比和按比例分配综合练习题[1]

合集下载

六年级数学比和按比例分配试题答案及解析

六年级数学比和按比例分配试题答案及解析

六年级数学比和按比例分配试题答案及解析1.男生人数占全班的,男生与女生人数的比是()A.3:5B.5:3C.2:3D.3:2【答案】D【解析】把全班的人数看作单位“1”,男生人数就是1乘,女生人数就是1减,再用男生人数比上女生人数即可解答.解:1×,1﹣,=3:2,答:男生与女生人数的比是3:2.故选:D.【点评】解答本题关键是:判断出单位“1”,求出男生人数和女生人数是几分之几,进而根据比的意义解答即可.2.学校运来200棵树苗,老师栽种了10%,余下的按5:4:3分配给甲、乙、丙三个班级,丙班分到多少棵?【答案】45棵【解析】要求余下的按5:4:3分配给甲、乙、丙三个班级,丙班分到多少棵,现要求出余下多少棵树,栽种了10%,还余下这批树苗总数的(1﹣10%),根据一个数乘分数的意义即可求出,然后运用按比例分配知识进行解答即可.解:200×(1﹣10%),=200×90%,=180(棵);丙:180×=45(棵);答:丙班分得45棵.【点评】解答此题抓住题目特点判定类型,根据按比例分配知识进行解答即可得出结论.3.六年级学生报名参加数学兴趣小组,参加的同学是六年级总人数的,后来有20人参加,这时参加的同学与未参加的人数的比是3:4.六年级一共有人.【答案】210.【解析】首先根据题意,可得后来参加数学兴趣小组的同学占六年级学生人数的分率是,然后求出20占六年级学生人数的分率是多少,最后根据分数除法的意义,用20除以它占六年级学生人数的分率,求出六年级一共有多少人即可.解:20==210(人)答:六年级一共有210人.故答案为:210.【点评】此题主要考查了比的应用,解答此题的关键是求出20占六年级学生人数的分率是多少.4. 5比4多 %,4比5少 %.【答案】25,20.【解析】谁是谁的几分之几,用除法进行计算,谁比谁多或少多少,运用比多比少的解答方法进行计算.解:(1)(5﹣4)÷4=25%;(2)(5﹣4)÷5=20%;答:5比4多 25%,4比5少 20%.故答案为:25,20.【点评】本题是一道简单的填空题,谁是谁的几分之几用除法进行计算.谁比谁多或少用除法计算.5.一列火车4小时行驶了600千米,那么这列火车行驶的路程和时间的最简单的整数比是,比值是.【答案】150:1,150.【解析】根据题意,求出路程和时间的比,然后化为最简整数比;求比值,根据比值的含义,用比的前项除以比的后项解答即可.解:火车4小时行驶了600千米,路程和时间的最简整数比是600:4=150:1,比值是:600:4=600÷4=150;故答案为:150:1,150.【点评】此题考查比的意义,注意求比值与化简比的区别.6.一件工程,甲做需要6天完成,乙做需要10天完成.甲与乙所用工作时间的比是,甲与乙工作效率的比是.【答案】3:5,5:3.【解析】依据比的意义即可解答,求工作效率比时根据工作总量一定,工作效率和工作时间成反比即可解答.解:工作时间的比是6:10=3:5,工作效率的比是10:6=5:3.故答案为:3:5,5:3.【点评】本题解答比较简便,只要明确方法,代入数据即可解答.7. A除以B的商是,则A:B=8:9..(判断对错)【答案】×【解析】两个数相除又叫两个数的比.前项相当于被除数,后项相当于除数,比号相当于除号,通过计算可以得出正确答案.解:A:B=A÷B==9:8,所以原题说法.故答案为:×.【点评】此题考查了比的意义,要明确被除数、除数和商三者之间的关系.8.如果把3:7的前项加上9,要使它的比值不变,后项应()A.加上9 B.加上21 C.减去9【答案】B【解析】根据3:7的前项加上9,可知比的前项由3变成12,相当于前项乘4;根据比的性质,要使比值不变,后项也应该乘4,由7变成28,也可以认为是后项加上28﹣7=21;据此进行选择解:3:7的前项加上9,可知比的前项由3变成12,相当于前项乘4;要使比值不变,后项也应该乘4,由7变成28,即后项加上28﹣7=21;故选:B.【点评】此题考查比的性质的运用,比的前项和后项同时乘或除以相同的数(0除外),比值才不变.9.甲数的等于乙数的,甲数与乙数的比是6:5 .(判断对错)【答案】√【解析】根据题意,设甲数是x,乙数是y,根据题目给出的条件,求出甲数与乙数的关系,再根据比的意义,求出甲数与乙数的比,如果符合题目给出的比,则正确,否则错误.解:设甲数是x,乙数是y,根据题意可得,x=yx=yx=y则甲数与乙数的比是:x:y=y:y=:1=():(1×5)=6:5,符合题目.故:√.【点评】根据题意,设出甲乙两数,由题目给出的条件,求出甲乙两数的关系,再根据比的意义,求出甲数与乙数的比,然后判断正误.10.甲、乙、丙三人环湖跑步锻炼,同时从湖边一固定点出发,乙、丙二人同向,甲与乙丙反向,在甲第一次遇上乙后1.25分钟第一次遇上丙,再经过3.75分钟第二次遇乙.已知甲速遇乙速的比是3:2,湖的周长是2000米.求甲、乙、丙三人的速度每分钟各是多少米?【答案】甲每分钟跑240米,乙每分钟跑160米,丙每分钟跑80米.【解析】在甲第一次遇上乙后1.25分钟第一次遇上丙,再经过3.75分钟第二次遇乙,则甲乙二人相时间为1.25+3.75=5分钟,两人相遇时共行了一周即2000米,所以两人的速度和为每分钟2000÷5=400米.甲乙两人的速度比为3:2.由此可知甲的速度为每分钟400×=240米.由于甲与乙相遇时间为5分钟,甲第一次遇上乙后1.25分钟第一次遇上丙,则甲丙的相遇时间为5+1.25=6.25分钟,则丙的速度为每分钟2000÷6.25﹣240米.解:甲的速度为每分钟:2000÷(1.25+3.75)×=2000÷5×,=240(米);乙的速度为每分钟:2000÷5﹣240=4000﹣240,=160(米).丙的速度为每分钟:2000÷6.25﹣240=320﹣240,=80(米).答:甲每分钟跑240米,乙每分钟跑160米,丙每分钟跑80米.【点评】根据“甲第一次遇上乙后1.25分钟第一次遇上丙,再经过3.75分钟第二次遇乙”求出甲乙的相遇时间,进而求出两人的速度和是完成本题的关键.11.把15分:时化成最简单整数比是,比值是.【答案】1:3,.【解析】(1)首先把时化成分钟数,用乘进率60;然后根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)用比的前项除以后项即可.解:×60=45(分),所以时=45分;(1)15分:时,=15:45,=(15÷15):(45÷15),=1:3;(2)15分:时,=15÷45,=.故答案为:1:3,.【点评】此题主要考查了化简比和求比值的方法,另外还要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数、小数和分数.12.如果a×=b×(a、b都不等于0),那么a:b=6:5.(判断对错)【答案】√【解析】依据比例的基本性质,即两内项之积等于两外项之积,即可进行解答.解:因为a×=b×,所以a:b=:=6:5;所以原计算正确;故答案为:√.【点评】此题主要考查比例的基本性质的灵活应用.13.参加某次数学竞赛的女生和男生人数的比是1:3,这次竞赛的平均成绩是82分,其中男生的平均成绩是80分,女生的平均成绩是()A.82分B.86分C.87分D.88分【答案】D【解析】根据题意,可找出数量间的相等关系:女生的平均成绩×1+男生的平均成绩×3=全班平均成绩×4,设女生的平均成绩是x,列并解方程即可.解:设女生的平均成绩是x,因为总成绩不变,由题意得,x×1+3×80=82×(1+3),x+240=328,x=328﹣240,x=88;或:[82×(1+3)﹣80×3]÷1,=(328﹣240)÷1,=88(分);答:女生的平均成绩是88分.故选:D.【点评】解答此题关键是先求出全班的总成绩和男生的总成绩,然后求出女生的总成绩,进而求出女生的平均成绩.14.用一根长是44cm的铁丝围成一个三角形,三条边长度的比是3:5:3,这个三角形最长的边是________ cm,这个三角形是三角形.【答案】20,等腰.【解析】这个三角形三条边的长度比是3:5:3,最长的边占周长的,根据一个数乘分数的意义,用铁丝总长乘最长边占得分率即可得这个三角形最长的边,再根据有两边占的份数相等,可得这个三角形是等腰三角形.解:44×=44×=20(cm),因为两边占的份数相等都为3份,可得这个三角形是等腰三角形.故答案为:20,等腰.【点评】此题考查的目的是理解掌握按比例分配应用题的结构特征及解答规律.15.某林场中松树比柏树多240棵,松、柏棵数之比为5:3,求该林场松柏一共多少棵?【答案】960棵【解析】解;240÷(5﹣3)×(5+3)=240÷2×8=120×8=960(棵);答:该林场松柏一共960棵.16.小明家里的菜地共800㎡,他爸爸准备用种西红柿,剩下的按3:1的面积比种黄瓜和茄子,那么种黄瓜的面积比种茄子的面积多多少㎡?【答案】240平方米【解析】解:800﹣800×=800﹣320=480(平方米)480÷(3+1)×(3﹣1)=480÷4×2=120×2=240(平方米)答:种黄瓜的面积比种茄子的面积多240平方米.17.比例尺是的地图上,量得北京到广州的距离是6厘米,北京到广州的实际距离大约是()A.1800米B.180千米C.1800千米D.18000米【答案】C【解析】要求北京到广州的实际距离大约是多少千米,根据“图上距离÷比例尺=实际距离”,代入数值,计算即可.解:6÷=180000000(厘米)180000000厘米=1800千米答:北京到广州的实际距离大约是1800千米.故选:C.【点评】此题有计算公式可用,根据图上距离、比例尺和实际距离三者的关系,进行分析解答即可得出结论.18.右图中,阴影部分的面积是大三角形面积的()A.B.C.D.无法确定【答案】B【解析】依据题意可知三角形平均分成了4部分,阴影部分占了一部分。

