要求1.理解函数的单调性、最大(小)值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.3.培养学生数学抽象、逻辑推理、直观想象能力。

二、考情分析三、考点梳理【基础知识梳理】1、函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述1/ 112 / 11自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 2、函数的最值前提设函数()y f x =的定义域为I ,如果存在实数M 满足 条件(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得()0f x M =(3)对于任意的x I ∈,都有()f x M ≥;(4)存在0x I ∈,使得()0f x M =结论 M 为最大值 M 为最小值注意:(1)函数的值域一定存在,而函数的最值不一定存在;(2)若函数的最值存在,则一定是值域中的元素;若函数的值域是开区间,则函数无最值,若函数的值域是闭区间,则闭区间的端点值就是函数的最值. 【知识拓展】1、函数单调性的常用结论(1)若()(),f x g x 均为区间A 上的增(减)函数,则()()f x g x +也是区间A 上的增(减)函数; (2)若0k >,则()kf x 与()f x 的单调性相同;若0k <,则()kf x 与()f x 的单调性相反; (3)函数()()()0y f x f x =>在公共定义域内与()y f x =-,1()y f x =的单调性相反; (4)函数()()()0y f x f x =≥在公共定义域内与()y f x =(5)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反; (6)一些重要函数的单调性: ①1y x x =+的单调性:在(],1-∞-和[)1,+∞上单调递增,在()1,0-和()0,1上单调递减; ②b y ax x=+(0a >,0b >)的单调性:在,b a ⎛-∞-⎝和,b a ⎫+∞⎪⎪⎭上单调递增,在,0b a ⎛⎫ ⎪ ⎪⎝⎭和b a ⎛ ⎝3 / 11上单调递减.四、题型分析(一) 判断函数的单调性 1.判断函数单调性的方法:(1)定义法,步骤为:取值,作差,变形,定号,判断.利用此方法证明抽象函数的单调性时,应根据所给抽象关系式的特点,对1x 或2x 进行适当变形,进而比较出()1f x 与()2f x 的大小.(2)利用复合函数关系,若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数,简称“同增异减”.(3)图象法:从左往右看,图象逐渐上升,则单调递增;图象逐渐下降,则单调递减. (4)导数法:利用导函数的正负判断函数的单调性.(5)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,判断函数的单调性.2.在利用函数的单调性写出函数的单调区间时,首先应注意函数的单调区间应是函数定义域的子集或真子集,求函数的单调区间必须先确定函数的定义域;其次需掌握一次函数、二次函数等基本初等函数的单调区间.例1.(2020·安徽省池州一中模拟)下列四个函数中,在x ∈(0,+∞)上为增函数的是( )A .f (x )=3-xB .f (x )=x 2-3xC .f (x )=-1x +1D .f (x )=-|x |【答案】C【解析】当x >0时,f (x )=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.【变式训练1】.(2020届陕西省咸阳市高三第一次模拟)函数cos 4y x ππ⎛⎫=-⎪⎝⎭的单调递增区间是( )A .132,244k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z B .372,244k k ⎡⎤++⎢⎥⎣⎦()k ∈Z C .312,244k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z D .152,244k k ⎡⎤++⎢⎥⎣⎦()k ∈Z4 / 11【答案】C【解析】令()224k x k k Z πππππ-≤-≤∈,解得()312244k x k k Z -≤≤+∈, 因此,函数cos 4y x ππ⎛⎫=-⎪⎝⎭的单调递增区间是()312,244k k k Z ⎡⎤-+∈⎢⎥⎣⎦,故选C 。

3.2.1单调性与最大(小)值

3.2.1单调性与最大(小)值

概念学习
PART 2
知识点一 增函数与减函数的定义
前提条件
设函数f(x)的定义域为I,区间D⊆I
条件
∀x1,x2∈D,x1<x2
都有f(x1) < f(x2)
都有f(x1) > f(x2)
图示
结论
f(x)在区间D上单调递增
f(x)在区间D上单调递减
当函数f(x)在它的定义域上单调递 当函数f(x)在它的定义域上单调递
高一数学
第1课时 函数的单调性
y=f(x)
MATHEMATICS
MATHEMATICS
知识引入
概念学习
例题讲解
课堂练习
课后作业
本课任务
知识引入
PART 1
知识引入
y
y = x2
(2) y 随 x 的增大而增大
y y = x3
o
x
o
x
(1)(-3;∞)上 随 x 的增大而增大
输入例子(注释)
输入例子辅助理解该概念。输入例子辅助理
解该概念。输入例子辅助理解该概念。
输入例子(注释)
输入例子辅助理解该概念。输入例子辅助理
解该概念。输入例子辅助理解该概念。
分组讨论
此处输入简短的分组说明
PART 4
分组讨论
概念讨论
概念深入学习与理解。
请在此输入内容 请在此输入内容 请在此输入内容 请在此输入内容 请在此输入内容 请在此输入内容 请在此输入内容 请在此输入内容
2.若本例(2)的函数f(x)是定义在(0,+∞)上的减函数,求x的取值范围.
2x-3>0,

由题意可知,5x-6>0, 2x-3<5x-6,

第二节函数的单调性与最大(小)值

第二节函数的单调性与最大(小)值

(1)当a= 围.
时,求函数f(x)的最小值;
(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范
高考总复习•数学(文科) 解析:(1)当a= 时,f(x)=x+ +2.
∵f(x)在区间[1,+∞)上为增函数, ∴f(x)在区间[1,+∞)上的最小值为f(1)= (2)(法一)在区间[1,+∞)上,f(x)= 2x+a>0恒成立. . >0恒成立⇔x2+
高考总复习•数学(文科) 解析:(1) 原函数等价于 y= 作出如下函数图象:
高考总复习•数学(文科)
由函数图象可知,
函数 y =-x2 + 2|x| + 3在 ( - ∞ ,- 1] , [0,1] 上是增函数, 在[-1,0],[1,+∞)上是减函数. (2)由4x-x2>0,得函数的定义域是(0,4). 令t=4x-x2, ∵t=4x-x2=-(x-2)2+4, ∴t=4x-x2的递减区间是[2,4),递增区间是(0,2].
高考总复习•数学(文科)
(7)(数形结合法)将函数化为分段函数形式,即
高考总复习•数学(文科) 画出它的图象 ( 如右图所示 ) ,由图象可知,函数的值域是
{y|y≥3}.
(几何法)∵函数y=|x+1|+|x-2|表示数轴上的动点x到两定点 -1,2的距离之和,∴易得y的最小值是3.∴函数的值域是 [3, 如下图所示.
时,函数fK(x)的单调递增区间为______.
高考总复习•数学(文科)
解析: 由f(x)=2-|x|≤
∴|x|≥1.∴x≥1或x≤-1. ∴fK(x)=
得-|x|≤-1,
当x∈ (1,+∞)时,
fK(x)=2-|x|= 函数.
,在(1,+∞)上为减函数.

