可化为一元一次方程分式方程
可化为一元一次方程的分式方程(教案)
可化为一元一次方程的分式方程教材分析1本章是学生已掌握了整式的四则运算,多项式的因式分解的基础上,通过对比分数的知识来学习的,包括分式的概念,分式的基本性质,分式的四则运算,这一章的内容对于以后的公式变形以及可化为一元二次方程的分式方程、函数等内容的学习都是一本章为基础的。
所以学好本节内容能为以后的进一步学习奠定良好基础。
2可化为一元一次方程的分式方程是在学生已熟练地掌握了一元一次方程的解法,分式四则运算等有关知识的基础进行学习的.它既可看着是分式有关知识在解方程中的应用;也可看着是进一步学习研究其它分式方程的基础(可化为一元二次方程的分式方程).同时学习了分式方程后也为解决实际问题拓宽了路子,打破了列方程解应用题时代数式必须是整式这一限制.教学重点、难点1.教学重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想.2教学难点:理解增根的概念,了解增根产生的原因,知道解分式方程须验根并掌握验根的方法,明确分式方程验根的必要性。
教学目标知识目标1.使学生理解分式方程的意义.2.使学生掌握可化为一元一次方程的分式方程的一般解法.3.了解解分式方程时可能产生增根的原因,并掌握解分式方程的验很方法.4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.能力目标1培养学生将实际问题转化为数学问题的能力2培养学生观察、比较、抽象、概括的能力3训练学生思维的灵活性德育目标1激发学生的内在动机2养成良好的学习习惯教学手段演示法和同学练习相结合,以练习为主教学过程设计:教学过程(一)复习及引入新课1.提问:什么叫方程?什么叫方程的解?答:含有未知数的等式叫做方程.使方程两边相等的未知数的值,叫做方程的(二)问题情境导入问题:轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度。
青岛版八年级上册数学《可化为一元一次方程的分式方程》PPT教学课件(第1课时)
可化为一元一次方程的分式方程 第2课时
甲、乙两人做某种机器零件,已知甲每小时比乙多 做6个,甲做90个零件所用的时间和乙做60个零件所用的 时间相等,求甲、乙每小时各做多少个零件?
请审题分 析题意设元
解:设甲每小时做x个零件,则乙每小时做(x-6)个零件,
依题意得:
90 60 , x x6
这个方程有何特点? 特点:方程两边的代数式是分式. 或者说未知数在分母上的方程.
分式方程的概念 分母中含有未知数的方程叫做分式方程.
分式方程的特点: (1)含有分式 ; (2)分母中含有未知数; (3)是等式.
判断下列说法是否正确:
(1) 2x 3 5是分式方程 2
(2)
3 4 是分式方程
44x x 3
(3) x2 1是分式方程 x
(4) 1 1 是分式方程 x1 y1
(× ) (√ ) (× ) (√ )
分式方程的解法
80 60 x3 x3
分式方程
两边都乘以最简公分母 (x+3)(x-3) 得方程
两边乘以 最简公分
母
80(x 3) 60(x 3).
解这个整式方程得 x 21.
验x=5是所列分式方程的根,故x=5.
答案:5
2.(江西·中考)解方程:
x x
2 2
4 x2
4
1
【解析】方程两边同乘以 x2 4 ,得 (x 2)2 4 x2 4
解得x=3
检验:x=3时,x2 4 ≠0 所以,x=3是原分式方程的解.
3.当m为何值时,去分母解方程
x
2
2
mx x2 4
列分式方程解应用题的一般步骤
1.审:分析题意,找出等量关系.
八年级数学上册《可化为一元一次方程的分式方程》教案、教学设计
(1)已知两个数的和为15,它们的比值为3:4,求这两个数。
(2)小华和小明去书店买书,小华花费了40元,小明花费的钱数是小华的1.2倍。问:两人一共花费了多少钱?
