平面与平面垂直的判定教案

合集下载

平面与平面垂直的判定-详细教案

平面与平面垂直的判定-详细教案

平面与平面垂直的判定(新课标)专业:计算机科学与技术(师范类)姓名:赖伟学校:江西师范大学教材分析:平面与平面垂直的判定这一节,是前面所学的直线与平面垂直知识的延伸,是平面与平面位置关系知识的完整,在立体几何中这一节占据重要位置,是以后解决几何体中各种问题的关键。

教学目标(1)知识目标:①、二面角的定义和求法;②、二面角的平面角定义及其求法;③、两个平面的垂直的定义和画法;④、两个平面垂直的判定定理。

(2)能力目标:①、掌握二面角和二面角平面角的定义及其求法;②、应用演绎的数学方法理解并掌握两个平面垂直的定义;③、利用转化的方法掌握和应用两个平面垂直的判定定理。

(3)情感目标:①、让学生学会从实践中抽象出数学模型的方法(抽象思维)(用二面角的平面角定义二面角的大小);②、培养学生从一般到特殊的思维方法的过程(理解并掌握两个平面垂直定义的过程);③、让学生认识到掌握两个平面垂直的判定定理是人类生产实践的需要,并且应用于实践,进一步培养学生理论与实践相结合的观点.教学重点:两个平面垂直的判定及应用。

教学难点:二面角的理解与求法。

教材内容解析1、二面角的定义及其相关概念;2、二面角的平面角定义及其求法;3、两个平面垂直的定义、画法;4、两个平面垂直的判定定理。

教学过程设计一、引题前面几节课中我们学习了--平面与平面平行的判定及其性质(适当回顾一下重点),我们知道教室的天花板所在平面与地面所在平面是平行的,那么请问窗户所在的平面与地面所在的平面是什么关系呢?--垂直,那好我们又是怎么来判断这两个平面是垂直的呢?我们又将怎么来表示两个平面的垂直呢?这些就是我们这节课要学习的内容—平面与平面垂直的判定,学习完这节课后我们就可以很容易的解决刚才的这些问题了。

二、教学主要内容1、二面角的定义及其相关概念我们关开门的时候会发现门所在的平面与墙面要成一定的角度,门才可以正常开关;修筑水坝时,为了使水坝坚固耐用,必须使水坝面与平面成适当的角度;像这样的平面与平面所称的角我们称之为二面角,那么怎么来定义二面角呢?根据角的定义(图1-117),我们可以类似地定义二面角.先给出半平面的定义.一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都叫做半平面(图1-118).二面角的定义:从一条直线出发的两个半平面所组成的图形叫二面角。

平面与平面垂直的性质定理教学设计及平面与平面垂直的判定与性质教案完美版

平面与平面垂直的性质定理教学设计及平面与平面垂直的判定与性质教案完美版

平面与平面垂直的性质定理教学设计及平面与平面垂直的判定与性质教案完美版教学设计:一、教学目标:1.知识目标:掌握平面与平面垂直的性质定理,了解平面与平面垂直的判定方法。

2.能力目标:能够正确判断平面与平面是否垂直,并运用性质定理求解问题。

3.情感目标:培养学生对几何知识的兴趣,提高解决几何问题的能力。

二、教学内容:1.平面与平面垂直的性质定理。

2.平面与平面垂直的判定方法。

三、教学步骤:1.导入新知识(10分钟)教师引入本节课的知识内容,告诉学生本节课要学习平面与平面垂直的性质定理和判定方法,并和学生一起回顾正交的概念,引发学生的思考。

