知识点057 完全平方公式几何背景(选择)
《完全平方公式(1)》参考课件

《完全平方公式(1)》参考 课件
目录
• 引言 • 完全平方公式的内容 • 完全平方公式的应用 • 完全平方公式的扩展知识 • 练习与思考 • 参考资料
01
引言
课程背景
面向学生
初中生、高中生及其他对数学感兴趣的人群。
课程背景介绍
介绍完全平方公式的起源、发展和应用背景。
完全平方公式简介
公式形式
计算三角形的面积
在已知三角形的三边长的情况下,利用完全平方公式可以方 便地计算出三角形的面积。
完全平方公式在实际问题中的应用
解决实际问题
在一些实际问题中,如物体从高处下落、物体移动等,可以利用完全平方公 式来解决问题。
金融问题
在金融领域,如计算复利、解决贷款问题等,也需要用到完全平方公式进行 计算。
02
完全平方公式的内容
完全平方公式的定义
完全平方公式
$a^{2}+2ab+b^{2}$
非负数
$a,b\geq 0$
完全平方公式的形式
代数形式
$(a+b)^{2}=a^{2}+2ab+b^{2}$
几何形式
边长为$a$和$b$的正方形,扩大后形成边长为$a+b$的正方形
完全平方公式的证明
代数证明
推广到向量
在向量空间中,完全平方公式可以推广到向量的点积和叉积运算中,如$(a \cdot b)^2 = (a \times b)^2$。
运用完全平方公式进行因式分解
将式子化成完全平方式
通过运用完全平方公式,将一个较复杂的式子化成两个完全平方式相加或相减的 形式,从而进行因式分解。
分解二次三项式
对于形如$ax^2 + bx + c$的二次三项式,可以利用完全平方公式将其因式分解 为$a(x+ \frac{b}{2a})^2 + \frac{4ac - b^2}{4a}$。
北师大版初中数学七年级下册第1章《完全平方公式(一)》说课稿

《完全平方公式(一)》说课稿一、说教材1、地位和作用“完全平方公式”是七年级《数学》下册第一章第八节内容,它分为两课时,本节是第一课时,它是“整式运算”这一章中重要的内容之一,它起到承上启下的作用,既是整式相乘的应用,又为以后学习配方法打下扎实的基础。
2、课程目标:(1)、知识目标:经历探索推导完全平方公式的过程,形成数形结合思想,进一步发展符号感。
掌握完全平方公式的结构特点,并能利用公式熟练进行运算。
(2)、能力目标:培养学生发散性思维能力和推理能力,培养学生语言表达能力,动手实践能力,以及合作交流能力。
(3)情感目标:让学生在探索的过程中,体会科学发现探索方法,在合作交流中,体会团结合作精神。
能从多角度思考问题,敢于发表自己的观点。
3、教学重点、难点:重点:完全平方公式的结构特点及公式的直接运用。
难点:对公式中a、b含义的理解与正确应用。
4、教材安排:本节课先从通过计算和比较试验田的面积引出完全平方公式。
直接让学生运用多项式乘法法则推导完全平方公式。
并通过数形结合思想,让学生理解完全平方公式及其结构特点。
最后通过变式训练进行练习和巩固。
二、说教学方法及教学手段:本节课引导学生从已有的知识和生活经验出发,提出开放性的问题让学生进行合作探索,让学生经历知识的形成与应用,从而更好地理解数学知识的意义。
本节课教学中,对于不同的内容选择了不同的方法。
对于求实验田的总面积,进行开放性教学,引导学生利用拼图等方法合作探究多种方法求解;运用多项式相乘推导公式,让学生独立探索;对于完全平方公式的运用,采用变式训练,促进学生灵活掌握。
为了提高课堂教学效果,本节课将借助于多媒体课件辅助教学。
三、说学法教给学生良好的学习方法比直接教给学生知识更重要。
数学教学是师生之间、学生之间交往互动与共同发展的过程,学生的学是中心,会学是目的,因此在教学中要不断指导学生学会学习,又要给学生自主探索和合作交流时间。
本节课先从实际出发,创设有助于学生发散性思考的问题情境,引导学生自己积极思考探索,让学生经历“观察、类比、发现、归纳”的过程,从而培养学生动手实践的能力,提高口头表达能力及逻辑推理能力,使学生真正成为学习的主体。
北师大数学七年级下册第一单元1

完全平方公式知识点1 完全平方公式222a b a ab b-=-+,()2()2a b a ab b+=++;222即两数和(或差)的平方,等于它们的平方和加上(或减去)它们积的2倍.【典例】例1化简:(x﹣2)2+(x+3)(x+1).【方法总结】本题主要考查了完全平方公式,多项式乘多项式,熟记相关公式和运算法则是解题的关键.例2已知a+b=8,ab=15,求下列式子的值:(1)a2+b2;(2)(a﹣b)2.【方法总结】本题主要考查完全平方公式,熟练掌握完全平方公式是解决本题的关键.例3下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=(x2+2xy)﹣(x2+2x+1)+2x第一步=x2+2xy﹣x2+2x+1+2x第二步=2xy+4x+1第三步(1)小颖的化简过程从第步开始出现错误,错误的原因是.(2)写出此题正确的化简过程.【方法总结】本题考查完全平方公式,整式的加减以及单项式乘多项式,解答本题的关键是明确整式的混合运算的计算方法.例4已知(x﹣p)2=x2+mx+36,则m=.【方法总结】本题考查了完全平方公式的运用,能熟练地运用公式进行计算是解此题的关键.完全平方公式:(a±b)2=a2±2ab+b2.【随堂练习】1.已知(x+y)2=25,(x﹣y)2=1,求x2+y2与xy的值.2.计算:(2x﹣3)2﹣(x﹣3)(2x+1).3.已知x+y=7,xy=﹣8,求(1)x2+y2的值;(2)(x﹣y)2的值.知识点2 利用完全平方公式进行整式与数的运算利用完全平方公式进行整式与数的运算是完全平方公式的一种实际应用,主要考察对公式222a b a ab b()2-=-+的掌握情况.()2a b a ab b+=++;222【典例】例1计算:2002﹣400×199+1992.【方法总结】本题主要考查完全平方公式,熟练掌握完全平方公式是解决本题的关键.例2已知实数m,n满足m+n=3,mn=﹣3.(1)求(m﹣2)(n﹣2)的值;(2)求m﹣n的值.【方法总结】本题考查了完全平方公式:灵活运用完全平方公式是解决此类问题的关键.完全平方公式为:(a±b)2=a2±2ab+b2.【随堂练习】1.若(a+b)2=17,(a﹣b)2=11,则a2+b2=.2.已知x﹣y=3,x2+y2﹣3xy=4.求下列各式的值:(1)xy;(2)x3y+xy3.知识点3 完全平方式完全平方式的定义:对于一个具有若干个简单变元的整式A,如果存在另一个实系数整式B,使A=B2,则称A是完全平方式.a2±2ab+b2=(a±b)2完全平方式分两种,一种是完全平方和公式,就是两个整式的和括号外的平方.另一种是完全平方差公式,就是两个整式的差括号外的平方.算时有一个口诀“首末两项算平方,首末项乘积的2倍中间放,符号随中央.(就是把两项的乘方分别算出来,再算出两项的乘积,再乘以2,然后把这个数放在两数的乘方的中间,这个数以前一个数间的符号随原式中间的符号,完全平方和公式就用+,完全平方差公式就用-,后边的符号都用+)”【典例】1.要使x2+kx+4是完全平方式,那么k的值是()A.k=±4B.k=4C.k=﹣4D.k=±2【方法总结】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.例2已知x2﹣2mx+9是完全平方式,则m的值为()A.±3B.3C.±6D.6【方法总结】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏解.【随堂练习】1.已知y2﹣6y+m是完全平方式,则m=()A.6B.﹣6C.9D.﹣9 2.若二次三项式x2﹣8x+m2是一个完全平方式,则m的值是()A.±4B.4C.±8D.8 3.下列各式是完全平方式的是()A.x2﹣x+14B.1+4x2C.a2+ab+b2D.x2+2x﹣1知识点4 完全平方公式的几何背景(1)运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.(2)常见验证完全平方公式的几何图形(a+b)2=a2+2ab+b2.(用大正方形的面积等于边长为a和边长为b的两个正方形与两个长宽分别是a,b的长方形的面积和作为相等关系)【典例】例1 有一张边长为a的正方形桌面,因实际需要,需将正方形边长增加b,木工师傅设计了如图所示的方案,该方案能验证的等式是()A.(a+b)2=a2+2ab+b2B.a2﹣b2=(a+b)(a﹣b)C.(a﹣b)2=a2﹣2ab+b2 D.(a+2b)(a﹣b)=a2+ab+b2【方法总结】考查完全平方公式的几何背景,通过不同方法计算面积,通过面积之间的关系得出等式是常用的方法.例2如图,将一个边长为a+b的正方形图形分割成四部分(两个正方形和两个长方形),请认真观察图形,解答下列问题:(1)根据图中条件,请用两种方法表示该图形的总面积(用含a、b的代数式表示出来);(2)如果图中的a,b(a>b)满足a2+b2=57,ab=12,求a+b的值.【方法总结】本题考查对完全平方公式几何意义的理解,关键是从整体和部分两方面来理解完全平方公式的几何意义,并能对整式结论变式应用.例3如图1在一个长为2a,宽为2b的长方形图中,沿着虚线用剪刀均分成4块小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的正方形边长为.(2)请你用两种不同的方法表示图2中阴影部分的面积,并用等式表示.(3)如图3,点C是线段AB上的一点,以AC,BC为边向两边作正方形,面积分别是S1和S2,设AB=8,两正方形的面积和S1+S2=28,求图中阴影部分面积.【方法总结】本题考查完全平方公式的背景及其应用,将同一个图形的面积用两种方法表示是求解本题的关键.例4如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成相等的四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中阴影部分的正方形的边长等于;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积:方法一:;方法二:;(3)根据(2),直接写出(m﹣n)2,(m+n)2,mn这三个代数式之间的等量关系.(4)根据(3)中的等量关系,解决如下问题:对于任意的有理数x和y,若x+y=9,xy=18,求x﹣y的值.【方法总结】本题考查完全平方公式的几何背景,用不同方法表示同一个图形的面积是得出结论的关键.【随堂练习】1.如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是( )A .(a +b )2=a 2+2ab +b 2B .(a +b )2=a 2+2ab ﹣b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .(a ﹣b )2=a 2﹣2ab ﹣b 22.如图,将长方形ABCD 的各边向外作正方形,若四个正方形周长之和为24,面积之和为12,则长方形ABCD 的面积为( )A .4B .32C .5D .63.图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形. (1)图2中间空白的部分的面积是 ;(2)观察图2,请你写出代数式(a +b )2、(a ﹣b )2、ab 之间的等量关系式 ;(3)根据你得到的关系式解答下列问题:若x +y =﹣4,xy =3,求x ﹣y 的值.4.请认真观察图形,解答下列问题:(1)根据图①中条件,请用两种不同方法表示两个阴影图形的面积的和;(2)在(1)的条件下,如图②,两个正方形边长分别为a,b,如果a+b=ab=9,求阴影部分的面积.综合运用1.若4x2﹣2kx+1是完全平方式,则常数k的值为()A.2B.﹣2C.±2D.±42.已知关于x的多项式16x2+mx+1是一个完全平方式,则常数m的值是.3.计算:(2x﹣3y)(3x+2y)﹣(2x﹣3y)2.4.计算:(a﹣2b﹣1)2.5.已知a+b=7,ab=﹣2.求:(1)a2+b2的值;(2)(a﹣b)2的值.6.图1,是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的面积为;(2)观察图2,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是;(3)若x+y=﹣6,xy=2.75,求x﹣y;(4)观察图3,你能得到怎样的代数恒等式呢?7.如图,正方形ABCD中,点G是边CD上一点(不与端点C,D重合),以CG为边在正方形ABCD外作正方形CEFG,且B、C、E三点在同一直线上,设正方形ABCD和正方形CEFG的边长分别为a和b(a>b).(1)求图1和图2中阴影部分的面积S1、S2(用含a,b的代数式表示);(2)如果a+b=8,ab=6,求S1的值;(3)当S1=S2时,求a与b满足的数量关系.8.1)请写出三个代数式(a+b)2、(a﹣b)2和ab之间数量关系式.(2)应用上一题的关系式,计算:xy=﹣3,x﹣y=4,试求x+y的值.(3)如图:线段AB=10,C点是AB上的一点,分别以AC、BC为边长在AB的异侧做正方形ACDE和正方形CBGF,连接AF;若两个正方形的面积S1+S2=32,求阴影部分△ACF面积.。
初中数学七年级下册《完全平方公式》教案