5-2比和比例分类小练习1-11

5-2比和比例分类小练习1-11

比和比例分类练习一(按比例分配)1、甲工厂有120人,乙工厂有80人。

从乙工厂调几人到甲工厂才能使甲工厂与乙工厂的人数之比是5:3?2、甲班有60人,乙班有80人。

从甲班调几人到乙班才能使甲乙两班人数的比是2:3?3、小明有25元,小华有35元。

小华给小明几元才能使小明与小华的钱数比是2:1?4、甲筐有50个苹果,乙筐有70个苹果。

从乙筐拿几个苹果放入甲筐才能使甲乙两筐苹果个数比是7:5?5、有一个长方体,长与宽的比是2:1,宽与高的比是3:2.。

求长与高的比。

6、有一个长方体,长与宽的比是2:1,宽与高的比是3:2.。

已知这个长方体的全部棱长之和是220cm,求这个长方体的体积。

7、甲、乙、丙三人分138只贝壳,甲每取走5只乙就取4只,乙每取走5只丙就取6只。

问:最后三人各分到多少只贝壳?比和比例分类练习二(按比例分配)1、光明小学将五年级的140名学生,分成三个小组进行植树活动。

已知第一小组和第二小组人数的比是2︰3,第二小组和第三小组人数的比是4︰5.这三个小组各有多少人?2、某农场把61600公亩耕地划归为粮田、棉田与其它作物,粮田、棉田之间的面积之比为7︰2,棉田与其他作物面积的比是6︰1.每种作物各是多少公亩?3、黄山小学六年级的同学分三组参加植树。

第一组与第二组的人数的比是5︰4,第二组与第三组人数的比是3︰2,已知第一组的人数比二、三两组人数的总和少15人,六年级参加植树的共有多少人?4、科技组与作文组人数的比是9︰10,作文组与数学组的人数的比是5︰7,已知数学组与科技组共有69人。

数学组比作文组多多少人?5、五年级三个班举行数学竞赛。

一班参加比赛的占全年级参赛总人数的31,二班与三班参加比赛人数的比是11︰13,二班比三班少8人。

一班有多少人参加了数学竞赛?6、光华电视机厂上半年生产的电视机产量占全年生产计划的85,照这样的速度计算,全年可超产1000台。

这个工厂上半年生产电视机多少台?比和比例分类练习三1、甲、乙两校原有图书本数的比是7︰5,如果甲校给乙校650本,甲、乙两校图书的本数的比就是3︰4.原来甲校有图书多少本?2、小明读一本书,已读和未读的页数比是1︰5.如果再读30页,则已读和未读的页数之比为3︰5.这本书共有多少页?3、甲、乙两包糖的重量比是4︰1.从甲包取出130克放入乙包后,甲、乙两包糖的重量比为7︰5.原来甲包有多少克糖?4、甲、乙两人的钱数之比是3:1,如果甲给乙0.6元,两人的钱数之比变为2:1,两人共有多少钱?5、一斑和二班的人数之比是8:7,如果将一斑的8名同学调到二班去,则一斑和二班的人数之比变为4:5。

比和按比例分配应用题(1)

比和按比例分配应用题(1)

专项练习一
1、两人同走一段路,甲用12分钟,乙用15分钟,甲乙走完这一段路所用时间的最简整数比是多少?甲乙速度的最简整数比是多少?
2、甲和乙两个正方形的边长比是5︰6,则周长比是多少?面积比是多少?
3、读一本书,小明用了12天读完,小芳用的时间比
小明多1
5,求小明和小芳读书所用时间的比,
4、一个等腰直角三角形,它的三个内角的度数比是多少?
5、减数相当于被减数的3
5,差和减数的比是多少?
6、一项工程,甲队独做要15天完成,乙队独做只能9天完成一半,求甲乙两队的工效比。

7、甲组人数比乙组人数多1
4,甲乙两组的人数比是多
少?
8、两条彩带,甲剪去3
4,乙剪去
3
10,两条彩带剩下
的一样长,原来甲、乙两条彩带的长度比是多少?9、甲、乙两人在银行都有存款,如果甲再存入原来钱的
1
4,乙再存入原来钱的
1
5,这时两人的存款数相等。

原来甲、乙存款数的比是多少?
10、一个三角形的面积是27平方厘米,底与高的比是2︰3,三角形的底和高分别是多少厘米?
11、甲、乙两人步行的速度比是13︰11,如果甲、乙分别由A、B两地同时出发相向而行0.5小时后相遇;如果他们同向而行,那么甲追上乙需要多少小时?
12、两个三角形重叠在一起,重叠部分的面积占大三角形的
1
6,占小三角形面积的
1
4。

(1)求大小三角形的面积比
是多少?
(2)如果重叠部分的面积是12平方厘米,那么大三角形的面积是多少?
(3)如果整个图形覆盖的面积是99平方厘米,那么小三角形的面积是多少?。