2.学习性质定理(30分钟)教师通过多个例子,引导学生观察和总结平面与平面垂直的性质定理。

-性质定理一:如果两个平面的法向量相互垂直,则这两个平面垂直。

-性质定理二:如果两个平面中的各一条直线互相垂直,则这两个平面垂直。

教师先给出性质定理一的证明过程,再由学生自行推导性质定理二的证明过程。

学生在学习性质定理的过程中,教师可以组织学生进行小组讨论,让学生互相讨论并分享自己的理解和想法。

3.学习判定方法(30分钟)教师介绍平面与平面垂直的判定方法:-判定方法一:如果两个平面的法向量相互垂直,则这两个平面垂直。

-判定方法二:如果两个平面中的各一条直线互相垂直,则这两个平面垂直。

教师给出一些实际应用的例子,引导学生通过观察图形来判断两个平面是否垂直。

4.综合练习(20分钟)教师设计一些相关练习题,让学生通过运用刚刚学习的性质定理和判定方法来解决问题。

5.总结和课堂小结(10分钟)教师总结本节课学习的内容,提醒学生注意关键点,并给出总结性的提问,激发学生思维。

四、教学手段:1.教师板书法通过板书法概括和总结平面与平面垂直的性质定理和判定方法。

2.多媒体教学法运用多媒体教学展示相关的图片和视频,帮助学生更好地理解和掌握平面与平面垂直的性质定理和判定方法。

3.讨论和合作学习通过讨论和合作学习的方式,激发学生思维,增加学生的参与感和主动性。

高中数学面面垂直判定教案

高中数学面面垂直判定教案

高中数学面面垂直判定教案
教学目标:
1. 了解什么是垂直面。

2. 学会判断两个平面是否垂直。

3. 掌握垂直平面的相关性质和定理。

教学准备:
1. 教材:高中数学教科书
2. 教具:黑板、彩色粉笔、几何工具箱、投影仪
3. 辅助教学资料:包含平面垂直判定例题的练习册
教学步骤:
一、导入
1. 显示一个三维图形,引导学生思考其中的平面之间可能存在的关系。

2. 引导学生提出平面的垂直关系,并与垂直直线进行对比。

二、概念讲解
1. 解释垂直平面的定义。

2. 理论性讲解平面垂直的判定方法。

三、例题演练
1. 利用黑板进行示范,解答几个基础的垂直平面判定题目。

2. 让学生自行尝试几道练习题,并及时纠正。

四、深化延伸
1. 引导学生思考:如何用平面方程去判断两个平面是否垂直?
2. 讲解垂直平面的性质及相关定理。

五、课堂小结
1. 复习本节课所学的知识点,并强调重点。

2. 鼓励学生在课后多进行练习,巩固所学内容。

六、作业布置
1. 布置一定量的平面垂直判定练习题作为课后作业。

2. 提醒学生及时复习本节课所学内容。

教学反思:
1. 观察学生的学习情况,及时调整教学步骤和讲解方式。

2. 鼓励学生多提出问题,促进思维的拓展和深入。

3. 关注学生的作业情况,及时纠正错误,巩固学习成果。

关于平行与垂直教案(精选范文4篇)

关于平行与垂直教案(精选范文4篇)

关于平行与垂直教案(精选范文4篇)垂直,是指一条线与另一条线相交并成直角,这两条直线相互垂直。

通常用符号“⊥”表示。

设有两个向量a和b,a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0 。

对于立体几何中的垂直问题,主要涉及到线面垂直问题与面面垂直问题,而要解决相关的,以下是为大家整理的关于平行与垂直教案4篇, 供大家参考选择。

平行与垂直教案4篇【篇一】平行与垂直教案第四单元平行四边形和梯形第____课时总序第____个教案编写时间:____年____月____日执行时间:____年____月____日【篇二】平行与垂直教案垂直与平行教学内容:人教版《义务教育课程标准试验教科书·数学》四年级上册64~65页的内容。

教学目标:1.引导学生通过视察、探讨感知生活中的垂直与平行的现象。

2.协助学生初步理解垂直与平行是同一平面内两条直线的两种位置关系,初步相识垂线和平行线。

3.造就学生的空间观念及空间想象实力,引导学生树立合作探究的学习意识。

4、在分析、比拟、综合的视察与思维中渗透分类的思想方法。

教学重点:正确理解“相交”“相互平行”“相互垂直”等概念,开展学生的空间想象实力。

教学难点:相交现象的正确理解〔尤其是对看似不相交而事实上是相交现象的理解〕教学过程:一、画图感知,探究两条直线的位置关系同学们,前面我们相识的直线,知道了直线的特点是可以向两端无限延长,这节课咱们接着探究和直线有关的学问!首先教师向学生出示一个魔方,说怎么玩?生:把一样颜色的方块转到同一个平面上。