【学习课题】七年级下册 第一章 整式的运算 第八节 完全平方公式(1)【内容分析】本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。
是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;乘法公式是后续学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习因式分解、分式运算的重要基础。
它是数学方法中配方的依据,能解决许多数学问题,是中考考察重点,有选择题和解答题。
初学完全平方公式时,由于对公式理解不深、记忆不牢,容易丢掉“加上(或减去积的2倍)”必须引起高度重视。
【学习目标】 1、经历探索完全平方公式的过程,进一步发展符号感和推理能力2、会推导完全平方公式,并会运用公式进行简单的计算3、了解完全平方公式的几何背景【学习重点】对完全平方公式的理解,以及公式的运用【学习难点】(1) 完全平方公式进行计算时,如何从广义上理解公式中的字母。
(2)在运算时明确是哪两数的和或差的平方。
【学习过程】学习准备:(1)学习本节内容需要熟悉‘多项式乘多项式’、‘幂的乘方’和‘积的乘方’的运算法则,学习前可先检查自己是否熟悉这几个法则;(2)利用多项式与多项式的乘法法则,前面已经推导出重要的乘法公式—平方差公式 (3)平方差公式大大提升了计算的难度和计算的准确度,是否渴望多一点这样的乘法公式呢?学完本节内容后你的这一愿望就会如愿以赏了!阅读理解:(一)解读教材1、请同学们阅读书上40页,观察下图回答问题: (1)第1块实验田面积为( )米2; (2)第2块实验田面积为( )米2; (3)第1块实验田面积为( )米2; (4)第1块实验田面积为( )米2; 这四块实验田总面积为( )米2。
若将这四块实验田看成一个大正方形,则其边长为( )米,面积为( )米。
可以得到结论: 请同学们想一想,能不能用多项式乘多项式得到这个结论呢?()()2a b b a b ++-思考:()2a b -=?有两种方法:①利用多项式乘法 (a-b)2=(a-b)(a-b) ②利用换元法 (a-b)2=[a+(-b)]22、通过以上的推导,得到两个完全平方公式:(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2用自己的语言描述完全平方公式: 填空: (x+2y)2=( )2+2( )( )+( )2(2x-5y)2=( )2-2( )( )+( )23、仔细阅读下面的例题,然后仿照例子即时练习:例子:利用完全平方公式计算:(1)(a+2b)2(2)(a-2b)2解:∵ (a + b)2 =a 2+2 a b + b 2 ∵ (a - b)2 =a 2-2 a b+ b 2(a +2b)2=a 2+2 a (2b)+ (2b)2(a -2b)2=a 2-2 a (2b)+(2b)2= a 2+4ab+4b2= a 2-4ab+4b2遮住例1的答案,自已做一遍,然后对答案。
知识点057 完全平方公式几何背景(选择)

1、(2010•乌鲁木齐)有若干张面积分别为纸片,阳阳从中抽取了1张面积为a2的正方形纸片,4张面积为ab的长方形纸片,若他想拼成一个大正方形,则还需要抽取面积为b2的正方形纸片()A、2张B、4张C、6张D、8张考点:完全平方公式的几何背景。
分析:由题意知拼成一个大正方形长为a+2b,宽也为a+2b,面积应该等于所有小卡片的面积.解答:解:∵正方形和长方形的面积为a2、b2、ab,∴它的边长为a,b,b.∴它的边长为(a+2b)的正方形的面积为:(a+2b)(a+2b)=a2+4ab+4b2,∴还需面积为b2的正方形纸片4张.故选B.点评:此题考查的内容是整式的运算与几何的综合题,考法较新颖.2、(2010•丹东)图①是一个边长为(m+n)的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是()A、(m+n)2﹣(m﹣n)2=4mnB、(m+n)2﹣(m2+n2)=2mnC、(m﹣n)2+2mn=m2+n2D、(m+n)(m﹣n)=m2﹣n2考点:完全平方公式的几何背景。
专题:计算题。
分析:根据图示可知,阴影部分的面积是边长为m+n的正方形减去中间白色的正方形的面积m2+n2,即为对角线分别是2m,2n的菱形的面积.据此即可解答.解答:解:(m+n)2﹣(m2+n2)=2mn.故选B.点评:本题是利用几何图形的面积来验证(m+n)2﹣(m2+n2)=2mn,解题关键是利用图形的面积之间的相等关系列等式.3、利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是()A、(a+b)(a﹣b)=a2﹣b2B、(a﹣b)2=a2﹣2ab+b2C、a(a+b)=a2+abD、a(a﹣b)=a2﹣ab考点:完全平方公式的几何背景。
分析:根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.解答:解:大正方形的面积=(a﹣b)2,还可以表示为a2﹣2ab+b2,∴(a﹣b)2=a2﹣2ab+b2.故选B.点评:正确列出正方形面积的两种表示是得出公式的关键,也考查了对完全平方公式的理解能力.4、已知如图,图中最大的正方形的面积是()A、a2B、a2+b2C、a2+2ab+b2D、a2+ab+b2考点:完全平方公式的几何背景。
完全平方公式