第2节 函数的单调性与最大(小)值

第2节 函数的单调性与最大(小)值

第2节函数的单调性与最大(小)值考试要求 1.理解函数的单调性、最大(小)值及其几何意义;2.会运用基本初等函数的图像分析函数的性质.知识梳理1.函数的单调性(1)单调函数的定义增函数减函数定义在函数y=f(x)的定义域内的一个区间A上,如果对于任意两数x1,x2∈A当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间A上是增加的当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间A上是减少的图像描述自左向右看图像是上升的自左向右看图像是下降的(2)单调区间的定义如果y=f(x)在区间A上是增加的或是减少的,那么称A为单调区间.2.函数的最值前提函数y=f(x)的定义域为D条件(1)对于任意x∈D,都有f(x)≤M;(2)存在x0∈D,使得f(x0)=M(3)对于任意x∈D,都有f(x)≥M;(4)存在x0∈D,使得f(x0)=M结论M为最大值M为最小值[常用结论与微点提醒]1.若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数.2.函数y =f (x )(f (x )>0或f (x )<0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反.3.“对勾函数”y =x +ax (a >0)的单调增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ].诊 断 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)对于函数f (x ),x ∈D ,若对任意x 1,x 2∈D ,且x 1≠x 2有(x 1-x 2)[f (x 1)-f (x 2)]>0,则函数f (x )在区间D 上是增函数.( )(2)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( ) (3)对于函数y =f (x ),若f (1)<f (3),则f (x )为增函数.( )(4)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) 解析 (2)此单调区间不能用并集符号连接,取x 1=-1,x 2=1,则f (-1)<f (1),故应说成单调递减区间为(-∞,0)和(0,+∞). (3)应对任意的x 1<x 2,f (x 1)<f (x 2)成立才可以.(4)若f (x )=x ,f (x )在[1,+∞)上为增函数,但y =f (x )的单调递增区间是R . 答案 (1)√ (2)× (3)× (4)×2.(老教材必修1P37例1改编)下列函数中,在区间(0,+∞)上单调递增的是( )A.y =x 12 B.y =2-x C.y =log 12xD.y =1x解析 函数y =x 12在(0,+∞)上是增函数,函数y =2-x ,y =log 12x ,y =1x 在(0,+∞)上均是减函数. 答案 A3.(新教材必修第一册P61例5改编)函数y =xx -1在区间[2,3]上的最大值是________.解析 函数y =x x -1=1+1x -1在[2,3]上递减,当x =2时,y =x x -1取得最大值22-1=2.答案 24.(2017·全国Ⅱ卷)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A.(-∞,-2) B.(-∞,1) C.(1,+∞)D.(4,+∞)解析 由x 2-2x -8>0,得x >4或x <-2. 设t =x 2-2x -8,则y =ln t 为增函数.要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8的单调递增区间. ∵函数t =x 2-2x -8的单调递增区间为(4,+∞), ∴函数f (x )的单调递增区间为(4,+∞). 答案 D5.(2020·西安模拟)函数y =f (x )是定义在[-2,2]上的减函数,且f (a +1)<f (2a ),则实数a 的取值范围是________.解析由条件知⎩⎨⎧-2≤a +1≤2,-2≤2a ≤2,a +1>2a ,解得-1≤a <1.答案 [-1,1)6.(2020·青岛二中月考)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析 当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2. 答案 2考点一 确定函数的单调性(区间)【例1】 (1)函数y =log 12(-x 2+x +6)的单调增区间为( )A.⎝ ⎛⎭⎪⎫12,3B.⎝ ⎛⎭⎪⎫-2,12 C.(-2,3)D.⎝ ⎛⎭⎪⎫12,+∞ 解析 由-x 2+x +6>0,得-2<x <3,故函数的定义域为(-2,3),令t =-x 2+x +6,则y =log 12t ,易知其为减函数,由复合函数的单调性法则可知本题等价于求函数t =-x 2+x +6在(-2,3)上的单调递减区间.利用二次函数的性质可得t = -x 2+x +6在定义域(-2,3)上的单调递减区间为⎝ ⎛⎭⎪⎫12,3,故选A.答案 A(2)(一题多解)试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 解 法一 设-1<x 1<x 2<1, f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1, f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),函数f (x )在(-1,1)上单调递减; 当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函数f (x )在(-1,1)上单调递增. 法二 f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.规律方法 1.(1)求函数的单调区间,应先求定义域,在定义域内求单调区间,如例1(1).(2)单调区间不能用集合或不等式表达,且图像不连续的单调区间要用“和”“,”连接.2.(1)函数单调性的判断方法有:①定义法;②图像法;③利用已知函数的单调性;④导数法.(2)函数y =f [g (x )]的单调性应根据外层函数y =f (t )和内层函数t =g (x )的单调性判断,遵循“同增异减”的原则.【训练1】 (1)设函数f (x )=⎩⎨⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析由题意知g (x )=⎩⎨⎧x 2,x >1,0,x =1,-x 2,x <1,函数的图像如图所示的实线部分,根据图像,g (x )的递减区间是[0,1). 答案 [0,1)(2)判断并证明函数f (x )=ax 2+1x (其中1<a <3)在x ∈[1,2]上的单调性.解 f (x )在[1,2]上单调递增,证明如下: 设1≤x 1<x 2≤2,则f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x1=(x 2-x 1)⎣⎢⎡⎦⎥⎤a (x 1+x 2)-1x 1x 2,由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4. 1<x 1x 2<4,-1<-1x 1x 2<-14.又因为1<a <3,所以2<a (x 1+x 2)<12, 得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1), 故当a ∈(1,3)时,f (x )在[1,2]上单调递增. 考点二 求函数的最值【例2】 (1)已知函数f (x )=a x +log a x (a >0,且a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为( ) A.12B.14C.2D.4(2)(2020·九江一中月考)对于任意实数a ,b ,定义min{a ,b }=⎩⎨⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________. 解析 (1)f (x )=a x +log a x 在[1,2]上是单调函数, 所以f (1)+f (2)=log a 2+6, 则a +log a 1+a 2+log a 2=log a 2+6, 即(a -2)(a +3)=0,又a >0,所以a =2.(2)法一 在同一坐标系中,作函数f (x ),g (x )的图像,依题意,h (x )的图像如图所示的实线部分. 易知点A (2,1)为图像的最高点, 因此h (x )的最大值为h (2)=1.法二 依题意,h (x )=⎩⎨⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数, 当x >2时,h (x )=3-x 是减函数, 因此h (x )在x =2时取得最大值h (2)=1. 答案 (1)C (2)1规律方法 求函数最值的四种常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. 【训练2】 (1)定义max{a ,b ,c }为a ,b ,c 中的最大值,设M =max{2x ,2x -3,6-x },则M 的最小值是( ) A.2B.3C.4D.6(2)设函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤1,x +6x-6,x >1,则f (x )的最小值是________.解析 (1)画出函数M ={2x ,2x -3,6-x }的图像(如图),由图可知,函数M 在A (2,4)处取得最小值22=6-2=4, 故M 的最小值为4.(2)当x ≤1时,f (x )=x 2的最小值为0,当x >1时,f (x )=x +6x -6≥26-6(当且仅当x =6时,取“=”). 由于26-6<0,所以f (x )min =26-6. 答案 (1)C (2)26-6 考点三 函数单调性的应用 多维探究角度1 利用单调性比较大小【例3-1】 已知函数f (x )的图像关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( )A.c >a >bB.c >b >aC.a >c >bD.b >a >c解析 因为f (x )的图像关于直线x =1对称,所以f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52.由当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.又1<2<52<e ,所以f (2)>f ⎝ ⎛⎭⎪⎫52>f (e),即f (2)>f ⎝ ⎛⎭⎪⎫-12>f (e),故b >a >c . 答案 D角度2 求解函数不等式【例3-2】 (2018·全国Ⅰ卷)设函数f (x )=⎩⎨⎧2-x ,x ≤0,1,x >0.则满足f (x +1)<f (2x )的x的取值范围是( ) A.(-∞,-1]B.(0,+∞)C.(-1,0)D.(-∞,0)解析 当x ≤0时,函数f (x )=2-x 是减函数,则f (x )≥f (0)=1.作出f (x )的大致图像如图所示,结合图像知,要使f (x +1)<f (2x ),当且仅当⎩⎨⎧x +1<0,2x <0,2x <x +1或⎩⎨⎧x +1≥0,2x <0,解得x <-1或-1≤x <0,即x <0.答案 D角度3 求参数的值或取值范围【例3-3】 (1)(2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[0,a ]上是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π(2)如果函数f (x )=⎩⎨⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.解析 (1)∵f (x )=cos x -sin x =-2sin ⎝ ⎛⎭⎪⎫x -π4,∴当x -π4∈⎣⎢⎡⎦⎥⎤-π2,π2,即x ∈⎣⎢⎡⎦⎥⎤-π4,3π4时, y =sin ⎝ ⎛⎭⎪⎫x -π4单调递增,f (x )=-2sin ⎝ ⎛⎭⎪⎫x -π4单调递减,∴⎣⎢⎡⎦⎥⎤-π4,3π4是f (x )在原点附近的单调减区间, 结合条件得[0,a ]⊆⎣⎢⎡⎦⎥⎤-π4,3π4,∴a ≤3π4,即a max =3π4.