要求:写出详细的解题步骤,并注明关键点。
3.拓展题:探讨以下问题,将实际问题抽象为分式方程模型,并求解。
3.部分学生对数学学习存在恐惧心理,可能在遇到困难时产生挫败感,需要教师的关心和鼓励。
4.学生在解决实际问题时,可能难以将问题转化为分式方程模型,需要培养建模能力。
针对以上学情,教师在教学过程中应关注以下几点:
1.通过生动有趣的实例,帮助学生理解分式方程的概念,降低学习难度。
2.设计具有层次性的练习题,让学生在巩固基础知识的同时,逐步提高解题能力。
二、学情分析
八年级学生在数学学习上已经具备了一定的基础,对一元一次方程的解法有了较为熟练的掌握。在此基础上,学生对分式方程的学习将面临以下挑战:
1.分式方程的概念与一元一次方程有所不同,学生需要适应这一变化,理解分母不为零的条件。
2.在解分式方程的过程中,学生容易在去分母、合并同类项等步骤上出现错误,需要加强练习和指导。
2.教学过程:
a.让学生独立思考,列出实际问题中的等量关系。
b.引导学生将等量关系转化为分式方程,为新课的学习做好铺垫。
c.通过这个实例,让学生感受到分式方程在实际生活中的应用,激发学生的学习兴趣。
(二)讲授新知
1.教学内容:分式方程的概念、解法步骤,以及与一元一次方程的联系。
2.教学过程:
a.介绍分式方程的定义,强调分母不为零的条件。
八年级数学上册《可化为一元一次方程的分式方程》教案、教学设计
一、教学目标
16.3 可化为一元一次方程的分式方程(第1课时)(课件)八年级数学下册(华东师大版)
能装配机器多少台?
想一想,该怎么计算?
导入新课
设原来每天能装配机器x台,可列出方程:
6 30 6
3
x
2x
观察这个方程与我们学过的
一元一次方程有什么不同?
讲授新课
知识点一 分式方程的概念
问题1 一艘轮船在顺水时航行80千米和在逆水时航行60千米用的时
间相同,已知水流的速度是3千米/时,问轮船在静水中的速度x千米/
解:方程两边同时乘(30+x)(30-x),得
90(30-x) =60(30-x)
解这个方程,得 x=6
经检验,x=6是原方程的解
当堂检测
6. 解方程:
x
x 1
2.
x 1
x
2
x
( x 1)( x 1) 2 x( x 1).
解:去分母,得
解得
1
x
2.
1
1
x x 1) 0.
1
3
=
x-2 x
(2)怎样去分母?
(3)在方程两边乘什么样的式
子才能把每一个分母都约去?
(4)这样做的依据是什么?
解分式方程最关键的问题是什么?
“去分母”
讲授新课
归纳总结
解分式方程的基本思路:是将分式方程化为整式方程,具体做法
是“去分母”,即方程两边同乘最简公分母.这也是解分式方程的一般
方法.