然后教师又拿出一张白纸,我们把这张白纸看成一个平面,闭上眼睛想象在这个平面上出现了一条直线,又出现了一条直线,你想象的这两条直线是什么样儿呢?睁开眼睛!把他们用直尺和彩色笔画在纸上!〔生画直线,师巡察〕二、视察分类,了解平行的特征师:好多同学都已经画完坐端正了,你们都画完了吗?好!刚刚教师收集了几幅作品,我们贴黑板上吧!师:你们看,同学们的想象真丰富,我们在同一个平面内想象两条直线,竟然出现了这么多不同的样子,真不简洁!师:细致看看,能不能给他们分分类呢?好!为了大家表达起来便利,咱们给他们编上号,一起来吧!师:下面请你把分类的状况写在练习本上,用序号表示〔小组合作完成〕〔起先吧!〕师:都分好了吗?谁情愿到前面来分给大家看看!给大家说说你分的理由!1、教学相交师:这个同学把黑板上的分成了两类!对于这样的分发你有没有不同的想法?这个同学的观点认为4号是穿插的,你们认为呢?为什么?谁能再说说理由?大家说能再画长一些吗?〔能〕师小结:也就是说这幅作品把穿插的局部没画出来,它穿插了吗?〔穿插了〕嗯!它看似不穿插实际却是穿插了的!此时此刻我们可以把它放到哪一类?〔穿插的一类〕师总结:好!大家看,我们把黑板上的作品分成了两类,这一类是两条直线相互穿插了,这一类就是相交〔板书:相交〕2、教学相互平行师:那这一类相交了吗?是不是因为这两条直线画的太短了呢?那是为什么?你从哪儿看出来再画也不会相交呢?师:也就是说这边的宽窄和这边儿的宽窄一样,对吗?那你用什么方法证明这两边的宽窄一样呢?〔用尺子量〕谁情愿上来量?这一幅谁来量?师:这两个同学量了这边儿是3厘米,这边儿也是3厘米,这幅这边是2厘米,这边儿也是2厘米,把它们画的再长些,这两条直线会相交吗?为什么?谁能再说说理由!师小结:也就是说这两条直线之间必需一样宽窄!那么像这样在同一平面内的两条直线画的再长、再长也不会相交。