比和按比例分配科学练习题

比和按比例分配科学练习题

比和按比例分配科学练习题在数学中,比是将两个或多个东西进行相互比较的方式。

按比例分配则是根据比例关系将一份物品或一项任务分配给不同的个体或组织。

比和按比例分配是数学中的重要概念,我们可以通过科学的练题来加深理解。

以下是一些科学练题,帮助你加强对比和按比例分配的理解:1. 问题:小明和小华在一次比赛中比赛,小明跑100米需要10秒,小华跑100米需要12秒。

请计算小明和小华的速度比是多少?解答:速度比可以通过将小明的速度除以小华的速度来计算。

小明的速度是10米/秒,小华的速度是8.33米/秒(100米除以12秒)。

因此,小明的速度比小华的速度大约为1.2倍。

2. 问题:将20个苹果按照2:3的比例分配给两个人,请计算每个人获得的苹果数量。

解答:我们可以使用比例分配的方法来计算每个人获得的苹果数量。

首先,将2和3相加得到比例的总数,即2+3=5。

然后,将20个苹果除以比例的总数,得到每个比例单位代表的苹果数量,即20÷5=4。

最后,将每个比例单位的苹果数量与比例进行乘法运算,得到每个人获得的苹果数量。

根据2:3的比例,第一个人获得2个比例单位的苹果(2×4=8个),第二个人获得3个比例单位的苹果(3×4=12个)。

3. 问题:小明、小华和小杰一起做一项任务,小明需要4小时完成任务,小华需要6小时完成任务。

请计算小杰完成任务所需的时间,如果小明和小华一起完成任务,他们需要多长时间?解答:我们可以使用比例来计算小杰完成任务所需的时间。

根据小明和小华的工作效率比,小华的工作效率是小明的1.5倍(6小时÷4小时=1.5)。

因此,小杰的工作效率与小明的工作效率相同,小杰完成任务所需的时间也应该是4小时。

如果小明和小华一起完成任务,他们的总工作效率为小明的1+小华的1.5=2.5倍。

因此,完成任务所需的时间为4小时÷2.5=1.6小时(小数四舍五入为1小时36分钟)。

按比例分配考试题目及答案

按比例分配考试题目及答案

按比例分配考试题目及答案一、选择题1. 在比例分配中,如果A和B的比例是3:4,那么A占总和的百分比是多少?A. 33.33%B. 40%C. 50%D. 60%2. 已知某班级有男生30人,女生20人,女生占班级总人数的比例是多少?A. 40%B. 50%C. 66.67%D. 75%二、填空题1. 如果一个班级有50名学生,其中男生占60%,那么男生有________人。

2. 某公司员工总数为100人,其中管理层占20%,那么管理层的人数是________人。

三、计算题1. 一个长方形的长是宽的2倍,如果长是10厘米,求宽是多少厘米?解:设宽为x厘米,根据题意,有 2x = 10,解得 x =__________。

2. 一个班级有学生120人,其中男生占60%,女生占40%,求男生和女生各有多少人?解:男生人数= 120 × 60% = __________ 人,女生人数 = 120 × 40% = __________ 人。

四、简答题1. 什么是比例分配?请给出一个生活中的比例分配的例子。

五、论述题1. 论述比例分配在解决实际问题中的重要性,并给出一个具体应用的例子。

答案:一、选择题1. A2. A二、填空题1. 302. 20三、计算题1. 5厘米2. 72人,48人四、简答题比例分配是一种数学方法,用于将一个总量按照一定的比例分配给不同的部分。

例如,在一个家庭中,如果家庭成员决定按照年龄比例分配家庭预算,那么每个成员将根据其年龄占家庭总年龄的比例来获得相应的预算份额。

五、论述题比例分配在解决实际问题中非常重要,因为它提供了一种公平和合理的分配资源的方法。

例如,在教育领域,学校可能会根据学生人数的比例分配教育资源,确保每个班级都能获得适当的支持。

具体应用的例子包括学校根据各班级的学生人数比例分配图书资源,以确保每个学生都能接触到足够的阅读材料。

比和按比例分配数学练习题

比和按比例分配数学练习题

比和按比例分配数学练习题
比和按比例分配是数学中重要的概念和技巧,可以在实际生活和问题求解中起到关键作用。

本文将提供一些比和按比例分配的数学练题,帮助巩固和加深对这一概念的理解和应用。

题目一
某班级有50名学生,其中男生和女生比例为3:2。

问该班级中男生和女生分别有多少人?
题目二
某零售商进货价与售价的比例为5:8。

如果某商品的进货价为200元,问该商品的售价是多少?
题目三
某大楼的高度为150米,比例尺为1:50。

问在地图上,该大楼的高度应表示为多少厘米?
题目四
一个长方形花园的长和宽的比例为3:2,已知长为12米,问该花园的宽是多少?
题目五
某城市的人口密度为900人/平方公里,并且人口密度与土地面积成正比。

已知该城市的土地面积为500平方公里,问该城市的总人口数是多少?
题目六
某数列的前三项为3, 6, 9,且每一项与前一项的比值相等。

问该数列的第十项是多少?
这些练题涵盖了比和按比例分配的不同应用场景,包括实际问题的求解和数列的推导等。

通过解答这些题目,可以加深对比和按比例分配的理解,提高数学问题的解决能力。

请在解答题目时自行计算和思考,确认答案后再核对。

比和按比例分配音乐练习题

比和按比例分配音乐练习题

比和按比例分配音乐练习题音乐比和比例的基本概念音乐比是用来表示音乐中不同音符或音乐元素之间的关系的一种方式。

比如,我们可以用音乐比来表示两个音符之间的时值关系,如1:2,表示第一个音符的时值是第二个音符时值的一半。

比例则是用来表示不同音乐元素在音乐中的分配比例的一种方式。

比如,我们可以用比例来表示一个音乐作品中各个乐器的演奏时间的分配比例。

音乐练题的设计方法设计音乐练题时,我们可以采用比和按比例分配的方法来创造多样化和有趣的练题。

以下是一些设计练题的方法:1. 比例练题:- 设定一个音乐作品的总时长,然后按照比例分配各个乐器的演奏时间。

比如,如果有三个乐器,可以设定比例为2:3:4,分别表示第一个乐器的演奏时间是第二个乐器的2倍,第三个乐器的3倍。

- 让学生根据给定的比例来计算各个乐器的演奏时间。

2. 比练题:- 设定两个音符的时值比例,让学生计算第二个音符的时值。

比如,给定一个音符的时值是1/4,另一个音符的时值是1/2,让学生计算第二个音符的时值。

- 设定一个音符的时值,让学生计算和它的时值比是多少。

比如,给定一个音符的时值是1/8,让学生计算它和1/4的时值比是多少。

3. 综合练题:- 设计一个练题,要求学生使用比和比例的方法来完成多个步骤的计算。

比如,给定一个音乐作品的总时长和各个乐器的演奏比例,让学生计算各个乐器的演奏时间。

通过设计和完成这些音乐练题,学生可以加深对音乐比和比例的理解,并提高他们的音乐计算能力和创造力。

以上是关于比和按比例分配音乐练习题的简要介绍。

希望这些内容能对你有所帮助!。

比和按比例分配(检测题)

比和按比例分配(检测题)