讲授新课
2x
x x
; (4) 1
2 3
(是)
(否)
讲授新课
2.下面说法中,正确的是( C )
A.分母中含有未知数的式子就是分式方程
B.含有字母的方程叫做分式方程
可化为一元一次方程的分式方程
可化为一元一次方程的分式方程【教材研学】一、可化为一元一次方程的分式方程的解法1.数字系数分式方程的解法解分式方程的关键是去分母,将分式方程化为整式方程求解.去分母即在方程两边同乘以最简公分母,若分母可以分解因式,应首先分解.由整式方程得到的解,需代人最简公分母中检验,使最简公分母不为零的解,才是原方程的解;使最简公分母为零的解,是原方程的增根,应舍掉.2.含有字母系数的分式方程的解法此类方程与数字系数分式方程的解法基本相同,只是在系数化为1时.要讨论系数是否为零.3.增根增根的产生是由于在去分母时,方程两边同乘的整式恰好为零所致.是方程变形造成的,不是解题错误.方程的增根不是分式方程的根.但是增根是变形后所得到的整式方程的根.4.分式方程有增根与无解的关系不仔细推敲,会认为分式方程无解和分式方程有增根是同一回事.事实上并非如此. 分式方程有增根,指的是解分分式方程求出的根是原分式方程变形后所得整式方程的根,但不是原分式方程的根,即这个根使最简公分母为0.比如:方程23132--=--xx x ,可解得:x=3,而x=3是原方程的增根,此方程无解.本题中,分式方程有增根,方程无解,但并不是说只要有增根方程就无解,等大家进入高年级,学习了更多的知识,会发现有增根的分式方程并不全是无解的.问题:若关于x 的方程m x m x =-+3无解,求m 的值。
探究:(1)将分式方程去分母,整理为:(1一m)x=一4 m.①当1一m=0,而4m≠0时方程无解.此时,m=l (依据是形如ax=b的方程在a=0,b≠0时无解)(2)如果方程①的解恰好是原分式方程的增根,原分式方程无解.根据这种思路,可先确定增根后,再求m的值.原方程若有增根,增根为x=3,把x=3代入方程①中,求出m=一3.综上所述,m=1或m=一3时,原分式方程无解.而此分式方程有增根时,m=一3.结论:通过本例可以发现,(1)现阶段学习的分式方程有增根时,一定无解;(2)分式方程无解,可能是因为有增根,也可能是由分式方程转化所得的整式方程ax=b中的a=0、b≠0造成的.三.分式方程的应用1.列分式方程客观世界中存在大量的问题需要用分式方程去解决,当我们掌握好相关的知识和方法后,就可以运用它们分析和解决实际问题.此类题目接近生活,取材广泛,做题时,要注意题目的情境,弄清是行程问题、增长率问题等中的哪一类,当然也有一些跨学科的综合题,比如:杠杆问题等,无论哪一类都要根据相关的基本量寻找关系.2.列分式方程解应用题的一般步骤:①弄清题意;②设未知数,列出有关的代数式;③依题意找等量关系,列出分式方程;④解方程;⑧检验:一方面要检验所求出的解是否为原方程的根,另一方面还要检验所求的解是否符合实际意义;⑥答。
八年级数学上册课件 3.7 可化为一元一次方程的分式方程
100310100 100 8 100个工件需要__x 天;采用新工艺后每天加工 1.5x 个
x 1.5x 210
工件,加工剩余的工件用了_1 ._5 x 天。
问题中的等量关系是:
采用新工艺前工作天数+采用新工艺后工作天数=8
对比下面两组方程(组), 分析第二组方程特征:
擦亮慧眼
5(12y)4y31 3
5x4y31
1003101008 x 1.5x
x 2 x2
3x 1 2y 5x 4y 31
x11x41x221
讨论: 它们有什么共同的特点?
方程的分母中都含有未知数
1003101008 x 1.5x
x11x41x221
x 2 x2
9000 15000
x
x3000
1、在这个问题中,哪些是已知量,哪些是未知量?
2、如果选取某一个未知量用x表示,那么其他未知量怎样用
关于x的代数式表示?
3、这个问题中的等量关系是什么?
4、选择哪个等量关系,可以得到关于未知数x的方程?
境问题
1. 王师傅承担了310个工件的焊接任务,加工了 100个工件后开始采用焊接新工艺,工效提高到 原来的1.5倍,共用8天完成了任务。请问采用新工 艺前,王师傅每天焊接多少个工件?
例1 解方程:x231x2111x
解: 原方程可化为
3 21
(x1)(x1) x1 1x
方程两边都乘 最简公分母 (x1)(x1),得
32(x1)(x1)
解这个方程,得 x 6
检验: 把x = 6代入原方程,左边=右边
∴ x = 6 是原方程的根.
注意:解分式方程一定要检验.