《平面与平面垂直的判定》教案、导学案、课后作业

《平面与平面垂直的判定》教案、导学案、课后作业

《8.6.3 平面与平面垂直》教案第1课时平面与平面垂直的判定【教材分析】在平面与平面的位置关系中,垂直是一种非常重要的关系,本节内容是直线与平面垂直关系延续和提高.通过本节使学生对整个空间中的垂直关系有一个整体的认知,线线垂直、线面垂直、面面垂直是可以相互转化的.【教学目标与核心素养】课程目标1.理解二面角的概念,并会求简单的二面角;2.理解直二面角与面面垂直的关系,理解平面和平面垂直的判定定理并能运用其解决相关问题.3.通过面面垂直定理的理解及运用,培养学生的空间转化能力和逻辑推理能力.数学学科素养1.逻辑推理:探究归纳平面和平面垂直的判定定理,找垂直关系;2. 数学运算:求二面角;3.直观想象:题中几何体的点、线、面的位置关系.【教学重点和难点】重点:平面与平面垂直的判定定理及其应用.难点:平面与平面垂直的判定定理,找垂直关系.【教学过程】一、情景导入我们知道如果两个平面的二面角是直角,那么这两个平面一定垂直.那么有没有更简单的方法证明两个平面垂直?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本155-158页,思考并完成以下问题1、什么是二面角?什么是直二面角?2、平面与平面平行的判定定理是什么?3、怎样用符号语言表示平面与平面平行的判定定理?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究 1.二面角(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的棱,这两个半平面叫二面角的面.图中的二面角可记作:二面角α-AB-β或α-l-β或P-AB-Q.(2)二面角的平面角:如图,在二面角α-l-β的棱l 上任取一点O,以点O 为垂足,在半平面α和β内分别作垂直与直线l 的射线OA,OB,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角.平面角是直角的二面角叫做直二面角.2.平面与平面垂直(1)定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.平面α与β垂直,记作 α⊥β.(2)判定定理四、典例分析、举一反三题型一 对面面垂直判定定理的应用例1 如图,是的直径,点是上的动点,垂直于所在的AB O ⊙C O ⊙PA O ⊙平面.证明:平面平面. 【答案】证明见解析.【解析】证明:∵是的直径,点是上的动点, ∴,即.又∵垂直于所在平面,平面 ∴. ∴ ∴平面. 又平面, ∴平面平面.解题技巧(判定两个平面垂直的常用方法)(1)定义法:即说明两个平面所成的二面角是直二面角;(2)判定定理法:其关键是在其中一个平面内寻找一直线与另一个平面垂直,即把问题转化为“线面垂直”;(3)性质法:两个平行平面中的一个垂直于第三个平面,则另一个也垂直于此平面.跟踪训练一1、如图所示,在长方体ABCD-A 1B 1C 1D 1中,AB=AD=1,AA 1=2,M 是棱CC 1的中点.证明:平面ABM ⊥平面A 1B 1M.ABC PAC ⊥PBC AB O ⊙C O ⊙90ACB ∠=︒BC AC ⊥PA O ⊙BC ⊂O ⊙PA BC ⊥PA AC A =BC ⊥PAC BC ⊂PCB PAC ⊥PBC【答案】证明见解析.【解析】证明由长方体的性质可知,A1B1⊥平面BCC1B1,又BM⊂平面BCC1B1,所以A1B1⊥BM.又CC1=2,M为CC1的中点,所以C1M=CM=1.在Rt△B1C1M中,B1同理又B1B=2,所以B1M2+BM2=B1B2,从而BM⊥B1M.又A1B1∩B1M=B1,所以BM⊥平面A1B1M.因为BM⊂平面ABM,所以平面ABM⊥平面A1B1M.题型二求二面角例2如图所示,在正方体ABCD-A′B′C′D′中:(1)求二面角D′-AB-D的大小;(2)若M是C′D′的中点,求二面角M-AB-D的大小.【答案】(1) 45°.(2)45°.【解析】(1)在正方体ABCD-A′B′C′D′中,AB⊥平面ADD′A′,所以AB⊥AD′,AB⊥AD,因此∠D′AD为二面角D′-AB-D的平面角,在Rt△D′DA中,∠D′AD=45°.所以二面角D′-AB-D的大小为45°.(2)因为M 是C′D′的中点,所以MA=MB,取AB 的中点N,连接MN,则MN ⊥AB.取CD 的中点H,连接HN,则HN ⊥AB.从而∠MNH 是二面角M-AB-D 的平面角.∠MNH=45°. 所以二面角M-AB-D 的大小为45°. 解题技巧: (作二面角的三种常用方法)(1)定义法:在二面角的棱上找一个特殊点,在两个半平面内分别作垂直于棱的射线.如图①,则∠AOB 为二面角α-l-β的平面角.(2)垂直法:过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,这两条交线所成的角,即为二面角的平面角.如图②,∠AOB 为二面角α-l-β的平面角.(3)垂线法:过二面角的一个面内异于棱上的一点A 向另一个平面作垂线,垂足为B,由点B 向二面角的棱作垂线,垂足为O,连接AO,则∠AOB 为二面角的平面角或其补角.如图③,∠AOB 为二面角α-l-β的平面角.跟踪训练二1、如图,在三棱锥P-ABC 中,PA ⊥平面PBC,PA=PB=2,PC=4,BC=2√3 . (1)求证:平面PAB ⊥平面ABC;(2)E 为BA 的延长线上一点,若二面角P-EC-B 的大小为30°,求BE 的长.【答案】证明见解析【解析】(1)证明:因为PA ⊥平面PBC,所以PA ⊥PC,PA ⊥PB. 经计算,得所以AB 2+BC 2=AC 2,故BC ⊥AB.又PA ⊥平面PBC,所以PA ⊥BC.因为PA∩AB=A,所以BC ⊥平面PAB. 又BC ⊂平面ABC,故平面PAB ⊥平面ABC. (2)如图,取AB 的中点F,连接PF.因为PA=PB,所以PF ⊥AB.由(1)知平面PAB ⊥平面ABC, 又平面PAB∩平面ABC=AB,PF ⊂平面PAB, 所以PF ⊥平面ABC,PF ⊥EC. 过F 作FG ⊥EC 于G,连接PG. 因为PF ⊥EC,PF∩FG=F, 所以EC ⊥平面FPG. 因为PG ⊂平面FPG, 所以EC ⊥PG.于是∠PGF 是二面角P-EC-B 的平面角, 因此,∠PGF=30°. 又所以设由(1)知BC ⊥AB, 所以△EFG ∽△ECB,得=.因此,即x 2解得舍去).所以五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计FG BCEF EC七、作业课本158页练习,162页习题8.6的3、6、7、8题.【教学反思】学生了解两个平面垂直的判定,但在问题中应用的时候就不够灵活或找不到需要的条件.为此,本节的课堂中心是判定定理的引入与理解,判定定理的应用及立体空间感、空间观念的形成与逻辑思维能力的培养.《8.6.3 平面与平面垂直》导学案第1课时平面与平面垂直的判定【学习目标】知识目标1.理解二面角的概念,并会求简单的二面角;2.理解直二面角与面面垂直的关系,理解平面和平面垂直的判定定理并能运用其解决相关问题.3.通过面面垂直定理的理解及运用,培养学生的空间转化能力和逻辑推理能力.核心素养1.逻辑推理:探究归纳平面和平面垂直的判定定理,找垂直关系;2. 数学运算:求二面角;3.直观想象:题中几何体的点、线、面的位置关系.【学习重点】:平面与平面垂直的判定定理及其应用.【学习难点】:平面与平面垂直的判定定理,找垂直关系.【学习过程】一、预习导入阅读课本155-158页,填写。