比和按比例分配姓名:一、填空。

(22分)1、工人小王3小时做了150个零件,工作总量与时间的比是( ):( ),比值是( ),这个比值表示( )。

时间与总量的比是( ):( ),比值是( ),这个比值表示( )。

2、一杯盐水重200克,其中盐占51,盐与盐水的比是( ):( ),比值是( ),这个比值表示( )。

盐与水的比是( ):( ),比值是( ),这个比值表示( )。

3、如果A :B=5.5,那么71A :71B =( ),这道题我是这样想的( )。

4、如果A :B=0.3,那么101A :101B=( )。

5、一杯糖水,含糖为103,糖与糖水的比是( ):( ),糖与水的比是( ):( ),比值是( )。

6、A :B=0.2, A :B =( ) :( ),B :A=( ) :( )7、A :B=C ,C :A=( ),C : B =( )二、计算。

1、口算。

(10分)21÷31= 54÷23= 54÷65= 4÷65= 83÷6= 25÷32= 151÷53= 75÷12= 24÷65= 83÷83= 2、化简比并求比值。

24分101:53 0.4:1.2 25:12 1:1.25.5:153 3:0.12 75:83 10: 653、求未知数x 。

9分x :1.5=4.5 45:x=15 (x:4)×3=6三、应用题。

(35分)1、小明和小华共有课外书56本,他们各自课外书的比是5:3,小明和小华各有课外书多少本?2、小张家和小李家本月共付电费150元,其中小张家用电120度,小李家用电180度,他们两家各应付多少元?3、某车间有职工300人,其中男职工占女职工的31,男女职工各有多少人?4、一块长方形的地,周长是50米,长与宽的比是3:2,这块地的面积是多少平方米?5、用一根96厘米长的铁丝做一个长方体的框架,这个长方体框架的长、宽、高的4:3:1,如果把这个框架每个面糊上纸,共需要多少平方厘米的纸?。

08按比例分配专项练习一

08按比例分配专项练习一

按比例分配专项练习一
1.公鸡与母鸡的只数比是2∶9,也就是公鸡占总只数的( ),母鸡占总只数的( ),公鸡的只数是母鸡的( ),母鸡的只数是公鸡的( )。

2.一批货物按2∶3∶4分配给甲、乙、丙三个队去运,甲队运这批货物的( ),丙队比乙队多运这批货物的( )。

3.公园里柳树和杨树的棵数比是5∶3,柳树和杨树共40棵,柳树和杨树各有多少棵?
4.把300个苹果按4∶5∶6分给幼儿园的小、中、大三个班。

小班、中班、大班各分得多少个苹果?
5.一种药水是把药粉和水按照1∶100配制而成,要配制这种药水5050千克,需要药粉多少千克?
6.水果店运来梨和苹果共50筐,其中梨的筐数是苹果的
3
2,运来梨和苹果各多少筐?
7.用24厘米的铁丝围成一个直角三角形,这个三角形三条边长度的比是3∶4∶5,这个直角三角形斜边上的高是多少厘米?
8.把一根长8米的绳子按3∶2截成甲、乙两段,甲、乙两段各长多少米?
9.把一根绳子按3∶2截成甲、乙两段,已知甲段长4.8米, 乙段长多少米?
10.把一根绳子按3∶2截成甲、乙两段,已知乙段长4.8米, 这根绳子原来长多少米?
11.把一根绳子按3∶2截成甲、乙两段,已知乙段比甲段短1.6米, 甲、乙两段各长多少米?
12.商店运来一批洗衣机,卖出24台,卖出的台数与剩下的台数的比是3∶5,这批洗衣机一共有多少台?。

比和比例专项练习

比和比例专项练习

比和比例的应用题专项练习 姓名一、按比例分配。

1、用水泥、石子、黄沙按5:3:2拌制成50吨混凝土。

水泥、石子、黄沙各要几吨?2、一块长方体砖,长与宽的比是2:1,宽与高的比是2:1,长、宽、高共35厘米,这块砖的体积是多少?3、用一根84cm 长的铁丝围成一个长方体,长、宽、高的比是1:2:4,这个长 方体的体积是多少?4、校购进图书800册,高年级分得其中的41,余下的按3:1的比例分给中、低 年级,则中、低年级各分图书多少册?5、体育场买来16个篮球和12个足球共付出760元,已知篮球与足球的单价比 是5:6,体育场买篮球和足球各付出多少元?二、比例尺。

1、在比例尺是1:50000的图纸上,量及两点之间的距离是18厘米,这两点的实际距离是多少千米?(用比例解)2、在比例尺是1:2500000的地图上,量得两城市间的距离是8厘米,如画在比例尺是1:8000000的地图上,图上距离是多少厘米?(用比例解)3、在比例尺是1:500的图纸上,量得一个正方形花坛的边长是4厘米。

这个花坛的实际面积是多少平方米?(用比例解)4、星星小学操场上有一根高耸的旗杆,旁边有一根2.5米高的竹竿。

上午九时明明测得竹竿的影长2米,旗杆的影长6.4米。

请用比例知识求旗杆的高度。

5、在比例尺为80:1的图纸上量的一个机器零件长为16厘米,请用比例知识求机器零件的实际长度。

三、正(反)比例。

1、用边长20厘米的方砖铺一块地面需要270块,如果改用面积为9平方分米的方砖铺这块地面需要多少块?(用比例解)2、用砖铺地,600块同样的方砖可铺地15平方米,如果要再多铺200平方米,一共需要这样的砖多少块?(用比例解)3、一个晒盐场用100克的海水,可以晒出3克盐。

如果一块盐田一次放入5000吨的海水,可以晒出多少吨盐?(用比例解)4、某工程队要铺设一条公路,前20天已铺设了2.8千米,照这样计算,剩下的 4.2千米,还要多少天才能铺完?(用比例解)5、小明买了4枝圆珠笔用了6元。

六年级数学比和按比例分配试题答案及解析

六年级数学比和按比例分配试题答案及解析

六年级数学比和按比例分配试题答案及解析1.一个文具盒卖价5元,如果小东买了这个文具盒,小东与小鹏的钱数之比是2∶5,如果小鹏买了这个文具,则小东与小鹏的钱数之比是8∶13,小东原来有多少钱?【答案】5÷(﹣)÷ =20(元)答:所以小东原来有20元钱。