可化为一元一次方程的分式方程
可化为一元一次方程的分式方程一元一次方程的分式方程是一类有用的数学方程式,它可以通过将一元多项式分式化来解决复杂的表达式问题。
它的基本形式是:a/b = c,用分数的形式表示。
该方程的本质是变形,我们可以把它化成一元一次方程来解决。
首先,我们可以利用乘法来变换这个分式方程。
首先,我们将二分之一乘以a变成a/2,然后再乘以c,得到a/2 * c = b。
这样,就将分式方程变成一元一次方程a/2 * c - b = 0,即a/2c - b = 0。
接下来,我们可以利用反相法将这个方程进一步化简。
首先,我们可以把a/2c乘以2,变成2a/2c,然后用2a减去2b,得到2a/2c - 2b = 0。
这样,就将分式方程变成了一元一次方程2a - 2b = 0,即2a - 2b = 0。
最后,我们可以将这个方程进一步化简。
首先,我们可以把2a 除以2,变成a,然后用a减去b,得到a - b = 0。
这样,就将分式方程变成了一元一次方程a - b = 0,即a - b = 0,这就是最终的结果。
总之,一元一次方程的分式方程是一类重要的数学方程,它的基本形式是:a/b = c,用分数的形式表示。
我们可以通过乘法和反相法将这个方程变换为一元一次方程,从而解决复杂的表达式问题。
而且,这种变形的方法也可以应用在多元方程的解决中,这样就可以让复杂问题变得更加容易处理。
从上面的讨论可以看出,一元一次方程的分式方程是一类具有重要意义的数学方程式。
它不仅可以用来解决简单的表达式问题,而且也可以应用在多元方程中,让复杂问题变得更加容易处理。
因此,一元一次方程的分式方程受到广泛的应用,不管是在数学领域还是其他领域。
八年级数学上11.5可化为一元一次方程的分式方程及其应
实际生活中的应用
金融问题
分式方程在金融领域也有广泛的应用。例如,复利的计算、 投资回报率的计算等可以用分式方程来表示和解决。
交通问题
在交通管理中,分式方程可以用于描述车辆行驶的速度和时 间关系,以及道路交通流量等问题。例如,在高速公路上, 车辆的平均速度和行驶时间的关系可以用分式方程来表示和 计算。
根据方程定义取舍
有些分式方程在特定条件下无解 或无穷多解,需要根据方程的定 义和条件进行取舍。
解的适用范围
注意变量的取值范围
在分式方程中,变量的取值范围可能 会影响解的存在性和唯一性,因此需 要注意变量的取值范围。
注意方程的定义域
分式方程可能只在特定的定义域内有 解,因此需要注意方程的定义域,确 保解的适用范围。
转化原理和方法
1 2
消除分母
通过通分或消去分母,将分式方程转化为整式方 程。
转化为一元一次方程
将转化后的整式方程整理为一元一次方程的形式。
3
求解一元一次方程
解出转化后的一元一次方程的解。
转化过程和步骤
01
02
03
04
确定最简公分母
找到分式方程中各分母的最小 公倍数,作为最简公分母。
通分
将方程两边的分式通分,使分 式方程转化为整式方程。
移项与合并同类项
将整式方程中的项移至等号同 一边,并合并同类项。
化简整理
将整式方程化简整理为标准的 一元一次方程形式。
转化后的解法
01
02
03
直接求解法
对于简单的分式方程,可 以直接求解得到解。
换元法
对于复杂的分式方程,可 以通过换元法简化计算过 程。
图解法
可化为一元一次方程的分式方程分式方程及其解法
方程两边同乘以 x 4,
得x-4≠0
得, x4x51
∴x=5是原分式方程的解.
解得: x5
例题讲解
(2)
x2 16 x2 x2 x24 x2
解:方程两边同乘以 (x2)(x2), 得
(x2)216 (x2)2,
去括号,得
x2 4 x 4 1 6 x2 4 x 4 , 一
整理,得 8x=-16
定
解得x: 2.
x+1=2.