经历环节一是学生完成学习目标1,2
环节二: 1:学生自学课本第41页例1, 例一:计算 (5a+b)² (3m-2n)²
说出每个小题相当于哪两个数的和 (或差),计算时对应用到哪个完全 平方公式?小组合作交流2分钟
当堂检测1(检测例题一的学习效果) 让学生练习课本第40页随堂练习1 演板(演板学生以中等偏下学生为 主,目的是为了让学生充分暴露公式 运用时可能出现的问题,演板学生一 生一题其他学生每生3个小题全做。 限时5分钟。小组内交流讨 论出准确答案后,由学生自己发现演 板中出现的问题并纠正,教师及时总 结各类问题。)
2:经历探索完全平方公式的过程, 进一步发展符号感和推理能力。 3: 会推导完全平方公式,并会运用 公式进行简单的运算。
四:教学重难点 教学重点是:体会公式的发现 和推导过程,了解公式的本质, 并会运用公式进行简单的计算。 教学难点是:从广泛意义上理 解公式中字母的含义,判明要计 算的代数式是哪两个数的和(或 差)的平方。
六:教学工具 采用多媒体课件,将公式的证明变得生动,形象,直观。 七:教学过程 环节一:大概用时10分钟,完成公式的推导过程 自学课本第40页想一想上面内容,提出问题一“同学们能用几种 不同的形式表示试验田的面积?看那位同学想出的最多”。(限 时3分钟)
3分钟时间的应用:2分钟独立思考1分钟小组合作交流。3分钟后 小组展示结果,师点评引出
补充例题二:(这个例题的设计是为
了让学生对公式进行举一反三)
计算:(-2t-1)² (-cd+3)² 小组合作讨论出解法后由学生口述 教师板书,然后总结规律: 1: 当括号里面两项都为负号时, 将其变为正号后,再利用公式进行计 算; 2:当括号里面两项负号相反时, 将正号项写在前面的位置,然后再利 用公式计算。(用时5分钟)
2023学年八年级数学上册高分突破必练专题(人教版) 完全平方公式的几何背景(两大类型)(原卷版)

完全平方公式的几何背景(两大类型)【典例1】(2022秋•南昌县期中)如图1所示是一个长为2m,宽为2n的长方形,沿虚线用剪刀均分成四个小长方形,然后按图2的方式拼成一个正方形.(1)图2中的阴影部分的正方形的边长等于;(2)请用两种不同的方法列代数式表示图2中阴影部分的面积:方法①;方法②;(3)观察图2,直接写出(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系;(4)根据(3)题中的等量关系,解决如下问题:若a+b=8,ab=5,求(a﹣b)2的值.【变式1-1】(2022春•玄武区校级期中)观察图形,用两种不同的方法计算大长方形面积,我们可以验证等式()A.(a+b)(a+2b)=a2+3ab+2b2B.(a+b)(2a+b)=2a2+3ab+b2C.(a+b)(a+2b)=2a2+3ab+b2D.(a+b)(2a+b)=a2+3ab+2b2【变式1-2】(2022秋•渝中区校级月考)如图,两个正方形边长分别为a,b,已知a+b=7,ab=9,则阴影部分的面积为()A.10B.1 1C.12D.13【变式1-3】(2022春•阜宁县期末)图1,是一个长为2m、宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2形式拼成一个正方形,那么中间阴影部分的面积为()A.mn B.m2﹣n2C.(m﹣n)2D.(m+n)2【典例2】(2022春•双流区校级期中)著x满足(9﹣x)(x﹣4)=4,求(4﹣x)2+(x ﹣9)2的值.解:设9﹣x=a,x﹣4=b,则(9﹣x)(x﹣4)=ab=4,a+b=(9﹣x)+(x﹣4)=5,∴(9﹣x)2+(x﹣4)2=a2+b2=(a+b)2﹣2ab=52﹣2×4=17.请仿照上面的方法求解下面问题:(1)若x满足(7﹣x)(x﹣2)=2,求(7﹣x)2+(x﹣2)2的值;(2)(n﹣2021)2+(n﹣2022)2=11,求(n﹣2021)(2022﹣n);(3)已知正方形ABCD的边长为x,E,F分别是AD、DC上的点,且AE=2,CF=6,长方形EMFD的面积是192,分别以MF、DF作正方形,求阴影部分的面积.【变式2】(2022春•盐都区月考)阅读理解:若x满足(30﹣x)(x﹣10)=160,求(30﹣x)2+(x﹣10)2的值.解:设30﹣x=a,x﹣10=b,则(30﹣x)(x﹣10)=ab=160,a+b=(30﹣x)+(x ﹣10)=20,(30﹣x)2+(x﹣10)2=a2+b2=(a+b)2﹣2ab=202﹣2×160=80解决问题:(1)若x满足(2020﹣x)(x﹣2016)=2,则(2020﹣x)2+(x﹣2016)2=;(2)若x满足(x﹣2022)2+(x﹣2018)2=202,求(x﹣2022)(x﹣2018)的值;(3)如图,在长方形ABCD中,AB=16,BC=12,点E.F是BC、CD上的点,且BE =DF=x,分别以FC、CE为边在长方形ABCD外侧作正方形CFGH和CEMN,若长方形CEPF的面积为100平方单位,则图中阴影部分的面积和为平方单位.1.(2022春•盱眙县期中)如图,点C是线段BG上的一点,以BC,CG为边向两边作正方形,面积分别是S1和S2,两正方形的面积和S1+S2=20,已知BG=6,则图中阴影部分面积为()A.4B.6C.7D.82.(2022春•庐阳区校级期中)如图所示,以长方形ABCD的各边为直径向外作半圆得到一个新的图形其周长为16π,同时此图形中四个半圆面积之和为44π,则长方形ABCD 的面积为()A.10B.20C.40D.803.(2022春•太原期中)通过两种不同的方法计算同一图形的面积可以得到一个数学等式,用这种方法可得到整式乘法中的一些运算法则或公式,例如,由图1可得等式(a+b)(c+d)=ac+ad+bc+bd,即为多项式乘法法则.利用图2可得的乘法公式为()A.(a+b)2=a2+b2B.(a+b)2=a2+2ab+b2C.(a+b)2=a2+b2+ab D.(a+b)(a+b)=a2+b24.(2022春•新泰市期中)图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)求图2中的阴影部分的正方形的周长;(2)观察图2,请写出下列三个代数式(a+b)2,(a﹣b)2,ab之间的等量关系;(3)如图3,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=8,两正方形的面积和S1+S2=24,运用你由(2)所得到的等量关系,求图中阴影部分面积.5.(2022秋•上蔡县校级月考)(1)试用两种不同的方法表示图1中阴影部分的面积,从中你有什么发现,请用等式表示出来;(2)利用你发现的结论,解决下列问题:①如图2,两个正方形的边长分别为a,b,且a+b=ab=9,求图2中阴影部分的面积.②已知4a2+b2=57,ab=6,求2a+b的值;③若(20﹣x)(x﹣30)=10,则(20﹣x)2+(x﹣30)2的值是.6.(2022春•顺德区校级期中)如图所示,在边长为a米的正方形草坪上修建两条宽为b 米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:.方法②:.请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:.(2)根据(1)中的等式,解决如下问题:①已知:a﹣b=5,a2+b2=20,求ab的值;②已知:(x﹣2020)2+(x﹣2022)2=12,求(x﹣2021)2的值.7.(2022春•上虞区期末)图1是一个长为2b,宽为2a的长方形,沿虚线平均分成四块,然后按图2拼成一个正方形.解答下列问题.(1)图2中阴影部分的面积可表示为;对于(b﹣a)2,(b+a)2,ab,这三者间的等量关系为.(2)利用(1)中所得到的结论计算:若x+y=﹣3,xy=﹣,则x﹣y=.(3)观察图3,从图中你能得到怎样的一个代数恒等式?再根据你所得到的这个代数恒等式探究:若m2+4mn+3n2=0(n≠0),试求的值.8.(2022春•包头期末)如图,学校有一块长为(a+2b)m,宽为(a+b)m的长方形土地,四个角留出四个边长为(b﹣a)m的小正方形空地,剩余部分进行绿化.(1)用含a、b的式子表示要进行绿化的土地面积;(结果要化简)(2)当a=6,b=10时,求要进行绿化的土地面积.9.(2022•平泉市一模)如图,将一张矩形大铁皮切割成九块,切痕为虚线所示,其中有两块是边长都为m厘米的大正方形,两块是边长都为n厘米的小正方形,五块是长宽分别是m厘米、n厘米的全等小矩形,且m>n.(1)用含m、n的代数式表示切痕总长L;(2)若每块小矩形的面积为30平方厘米,四个正方形的面积和为180平方厘米,试求(m+n)2的值.10.(2022春•江都区期中)把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图①,从整体看,是一个面积为可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)(i)由图②,可得等式:;(ii)利用(i)所得等式,若a+b+c=11,ab+bc+ac=38,则a2+b2+c2=;(2)如图③,将边长分别为a、b的两个正方形拼在一起,B、C、G三点在同一直线上,连接BD和BF,若这两个正方形的边长a、b满足a+b=10,ab=20.请求出阴影部分的面积;(3)图④中给出了边长分别为a、b的小正方形纸片和两边长分别为a、b的长方形纸片,现有足量的这三种纸片.(i)请用所给的纸片拼出一个面积为2a2+5ab+2b2的长方形,并仿照图①②画出拼法并标注a、b;(ii)结合(i)拼图试着分解因式2a2+5ab+2b2.11.(2022秋•高青县期中)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式;(2)根据整式乘法的运算法则,通过计算验证上述等式;(3)若a+b+c=10,ab+ac+bc=35,利用得到的结论求a2+b2+c2的值.。
七年级数学下册 专题4 乘法公式一完全平方公式重点、考点知识总结及练习