【解析】由比与除法的定义,根据题意列方程式得。

2.两辆汽车同时从相距360km的两地相对开出,2.4小时后相遇.已知两辆车的速度比是12:13,两辆车的速度分别是多少?【答案】其中一辆车的速度是每小时行72千米,另一辆车的速度是每小时行78千米.【解析】首先根据路程÷时间=速度,用两地之间的距离除以两车相遇用的时间,求出两车的速度之和是多少;然后把两车的速度之和看作单位“1”,则其中一辆车的速度占两车速度之和的(=),根据分数乘法的意义,用两车的速度之和乘以,求出其中一辆车的速度是多少;最后用两车的速度之和减去其中一辆车的速度,求出另一辆车的速度是多少即可.解答:解;360÷2.4×=150×=72(千米)360÷2.4﹣72=150﹣72=78(千米)答:其中一辆车的速度是每小时行72千米,另一辆车的速度是每小时行78千米.3.六(1)班男生和女生人数的比是5:4,男生比女生多6人,这个班一共有学生.【答案】54.【解析】男女生比是5:4,所以男生人数是全班人数的,女生人数是人班人数的,男生人数比女生人数多6人,所以全班人数是6.解:6÷=6÷=54(人)故答案为:54.【点评】本题关健是先根据男女生的比求出男女生各占全班人数的几分之几,然后将全班人数当做单位“1”求出全班人数.4. 27: = ÷12=0.75== %【答案】36,9,8,75.【解析】解:27:36=9÷12=0.75==75%.故答案为:36,9,8,75.5.如果A:B=4:5,那么A=3,B=5 .(判断对错)【答案】×【解析】解:A=3,B=5代入 A:B=4:5,得到3:5=4:5,因为4×5=20,3×5=15,两个内项积就不等于两个外项积,这样的两个比就不能组成比例了.故应判断为:×.6.把10克盐放入100克水中,盐和盐水的比是1:10..(判断对错)【答案】×.【解析】解:10:(10+100)=10:110=1:11,故答案为:×.7.大圆和小圆半径的比是5:4,小圆面积和大圆面积的比是()A.5:4B.4:5C.16:25D.10:8【答案】C【解析】解:设小圆的半径为4r,大圆的半径为5r,小圆的面积为:π(4r)2=16πr2大圆的面积为:π(5r)2,=25πr2大圆的面积与小圆面积的比为:16πr2:25πr2=16:25.故选:C.8. ÷20= :12=18÷ =3:4= (填小数)【答案】15,9,24,0.75.【解析】解:15÷20=9:12=18÷24=3:4=0.75.故答案为:15,9,24,0.75.9.甲数的与乙数的相等,甲乙两数的比是.【答案】8:9【解析】解:设甲数为1.则乙数为÷=甲数:乙数=1:=8:9.故答案为:8:9.10. 5克糖放入15克水中,糖和水的比是5:15..(判断对错)【答案】√【解析】解:糖与水的比:5:15=1:3.故答案为:√.11. 3:5的前项增加12,要使比值不变,后项应增加20..(判断对错)【答案】√【解析】解:3:5比的前项增加12,由3变成15,相当于前项乘5;要使比值不变,后项也应该乘5,由5变成25,相当于后项加上:25﹣5=20;所以后项应该增加20,说法正确;故答案为:√.12.一套衣服480元,裤子是上衣的,裤子和上衣各是多少元?(用比的知识和列方程这两种方法解答)【答案】裤子180元,上衣300元【解析】解:方法①裤子的价格:上衣的价格=5:3480×=180(元)480×=300(元);答:裤子180元,上衣300元.方法②设上衣的价格是x元,则裤子的价格是x元,x+x=480x=480x=300480﹣300=180(元);答:裤子180元,上衣300元.13.妈妈准备按1:25的比例配用糖水,如果用糖20克,那么能配备克糖水.【答案】520.【解析】糖水中糖与水的比是1:25,把糖看成1份,那么水就是25份,水是糖的25倍,用糖的质量乘上25即可求出水的质量,再把糖和水的质量相加就是糖水的总质量.解:20×25+20=500+20=520(克)答:能配备 520克糖水.故答案为:520.【点评】解决本题把比看成份数,求出水的质量是糖的质量的多少倍,再根据乘法的意义求出水的质量,进而求出糖水的质量.14.是比例尺,把它改写成数值比例尺是.【答案】线段,1:1500000.【解析】根据比例尺的意义作答,即比例尺是图上距离与实际距离的比.解:是线段比例尺,15千米=1500000厘米,改写成数值比例尺为1:1500000.故答案为:线段,1:1500000.【点评】本题主要考查了比例尺的意义,注意图上距离与实际距离的单位要统一.15.农贸公司的香蕉占水果重量的,桔子占总重量的,其余的是苹果.(1)写出香蕉、苹果重量的最简比.(2)如果苹果是35千克,那么香蕉有多少千克?(3)你还能提出什么问题?并解答出来.【答案】(1)5:7(2)25千克.(3)写出香蕉和桔子的比,香蕉和桔子的比为5:8.【解析】把水果的总重量看成单位“1”,那么香蕉的重量就是,桔子的重量就是,苹果的重量就是1﹣;(1)先计算出苹果的重量占水果总重量的几分之几,然后再作比;(2)先根据苹果的重量求出水果的总重量,然后再用乘法求出香蕉的重量.(3)根据以上数据提出问题,并解答.解:(1)1﹣=,:=:=5:7;答:香蕉与苹果的比为5:7.(2)35×,=100×,=25(千克);答:香蕉有25千克.(3)写出香蕉和桔子的比,并化成最简整数比.:=:=:=5:8;香蕉和桔子的比为5:8.【点评】本题关键是把水果的总重量看成单位“1”,用分数分别把香蕉,桔子,苹果的重量表示出来,再根据基本的数量关系求解.16.:的最简整数比是,比值是.【答案】5:8,.【解析】(1)根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)用比的前项除以后项即可.解:(1):,=(×20):(×20),=5:8;(2):,=÷,=;故答案为:5:8,.【点评】要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数、小数或分数.17.六(1)有男生35人,女生25人,男生占全班的,女生占全班的,男生和女生的比是,女生和男生的比是.【答案】7:5,5:7.【解析】把全班人数看成单位“1”,用男生人数除以全班总人数就是男生占全班人数的几分之几,再用1减去男生占的分率就是女生占的分率;分别写出男生和女生的比及女生和男生的比;再化简即可.解:35÷(35+25)=1﹣=35:25=7:525:35=5:7答:男生占全班的,女生占全班的,男生和女生的比是7:5,女生和男生的比是5:7.故答案为:7:5,5:7.【点评】本题属于基本的分数除法应用题,求一个数是另一个数的几分之几,只要找出单位“1”,问题不难解决.18.比的前项和后项同时乘或除以一个数,比值不变..(判断对错)【答案】×【解析】比的基本性质的内容是比的前项和后项同时乘或除以一个数(0除外)比值不变;所以此题的说法是错误的.解:比的基本性质的内容是比的前项和后项同时乘或除以一个数(0除外)比值不变;所以此题的说法是错误的.故判断为:×【点评】本题主要考查了比例的基本性质,注意“0”这个特殊的数.19. a是b的9倍,b与a的比是9:1..(判断对错)【答案】×【解析】设b为x,则a是9x,根据题意进行比,然后化成最简整数比即可.解:设b为x,则a是9x,则:b与a的比是:x:9x=1:9;故答案为:×.【点评】解答此题应进行假设,设出其中的一个量为x,另一个量也用未知数表示,根据题意进行比,解答即可.20.一个机器零件的长度是8毫米,画在比例尺是10:1的图纸上的长度是()A.8分米 B.8毫米 C.8厘米【答案】C【解析】比例尺=图上距离:实际距离,根据题意列出比例式求解即可.解:根据题意,设图纸上的长度是x毫米,10:1=x:8,x=10×8,x=80;80毫米=8厘米.故选:C.【点评】考查了图上距离与实际距离的换算(比例尺的应用),关键是理解比例尺的概念,正确进行计算.。

比和按比例分配练习题

比和按比例分配练习题

1、鸡有80只,鸭有100只,鸡和鸭只数的比是( ),比值是( )。

2、长方形长3分米,宽12厘米,长与宽的比是( ),比值是( )。

3、小李5小时加工60个零件,加工个数与时间的比是( ),比值是( )。

4、一本书读了55页,45页没有读,已读与总数的比是( ),比值是( )。

5、甲数相当于乙数的92,甲数与乙数的比是( ),乙数与甲数的比是( )。

6、三好学生占全班人数的81,三好学生与全班人数的比是( )。

7、白兔只数的31与黑兔相等。

白兔与黑兔的比是( ),白兔与黑兔的比是( )8、若A ÷B =5(A 、B 都不等于0)则A :B =( ):( ) 若A =B (A 、B 都不等于0) 则A :B =( ):( ) 二、求比值:32:940.3:0.02 3321:1130.21:6.3 48:36 0.5: 527:3.5 3: 1161:0.125 9072三、解决问题:1、一辆汽车从甲地到乙地,每小时行80千米,用了43小时,返回时只用了85小时。