解这个整式方程,得
x=1.
事实上,当x=1时,原分式方程左边和右边的分
母(x-1)与(x2-1)都是0,方程中出现的两个分
式都没有意义,因此,x=1不是原分式方程的根,应
当舍去. 所以原分式方程无解.
为什么出现这 种情况?
探究分式方程产生增 根的原因
在将分式方程变形为整式方程时,方程 两边同乘以一个含未知数的整式,并约去了 分母,有时可能产生不适合原分式方程的解 (或根),这种根通常称为增根. 因此,在解分式方程时必须进行检验.
那么,可能产生“增根”的原因在哪里呢?
探究分式方程产生增 根的原因
对于原分式方程的解来说,必须要求使 方程中各分式的分母的值均不为零,但变形 后得到的整式方程则没有这个要求.如果所 得整式方程的某个根,使原分式方程中至少 有一个分式的分母的值为零,也就是说使变 形时所乘的整式(各分式的最简公分母)的 值为零,它就不适合原方程,即是原分式方 程的增根.
可化为一元一次方程的分式方程 分式方程及其解法
可化为一元一次方程的分式方程 ---分式方程及其解法
复习提问
1、什么叫做方程?什么是一元一次方程?什么 是方程的解?
2、解一元一次方程的基本方法和步骤是么? 3、分式有意义的条件是什么? 4、分式的基本性质是怎样的?
分式可化为一元一次方程的分式方程
分式方程的解法
移项法
总结词
通过移项,将分式方程转化为整式方程,从而求解分式方程。
详细描述
移项法是一种常用的解分式方程的方法。它通过将方程的两边同时加上或减 去同一个数,将分式方程转化为整式方程,从而简化方程的求解过程。
分式方程的练习题及解析
分式方程的练习题
练习题1
x - 1/x - 2=0
练习题2
2x + 3/x - 4=0
练习题3
3x - 2/x + 1=0
分式方程的解析
解析1
对于练习题1,我们可以先尝试进行等式的移项,将所有的项移到等式的左边,然后化简 分式,最后再尝试求解x的值。通过这种方法,我们可以找到这个分式方程的解。
解析2
对于练习题2,我们可以先尝试对方程进行变形,将方程的右边变为0,然后将方程的左边 进行通分处理,这样可以得到一个新的方程,再对方程进行求解,得到x的值。
解析3
对于练习题3,我们可以先尝试对方程进行变形,然后将方程的左边进行通分处理,这样 可以得到一个新的方程,再对方程进行求解,得到x的值。
THANKS
分式方程的注意事项
解分式方程的步骤
01
02
03
整理分式方程
将分式方程转化为整式方 程,此步骤需要消去分母 。
求解整式方程
使用一元一次方程的解法 ,求出整式方程的根。
检验根
对求出的整式方程的根进 行检验,确认是否为原分 式方程的解。
解分式方程的易错点
忽视验根
解分式方程时,容易忽视验根这一重要步骤,导致得到错 误答案。
可化为一元一次方程的分式方程分式方程及其解法
物体加热或冷却的过程。
工程问题
01
02
03
建筑设计
在建筑设计领域,分式方 程可以用来优化设计方案, 例如,计算建筑物的最佳 尺寸和比例。
机械设计
在机械设计中,分式方程 可以用来分析机器的性能 和效率,例如,计算齿轮 的转速和扭矩等。
电子工程
在电子工程中,分式方程 可以用来描述电路的工作 状态,例如,计算电流、 电压和电阻等。
解的验证
验证解的有效性
在得到分式方程的解后,应进行验证,确保解是有效的并且满足原方程。
考虑特殊情况
在验证解的过程中,应考虑特殊情况,如分母为零、无穷大等情况,以确保解 的全面性和准确性。
THANKS FOR WATCHING
感谢您的观看
分子有理化的方法是将分子与适当的表达式相乘,以消去根号或使分数形式简化。
分子有理化有助于简化方程,使其更容易求解。