(2)对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0,所以y =f (x )在(-∞,+∞)上是增函数.所以⎩⎨⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫32,2.答案 (1)C (2)⎣⎢⎡⎭⎪⎫32,2规律方法 1.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.2.求解函数不等式,其实质是函数单调性的逆用,由条件脱去“f ”.3.利用单调性求参数的取值(范围)的思路是:根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图像的升降,再结合图像求解.对于分段函数,要注意衔接点的取值.【训练3】 (1)(角度2)已知函数f (x )=⎩⎨⎧e -x ,x ≤0,-x 2-2x +1,x >0,若f (a -1)≥f (-a ),则实数a 的取值范围是( ) A.⎝ ⎛⎦⎥⎤-∞,12 B.⎣⎢⎡⎭⎪⎫12,+∞ C.⎣⎢⎡⎦⎥⎤0,12D.⎣⎢⎡⎦⎥⎤12,1 (2)(角度1)(2019·全国Ⅲ卷)设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则( )A.f ⎝ ⎛⎭⎪⎫log 314>f (2-32)>f (2-23) B.f ⎝ ⎛⎭⎪⎫log 314>f (2-23)>f (2-32) C.f (2-32)>f (2-23)>f ⎝ ⎛⎭⎪⎫log 314D.f (2-23)>f (2-32)>f ⎝ ⎛⎭⎪⎫log 314(3)(角度3)若函数f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A.(-1,0)∪(0,1)B.(-1,0)∪(0,1]C.(0,1)D.(0,1]解析 (1)作出函数f (x )的图像如图所示,知函数f (x )在R 上是减函数,由f (a -1)≥f (-a ),得a -1≤-a , 解得a ≤12.(2)因为f (x )是定义域为R 的偶函数,所以f ⎝ ⎛⎭⎪⎫log 314=f (-log 34)=f (log 34).又因为log 34>1>2-23>2-32>0,且函数f (x )在(0,+∞)上单调递减,所以f (log 34)< f (2-23)<f (2-32).即f ⎝ ⎛⎭⎪⎫log 314<f (2-23)<f (2-32).(3)因为f (x )=-x 2+2ax =-(x -a )2+a 2在[1,2]上为减函数,所以由其图像得a ≤1.g (x )=a x +1,g ′(x )=-a(x +1)2,要使g (x )在[1,2]上为减函数,需g ′(x )<0在[1,2]上恒成立,故有-a <0,因此a >0.综上可知0<a ≤1. 答案 (1)A (2)C (3)DA 级 基础巩固一、选择题1.(2019·唐山调研)设函数f (x )=x (e x +e -x ),则f (x )( ) A.是奇函数,且在(0,+∞)上是增函数 B.是偶函数,且在(0,+∞)上是增函数 C.是奇函数,且在(0,+∞)上是减函数 D.是偶函数,且在(0,+∞)上是减函数解析 f (-x )=(-x )(e -x +e x )=-f (x ),所以f (x )为奇函数,f ′(x )=e x +e -x +x (e x - e -x ),当x >0时,e x -e -x >0,e x +e -x >0,所以f ′(x )>0.故f (x )在(0,+∞)上是增函数. 答案 A2.(2020·合肥模拟)已知函数f (x )在R 上单调递减,且a =33.1,b =⎝ ⎛⎭⎪⎫13π,c =ln 13,则f (a ),f (b ),f (c )的大小关系为( ) A.f (a )>f (b )>f (c ) B.f (b )>f (c )>f (a ) C.f (c )>f (a )>f (b )D.f (c )>f (b )>f (a )解析 因为a =33.1>30=1,0<b =⎝ ⎛⎭⎪⎫13π<⎝ ⎛⎭⎪⎫130=1,c =ln 13<ln 1=0,所以c <b <a ,又因为函数f (x )在R 上单调递减,所以f (c )>f (b )>f (a ). 答案 D3.已知函数f (x )=log a (-x 2-2x +3)(a >0且a ≠1),若f (0)<0,则此函数的单调递增区间是( ) A.(-∞,-1] B.[-1,+∞) C.[-1,1)D.(-3,-1]解析 令g (x )=-x 2-2x +3,由题意知g (x )>0,可得-3<x <1,故函数的定义域为{x |-3<x <1}.根据f (0)=log a 3<0,可得0<a <1,又g (x )在定义域(-3,1)内的减区间是[-1,1),∴f (x )的单调递增区间为[-1,1). 答案 C4.函数y =2-xx +1,x ∈(m ,n ]的最小值为0,则m 的取值范围是( )A.(1,2)B.(-1,2)C.[1,2)D.[-1,2)解析 函数y =2-x x +1=3-(x +1)x +1=3x +1-1在区间(-1,+∞)上是减函数,且f (2)=0,所以n =2.根据题意,x ∈(m ,n ]时,y min =0. ∴m 的取值范围是[-1,2). 答案 D5.(2020·福州调研)已知函数f (x )=⎩⎨⎧x 2+(4a -3)x +3a ,x <0,log a (x +1)+1,x ≥0(a >0且a ≠1)在R 上单调递减,则a 的取值范围是( ) A.⎣⎢⎡⎭⎪⎫34,1 B.⎝ ⎛⎦⎥⎤0,34 C.⎣⎢⎡⎦⎥⎤13,34D.⎝ ⎛⎦⎥⎤0,13 解析 由分段函数f (x )在R 上单调递减,可得0<a <1,根据二次函数图像及性质,可得-4a -32≥0,解得a ≤34,又由3a ≥log a (0+1)+1得3a ≥1,解得a ≥13. ∴实数a 的取值范围是⎣⎢⎡⎦⎥⎤13,34.答案 C 二、填空题6.函数y =|x |(1-x )的单调递增区间是________.解析 y =|x |(1-x )=⎩⎨⎧x (1-x ),x ≥0,-x (1-x ),x <0=⎩⎨⎧-x 2+x ,x ≥0,x 2-x ,x <0,函数的大致图像如图所示.由图易知函数的单调递增区间是⎣⎢⎡⎦⎥⎤0,12.答案 ⎣⎢⎡⎦⎥⎤0,127.设函数f (x )=ax +1x +2a在区间(-2,+∞)上是增函数,那么a 的取值范围是________. 解析 f (x )=ax +2a 2-2a 2+1x +2a =a -2a 2-1x +2a ,∵函数f (x )在区间(-2,+∞)上是增函数, ∴⎩⎨⎧2a 2-1>0,-2a ≤-2,即⎩⎨⎧2a 2-1>0,a ≥1,即a ≥1.答案 [1,+∞)8.设函数f (x )=⎩⎨⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________. 解析 作函数f (x )的图像如图所示,由图像可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4. 答案 (-∞,1]∪[4,+∞) 三、解答题9.已知函数f (x )=1a -1x (a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数; (2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.(1)证明 设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫1a -1x 2-⎝ ⎛⎭⎪⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数.(2)解 ∵f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,又由(1)知f (x )在⎣⎢⎡⎦⎥⎤12,2上是单调增函数,∴f ⎝ ⎛⎭⎪⎫12=12,f (2)=2,易得a =25. 10.已知函数f (x )=a -22x +1.(1)求f (0);(2)探究f (x )的单调性,并证明你的结论; (3)若f (x )为奇函数,求满足f (ax )<f (2)的x 的范围. 解 (1)f (0)=a -220+1=a -1. (2)f (x )在R 上单调递增.证明如下:∵f (x )的定义域为R ,∴任取x 1,x 2∈R 且x 1<x 2, 则f (x 1)-f (x 2)=a -22x 1+1-a +22x 2+1=2·(2x 1-2x 2)(1+2x 1)(1+2x 2), ∵y =2x 在R 上单调递增且x 1<x 2,∴0<2x 1<2x 2,∴2x 1-2x 2<0,2x 1+1>0,2x 2+1>0. ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在R 上单调递增.(3)∵f (x )是奇函数,∴f (-x )=-f (x ), 即a -22-x+1=-a +22x +1,解得a =1. ∴f (ax )<f (2)即为f (x )<f (2), 又∵f (x )在R 上单调递增,∴x <2. ∴x 的取值范围是(-∞,2).B 级 能力提升11.已知函数f (x )=⎩⎨⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A.(-∞,-1)∪(2,+∞)B.(-∞,-2)∪(1,+∞)C.(-1,2)D.(-2,1)解析 ∵当x =0时,两个表达式对应的函数值都为0,∴函数的图像是一条连续的曲线.又∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1. 答案 D12.(2020·皖东名校联盟联考)若函数f (x )=⎩⎪⎨⎪⎧-12x +m ,x <e ,x -ln x ,x ≥e的值域是[e -1,+∞),其中e 是自然对数的底数,则实数m 的最小值是________. 解析 当x ≥e 时,(x -ln x )′=1-1x >0,此时函数f (x )在[e ,+∞)上单调递增,值域是[e -1,+∞).当x <e 时,y =-12x +m 是减函数,其值域是⎝ ⎛⎭⎪⎫-e 2+m ,+∞.因此⎝ ⎛⎭⎪⎫-e 2+m ,+∞⊆[e -1,+∞).于是-e 2+m ≥e -1,解得m ≥3e2-1,故实数m 的最小值是3e2-1.答案 3e 2-113.已知定义在区间(0,+∞)上的函数f (x )是增函数,f (1)=0,f (3)=1. (1)解不等式0<f (x 2-1)<1;(2)若f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立,求实数m 的取值范围.解 (1)由⎩⎨⎧x 2-1>0,1<x 2-1<3,解得2<x <2或-2<x <- 2.∴原不等式的解集为{x |-2<x <-2或2<x <2}. (2)∵函数f (x )在(0,3]上是增函数, ∴f (x )在(0,3]上的最大值为f (3)=1,∴不等式f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立转化为1≤m 2-2am +1对所有a ∈[-1,1]恒成立,即m 2-2am ≥0对所有a ∈[-1,1]恒成立. 设g (a )=-2ma +m 2,a ∈[-1,1], ∴需满足⎩⎨⎧g (-1)≥0,g (1)≥0,即⎩⎨⎧2m +m 2≥0,-2m +m 2≥0,解该不等式组,得m ≤-2或m ≥2或m =0, 即实数m 的取值范围为(-∞,-2]∪{0}∪[2,+∞).C 级 创新猜想14.(多填题)(2019·北京卷)设函数f (x )=e x +a e -x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________. 解析 若f (x )为奇函数,则f (-x )=-f (x ), 即e -x +a e x =-(e x +a e -x ),即(a +1)(e x +e -x )=0对任意的x 恒成立,所以a =-1.若函数f(x)=e x+a e-x是R上的增函数,则f′(x)=e x-a e-x≥0恒成立,所以a≤e2x恒成立,则有a≤0,即a的取值范围是(-∞,0].答案-1(-∞,0]。