高中数学两平面垂直教案

高中数学两平面垂直教案

高中数学两平面垂直教案
教学内容:高中数学
教学目标:
1. 理解两平面垂直概念;
2. 掌握两平面垂直的判定方法;
3. 能够应用两平面垂直的性质解决实际问题。

教学重点和难点:
重点:两平面垂直的判定方法;
难点:应用两平面垂直性质解决实际问题。

教学准备:
1. 教材《高中数学》;
2. 教学投影仪;
3. 教具:黑板、粉笔、尺子、直角三角尺。

教学流程:
一、引入
通过一个实际问题引入两平面垂直概念,引导学生思考两平面垂直的条件。

二、讲解
1. 通过示意图和几何常识解释两平面垂直的定义;
2. 分别介绍两平面垂直的判定方法:法向量垂直法和两平面交线平行法。

三、练习
1. 给学生几道简单的题目,让他们应用两平面垂直的判定方法来判断两平面是否垂直;
2. 给学生提供应用题,让他们应用两平面垂直性质解决实际问题。

四、拓展
引导学生思考两平面垂直概念在现实生活中的应用,并提出相关问题进行讨论。

五、总结
对本节课所学内容进行总结,强调两平面垂直的重要性和应用价值。

六、作业
布置相关练习题目,巩固学生对两平面垂直概念的理解和掌握。

教学反思:
通过本节课的教学,学生应该能够清楚地理解两平面垂直的概念、掌握两平面垂直的判定方法,并能够灵活应用这些知识解决实际问题。

在教学中,可以通过更多的实例和练习来加深学生的理解,并引导他们思考两平面垂直的应用场景,以提高他们的综合能力。

平面与平面垂直的判定的教案

平面与平面垂直的判定的教案

平面与平面垂直的判定的教案
本教案旨在介绍平面与平面垂直的判定方法,通过理论讲解和实例演练,帮助学生掌握该知识点。

首先,教师将介绍平面与平面垂直的定义和
特征,以及相关的数学概念和定理。

然后,教师
将详细解释具体的判定方法,包括利用向量、斜率、坡角等几种常见的方法。

教师在讲解过程中
可以使用图示和实例,以便学生更好地理解。

二、实例演练
接下来,学生将进行实例演练,通过给定的几道题目来判定平
面与平面是否垂直。

教师可以设计不同难度的题目,逐步引导学生
掌握解题方法。

在演练过程中,教师可以与学生进行互动,解答学
生的疑问,并及时纠正他们的错误。

三、巩固与拓展
最后,学生将进行一些巩固练,巩固所学的知识。

教师可以提
供一些额外的拓展题目,以便对能力较强的学生进行挑战。

同时,
教师还可以引导学生思考实际生活中平面与平面垂直的应用情景,
培养学生的应用能力和创造力。

最后,学生将进行一些巩固练习,巩固所学的知识。

教师可以
提供一些额外的拓展题目,以便对能力较强的学生进行挑战。

同时,教师还可以引导学生思考实际生活中平面与平面垂直的应用情景,
培养学生的应用能力和创造力。

【数学】2.3.2《平面与平面垂直的判定》教案(新人教A版必修2)