返回时每小时行多少千米?2、商店售出2筐橙子,每筐24千克。

售出的橙子占水果总数的116,售出的香蕉占水果总数的41。

售出香蕉多少千克?12、( )又叫做两个数的比。

( )叫做比值。

3、43=( ):( ) =( )÷( ) 4、在100克水中加入10克盐,盐和盐水的比是( )。

5、男工人数是女工人数的52,男、女工人数的比是( )。

6、甲数是乙数的4倍,甲、乙两数的比是( ),乙数与两数和的比是( )。

7、甲数比乙数多41,甲数与乙数的比是( ),比值是( )。

二、求比值:12:8 0.4:0.125:414.5:0.9 31:65 32:910 0.75:41 4: 41三、解决问题:1、小明体重40千克,相当于小军的910,小华的体重是小军的65。

小华体重多少千克?2、计划生产1800个零件,第一天生产了计划的41,第二天生产了计划的61。

比和按比例分配综合练习题

比和按比例分配综合练习题

分数除法综合练习题(一)一、找单位“1”,写等量关系式:1、“一桶油的43重6千克”,把( )看作单位“1”,( )×43=( )2、“男生占全班人数的95”,把( )看作单位“1”,( )×95=( )( )-( )×95=( );( )×(1-95)=( ) 3、“鸭只数的72等于鸡”, 把( )看作单位“1”,( )×72=( ) 4、“梨重量的43与桃一样多” 把( )看作单位“1”,( )×43=( )5、“丙数的53等于乙数”,把( )看作单位“1”,( )×53=( )6、“甲数占乙数的54”,把( )看作单位“1”,( )×54=( )( )×(1-54)=( ) 7、“甲数比乙数多51”,把( )看作单位“1”,( )×51=( )( )+( )×51=( );( )×(1+51)=( )8、“汽车速度比飞机慢的201”,把( )看作单位“1”,( )×201=( ) ( )-( )×201=( ); ( )×(1-201)=( ) 9、“杨树棵数比松树少92”,把( )看作单位“1”,( )×92=( ) ( )×(1-201)=( )、 ( )-( )×201=( ) 10、“一桶油,用去72” 把( )看作单位“1”,( )×72=( ) ( )×(1-72)=( )11.一条路,第一周修了52,第二周修了41,剩下的第三周修完。

(1)把( )看作单位“1”,( )×52=( ) (2)把( )看作单位“1”,( )×41=( ) (3)把( )看作单位“1”,( )×(52+41)=( ) ( )×52+( )×41=( )(4)把( )看作单位“1”,( )×(52-41)=( ) ( )×52-( )×41=( )(5)把( )看作单位“1”,( )×(1-52-41)=( ) ( )-( )×52-( )×41=( )12、玩具厂十月份计划加工一批玩具,在实际加工中,上半月完成了74,下半月完成了53。

比和按比例分配综合练习题

比和按比例分配综合练习题

比和比例一、 填空:1. 甲乙两数的比是11:9,甲数占甲、乙两数和的)()(,乙数占甲、乙两数和的)()(。

2. 甲、乙两数的比是3:2,甲数是乙数的( )倍,乙数是甲数的)()(。

3. 某班男生人数与女生人数的比是43,女生人数与男生人数的比是( ),男生人数和女生人数的比是( )。

女生人数与总人数的比是( )。

4. 一本书,小明计划每天看72,这本书计划( )看完。

5. 一根绳长2米,把它平均剪成5段,每段长是)()(米,每段是这根绳子的)()(。

6. 王老师用180张纸订5本本子,用纸的张数和所订的本子数的比是( ),这个比的比值的意义是( )。

7. 一个正方形的周长是58米,它的面积是( )平方米。

8. 89吨大豆可榨油31吨,1吨大豆可榨油( )吨,要榨1吨油需大豆( )吨。

9. 甲数的32等于乙数的52,甲数与乙数的比是( )。

10. 把甲数的71给乙,甲、乙两数相等,甲数是乙数的)()(,甲数比乙数多)()(。

11. 甲数比乙数多41,甲数与乙数比是( )。

乙数比甲数少)()(。

12. 在6 :5 = 1.2中,6是比的( ),5是比的( ),1.2是比的( )。

13. 4 :5 = 24÷( )= ( ) :1514. 一种盐水是由盐和水按1 :30 的重量配制而成的。

其中,盐的重量占盐水的(—),水的重量占盐水的(—)。

15. 如果8A = 9B 那么B :A =( )二、 选择(将正确答案的序号填在括号里)1. 小正方形和大正方形边长的比是2:7小正方形和大正方形面积的比是( )A 、2:7B 、6:21C 、4:142. 在盐水中,盐占盐水的101,盐和水的比是( )。

A 、1:8 B 、1:9 C 、 1:10 D 、1:113. 如果X =43Y ,那么Y :X =( )。

A 、1:43 B 、43:1 C 、3:4 D 、4:3 4. 一件工作,甲单独做12天完成,乙单独做18天完成。

按比例分配测验题

按比例分配测验题

按比例分配练习题题组一1.配置一种药水,水与药的比是5:3,现在有药水2400克,那么药有多少克?2.配置一种药水,水与药的比是5:3,现在有水2400克,那么药有多少克?3.配置一种药水,水与药的比是5:3,现在水比药多2400克,那么药有多少克?题组二1、把一根长4.8M的绳子按3∶2截成甲、乙两段,甲、乙两段各长多少M?2、把一根绳子按3∶2截成甲、乙两段,已知甲段长4.8M, 乙段长多少M?3、把一根绳子按3∶2截成甲、乙两段,已知乙段长4.8M, 这根绳子原来长多少M?4、把一根绳子按3∶2截成甲、乙两段,已知乙段比甲段短4.8M, 甲、乙两段各长多少M?题组三1.一种糖水,糖与水的比是2:5,现在有糖水140千克,其中糖有多少千克?2.一种糖水,糖与糖水的比是2:5,现在有糖水140千克,其中糖有多少千克?题组四1.一种混凝土,由水泥、沙子、石子按2:3:5拌制而成,现要这种混凝土6000千克,需要沙子、石子各多少千克?2.一种混凝土,由水泥、沙子、石子按2:3:5拌制而成,现在有水泥6000千克,需要沙子、石子各多少千克?3.一种混凝土,由水泥、沙子、石子按2:3:5拌制而成,现要的水泥比石子少6000千克,需要沙子、石子各多少千克?综合题1.一根长96厘M的铁丝做成一个长、宽、高的比是3:2:1的长方体,这个长方体的体积是多少立方厘M?2.甲、乙两数的比是2:3,乙、丙两数的比是2:5,甲乙丙三个数共250.甲、乙、丙各是多少?3、两地相距480千M,甲、乙两辆汽车同时从两地相向开出,4小时后相遇,已知甲、乙两车速度的比是5∶3。

甲、乙两车每小时各行多少千M?4、一个等腰三角形,两个角的比是1:3,这个三角形可能是什么三角形?5、一个直角三角形,三条边的比是3:4:5,这个三角形周长是48厘M,它的面积是多少平方厘M?6、配制一种农药,其中药与药水的比为1∶150。

①要配制这种农药755千克,需要药和水各多少千克?②有药3千克,能配制这种农药多少千克?③如果有水525千克,要配制这种农药,需要放进多少千克的药?。

六年级数学上册试题 一课一练4.2《问题解决》综合练习1西师大版(含答案)

六年级数学上册试题 一课一练4.2《问题解决》综合练习1西师大版(含答案)