函数的单调性与最大小值

函数的单调性与最大小值

条件
f(x)≤M;
②存在x0∈A,使得f(x0)=M.
结论 M为最大值
考基联动
考向导析
限时规范训练
联动思考
想一想:单调区间与函数定义域有何关系? 答案:单调区间是定义域的子区间. 议一议:若一个函数出现两个或两个以上单调区间时,能否用“∪”来联结? 1 答案:不能.如函数y= 在(-∞,0)和(0,+∞)上单调递减,但不能说函数在 x (-∞,0)∪(0,+∞)上递减,因为若可以这么说,由于-1<1,由函数递减知 f (-1)>f (1),但f (-1)=-1,f(1)=1,f (-1)<f (1)矛盾,故不能将两个单调区间 并起来.
考基联动
考向导析
限时规范训练
考向一 函数单调性判断与证明
2 1 【例1】 试判断函数f (x)=x - 在(0,+∞)上的单调性,并加以证明. x 1 解:解法一:函数f (x)=x2 - 在(0,+∞)上是单调增函数,设0<x1 <x2 , x 1 1 1 2 2 则f (x1 )-f (x2)=x1 -x 2 - - =(x1 -x2 )x1 +x2 + x1 x2 x1 x2 1 ∵x2 >x1 >0,∴x1 -x2 <0,x1 +x2 + >0,∴f (x1 )-f(x2 )<0,即f(x1 )<f(x2 ). x1 x2 故f (x)在(0,+∞)上单调递增. 1 解法二:f ′(x)=2x+ 2 ,当x>0时,f ′(x)>0,故f (x)在(0,+∞)上为增函数. x
反思感悟:善于总结,养成习惯 对于给出具体解析式的函数,证明其在某区间上的单调性有两种方法,(1)可以结 合定义(基本步骤为取值、作差或作商、变形、判断)求解.(2)可导函数则可以利 用导数解之.但是,对于抽象函数单调性的证明,一般采用定义法进行.