【数学】2.3.2《平面与平面垂直的判定》教案(新人教A版必修2)
2、在正方体
ABCD − A ' B ' C ' D ' 中,二面角 D-A 'C'-B 的余弦值.
教 后 反 思 时间 月 日 备课组长签名
威 坪 中 学 课 时 授 课 计 划
授课时间: ___ 课 课 课 教 目 题 型 时 学 标
重点:平面与平面垂直的判定定理. 重点 难点:判定定理的应用及二面角的求法 难点

_ 月 __ 日
星期: 课
授课教师: 时 第 课时
2.3.2 平面与平面垂直的判定 新授课
授课班级
1.掌握二面角和两个平面垂直的定义 2.理解平面与平面垂直的判定定理并会用判定定理证明平面与平面垂直的关系 3.会用所学知识求两平面所成的二面角.
A, B 的任意一点,求证:平面 PAC ⊥ 平面PBC .






学生活动设计
教 师 教 学 活 动 设 计
2. 如图: ABC 为等腰直角三角形, ∆ AC=BC= a , 是 ∆ ABC 所在平面外一点, P PA=PB=PC= 求证:平面 PAB⊥平面 ABC。 法一:定义 法二:判定定理
0 0
作α
⊥β
. (能用定义来判定两个平面是否垂直?)
画法:把直立平面竖边画成和水平平面的横边垂直。 ②判定定理:一个平面过另一个平面的垂线,则这两个平面垂直. (线面垂直 → 面面垂直) 线面垂直 面面垂直 ③出示例 1: 如图, AB 是⊙0 的直径,PA 垂直于⊙0 所在的平面,C 是 圆周上不同于 (讨论 → 师生共析 → 学生试写证明步骤 → 归纳:线线垂直 → 线面垂 线线垂直 面面垂直) 直 → 面面垂直) ④练习:1.教材 P69 页探究题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平面与平面垂直的判定》
【课题】平面与平面垂直的判定
【教材】普通高中课程标准实验教科书数学2 必修
人民教育出版社
一.教学目标
1.教材分析
⑴教学内容
《平面与平面垂直的判定》〉普通高中课程标准实验教科书(必修2·人民教育出版社)“§2.3 直线、平面垂直判定及其性质”的第二节课,主要内容是,二面角的概念和平面与平面垂直的判定定理的归纳与应用。

⑵地位与作用
本节课学习平台是学生已学习了空间两直线位置关系,空间直线和平面位置关系,特别是已学习了直线和平面垂直判定定理,二面角的平面角,这是学习本节内容的基础,而本节内容是多面体、旋转体的学习基础,所以,本节的学习有着极其重要的地位。

2.学法分析
二面角是空间角,概念与度量严谨而抽象;判定定理内容不要求证明,要做到抽象概括确实有很大困难,所以本课采用类比发现式教学法,即体现大量的实例,让学生通过直观感知,操作确认,归纳数学原理,并作一定的应用。

3.教学目标
依据上面的教材分析和学情分析,制定如下教学目标.
⑴知识与技能
①体会二面角的概念与度量
②归纳两个平面垂直的判定定理内容
③应用判定定理证明一些空间位置关系的简单命题
⑵过程与方法
①通过二面角的概念的探索和推导过程,渗透类比迁移的思想;
②通过归纳两个平面垂直的判定定理内容,训练并提升学生抽象概括水平
③通过使用定理的过程,提升学生类比化归水平,培养学生降低空间维数的思想.通过问题获得数学知识,经历“发现问题—提出问题—解决问题”的过程;
⑶情感态度与价值观
直观感知,操作确认数学定理,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学生的学习兴趣.
二.教学重点、难点
1.教学重点
⑴两个平面垂直的判定定理及应用;
2.教学难点
二面角的概念及度量方法,两个平面垂直的判定定理的归纳概括三.教学过程。

相关文档
最新文档