专题4 乘法公式一完全平方公式----⎧⎪⎪⎨⎪⎪⎩完全平方公式利用公式进行数的运算乘法公式完全平方公式利用公式进行整式的运算完全平方公式几何背景知识点1 完全平方公式222()2a b a ab b +=++;222()2a b a ab b -=-+,即两数和(或差)的平方,等于它们的平方和加上(或减去)它们积的2倍.【典例】1.x 2﹣4x+m 2是一个完全平方式,则m 的值是( ) A. 2 B . ﹣2 C. 2和﹣2 D. 4【答案】C.【解析】解:∵x 2﹣4x+m 2=x 2﹣2×2×x +m 2, ∴m 2=22,解得m=2或﹣2. 故选:C【方法总结】满足222a ab b ++的式子是完全平方式,这个三项式中,有两个是数(或式子)的平方,另外一个是这两个数(或式子)的2倍(或2倍的相反数).【随堂练习】1.(2018春•灌云县期末)已知(a+b )2=17,(a ﹣b )2=13,求a 2+b 2与ab 的值. 【解答】解:由(a+b )2=17可得:a 2+2ab+b 2=17①, 由(a ﹣b )2=13可得:a 2﹣2ab+b 2=13②, ①+②得:a 2+b 2=15,①﹣②得:ab=1.2.(2018春•高新区校级期中)已知a+b=5,ab=﹣14,求:①(a﹣b)2②a2+b2;【解答】解:①∵a+b=5,ab=﹣14,∴(a﹣b)2=(a+b)2﹣4ab=52﹣4×(﹣14)=25+56=81;②∵a+b=5,ab=﹣14,∴a2+b2=(a+b)2﹣2ab=52﹣2×(﹣14)=25+28=53.知识点2 利用完全平方公式进行数的运算利用完全平方公式进行数的运算是完全平方公式的一种实际应用,主要考察对公式222a b a ab b-=-+的掌握情况.()2()2a b a ab b+=++;222【典例】1.利用完全平方公式计算1012+992得()A. 2002B. 2×1002C. 2×1002十1D. 2×1002+2【答案】D.【解析】解:1012+992=(100+1)2+(100﹣1)2=1002+200+1+1002﹣200+1=2×1002+2.故选:D【方法总结】此题主要考察完全平方公式的实际应用.222a b a ab b()2-=-+,()2+=++;222a b a ab b即两数和(或差)的平方,等于它们的平方和加上(或减去)它们积的2倍.本题主要是利用完全平方公式进行一些复杂数的运算,它需要把复杂的数变成整百(或整十)和某个数(尽可能小一些)的和或差的形式,再利用公式进行运算.备注:变形的目的是使计算量尽可能小,基本在口算范畴内的才算基本符合.【随堂练习】1.(2017•福州模拟)已知(x﹣2015)2+(x﹣2017)2=100,则(x﹣2016)2= _____.【解答】解:设x﹣2016=a,则(a+1)2+(a﹣1)2=100,则2a2+2=100,解得:a2=49,故(x﹣2016)2=49.故答案为:49.2.(2017春•宝丰县月考)利用乘法公式计算:1012+992=_____.【解答】解:原式=(101+99)2﹣2×101×99=2002﹣2×(100+1)×(100﹣1)=40000﹣2×9999=40000﹣19998=20002, 故答案为:200023.(2015秋•丛台区期末)计算:1022﹣2×102×104+1042的结果为____. 【解答】解:原式=(102﹣104)2=(﹣2)2=4, 故答案为:4知识点3 利用完全平方公式进行整式的运算利用完全平方公式进行整式的运算是完全平方公式的一种实际应用,主要考察对公式222()2a b a ab b +=++;222()2a b a ab b -=-+的掌握情况.【典例】1.已知a ﹣=2,则a 2+的值为( )A. 3B. 4C. 5D. 6【答案】D.【解析】解:把a ﹣=2,两边平方得:(a ﹣)2=a 2+﹣2=4,则a 2+=6.故选:D【方法总结】此题主要考察完全平方公式的运用. 当题干中出现“a+”(或者a -),问题中出现“a 2+”时,一般将a+完全平方,这样就可以得到(a ﹣)2= a 2+ - 2、(a+)2= a 2+ + 2,从而得到a 2+的值. 另外,如果题干中出现诸如“a2+a+1=0”的话,对式子“a2+a+1=0”左右两边同除a(由式子易得a≠0),可得到a+1+=0,即a+=-1,从而进行下面的计算.2.(3x+4y﹣6)2展开式的常数项是多少?【解析】解:题干是对一个三项式进行平方,可以先对3x+4y﹣6做一个简单的分组,分为3x+4y和-6,这样式子就变成(3x+4y﹣6)2=[(3x+4y)﹣6]2,然后再按照完全平方公式进行计算,计算如下:(3x+4y﹣6)2=[(3x+4y)﹣6]2=(3x+4y)2﹣2(3x+4y)×6+62=9x2+24xy+16y2﹣36x﹣48y+36,常数项为36.【方法总结】完全平方公式一般是对两个数(或式子)的和(或差)进行平方,但是有时也可以对三项式(或者多项式)进行平方运算,例如(a+b+c) 2,可以根据实际情况对a,b,c进行简单的分组,例如a和b一组,c一组,则式子可变形为[(a+b)+c] 2,然后再利用完全平方公式,可得[(a+b)+c] 2=(a+b)2+c2+2(a+b)c,最后根据具体题意进行其他的计算.【随堂练习】1.(2017秋•河口区期末)若4x2+kxy+9y2是一个完全平方式,则k的值为___.【解答】解:∵4x2+kxy+9y2是一个完全平方式,∴k=±12,故答案为:±122.(2018春•玄武区期末)如果4x2﹣mxy+9y2是一个完全平方式,则m=___.【解答】解:∵4x2﹣mxy+9y2是一个完全平方式,∴﹣mxy=±2×2x×3y,∴m=±12.3.(2018春•成都期中)若多项式a2+2ka+1是一个完全平方式,则k的值是___.【解答】解:∵a2+2ka+1是一个完全平方式,∴2ka=±2a•1,解得:k=±1,故答案是:±1.知识点4 完全平方公式的应用【典例】1.设一个正方形的边长为acm,若边长增加3cm,则新正方形的面积增加了()A. 9cm2B. 6acm2C. (6a+9)cm2D. 无法确定【答案】C.【解析】解:根据题意得:(a+3)2﹣a2=a2+32+6a﹣a2=6a+9,即新正方形的面积增加了(6a+9)cm2,故选:C【方法总结】此题主要考察完全平方公式的实际用,利用完全平方公式来解决一些实际问题.增加的面积就是用变化后的正方形面积减去变化前正方形的面积,变化后面积是(a+3)2,变化前的面积是a2,两者相减,利用完全平方公式即可计算出结果.对于面积类问题,我们首先得按照题意列出式子,然后再利用完全平方公式进行相应的计算即可.2.若2a2+4ab+2b2 =18,则(a+b)2﹣4的值为()A. 15B. 5C. 12D. 10【答案】B.【解析】解:∵2a2+4ab+2b2 =18∴a2+2ab+b2=9∵(a+b)2= a2+2ab+b2∴原式=a2+2ab+b2﹣4,=9﹣4,=5.故选:B【方法总结】问题当中出现了完全平方,可以先利用完全平方公式展开,然后再根据题干中的条件,进行相应的变形.3.如图的图形面积由以下哪个公式表示()A. a2﹣b2=a(a﹣b)+b(a﹣b)B. (a﹣b)2=a2﹣2ab+b2C. (a+b)2=a2+2ab+b2D. a2﹣b2=(a+b)(a﹣b)【答案】C.【解析】解:根据图形可得出:大正方形面积为:(a+b)2,大正方形面积等于4个小图形的面积和等于a2+b2+ab+ab,∴可以得到公式:(a+b)2=a2+2ab+b2.故选:C【方法总结】这类题需要注意一点:不管用什么方法思路计算图形的面积,图形面积始终不变.2.如图①,把一个长为2m,宽为2n(m>n)的矩形两次对折后展开,再用剪刀沿图中折痕剪开,把它分成四块完全相同的小矩形,最后按如图②那样拼成一个正方形,则中间空的部分的面积是()A. 2mB. (m+n)2C. (m﹣n)2D. m2﹣n2【答案】C.【解析】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2,又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)2﹣4mn=(m﹣n)2.故选:C【方法总结】此类题属于利用完全平方公式求图形的面积,这类题,先按照题意列出相应的关系式,然后再利用完全平方公式进行相应的计算即可.【随堂练习】1.(2018春•叶县期中)如图,它是一个长为2m,宽为2n的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.(1)你认为图(2)中的阴影部分的正方形边长为_____(2)请用两种不同的方法表示图(2)阴影部分的面积;方法一:____方法二:______(3)观察图(2),写出三个代数式:(m+n)2,(m﹣n)2,mn之间的等量关系.(4)根据(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2的值.【解答】解:(1)图中阴影部分的面积为(m﹣n)2或(m+n)2﹣4mn,故答案为:(m﹣n)2或(m+n)2﹣4mn;(2)方法一:∵图2中阴影部分为正方形边长为:m﹣n∴图2中阴影部分的面积是:(m﹣n)2方法二:图2中阴影部分的面积=边长为(m+n)的正方形的面积﹣4个小长方形的面积和即:(m﹣n)2﹣4mn(3)关系为:(m﹣n)2=(m+n)2﹣4mn;(4)∵(m﹣n)2=(m+n)2﹣4mn;∴有(a﹣b)2=(a+b)2﹣4ab又∵a+b=7,ab=5∴(a﹣b)2=(a+b)2﹣4ab=72﹣4×5=49﹣20=29.2.(2017春•杭州期中)如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中间的小正方形(即阴影部分)面积可表示为_____.(2)观察图2,请你写出三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系式:________.(3)根据(2)中的结论,若x+y=﹣6,xy=2.75,则x﹣y=_____.(4)有许多代数恒等式可以用图形的面积来表示.如图3所示,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示为(m+n)(m+2n)=m2+3mn+2n2.【解答】解:(1)图②中阴影部分的边长都等于小长方形的长减去小长方形的宽,即m﹣n,由图可知,阴影部分的四个角都是直角,故阴影部分是正方形,其边长为m﹣n,则其面积为(m﹣n)2,故答案为:(m﹣n)2;(2)大正方形的面积边长的平方,即(m+n)2,或小正方形面积加4个小长方形的面积,即4mn+(m﹣n)2,故可得:(m+n)2=(m﹣n)2+4mn,故答案为:(m+n)2=(m﹣n)2+4mn;(3)由(2)知(x﹣y)2=(x+y)2﹣4xy=36﹣4×2.75=25,∴x﹣y=±5,故答案为:±5;(4)如图所示:综合运用1.若x2+2(m﹣3)x+16是完全平方式,则m的值等于______【答案】7或﹣1【解析】解:∵x2+2(m﹣3)x+16是完全平方式,∴m﹣3=±4,解得:m=7或﹣1,2.已知(2008﹣a)2+(2007﹣a)2=1,则(2008﹣a)•(2007﹣a)=.【答案】0【解析】解:∵(2008﹣a)2+(2007﹣a)2=1,∴(2008﹣a﹣2007+a)2=(2008﹣a)2﹣2(2008﹣a)(2007﹣a)+(2007﹣a)2即(2008﹣a﹣2007+a)2=1﹣2(2008﹣a)(2007﹣a),整理得﹣2(2008﹣a)(2007﹣a)=0,∴(2008﹣a)(2007﹣a)=0.3.如图,边长为(a+2)的正方形纸片剪出一个边长为a的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为2,则另一边长是________【答案】2a+2【解析】解:依题意得剩余部分面积为:(a+2)2﹣a2=a2+4a+4﹣a2=4a+4,∵拼成的矩形一边长为2,∴另一边长是(4a+4)÷2=2a+2.4.利用完全平方公式计算:(1)982(2)10032.【解析】解:(1)982=(100﹣2)2,=10000﹣400+4,=9604;(2)10032=(1000+3)2,=1000000+6000+9,=1006009.5.运用完全平方公式计算(1)(a+b+c)2;(2)(a+2b﹣1)2;【解析】解:(1)(a+b+c)2=(a+b)2+2c(a+b)+c2=a2+2ab+b2+2ac+2bc+c2;(2)(a+2b﹣1)2=(a+2b)2﹣2(a+2b)+1=a2+4ab+4b2﹣2a﹣4b+1;6.已知,,求x2+的值.【解析】解:将x+=9两边平方得:(x+)2=81,整理得:x2++2=81,则x2+=79.。
完全平方公式