单调性与最大(小)值——单调性 课件

单调性与最大(小)值——单调性 课件

函数单调性与单调区间的定义
一般地,设函数 f(x)的定义域为 I ,区间 D I :
如果x1, x2 D,当x1 x2时,都有f (x1) f (x2 ), 那么就称函数f (x)在区间D上单调递增(如图(1)).
特别地,函数 f(x)在它的定义域上单调递增时,我们就称它是增函数.
如果x1, x2 D,当x1 x2时,都有f (x1) f (x2 ), 那么就称函数f (x)在区间D上单调递减(如图(2)).
你能说明为什么 f (x1) f (x2 ) 吗?
x1 x2 0,x1 x2 0.
由不等式性质7可得:( x1)2 ( x2)2.
即x12 x22 , f (x1) f (x2 ).
在初中,我们利用函数图象研究过函数值随自变量的增大而增大(或减小)的性质,这一性质叫 做函数的单调性. 下面进一步用符号语言刻画这种性质.
1)
由x1, x2 (1, ),得x1 1, x2 1.
所以x1x2 1, x1x2 1 0.
又由x1 x2 , 得x1 x2 0.
于是 x1 x2 x1x2
所以,函数
(
y
x1x2
x
1)
1
0,即y1 y2.
在区间(1, )上单调递增.
x
总结:虽然我们可以通过函数的图象判断函数的单调性,但证明函数在某个区间上单调递增(减)
图象在 y 轴左侧部分从左到右是下降的,也就是说当x≤0时, y 随 x 的增大而减小.
用符号语言描述就是:
任意取x1, x2 (,0],得到f (x1) x12 , f (x2 ) x22 ,
那么当x1 x2时,有f (x1) f (x2 ).
这时我们就说,函数 f (x) x2在区间 (,0] 上是单调递减的.

《单调性与最大(小)值》教案

《单调性与最大(小)值》教案

《单调性与最大(小)值》教案教学目标1、理解增函数、减函数、单调区间、单调性等概念.2、掌握增(减)函数的证明和判别.3、学会运用函数图像进行理解和研究函数的性质.教学重难点重点:判断函数单调性,找出单调区间,熟练求函数的最大(小)值.难点:理解函数的最大(小)值,能利用单调性求函数的最大(小)值.教学过程在教法学法方面,采用启发式、探讨式的教学方法,引导学生自主探究,合作交流。

通过学生身边熟悉的事物,教师创造疑问,学生想办法解决疑问,通过教师的启发点拨,学生以自己的努力找到了解决问题的方法。

一、情景导入问题:1、观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:(1)随x 的增大,y 的值有什么变化?(2)能否看出函数的最大、最小值?二、新课教学(一)函数单调性定义1.增函数一般地,设函数y =f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数(increasing function ).思考:仿照增函数的定义说出减函数的定义.(学生活动)注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;单调性是与“区间”紧密相关的概念,一个函数在定义域的不同的区间上可以有不同的单调性。

○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f(x 1)<f(x 2) .注意“任意”两字绝不能丢掉,证明单调性时更不可随意以两个特殊值替换,两个任意的自变量是属于同一个单调区间。

2.函数的单调性定义如果函数y =f(x)在某个区间上是增函数或是减函数,那么就说函数y =f(x)在这一区间具有(严格的)单调性,区间D 叫做y =f(x)的单调区间:3.判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤:○1 任取x 1,x 2∈D ,且x 1<x 2;○2 作差f(x 1)-f(x 2);○3 变形(通常是因式分解和配方);○4 定号(即判断差f(x 1)-f(x 2)的正负);○5 下结论(即指出函数f(x)在给定的区间D 上的单调性).4、判定函数单调性的常见方法(1)定义法:如上述步骤,这是证明或判定函数单调性的常用方法(2)图象法:根据函数图象的升降情况进行判断。

函数的单调性与最大(小)值PPT课件

函数的单调性与最大(小)值PPT课件

∴f(x)在[-1,0]上是增函数,在(-∞,-1]上是减函数. 又x∈[0,1],u∈[-1,0]时,恒有f(x)≥f(u),等号只在x=u=0时取到,故
f(x)在[-1,1]上是增函数. (3)由(2)知函数f(x)在(0,1)上递增,在[1,+∞)上递减,则f(x)在x=1处
可取得最大值. ∴f(1)=, ∴函数的最大值为 ,无最小值.
x≤1,
.是
,
上的减函数, 那么a的取值范围是(
)
A.(0,1)
C.
1 7
,
1 3
B.
0,
1 3
D.
1 7
,1
[错解]依题意应有
3a 1 0, 0 a 1,
解得0
a
1 3
,
选B.
[剖析] 本题的错误在于没有注意分段函数的特点,只保证了函数
在每一段上是单调递减的,没有使函数f(x)在(-∞,1]上的最小值
【典例2】利用定义判断函数f x x x2 1在区间
R上的单调性.
[错解]设x1, x2 R,且x1 x2 ,则f x2 f x1
(x2 x22 1) (x1 x12 1)
x2 x1 ( x22 1 x12 1),
因为x1 x2 ,则x2 x1 0,且 x22 1 x12 1 0,
(2)在解答过程中易出现不能正确构造f(x2-x1)的形式或不能将不 等式右边3转化为f(2)从而不能应用函数的单调性求解,导致此 种错误的原因是没有熟练掌握单调性的含义及没弄清如何利 用题目中的已知条件或者不能正确地将抽象不等式进行转化.
错源一不注意分段函数的特点
【典例1】已知f
x
(3a 1)x 4a, logax, x 1

高中数学《单调性与最大(小)值》说课稿

高中数学《单调性与最大(小)值》说课稿

高中数学《单调性与最大(小)值》说课稿高中数学《单调性与最大(小)值》说课稿以下是小编整理的高中数学《单调性与最大(小)值》(数学必修一)》说课稿,希望对大家有帮助!一、教材分析1.教学内容本节课内容教材共分两课时进行,这是第一课时,该课时主要学习函数的单调性的的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性,。

2. 教材的地位和作用函数单调性是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。

掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。

3.教材的重点﹑难点﹑关键教学重点:函数单调性的概念和判断某些函数单调性的方法。

明确单调性是一个局部概念.教学难点:领会函数单调性的实质与应用,明确单调性是一个局部的概念。

教学关键:从学生的学习心理和认知结构出发,讲清楚概念的形成过程.4.学情分析高一学生正处于以感性思维为主的年龄阶段,而且思维逐步地从感性思维过渡到理性思维,并由此向逻辑思维发展,但学生思维不成熟、不严密、意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。

从学生的认知结构来看,他们只能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性,发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中注意加强.二、目标分析(一)知识目标:1.知识目标:理解函数单调性的概念,掌握判断一些简单函数的单调性的方法;了解函数单调区间的概念,并能根据函数图象说出函数的单调区间。

2.能力目标:通过证明函数的单调性的学习,使学生体验和理解从特殊到一般的数学归纳推理思维方式,培养学生的观察能力,分析归纳能力,领会数学的归纳转化的思想方法,增加学生的知识联系,增强学生对知识的主动构建的能力。