4.2比和按比例分配《问题解决》综合练习1基础作业1.填空。

(1)()20=()∶4=12÷()=75∶()=0.75(2)把2.5÷34化成最简整数比是(),比值是()。

(3)参加合唱小组的人数是科技小组人数的1.2倍,参加合唱小组的人数和科技小组的人数比是()。

(4)在2∶5中,前项加上2,要使比值不变,后项应()。

(5)一个直角三角形两个锐角度数的比是1∶2,则这两个锐角分别是()。

和()。

2.判断。

(对的画“√”,错的画“×”)(1)甲数的丢等于乙数,甲数与乙数的比为3∶4。

()(2)把2m长的绳子平均分成7段,每段长与全长的比为2∶7。

()(3)最简整数比是比的前项和后项必须是整数。

()(4)a是b的4倍,a∶b=4∶10()3.先化简下面各比,再求出比值。

6∶18 6.3∶0.92∶1479∶4154.(1)某运输队两天共运80吨货物,第一天、第二天所运货物吨数的比是5∶3。

第一天和第二天各运货物多少吨?(2)某运输队两天共运80吨货物,第一天所运货物吨数是总数的5。

第一天和第二天各运货8物多少吨?。

第一天和第二天各运(3)某运输队两天共运80吨货物,笫二天所运货物吨数是第一天的35货物多少吨?5.水果店购进的苹果和梨的质量比是4∶3,苹果比梨多35kg。

苹果和梨各多少千克?培优作业6.甲、乙两车从A、B两地同时出发,相向而行,5时后相遇。

已知乙车行了180km,甲、乙两车的速度比是5∶6。

A、B两地相距多少千米?参考答案:1.(1)15 3 16 100 (2)10∶3 103(3)6∶5 (4)加上5(或乘2)(5)30 602.(1)×(2)×(3)√(4)√3.1∶3 13 7∶1 7 8;1 8 35∶12 35124.(1)第一天:50吨第二天:30吨(2)第一天:50吨第二天:30吨(3)第一天:50吨第二天:30吨5.苹果:35×4=140(kg)梨:35×3=105(kg)6.180÷5=36(km/h) 36×56=30(km/h)(36+30)×5=330(km)。

比和按比例分配的练习题

比和按比例分配的练习题

比和按比例分配的练习题姓名一、填空。

1、甲乙两数的比是3︰4,则甲数是乙数的( ),甲数比乙数少( )[填分数],乙数比甲数多( )[填分数]。

2、甲数的43和乙数的52相等,则甲、乙两数之比是( )︰( )。

乙数比甲数多( )[填分数]。

3、有一个三角形,它的三个内角度数之比是7︰3︰10,最小角的度数是( ),这个三角形是( )三角形。

4、a 数比b 数多51,则b 数比a 数少( )[填分数]。

;a 、b 之比是( )︰( )。

5、a 、b 、c 三个数的平均数是60,这三个数的比是1︰2︰3,这三个数分别是( )、( )、( )。

6、甲、乙两个正方形的边长之比是8︰7,它们的周长之比是( ),面积之比是( )。

7、甲、乙两人合作一项工程10天完成任务,由甲单独做要15天完成,由乙单独做要( )天完成,甲、乙两人的工作效率之比是( )︰( ),工作量之比是( )︰( )。

工作时间之比是( )︰( )。

二、判断对错。

1、比的前项和后项同时加上一个数,比值不变。

( )2、比的前项和后项同时乘或除以一个数,比值不变。

( )3、比例尺的前项是1。

( )4、一幅图的比例尺是1︰500米。

( )5、甲比乙多53,就是乙比甲少53。

( )6、甲、乙、丙三人分糖果,如果三人按2︰3︰4分配或者按8︰5︰2分配,乙所分得的糖果数相同。

( )三、解决问题1、六二班原来班上男生人数是女生人数的53,后来转来了5个男生,现在班上男生和女生的人数比是4︰5,班上原来有多少名学生?2、一辆汽车从甲地到乙地,每时行65千米,返回时由于下雪路滑,每时只行25千米。

已知该车往返共用去9小时,求甲、乙两地的距离。

3、一个等腰三角形,它的顶角和底角的度数之比是3︰1,它的顶角是多少度?4、用96米长的铁丝围成一个长方体框架,已知它的长宽高的比是4︰3︰1,这个长方体的体积是多少?5、一个长方形的周长是120㎝,长与宽的比是3︰2,如果把长减少91,把宽增加61,那么新的长方形的面积是多少平方米?6、幼儿园老师把一袋糖果分给甲乙丙三个小朋友,先把总数的51多6粒分给甲,再把剩下的51多9粒分给乙,最后剩下的都给丙,结果三人得到的糖果一样多。

六年级数学上册 典型例题系列之第四单元比:按比例分配应用题专项练习(原卷)_1(人教版)

六年级数学上册  典型例题系列之第四单元比:按比例分配应用题专项练习(原卷)_1(人教版)

六年级数学上册典型例题系列之第四单元比:按比例分配应用题专项练习(原卷)专项练习一:和比、差比、单量与比问题的辨析1.配置一种药水,水与药的比是5:3,现在有药水2400克,那么药有多少克?2.配置一种药水,水与药的比是5:3,现在有水2400克,那么药有多少克?3.配置一种药水,水与药的比是5:3,现在水比药多2400克,那么药有多少克?4.把一根长4.8米的绳子按3:2截成甲、乙两段,甲、乙两段各长多少米?5.把一根绳子按3∶2截成甲、乙两段,已知甲段长4.8米, 乙段长多少米?6.把一根绳子按3∶2截成甲、乙两段,已知乙段长4.8米, 这根绳子原来长多少米?7.把一根绳子按3∶2截成甲、乙两段,已知乙段比甲段短4.8米, 甲、乙两段各长多少米?8.一种糖水,糖与水的比是2:5,现在有糖水140千克,其中糖有多少千克?9.一种糖水,糖与糖水的比是2:5,现在有糖水140千克,其中糖有多少千克?10.配制一种农药,其中药与水的比为1∶150。

①要配制这种农药755千克,需要药和水各多少千克?②有药3千克,能配制这种农药多少千克?③如果有水525千克,要配制这种农药,需要放进多少千克的药?专项练习二:三个比及化连比问题的辨析1.一种混凝土,由水泥、沙子、石子按2:3:5拌制而成,现要这种混凝土6000千克,需要沙子、石子各多少千克?2.一种混凝土,由水泥、沙子、石子按2:3:5拌制而成,现在有水泥6000千克,需要沙子、石子各多少千克?3.一种混凝土,由水泥、沙子、石子按2:3:5拌制而成,现要的水泥比石子少6000千克,需要沙子、石子各多少千克?4.一个三角形,三个内角的度数比是2:5:2,这是一个什么三角形?5.一个直角三角形,两个锐角的度数比是4:5,求这两个锐角的度数。

6.一个三角形的周长是40厘米,三条边的比是3:3:2,这三条边分别是多长?7.甲、乙两数的比是2:3,乙、丙两数的比是2:5,甲乙丙三个数共250。

比和按比例分配练习题

比和按比例分配练习题

比和按比例分配练习题一、选择题1. 一个班级有男生和女生,男生人数是女生的3倍,如果班级总人数是48人,问女生有多少人?A. 12人B. 16人C. 24人D. 36人2. 甲乙两人共有图书120本,甲的图书是乙的2倍,问乙有多少本图书?A. 30本B. 40本C. 60本D. 90本3. 某工厂生产两种产品,A产品和B产品,A产品的生产时间是B产品的1.5倍,如果A产品生产了36小时,B产品生产了多少小时?A. 18小时B. 24小时C. 30小时D. 36小时二、填空题4. 一个农场有鸡和鸭,鸡的数量是鸭的4倍,如果农场总共有35只动物,那么鸭有____只。