个性化教学辅导教案学科:数学年级:七年级任课教师:授课时间:教学课题完全平方公式教学目标1、了解完全平方公式的几何背景推导完全平方公式,并能运用公式进行简单的计算2、会运用完全平方公式进行一些数的简便运算教学重难点重点:会用完全平方公式进行运算,运用完全平方公式进行一些数的简便运算难点:理解完全平方公式的结构特征并能灵活应用公式进行计算,灵活运用平方差和完全平方公式进行整式的简便运算教学过程【温故知新】(1)(32)(32)a b a b-+=(2)(32)(32)a b a b--=(3)2(1)(1)(1)p p p+=++=(4)2(2)m+=(5)2(1)(1)(1)p p p-=--=(6)2(2)m-=(7)2()a b+=(8)2()a b-=探索学习观察预习作业中(3)(4)题,结果中都有两个数的平方和,而且用多项式乘以多项式后,中间有:2p= 2*p*1 ,4m=2*m*2 ,恰好是两个数乘积的二倍.(3)、(4)与(5)、(6)比较只有一次项有符号之差,(7)、(8)更具有一般性,我认为它可以做公式用.因此我们得到完全平方公式:两数和(或差)的平方,等于它们的,加(或减)它们的积的倍.公式表示为:2()a b+=2()a b-=口诀:首平方,尾平方,两倍乘积放中央(加减看前方,同号加异号减)例1.应用完全平方公式计算:(1)2(4)m n+(2)21()2y-(3)2()a b--(4)2(2)x y-+K]【针对训练】1.纠错练习.指出下列各式中的错误,并加以改正:(1)22(21)221a a a-=-+(2)22(21)41a a+=+(3)22(1)21a a a--=---2.下列各式中哪些可以运用完全平方公式计算,把它计算出来(1)()()xyyx+-+(2)()()abba--(3)()()ab x x ab +--33 (4)()()n m n m +--分析:完全平方公式和平方差公式不同: 形式不同:222()2a b a ab b±=±+22()()a b a b a b +-=-结果不同:完全平方公式的结果是三项,平方差公式的结果是两项 3.计算:(1)2(12)x -- (2)2(21)x -+(3)()()n m n m +--22 (4)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+b a b a 21312131例2.计算:(1))4)(2)(2(22y x y x y x --+; (2)22)321()321(b a b a +-;(3))432)(432(-++-y x y x .方法小结(1)当两个因式相同时写成完全平方的形式;(2)先逆用积的乘方法则,再用乘法公式进行计算;(3)把相同的结合在一起,互为相反数的结合在一起,可构成平方差公式。
知识点057完全平方公式几何背景(解答)

1、(Ⅰ)请你根据①中的面积写出它所能说明的乘法公式(a+b)2=a2+2ab+b2.(Ⅱ)如图②(2)所示是2002年8月20日在北京召开的国际数学家大会的会标.它是由四个全等的如图②(1)所示的直角三角形(每个直角三角形两直角边分别是a和b,斜边长为c)与中间的小正方形拼成的一个大正方形.请你根据图②(2)中的面积写出它所能说明的等式,并写出推导过程.考点:完全平方公式的几何背景。
专题:常规题型。
分析:(1)根据大正方形的面积等于被分成的四部分的面积的和进行解答;(2)先根据图②(2)表示出中间小正方形的边长,然后根据大正方形的面积等于四个直角三角形的面积加上中间小正方形的面积列出等式,然后整理即可得解.解答:解:(1)大正方形的面积为:(a+b)2,四个部分的面积的和为:a2+2ab+b2,∴能说明的乘法公式是:(a+b)2=a2+2ab+b2;(2)它能说明的等式为:c2=a2+b2.推导如下:中间小正方形的边长为(b﹣a),∴大正方形的面积可表示为:c2=4×ab+(b﹣a)2,整理得,c2=2ab+b2﹣2ab+a2,即c2=a2+b2.点评:本题考查了完全平方公式的几何背景,根据同一个图形的面积的不同表示相等进行列式是解题的关键.2、用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图)(1)若长方形的长为a,宽为b,则小正方形面积为(a﹣b)2或(a2﹣2ab+b2);(2)根据图案,利用面积关系,你能得到一个等式为(a﹣b)2=a2﹣2ab+b2;(3)若这个大正方形边长为16,每个长方形的面积为63,求小正方形的边长.考点:完全平方公式的几何背景。
分析:(1)根据图形先求出小正方形的边长即可得到面积,或者先求出大正方形的面积,然后再减去四个长方形的面积;(2)根据同一个小正方形的面积,利用两种不同的求法得出,应该相等即可得到等式;(3)代入等式计算求解即可.解答:解:(1)小正方形的边长为:(a﹣b),∴面积为(a﹣b)2,小正方形的面积=大正方形的面积﹣4×长方形的面积=(a+b)2﹣4×ab=(a2﹣2ab+b2),∴小正方形面积为:(a﹣b)2或(a2﹣2ab+b2);(2)∵小正方形的面积是同一个图形的面积,∴(a﹣b)2=a2﹣2ab+b2;(3)小正方形的面积为:162﹣4×63=256﹣252=4,∴小正方形的边长为2.故答案为:(1)(a﹣b)2或(a2﹣2ab+b2);(2)(a﹣b)2=a2﹣2ab+b2;(3)2.点评:本题考查了完全平方公式的几何解释,根据同一个图形的面积利用不同的方法求解,结果相等解答即可,难度不大.3、某镇正在建造的文化广场工地上,有两种铺设广场地面的材料,一种是长为acm,宽为bcm 的矩形板材(如图),另一种是边长为ccm的正方形地砖(如图②)(1)用几块如图②所示的正方形地砖能拼出一个新的正方形?并写出新正方形的面积(写出一个符合条件的答案即可);(2)用如图①所示的四块矩形板材铺成如图③的大正方形或如图④的大矩形,中间分别空出一个小正方形和小矩形(即图中阴影部分);①请用含a、b的代数式分别表示图③和图④中阴影部分的面积;②试比较图③和图④中阴影部分的面积哪个大?大多少?考点:完全平方公式的几何背景。
完全平方公式数学教案