3.情感目标:让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知欲望。

第二节 函数的单调性与最大(小)值

第二节 函数的单调性与最大(小)值

f(x-1)>0 的解集是
()
A.(-∞,-1)∪12,+∞ C.-∞,-12∪(1,+∞)
B.-12,1 D.-1,12
[解析] f(x)的定义域为 R ,且 f(-x)=ax-a1x=-f(x),所以 f(x)为奇函数.
__________.
解析:易知f(x)=x2-2kx+4的图象的对称轴为x=k,由题意可得k≤5或 k≥20.
答案:(-∞,5]∪[20,+∞)
三、“基本思想”很重要 1.(数形结合)设定义在[-1,7]上的函数 y=f(x)的图象如图所示,则函数 y=f(x)
的增区间为________.
解析:由图象可知函数的增区间为[-1,1]和[5,7]. 答案:[-1,1]和[5,7]
命题点三 函数单调性的应用(多角探明) [逐点例析]
题点(一) 比较大小
x2+1,x≥0, [例 1] (2020·湘潭三模)设函数 f(x)=13x3-32x2+2x+1,x<0, a=f(0.7-0.5),
b=f(0.8-0.5),c=f(log0.75),则 a,b,c 的大小关系是
A.b<c<a
3.(2021·石家庄模拟)对于任意实数 a,b,定义 min{a,b}=ab,,aa≤>bb. , 设函 数 f(x)=-x+3,g(x)=log2x,则函数 h(x)=min{f(x),g(x)}的最大值是 ________.
解析:在同一坐标系中,作出函数 f(x),g(x)的图象,依题意, h(x)的图象如图中实线所示.易知点 A(2,1)为图象的最高点, 因此 h(x)的最大值是 h(2)=1. 答案:1
(2)单调区间D必为定义域的子集,所以函数的单调性是函数的局部性质. (3)对于区间端点,由于它的函数值是唯一确定的常数,没有增减的变化,所

第05讲-函数的单调性与最值(解析版)

第05讲-函数的单调性与最值(解析版)

第05讲-函数的单调性与最值一、考情分析借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义.二、知识梳理1.函数的单调性(1)单调函数的定义增函数减函数定义设函数y=f(x)的定义域为A,区间M⊆A,如果取区间M中任意两个值x1,x2,改变量Δx=x2-x1>0,则当Δy=f(x2)-f(x1)>0时,就称函数y=f(x)在区间M上是增函数Δy=f(x2)-f(x1)<0时,就称函数y=f(x)在区间M上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)上是增函数或是减函数,性,区间M称为单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M(3)对于任意x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M结论M为最大值M为最小值[微点提醒]1.(1)闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时最值一定在端点处取到.(2)开区间上的“单峰”函数一定存在最大值(或最小值).2.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反.3.“对勾函数”y =x +ax (a >0)的增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ].三、 经典例题考点一 确定函数的单调性(区间)【例1-1】(2019·安徽省泗县第一中学高二开学考试(理))如果函数f(x)在[a ,b]上是增函数,对于任意的x 1,x 2∈[a ,b](x 1≠x 2),下列结论不正确的是( ) A .()()1212f x f x x x -->0B .f(a)<f(x 1)<f(x 2)<f(b)C .(x 1-x 2) [f(x 1)-f(x 2)]>0D .()()2121x x f x f x -->0【答案】B 【解析】试题分析:函数在[a ,b]上是增函数则满足对于该区间上的12,x x ,当12x x <时有()()12f x f x <,因此()()12120f x f x x x ->-,(x 1-x 2) [f(x 1)-f(x 2)]>0,()()21210x x f x f x ->-均成立,因为不能确定12,x x 的大小,因此f(a)<f(x 1)<f(x 2)<f(b)不正确【例1-2】(2020·诸城市教育科学研究院高一期末)函数2y x =-的单调递增区间为( ) A .(],0-∞ B .[)0,+∞C .()0,∞+D .(,)-∞+∞【答案】A 【分析】由解析式知函数图像为开口向下的抛物线,且对称轴为y 轴,故可得出其单调增区间. 【详解】∵函数2y x =-, ∴函数图像为开口向下的抛物线,且其对称轴为y 轴 ∴函数的单调增区间为(],0-∞.规律方法 1.(1)求函数的单调区间,应先求定义域,在定义域内求单调区间,如例1(1).(2)单调区间不能用集合或不等式表达,且图象不连续的单调区间要用“和”“,”连接.2.(1)函数单调性的判断方法有:①定义法;②图象法;③利用已知函数的单调性;④导数法. (2)函数y =f [g (x )]的单调性应根据外层函数y =f (t )和内层函数t =g (x )的单调性判断,遵循“同增异减”的原则.考点二 求函数的最值【例2-1】(2020·安徽省六安一中高一月考)若函数()22231x f x x+=+,则()f x 的值域为( ) A .(],3-∞ B .()2,3 C .(]2,3 D .[)3,+∞【答案】C 【分析】利用分子分离法化简()f x ,再根据不等式的性质求函数的值域. 【详解】()22222232(1)112111x x f x x x x+++===++++, 又22211110122311x x x +≥⇒<≤⇒<+≤++, ∴()f x 的值域为(]2,3,故选:C.【例2-2】(2020·民勤县第一中学高二期中(理))下列结论正确的是( )A .当2x ≥时,1xx+的最小值为2 B .当0x >时,2≥ C .当02x <≤时,1x x-无最大值D .当0x >且1x ≠时,1lg 2lg x x+≥ 【答案】B 【分析】结合函数的单调性及基本不等式逐个判断即可. 【详解】 对于A ,x +1x 在[2,+∞)上单调增,所以x =2时,1x x +的最小值为52,故A 错误;对于B ,当x >0时,2x x+≥,当且仅当x =1时,等号成立,故B 成立; 对于C ,1x x -在(0,2]上单调增,所以x =2时,1x x-取得最大值,故C 不成立;对于D ,当0<x <1时,lgx <0,1lg x<0,结论不成立;规律方法 求函数最值的四种常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)均值不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用均值不等式求出最值.(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. 考点三 函数单调性的应用【例3-1】(2020·安徽师范大学附属中学高三月考(理))若函数32,1()3,1x e a x f x x x x ⎧->=⎨-+≤⎩有最小值,则实数a 的取值范围为( ) A .(,1]-∞ B .(–],e ∞C .(01],D .(0,]e【答案】B 【分析】分别求出两段的范围,结合图象即可得到实数a 的取值范围. 【详解】作出32,1()3,1x e x f x x x x ⎧>=⎨-+≤⎩的图象:当1x >时,()f x =x e a e a ->-,当1x ≤时,'2()363(2),f x x x x x =-+=--在(),0-∞上'()0,<f x 在 ()0,1上'()0,f x > 则()f x =323x x -+在(),0-∞上单调递减,在 ()0,1上单调递增,又(0)0f = ∴()0f x ≥,函数32,1()3,1x e a x f x x x x ⎧->=⎨-+≤⎩有最小值,则0e a -≥, 即a e ≤,故选:B【例3-2】(2020·江苏省高一期末)函数()11xxe f x e -=+(e 是自然对数的底数)的图象大致为( ). A . B .C .D .【答案】A 【分析】利用分离常数的方法,将式子化简,可得()211x f x e =-++,根据单调性以及值域,可得结果. 【详解】因为()11211x x x x e e f x e e -+-==-++ 所以()211xf x e =-++, 可知y=x e 是递增的函数,所以2y=1x e +为递减的函数, 则()211x f x e =-++是递减的函数,且0,1x x e >>所以1112,012xxe e +><<+ 则21101x e -<-+<+,所以A 正确 故选:A【例3-3】(2019·会泽县第一中学校高二开学考试(理))已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a R ∈,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是 A .47[,2]16-B .4739[,]1616-C.[- D.39[]16- 【答案】A 【解析】 不等式()2x f x a ≥+为()()2xf x a f x -≤+≤(*), 当1x ≤时,(*)式即为22332x x x a x x -+-≤+≤-+,2233322x x a x x -+-≤≤-+, 又22147473()241616x x x -+-=---≤-(14x =时取等号), 223339393()241616x x x -+=-+≥(34x =时取等号),所以47391616a -≤≤, 当1x >时,(*)式为222x x a x x x --≤+≤+,32222x x a x x--≤≤+,又3232()22x x x x --=-+≤-x =,222x x +≥=(当2x =时取等号),所以2a -≤≤, 综上47216a -≤≤.故选A .规律方法 1.利用单调性求参数的取值(范围)的思路是:根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.对于分段函数,要注意衔接点的取值. 2.(1)比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. (2)求解函数不等式,其实质是函数单调性的逆用,由条件脱去“f ”. [思维升华]1.利用定义证明或判断函数单调性的步骤: (1)取值;(2)作差;(3)定号;(4)判断.2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.3.求函数最值的常用求法:单调性法、图象法、换元法、利用均值不等式. [易错防范]1.区分两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连接,不要用“∪”.例如,函数f (x )在区间(-1,0)上是减函数,在(0 ,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f (x )=1x.四、 课时作业1.(2020·湖南省茶陵三中高二开学考试)已知函数()([1,5])y f x x =∈-的图象如图所示,则()f x 的单调递减区间为( )A .[1,1]-B .[1,3]C .[3,5]D .[1,5]-【答案】B 【分析】根据递减区间的性质分析即可. 【详解】由图像可得,函数在[1,3]内单调递减.2.(2020·湖北省高一月考)下列四个函数中,在(0,)+∞上为增函数的是( ) A .||y x = B .1y x =-+ C .23y x x =- D .2y x=【答案】A 【分析】根据四个函数解析式,依次判断即可得解. 【详解】对于A ,||y x =在(),0-∞内单调递减,在(0,)+∞内单调递增,所以A 正确; 对于B ,1y x =-+在R 内单调递减,所以在(0,)+∞内也单调递减,所以B 错误; 对于C ,23y x x =-在3,2⎛⎫-∞ ⎪⎝⎭内单调递减,在3,2⎛⎫+∞ ⎪⎝⎭内单调递增,所以在(0,)+∞内单调递增错误,即C 错误; 对于D ,2y x=在在(0,)+∞内也单调递减,所以D 错误. 综上可知,A 为正确选项,故选:A.3.(2019·湖南省长郡中学高二期中)下列函数中,在区间()0,1上是增函数的是( ) A .y x = B .3y x =-C .1y x=D .24y x =-+【答案】A 【分析】根据一次函数,反比例函数,二次函数性质可得3y x =-,1y x=,24y x =-+在0,1不是增函数,在区间0,1上,y x x ==是增函数. 【详解】()0,1x ∈时, y x x ==,所以y x =在0,1上是增函数;13,y x y x=-=在0,1上均是减函数; 24y x =-+是开口向下以0x =为对称轴的抛物线,所以24y x =-+在在0,1上是减函数,所以A 正确.故选:A4.(2019·江苏省高一月考)下列函数,在区间()0,∞+上是增函数的是( ) A .y x =- B .1y x=-C .1y x =-D .2yx x【答案】B 【分析】A 选项讲0x >的表达式写出易判断;B 选项注意改变单调性的两个因素:取倒数和加负号,易判断;C 选项一次函数看斜率正负,易判断;D 选项二次函数看对称轴,易判断。