5. 张华和李明共有1000元,张华的钱是李明的3倍,张华有____元。

6. 某公司有A和B两个部门,A部门的员工数是B部门的2倍,如果公司总共有180名员工,B部门有____名员工。

三、解答题7. 一个班级有学生50人,其中女生人数是男生的2/3,求男生和女生各有多少人?解答:设男生人数为x,则女生人数为2/3x。

根据题意,x + 2/3x = 50,解得x = 30,女生人数为20。

8. 一个水果店有苹果和香蕉两种水果,苹果的价格是香蕉的1.2倍,如果苹果的总价值是360元,香蕉的总价值是多少元?解答:设香蕉的价格为y元,则苹果的价格为1.2y元。

根据题意,苹果的数量为360 / (1.2y),香蕉的数量为360 / y。

由于苹果和香蕉的总价值相等,可以得出360 / (1.2y) = 360 / y,解得y = 1,所以香蕉的总价值也是360元。

9. 某工厂有A和B两种机器,A机器的效率是B机器的1.5倍,如果A机器工作了8小时,B机器需要工作多少小时才能完成相同的工作量?解答:设B机器需要工作x小时。

根据题意,A机器的工作效率为1.5 / 8,B机器的工作效率为1 / x。

由于完成的工作量相同,可以得出1.5 / 8 = 1 / x,解得x = 8 / 1.5 = 5.33小时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比和比例
一、 填空:
1. 甲乙两数的比是11:9,甲数占甲、乙两数和的)()(,乙数占甲、乙两数和的)
()(。

2. 甲、乙两数的比是3:2,甲数是乙数的( )倍,乙数是甲数的
)()(。

3. 某班男生人数与女生人数的比是4
3,女生人数与男生人数的比是( ),男生人数和女生人数的比是( )。

女生人数与总人数的比是( )。

4. 一本书,小明计划每天看7
2,这本书计划( )看完。

5. 一根绳长2米,把它平均剪成5段,每段长是
)()(米,每段是这根绳子的)()(。

6. 王老师用180张纸订5本本子,用纸的张数和所订的本子数的比是( ),这个比的
比值的意义是( )。

7. 一个正方形的周长是
58米,它的面积是( )平方米。

8. 89吨大豆可榨油3
1吨,1吨大豆可榨油( )吨,要榨1吨油需大豆( )吨。

9. 甲数的32等于乙数的5
2,甲数与乙数的比是( )。

10. 把甲数的7
1给乙,甲、乙两数相等,甲数是乙数的)()(,甲数比乙数多)()(。

11. 甲数比乙数多
41,甲数与乙数比是( )。

乙数比甲数少)()(。

12. 在6 :5 = 1.2中,6是比的( ),5是比的( ),1.2是比的( )。

13. 4 :5 = 24÷( )= ( ) :15
14. 一种盐水是由盐和水按 1 :30 的重量配制而成的。

其中,盐的重量占盐水的(—),
水的重量占盐水的(—)。

15. 如果8A = 9B 那么B :A =( )
二、 选择(将正确答案的序号填在括号里)
1. 小正方形和大正方形边长的比是2:7小正方形和大正方形面积的比是( )
A 、2:7
B 、6:21
C 、4:14
2. 在盐水中,盐占盐水的10
1,盐和水的比是( )。

A 、1:8 B 、1:9 C 、 1:10 D 、1:11
3. 如果X =4
3Y ,那么Y :X =( )。

A 、1:43 B 、4
3:1 C 、3:4 D 、4:3 4. 一件工作,甲单独做12天完成,乙单独做18天完成。

甲乙效率的最简比是( )。

A 、 6:9
B 、 3:2
C 、 2:3
D 、 9:6
5. 一个三角形三个内角度数的比是6:2:1,这个三角形是( )。

A 、 直角三角形
B 、锐角三角形
C 、钝角三角形
D 、无法确定
6. 甲与乙的工作效率比是6:5,两人合做一批零件共计880个,乙比甲少做( )。

A 、 480个
B 、400个
C 、80个
D 、40个
三、应用题
1. 建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、沙子、石
子各多少吨?
2. 一个县共有拖拉机550台,其中大型拖拉机台数和手扶拖拉机台数的比是3:8,这两
种拖拉机各有多少台?
3. 用84厘米长的铜丝围成一个三角形,这个三角形三条边长度的比是3:4:5。

这个三
角形的三条边各是多少厘米?
4. 甲、乙、丙三个数的平均数是84,甲、乙、丙三个数的比是3:4:5,甲、乙、丙三个
数各是多少?
5. 乙两个数的平均数是25,甲数与乙数的比是3:4,甲、乙两数各是多少?
6. 一个直角三角形的两个锐角的度数比是1:5,这两个锐角各是多少度?
7. 一块长方形试验田的周长是120米,已知长与宽的比是2:1,这块试验田的面积是多
少平方米?
8. 一种药水是用药物和水按3:400配制成的。

(1) 要配制这种药水1612千克,需要药粉多少千克?
(2) 用水60千克,需要药粉多少千克?
(3) 用48千克药粉,可配制成多少千克的药水?
9. 商店运来一批电冰箱,卖了18台,卖出的台数与剩下的台数比是3:2,求运来电冰箱
多少台?
10. 纸箱里有红绿黄三色球,红色球的个数是绿色球的4
3,绿色球的个数与黄色球个数的比是4:5,已知绿色球与黄色球共81个,问三色球各有多少个?
11. 飞机每小时飞行480千米,汽车每小时行60千米。

飞机行4
21小时的路程,汽车要行多少小时?
12. 配制一种农药,药粉和水的比是1:500
(1) 现有水6000千克,配制这种农药需要药粉多少千克?
(2) 现有药粉3.6千克,配制这种农药需要水多少千克?
13. 园林绿化队要栽一批树苗,第一天栽了总数的5
1,第二天栽了136棵,这时剩下的与已栽的棵数的比是3:5。

这批树苗一共有多少棵?
16、学校买来一批书,共1000本,把这批书按3:4:5分给四、五、六三个年级,每个年级各分到多少本?
17、(1)果园里梨树与桃树的比是3:5,这个果园里共有果树40棵,梨树与桃树各多少棵?
(2)果园里梨树与桃树的比是3:5,已知桃树有40棵。

这个果园共有果树多少棵?
(3)果园里梨树与桃树的比是3:5,已知梨树比桃树少40棵,这个果园共有果树多少棵?
18、一个长方形的周长是40分米,它的长与宽的比是3:2,这个长方形的面积是多少?
19、小明在期末考试中数文、数学、英语的均分为75分,它的三门学科成绩的比为8:8:9,它的三门成绩分别是多少?
20、把一段长96厘米的铁丝做一个长方体框架,长方体的长宽高的比是5:4:3,这个长方体的长、宽、高分别是多少?
21、加工一批零件,王师傅每小时加工48个,与李师傅每小时加工个数的比是4:5。

两个共同加工3小时,可以加工多少个零件?
22、工厂买来120吨生产原料,其中的分给一车间,其余的按3:5分给甲乙两个车间,甲乙两个车间各分到多少吨?
23、一种药水是用药粉和水按3:100配成的。

(1)要配制这种药水515千克,需要药粉多少千克?
(2)有水60千克,需要药粉多少千克?(3)用90千克的药粉,可配成多少千克的药水?
24、一杯盐水,盐与盐水的比为1:5,再加上16克盐后,盐与盐水的比为1:4,原来盐水有多少千克?
25、甲乙两地相距600千米,两车分别从两地相向同时出发,3小时后两车相遇,已知快车与慢车的速度比为11:9,快车与慢车的速度分别是多少?
26、某车间有140名职工,分成三个生产小组,已知第一组和第二组人数比为2:3,第二组和第三组人数比为4:5,这三个小组名有多少人?
27、一班和二班的人数比为8:7,如果将一班的8名同学调到二班去,那么一班和二班的人数的比为4:5,求原来两班各有多少人?。

相关文档
最新文档