完全平方公式数学教案完全平方公式数学教案作为一名无私奉献的老师,有必要进行细致的教案准备工作,借助教案可以更好地组织教学活动。
教案要怎么写呢?下面是小编为大家收集的完全平方公式数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。
完全平方公式数学教案11.能根据多项式的乘法推导出完全平方公式;(重点)2.理解并掌握完全平方公式,并能进行计算.(重点、难点)一、情境导入计算:(1)(x+1)2; (2)(x-1)2;(3)(a+b)2; (4)(a-b)2.由上述计算,你发现了什么结论?二、合作探究探究点:完全平方公式【类型一】直接运用完全平方公式进行计算利用完全平方公式计算:(1)(5-a)2;(2)(-3-4n)2;(3)(-3a+b)2.解析:直接运用完全平方公式进行计算即可.解:(1)(5-a)2=25-10a+a2;(2)(-3-4n)2=92+24n+16n2;(3)(-3a+b)2=9a2-6ab+b2.方法总结:完全平方公式:(a±b)2=a2±2ab+b2.可巧记为“首平方,末平方,首末两倍中间放”.变式训练:见《学练优》本课时练习“课堂达标训练”第12题【类型二】构造完全平方式如果36x2+(+1)x+252是一个完全平方式,求的值.解析:先根据两平方项确定出这两个数,再根据完全平方公式确定的值.解:∵36x2+(+1)x+252=(6x)2+(+1)x+(5)2,∴(+1)x=±26x5,∴+1=±60,∴=59或-61.方法总结:两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型三】运用完全平方公式进行简便计算利用完全平方公式计算:(1)992; (2)1022.解析:(1)把99写成(100-1)的形式,然后利用完全平方公式展开计算.(2)可把102分成100+2,然后根据完全平方公式计算.解:(1)992=(100-1)2=1002-2×100+12=10000-200+1=9801;(2)1022=(100+2)2=1002+2×100×2+4=10404.方法总结:利用完全平方公式计算一个数的平方时,先把这个数写成整十或整百的数与另一个数的和或差,然后根据完全平方公式展开计算.变式训练:见《学练优》本课时练习“课堂达标训练”第13题【类型四】灵活运用完全平方公式求代数式的值若(x+)2=9,且(x-)2=1.(1)求1x2+12的值;(2)求(x2+1)(2+1)的值.解析:(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.解:(1)∵(x+)2=9,(x-)2=1,∴x2+2x+2=9,x2-2x+2=1,4x=9-1=8,∴x=2,∴1x2+12=x2+2x22=(x+)2-2xx22=9-2×222=54;(2)∵(x+)2=9,x=2,∴(x2+1)(2+1)=x22+2+x2+1=x22+(x+)2-2x+1=22+9-2×2+1=10.方法总结:所求的展开式中都含有x或x+时,我们可以把它们看作一个整体代入到需要求值的代数式中,整体求解.变式训练:见《学练优》本课时练习“课后巩固提升”第9题【类型五】完全平方公式的几何背景我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2-(a -b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是( )A.a2-b2=(a+b)(a-b)B.(a-b)(a+2b)=a2+ab-2b2C.(a-b)2=a2-2ab+b2D.(a+b)2=a2+2ab+b2解析:空白部分的面积为(a-b)2,还可以表示为a2-2ab+b2,所以,此等式是(a-b)2=a2-2ab+b2.故选C.方法总结:通过几何图形面积之间的数量关系对完全平方公式做出几何解释.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型六】与完全平方公式有关的探究问题下表为杨辉三角系数表,它的作用是指导读者按规律写出形如(a +b)n(n为正整数)展开式的系数,请你仔细观察下表中的规律,填出(a+b)6展开式中所缺的系数.(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,则(a+b)6=a6+6a5b+15a4b2+________a3b3+15a2b4+6ab5+b6.解析:由(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n-1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1;(a+b)5的各项系数依次为1、5、10、10、5、1;因此(a+b)6的系数分别为1、6、15、20、15、6、1,故填20.方法总结:对于规律探究题,读懂题意并根据所给的式子寻找规律,是快速解题的关键.变式训练:见《学练优》本课时练习“课后巩固提升”第10题三、板书设计1.完全平方公式两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.2.完全平方公式的运用本节课通过多项式乘法推导出完全平方公式,让学生自己总结出完全平方公式的特征,注意不要出现如下错误:(a+b)2=a2+b2,(a -b)2=a2-b2.为帮助学生记忆完全平方公式,可采用如下口诀:首平方,尾平方,乘积两倍在中央.教学中,教师可通过判断正误等习题强化学生对完全平方公式的理解记忆。
《完全平方公式》参考(完整版)教案