3.2.1函数单调性与最值教案

3.2.1函数单调性与最值教案

13.2.1函数单调性与最大(小)值学习目标: (1) 借助函数的图像加深对函数概念的理解;(2) 能够用定义判断或证明函数的单调性,会求一些简单函数的单调区间;(3) 理解函数最大(小)值的含义,会利用函数单调性求最值.学习重点: 函数单调性.学习难点: 增(减)函数的定义,利用增(减)函数的定义判断函数的单调性. 预习案新知预习:请同学们自己预习课本76-80页内容,有困难或疑问请用红笔标注,并独立完成下面的问题1、增函数与减函数一般的,设函数(x)f 的定义域为I ,区间如果 ,当 时,都有 ,那么就称函数(x)f 在 上单调递增。

特别地,当函数(x)f 在它的定义域上单调递增时,我们就称它是增函数。

如果 ,当 时,都有 ,那么就称函数(x)f 在 上单调递减。

特别地,当函数(x)f 在它的定义域上单调递增时,我们就称它是减函数。

2、单调性与单调区间如果函数()=y f x 在区间D 上是 或 ,那么就说函数在这一()=y f x 区间上具有 ,区间D 叫做()=y f x 的注:函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质思考:下图是定义在区间[]5,5-上的函数)(x f y =,根据图象说出函数的单调区间,以及在每个区间上,它是增函数还是减函数?3、函数的最值一般地,设函数()=y f x 的定义域为I ,如果存在实数M 满足:(1)∀∈x I ,都有()≤f x M ;(2)0∃∈x I ,使得()0=f x M那么,我们称M 是函数()=y f x 的最大值。

思考:你能仿照函数最大值的定义,给出函数()=y f x 的最小值的定义吗?探究案探究点1: 判断及证明函数单调性例一、 证明函数()21=+f x x 是增函数。

例二、思考并画出反比例函数1=y x 的图象.则(1)这个函数的定义域是什么? (2)它在定义域上的单调性怎样?证明这个函数在区间()+∞,0上单调递减.总结: 利用定义证明函数f(x)在给定的区间M 上的单调性的一般步骤:小试身手:根据定义证明函数1=+y x x在区间()1,+∞上单调递增。

3.2.1单调性与最大(小)值教学设计-023-2024学年高一上学期数学人教A版(2019)必修一

3.2.1单调性与最大(小)值教学设计-023-2024学年高一上学期数学人教A版(2019)必修一

课堂教学设计学科:高一数学姓名:课题:3.2.1 单调性与最大(小)值(第二课时)课型:新授课教学背景分析(一)课题及教学内容分析本节课是新课标人教A版(2019)必修1中第三章函数的性质之函数的单调性和最大(小)值的第2课时,也是对函数性质的进一步研究。

函数的最值问题对于学生来说并不陌生,初中已经学习了求二次函数的最大(小)值的问题。

本节在函数的单调性之后,目的在于引导学生用单调性探究函数的最值问题,同时对解决日常生活中的最值问题起着重要作用。

通过本节课的学习,可以让学生理解函数最值的定义和几何意义,进一步加深对函数性质的理解,同时,对于常见题型的研究,也将数学结合和分类讨论思想充分体现,对培养学生直观想象、数学建模等核心素养都具有重要意义。

(二)学生情况分析现阶段大部分学生学习的主动性较差,且随着高中数学难度的加大,学习信心不足。

通过对常见函数的单调性问题的学习,找到初中知识和高中知识的衔接点,从特殊到一般,再通过类比,使学生更容易掌握新知识。

因此,学生已经具备了探索、发现、研究函数单调性的基础,通过问题引导,使学生独立思考、大胆尝试和灵活应用,从中体会类比、归纳、转化等数学思想。

学习目标1.借助函数的单调性,结合函数图象,形成函数最大(小)值的概念及几何意义。

2.在最值概念的形成过程中,体会到以具体到抽象,从感性到理性的认知过程以及从特殊到一般的研究方法领会数形结合的数学思想。

教学重点和难点1.教学重点:抽象概括函数最大(小)值的定义,能利用单调性求一些函数最值2.教学难点:函数最大(小)值形式化定义的形成与理解教学资源和教学方法采用多媒体和黑板结合,创设情景,从具体函数图像引入新课。