03 可化为一元一次方程的分 式方程
方程的转化
1 2
将分式方程化为整式方程
通过通分、消去分母,将分式方程转化为整式方 程。
展开整式方程
将整式方程展开,整理成标的解
02
对代回后的分式方程进行化简,得到最终的分式方程的解。
检查解的合理性
03
对求出的分式方程的解进行检验,确保其满足原分式方程的定
义域和值域条件。
04 分式方程的解法
公式法
定义
公式法是一种通过对方程进行整 理,将其转化为标准的一元二次 方程,然后利用一元二次方程的 解公式来求解分式方程的方法。
定义域问题
确定分母不为零的解
在解分式方程时,需要特别注意定义 域问题,确保分母不为零,否则会导 致无解或解不合法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
1 x2
x
0
5x 2x 5 7x 10 x2 x 6 x2 x 12 x2 6x 8
例3 解方程:
x4 x8 x5 x9 x2 x6 x3 x7
把各个分式拆分,如
x 4 x 22 x 2 2 1 2 x2 x2 x2 x2 x2
练习2:解方程 x6 x7 x8 x9 x5 x6 x7 x8
在解分式方程中,那一步 会产生增根?为什么?
在去分母那一步, 如果方程两边乘以公 分母的值为零,那么 就会产生增根。
改错 解分式方程:x 8 1 8
x7 7x
解:方程两边都乘以 x 7 ,得
x 81 8
解这个整式方程,得
x 15
检验:当 x 15 时,x 7 0 ∴ x 15 是原方程的根。
例4 解方程:
a b a b
x x6
注意:由于题中给出这一个条件a>b,即a-b≠ 0。
在解整式方程(a-b)x=6a时,方程两边都除以不等于
零的式子a-b,所以整式方程有解,在此经过讨论就
不用再检验了。并且
x 6a ab
0,
x
6
6b ab
,0
所以。对以任何的分式方程都有同一情况。
练习3:解方程
改正 解分式方程:x 8 1 8
x7 7x
解:方程两边都乘以 x 7 ,得
x 8 1 8x 7
解这个整式方程,得
x7
检验:当 x 7 时,x 7 0 ∴ x 7 是原方程的增根,原方程无解
例2解方程:
3 2 1 x2 2x 1 1 2x x2 1 x2
练习1:
7 x2
(3)实际上,学习在掌握基本的知识与 解法后。还要有自己的看法,要力求创新。 要不断的努力,不断提高能力。更重要的 是培养自学能力。
作业: 解方程
(1) 5x 4 2x 5 1
2x 4 3x 6 2
x 2x
1 x2
(2)
(6)
x 2 x 3 x2 5x 6
(3)
3
5
6
x2 8x 15 x2 2x 15 x2 25
x m 3m m 1 x 1 1 x 3
小结:
(1)关于解分式方程注意一个“必须”、 两个“基本”、三个“步骤”。即是解分式方 程必须验根,解分式方程的基本思想是转化、 基本方法是去分母,再加上解分式方程的三个 步骤
(2)解分式方程的方法并不是一成不变的, 我们可根据题目的不同,作出相应的变化。
(4) x a 2x a a a 2xห้องสมุดไป่ตู้2a x
可化为一元一次方程的分式方程(2) 教学目的:
1、进一步学会较复杂的可化为一元一次方程的 分式的解法; 2、使学生掌握含有字母系数的分式方程的解法。 教学重点:含有字母系数的分式方程的解法 教学难点:在解含有字母系数的分式方程
解分式方程的思 想方法是?
解分式方程的思路和方法是:
利用化归的思想方式,去掉分式方 程的分母,把分式方程化成简单的、 我们已会解决的整式方程,然后利用 解整式方程的方法求解 。