精品"正版〞资料系列,由本公司独创 .旨在将"人教版〞、〞苏教版"、〞北师大版"、〞华师大版"等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友 .本资源创作于2021年8月,是当前最||新版本的教材资源 .包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最||正确选择 .1.8 完全平方公式(一)●教学目标(一)教学知识点1.完全平方公式的推导及其应用.2.完全平方公式的几何背景.(二)能力训练要求1.经历探索完全平方公式的过程,进一步开展符号感和推理能力.2.重视学生对算理的理解,有意识地培养他们有条理的思考和表达能力.(三)情感与价值观要求1.了解数学的历史,激发学习数学兴趣.2.鼓励学生自己探索算法的多样化,有意识地培养学生的创新能力.●教学重点1.完全平方公式的推导过程、结构特点、语言表述、几何解释.2.完全平方公式的应用.●教学难点1.完全平方公式的推导及其几何解释.2.完全平方公式结构特点及其应用.●教学方法自主探索法学生在教师的引导下自主探索完全平方公式的几何解释、代数运算角度的推理,揭示其结构特点,然后到达合理、熟练地应用.●教具准备投影片四张第|一张:试验田的改造,记作(§1.8.1 A)第二张:想一想,记作(§ B)第三张:例题,记作(§ C)第四张:补充练习,记作(§ D)●教学过程Ⅰ.创设问题情景,引入新课[师]去年,一位老农在一次"科技下乡〞活动中得到启示,将一块边长为a米的正方形农田改成试验田,种上了优质的杂交水稻,一年来,收益很大.今年,又一次"科技下乡〞活动,使老农铁了心,要走科技兴农的路子,于是他想把原来的试验田,边长增加b米,形成四块试验田,种植不同的新品种.同学们,谁来帮老农实现这个愿望呢?(同学们开始动手在练习本上画图,寻求解决的途径)[生]我能帮这位爷爷.[师]你能把你的结果展示给大家吗?[生]可以.如图1-25所示,这就是我改造后的试验田,可以种植四种不同的新品种.图1-25[师]你能用不同的方式表示试验田的面积吗?[生]改造后的试验田变成了边长为(a +b)的大正方形,因此,试验田的总面积应为(a +b)2.[生]也可以把试验田的总面积看成四局部的面积和即边长为a的正方形面积,边长为b的正方形的面积和两块长和宽分别为a和b的面积的和.所以试验田的总面积也可表示为a2+2ab +b2.[师]很好!同学们用不同的形式表示了这块试验田的总面积,进行比较,你发现了什么?[生]可以发现它们虽形式不同,但都表示同一块试验田的面积,因此它们应该相等.即(a +b)2=a2+2ab +b2[师]我们这节课就来研究上面这个公式- -完全平方公式.Ⅱ.讲授新课1.推导完全平方公式[师]我们通过比照试验田的总面积得出了完全平方公式(a +b)2=a2 +2ab +b2.其实,据有关资料说明,古埃及、古巴比伦、古印度和古代中|国人也是通过类似的图形认识了这个公式.我们姑且把这种方法看作对完全平方公式的一个几何解释.能不能从代表运算的角度也能推导出这样的公式呢?(出示投影片§1.8.1 A)想一想:(1)(a +b)2等于什么?你能用多项式乘法法那么说明理由吗?(2)(a-b)2等于什么?你是怎样想的.(同学们可先在自己的练习本上推导,教师巡视推导的情况,对较困难的学生以启示)[生]用多项式乘法法那么可得(a +b)2=(a +b)(a +b) =a(a +b) +b(a +b)=a2+ab +ab +b2=a2+2ab +b2所以(a +b)2=a2+2ab +b2 (1)[师]上面的几何解释和代数推导各有什么利弊?[生]几何解释完全平方公式给我们以非常直观的认识,但几何解释(a +b)2=a2+2ab +b2,受到了条件限制:a>0且b>0;代数推导完全平方公式虽然不直观,但在推导的过程中,a,b可以是正数,可以是负数,零,也可以是单项式,多项式.[师]同学们分析得很有道理.接下来,我们来完成第(2)问.[生]也可利用多项式乘法法那么,那么(a-b)2=(a-b)(a-b) =a2-ab-ba +b2=a2-2ab +b2.[生]我是这样想的,因(a +b)2=a2+2ab +b2中的a、b可以是任意数或单项式、多项式.我们用"-b〞代替公式中的"b〞,利用上面的公式就可以得到(a-b)2=[a +(-b)]2.[师]这位同学的想法很好.因为他很留心我们表述的每一句话的含义,你能继续沿着这个思路做下去吗?我们一块试一下.[师生共析](a-b)2=[a +(-b)]2=a2+2·a·(-b) +(-b)2↓↓↓↓ ↓ ↓(a +b)2=a2+2·a ·b + b2=a2-2ab +b2.于是,我们得到又一个公式:(a-b)2=a2-2ab +b2(2) [师]你能用语言描述上述公式(1)、(2)吗?[生]公式(1)用语言描述为:两个数的和的平方等于这两个数的平方和与它们积的2倍的和;公式(2)用语言描述为:两个数的差的平方等于这两个数的平方和与它们积的2倍的差.这两个公式为完全平方公式.它们和平方差公式一样可以使整式的运算简便.2.应用、升华出示投影片(§ B)[例1]利用完全平方公式计算:(1)(2x-3)2;(2)(4x +5y)2;(3)(mn-a)2.分析:利用完全平方公式计算,第|一步先选择公式;第二步,准确代入公式;第三步化简.解:(1)方法一:[例2]利用完全平方公式计算(1)(-x +2y)2;(2)(-x-y)2;(3)(x +y-z)2;(4)(x +y)2-(x-y)2;(5)(2x-3y)2(2x +3y)2.分析:此题需灵活运用完全平方公式,(1)题可转化为(2y-x)2或(x-2y)2,再运用平方差公式;(2)题需转化为(x +y)2,利用和的完全平方公式;(3)题利用加法结合律变形为[(x +y)-z]2(或[x +(y-z)]2、[(x-z) +y]2),再用完全平方公式计算;(4)题可利用完全平方公式,再合并同类项,也可逆用平方差公式进行计算.(5)题可先逆用幂的运算性质变形,再用平方差公式和完全平方公式.解:(1)方法一:(-x +2y)2=(2y-x)2=4y2-4xy +x2;方法二:(-x +2y)2=[-(x-2y)]2=(x-2y)2=x2-4xy +4y2.(2)(-x-y)2=[-(x +y)]2=(x +y)2=x2+2xy +y2.(3)(x +y-z)2=[(x +y)-z]2=(x +y)2-2(x +y)·z +z2=x2+y2+z2+2xy-2zx-2yz.(4)方法一:(x +y)2-(x-y)2=(x2+2xy +y2)-(x2-2xy +y2)=4xy.方法二:(x +y)2-(x-y)2=[(x +y) +(x -y)][(x +y)-(x -y)] =4xy.(5)(2x -3y)2(2x +3y)2=[(2x -3y)(2x +3y)]2=[4x 2-9y 2]2=16x 4-72x 2y 2 +81y 4.Ⅲ.随堂练习课本1.计算: (1)(21x -2y)2;(2)(2xy +51x)2; (3)(n +1)2-n 2.解:(1)(21x -2y)2 =(21x)2-2·21x·2y +(2y)2 =41x 2-2xy +4y 2 (2)(2xy +51x)2 =(2xy)2 +2·2xy·51x +(51x)2 =4x 2y 2 +54x 2y +251x 2(3)方法一:(n +1)2-n 2 =n 2 +2n +1-n 2 =2n +1.方法二:(n +1)2-n 2 =[(n +1) +n ][(n +1)-n ] =2n +1.Ⅳ.课后作业1.课本习题的第1、2、3题.2.阅读 "读一读〞 ,并答复文章中提出的问题.Ⅴ.活动与探究甲、乙两人合养了n 头牛 ,而每头牛的卖价恰为n 元.全部卖完后两人分钱方法如下:先由甲拿10元 ,再由乙拿10元 ,如此轮流 ,拿到最||后剩下缺乏十元 ,轮到乙拿去 ,为了平均分配 ,甲应该补给乙多少元钱 ?[过程]因牛n 头 ,每头卖n 元 ,故共卖得n 2元.令a 表示n 的十位以前的数字 ,b 表示n 的个位数字.即n =10a +b,于是n 2 =(10a +b)2 =100a 2 +20ab +b 2 =10×2a(5a +b) +b 2.因甲先取10元 ,而乙最||后一次取钱时缺乏10元 ,所以n 2中含有奇数个10元 ,以及最||后剩下缺乏10元.但10×2a(5a +b)中含有偶数个10元 ,因此b 2中必含有奇数个10元 ,且b<10 ,所以b 2只可能是1、4、9、16、25、36、49、64、81 ,而这九个数中 ,只有16和36含有奇数个10 ,因此b2只可能是16或36 ,但这两个数的个位数都是6 ,这就是说,乙最||后所拿的是6元(即剩下缺乏10元).[结果]甲比乙多拿了4元,为了平均分配甲必须补给乙2元.●板书设计1.8. 完全平方公式(一)一、几何背景试验田的总面积有两种表示形式:①a2+2ab +b2②(a +b)2比照得:(a +b)2=a2+2ab +b2二、代数推导(a +b)2=(a +b)(a +b)=a2+2ab +b2(a-b)2=[a +(-b)]2=a2-2ab +b2三、例题讲例例1.利用完全平方公式计算:(1)(2x-3)2(2)(4x +5y)2(3)(mn-a)2四、随堂练习(略)●备课资料一、杨辉杨辉,中|国南宋时期杰出的数学家和数学教育家.在13世纪中叶活动于苏杭一带,其著作甚多.他著名的数学书共五种二十一卷.著有<详解九章算法>十二卷(1261年)、<日用算法>二卷(1262年)、<乘除通变本末>三卷(1274年)、<田亩比类乘除算法>二卷(1275年)、<续古摘奇算法>二卷(1275年).杨辉的数学研究与教育工作的重点是在计算技术方面 ,他对筹算乘除捷算法进行总结和开展 ,有的还编成了歌诀 ,如九归口诀 .他在<续古摘奇算法>中介绍了各种形式的 "纵横图〞及有关的构造方法 ,同时 "垛积术〞是杨辉继沈括 "隙积术〞后 ,关于高阶等差级||数的研究.杨辉在 "纂类〞中 ,将<九章算术>246个题目按解题方法由浅入深的顺序 ,重新分为乘除、分率、合率、互换、二衰分、叠积、盈缺乏、方程、勾股等九类.他非常重视数学教育的普及和开展 ,在<算法通变本末>中 ,杨辉为初学者制订的 "习算纲目〞是中|国数学教育史上的重要文献.二、参考练习1.填空题(1)(-3x +4y)2 = .(2)(-2a -b)2 = .(3)x 2-4xy + =(x -2y)2.(4)a 2 +b 2 =(a +b)2 + . (5)41a 2 + +9b 2 =(21a +3b)2. (6)(a -2b)2 +(a +2b)2 = .2.选择题(1)以下计算正确的选项是( )A.(m -1)2 =m 2-1B.(x +1)(x +1) =x 2 +x +1C.(21x -y)2 =41x 2-xy -y 2 D.(x +y)(x -y)(x 2-y 2) =x 4-y 4(2)如果x 2 +mx +4是一个完全平方式 ,那么m 的值是( )B.-4C.±4D.±8(3)将正方形的边长由a cm 增加6 cm,那么正方形的面积增加了( )A.36 cm 2B.12a cm 2C.(36 +12a)cm 2D.以上都不对 3.用乘法公式计算 (1)(21x -31y)2 (2)(x 2-2y 2)2-(x 2 +2y 2)2(3)29×31×(302 +1)(4)9992答案:1.(1)9x 2-24xy +16y 2(2)4a 2 +4ab +b 2 (3)4y 2 (4)-2ab(5)3ab (6)2a 2 +8b 22.(1)D (2)C (3)C3.(1)41x 2-31xy +91y 2 (2)-8x 2y 2 (3)809999 (4)998001以下为赠送内容别想一下造出大海 ,必须先由小河川开始 .成功不是只有将来才有 ,而是从决定做的那一刻起 ,持续积累而成 !人假设软弱就是自己最||大的敌人 ,人假设勇敢就是自己最||好的朋友 . 成功就是每天进步一点点 !如果要挖井 ,就要挖到水出为止 .即使爬到最||高的山上 ,一次也只能脚踏实地地迈一步 .今天拼搏努力 ,他日谁与争锋 .在你不害怕的时候去斗牛 ,这不算什么;在你害怕的时候不去斗牛 ,这没什么了不起;只有在你害怕的时候还去斗牛才是真正的了不起 .行动不一定带来快乐,但无行动决无快乐 .只有一条路不能选择- -那就是放弃之路;只有一条路不能拒绝|| - -那就是成长之路 .坚韧是成功的一大要素,只要在门上敲得够久够大声,终会把人唤醒的 .只要我努力过,尽力过,哪怕我失败了,我也能拍着胸膛说:"我问心无愧 ."用今天的泪播种,收获明天的微笑 .人生重要的不是所站的位置,而是所朝的方向 .弱者只有千难万难,而勇者那么能披荆斩棘;愚者只有声声哀叹,智者却有千路万路 .坚持不懈,直到成功!最||淡的墨水也胜过最||强的记忆 .凑合凑合,自己负责 .有志者自有千计万计,无志者只感千难万难 .我中|考,我自信!我尽力我无悔!听从命运安排的是凡人;主宰自己命运的才是强者;没有主见的是盲从,三思而行的是智者 .相信自己能突破重围 .努力造就实力,态度决定高度 .把自己当傻瓜,不懂就问,你会学的更多 .人的活动如果没有理想的鼓舞,就会变得空虚而渺小 .安乐给人予舒适,却又给人予早逝;劳作给人予磨砺,却能给人予长久 .眉毛上的汗水和眉毛下的泪水,你必须选择一样!假设不给自己设限,那么人生中就没有限制你发挥的藩篱 .相信自己我能行!任何业绩的质变都来自于量变的积累 .公众号:惟微小筑明天的希望,让我们忘了今天的痛苦 .世|界上最||重要的事情,不在于我们身在何处,而在于我们朝着什么方向走 . 爱拼才会赢努力拼搏,青春无悔!。
完全平方公式