以学生为主体,通过问题衔接,引导学生思考探究学习。

教学过程(第二课时)教学环节教师活动学生活动设计意图教师个人二次备课环节一复习回顾引出课题问题1:上节课我们研究了函数的单调性,请叙述单调性的定义,并回答单调性证明的一般步骤。

函数的单调性与最大(小)值

函数的单调性与最大(小)值
解析: 由 f(x)=2
-|x|
1 ≤ 得-|x|≤-1, 2
∴|x|≥1.∴x≥1 或 x≤-1. ∴fK(x)=1 2,-1<x<1.
-|x| 2 ,x≥1或x≤-1,
当 x∈(1,+∞)时,fK(x)=2
-|x|
1x =2 ,在(1,+∞)上为减函数.
当 x∈(-∞,-1)时,fK(x)=2x,在(-∞,-1)上为增函数.
【答案】
3 [ ,2) 2
错因分析:(1)仅考虑函数f(x)的单调性,忽略定义区间的限制(1 -x2>0). (2)作为分段函数,忽视x取值范围影响对应关系,缺乏分类讨论 的思想意识. 防范措施: (1)分段函数的求解策略是 “分段函数分段解决 ”, 树立分类讨论的思想. (2)“对号入座”,根据自变量取值的范围,准确确定相应的对应 关系,转化为一般函数在指定区间上的问题.
课前自修
2.已知函数f(x)为R上的减函数,则满足f(|x|)<f(1)的实
数x的取值范围是( D )
A.(-1,1) B.(0,1) C.(-1,0)∪(0,1) D.(-∞,-1)∪(1,+∞) 解析:∵f(x)为R上的减函数,且f(|x|)<f(1), ∴|x|>1,∴x<-1或x>1.故选D. 栏 目 链 接
函数 f(x)对任意的 m,n∈R,都有 f(m+n)=f(m)+f(n)-1, 并且 x>0 时,恒有 f(x)>1. (1)求证:f(x)在 R 上是增函数; 2 (2)若 f(3)=4,解不等式 f(a +a-5)<2.
答题模板 解函数不等式的问题一般步骤是: 第一步:确定函数 f(x)在给定区间上的单调性; 第二步:将函数不等式转化为 f(M)<f(N)的形式; 第三步:运用函数的单调性“去掉”函数的抽象符号“f”, 转化成一般的不等式或不等式组; 第四步:解不等式或不等式组确定解集; 第五步:反思回顾.查看关键点,易错点及解题规范.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《函数的单调性与最大(小)值》教学设计
⑴通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;
⑵学会运用函数图象理解和研究函数的性质; ⑶够熟练应用定义判断数在某区间上的的单调性. ⑷理解函数的最大(小)值及其几何意义;
函数的单调性及其几何意义.函数的最大(小)值及其几何意义.
利用函数的单调性定义判断、证明函数的单调性.利用函数的单
并说说它们分别反映了相应函数的哪些变化规律:
①随x 的增大,y 的值有什么变化?②能否看出函数的最大(小)值?③函数图象是否具有某种对称性?
⑵画出下列函数的图象,观察其变化规律:
①f(x) = x

1 从左至右图象上升还是下降

2 在区间 ____________ 上,随着x 大,f(x)的值随着 ________ . ②f(x) = -2x+1 ○
1 从左至右图象上升还是下降

2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ . ③f(x) = x 2

1在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ .

2 在区间 ____________ 上,f(x)的值随
着x 的增大而 ________ .
⑴设函数)(x f y =的定义域是I,区间I D ⊆,D x x ∈21,,当21x x <时,都有)()(21x f x f < 成立,则称)(x f 在区间D 上是增函数...,如图⑴ ⑵设函数)(x f y =的定义域是I,区间I D ⊆,D x x ∈21,,当21x x <时,都有)()(21x f x f >成立,则称)(x f 在区间D 上是减函数...
,如图⑵
①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;
②必须是对于区间D 内的任意..两个自变量x 1,x 2;当x 1<x 2时,总有..f(x 1)<f(x 2)
二、函数的单调性定义及判断步骤 ⑴单调区间:函数)(x f 在区间D 上是增函数或减函数,我们就称函数)(x f 在这个区间D 具有(严格的)单调性,区间D 是这个函数的单调区间。

⑵判断函数单调性的方法步骤
利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤: ①假设取值 x 1,x 2∈D ,且x 1<x 2; ②作差变形f(x 1)-f(x 2);(通常是因式分解和配方); ③判断符号(即判断差f(x 1)-f(x 2)的正负);
④下定结论(即指出函数f(x)在给定的区间D 上的单调性). 三、单调性典型例题 例1.(教材P 32例1)根据函数图象说明函数的单调性. 解:(略)
巩固练习:课本P 36练习第1、2题 例2.(教材P 32例2)根据函数单调性定义证明函数的单调性. 解:(略)
巩固练习:①课本P 36练习第3题; ②证明函数x
x y 1
+=在(1,+∞)上为
增函数.
[附加]借助计算机作出函数y =-x 2 +2 | x | + 3的图象并指出它的的单调区间.
解:(略)
思考:画出反比例函数x
y 1
=的图象.
①这个函数的定义域是什么?
②它在定义域I 上的单调性怎样?证明你的结论. 四、函数的最大、最小值
指出图象的最高点或最低点,并说明它能体现函数的什么特征?
(1)32)(+-=x x f (2)32)(+-=x x f ]2,1[-∈x (3)12)(2++=x x x f (4)12)(2++=x x x f ]2,2[-∈x
一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足: ⑴对于任意的x ∈I ,都有f(x)≤M ; ⑵存在x 0∈I ,使得f(x 0) = M
那么,称M 是函数y=f(x)的最大值.
①函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f(x 0) = M ; ②函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f(x)≤M (f(x)≥M ).
y=f(x)的最小值的定义.(学生活动)
五、利用函数单调性的判断函数的最大(小)值的方法 利用二次函数的性质(配方法)求函数的最大(小)值 利用图象求函数的最大(小)值
利用函数单调性的判断函数的最大(小)值
如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);
如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b);
六、最大(小)值典型例题 例3.(教材P 34例3)利用二次函数的性质确定函数的最大(小)值. 解:(略) [附加题]
旅 馆 定 价
一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和
解:根据已知数据,可假设该客房的最高价为160元,并假设在各价位之间,房价与住房率之间存在线性关系.
设y 为旅馆一天的客房总收入,x 为与房价160相比降低的房价,因此当房
价为)160(x -元时,住房率为)%102055(⋅+x
,于是得
y =150·)160(x -·)%1020
55(⋅+x

由于)%1020
55(⋅+x
≤1,可知0≤x ≤90.
因此问题转化为:当0≤x≤90时,求y的最大值的问题.
将y的两边同除以一个常数0.75,得y1=-x2+50x+17600.
由于二次函数y1在x=25时取得最大值,可知y也在x=25时取得最大值,此时房价定位应是160-25=135(元),相应的住房率为67.5%,最大住房总收入为13668.75(元).
所以该客房定价应为135元.(当然为了便于管理,定价140元也是比较合理的)
例4.(教材P
35例4)求函数
1
2
-
=
x
y在区间[2,6]上的最大值和最小值.
解:(略)
巩固练习:(教材P
36
练习5)
再利用定义证明.求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分四步:①假设取值②作差变形
P
43
习题1.3(A组)第1-2题.
提高作业:设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),
⑴求f(0)、f(1)的值;
⑵若f(3)=1,求不等式f(x)+f(x-2)>1的解集.。

相关文档
最新文档