完全平方公式一、教材分析:(一)教材的地位与作用本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。
它是在学生学习了代数式的概念、整式的加减法、幂的运算和整式的乘法后进行学习的,其地位和作用主要体现在以下几方面:(1)整式是初中代数研究范围内的一块重要内容,整式的运算又是整式中一大主干,乘法公式则是在学习了单项式乘法、多项式乘法之后来进行学习的;一方面是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面,乘法公式的推导是初中代数中运用推理方法进行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。
(2)乘法公式是后续学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习因式分解、分式运算的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的功能。
(3)公式的发现与验证给学生体验规律发现的基本方法和基本过程提供了很好模式。
(二)教学目标的确定在素质背景下的数学教学应以学生的发展为本,学生的能力培养为重,尤其是创新、创造能力,以及培养学生良好的个性品质等。
根据以上指导思想,同时参照义务教育阶段《数学课程标准》的要求,确定本节课的教学目标如下:1、知识目标:理解公式的推导过程,了解公式的几何背景,会应用公式进行简单的计算。
2、能力目标:渗透建模、化归、换元、数形结合等思想方法,培养学生的发现能力、求简意识、应用意识、解决问题的能力和创新能力。
3、情感目标:培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思维品质。
(三)教学重点与难点完全平方公式和平方差公式一样是主要的乘法公式,其本质是多项式乘法,是学生今后用于计算的一种重要依据,因此,本节教学的重点与难点如下:本节的重点是体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。
本节的难点是从广泛意义上理解公式中的字母含义,判明要计算的代数式是哪两数的和(差)的平方。
完全平方公式(1)

完全平方公式(1)【学习目标】1、了解完全平方公式几何背景。
会推导完全平方公式,并能运用公式进行简单的运算。
2、经历探索完全平方公式的过程,进一步发展符号感和推理能力。
【学习重点】会推导完全平方公式,并能运用公式进行简单的运算。
【学习过程】(教师寄语:热爱生命的人一定心中充满希望,飞舞在我们人生的舞台。
)一、课前预习:学习任务一:阅读教材第36—38页内容,思考并总结本节课学习的主要内容,写在下面的横线上:学习任务二:阅读课本36页---例题1以上的部分, 了解完全平方公式几何背景。
会推导完全平方公式1、思考:完全平方公式有几种推导的方法?把它们写在下面。
(1)写出完全平方公式字母表达式:(2)写出完全平方公式文字表达式:(3)分析公式左右两边的特点:左边:右边:(4)概括成口诀学习任务三:阅读课本36页例题1,完成下列问题。
1、分别指出例题1两式中的a,b。
2、总结使用完全平方公式进行计算应分几步?二、例题与训练例1.利用完全平方公式计算:(1)( 2x-3)2 (2)(4x+5y)2(3)(mn-a)2 (4)2331⎪⎭⎫⎝⎛-yx当堂练习1:⑴2)6(+a⑵2)7(-x⑶2)418(y-⑷2)3(ba+例2.利用完全平方公式计算:(1) (-2x+3y)2 (2) (-2x-3y)2当堂练习2:⑴2)34(yx+-⑵2)(ba--⑶ 2)3243(y x - ⑷2533⎪⎭⎫ ⎝⎛-y xy(5)()222m m --三、拓展与探究:1.(a-b)2与(b-a)2 的关系(a-b)2=__________(b-a)2=__________ 所以(a-b)2_____ (b-a)22. (a+b)2与(-a-b)2的关系(a+b)2=__________ (-a-b)2=__________ 所以(a+b)2_____ (-a-b)2四、跟踪练习1.计算:(13x+3y)2=_____________2. 计算:26x x ++_____2(3)x =+3.填上适当的数,使等式成立:24x x -+ =(x - 2) 4.( )2=14y 2-y+15.如果a 2+ma+9是一个完全平方展开的形式,那么m=_________.6.22()()a b a b +--=________.7.下列运算中,错误的运算有( )①(2x+y)2=4x 2+y 2, ②(a-3b)2=a 2-9b 2 ,③(-x-y)2=x 2-2xy+y 2 ,④(x-12)2=x 2-2x+14,A.1个B.2个C.3个D.4个8.运用公式计算①2)32y x + ②2)631(-t③2)2(n m -- ④2)42(-mn⑤2353⎪⎭⎫⎝⎛-y xy ⑥221⎪⎭⎫⎝⎛+-cd。
知识卡片-完全平方公式的几何背景

完全平方公式的几何背景
能量储备
●完全平方公式的推导:
(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2,
(a-b)2=(a-b)(a-b)=a2-ab-ab+b2=a2-2ab+b2.
●完全平方公式的几何背景:
图中表示的等式为(a+b)2=a2+2ab+b2,其中(a+b)2表示边长为(a+b)的大正方形的面积,而a2和b2分别表示边长为a,b的小正方形的面积,2ab表示两个完全一样的长方形面积的和.
通关宝典
★基础方法点
方法点1:几何中通常从面积的角度来解释完全平方公式
例:如图163所示,一块边长为a m的正方形试验田,因需要将其边长增加b m,形成四块试验田,以种植不同的新品种.
则第1块试验田的面积为________m2;第2块试验田的面积
为________m2;
第3块试验田的面积为________m2;第4块试验田的面积为
________m2;
这四块试验田的总面积为________m2.
若将这四块试验田看成一个大正方形,则其边长为_____m,面积为________m2.
可得结论:______________________.
答案:ab,b2,a2,ab,(a2+2ab+b2),(a+b),(a+b)2,(a+b)2=a2+2ab+b2。
蓄势待发
考前攻略
速记口诀:首平方,尾平方,积的2倍在中央,符号确定看前方.
考查完全平方公式的几何应用,这是中考的常考点,难度适中,题型以填空题或选择题为主.
完胜关卡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、(2010•乌鲁木齐)有若干张面积分别为纸片,阳阳从中抽取了1张面积为a2的正方形纸片,4张面积为ab的长方形纸片,若他想拼成一个大正方形,则还需要抽取面积为b2的正方形纸片()A、2张B、4张C、6张D、8张考点:完全平方公式的几何背景。
分析:由题意知拼成一个大正方形长为a+2b,宽也为a+2b,面积应该等于所有小卡片的面积.解答:解:∵正方形和长方形的面积为a2、b2、ab,∴它的边长为a,b,b.∴它的边长为(a+2b)的正方形的面积为:(a+2b)(a+2b)=a2+4ab+4b2,∴还需面积为b2的正方形纸片4张.故选B.点评:此题考查的内容是整式的运算与几何的综合题,考法较新颖.2、(2010•丹东)图①是一个边长为(m+n)的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是()A、(m+n)2﹣(m﹣n)2=4mnB、(m+n)2﹣(m2+n2)=2mnC、(m﹣n)2+2mn=m2+n2D、(m+n)(m﹣n)=m2﹣n2考点:完全平方公式的几何背景。
专题:计算题。
分析:根据图示可知,阴影部分的面积是边长为m+n的正方形减去中间白色的正方形的面积m2+n2,即为对角线分别是2m,2n的菱形的面积.据此即可解答.解答:解:(m+n)2﹣(m2+n2)=2mn.故选B.点评:本题是利用几何图形的面积来验证(m+n)2﹣(m2+n2)=2mn,解题关键是利用图形的面积之间的相等关系列等式.3、利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是()A、(a+b)(a﹣b)=a2﹣b2B、(a﹣b)2=a2﹣2ab+b2C、a(a+b)=a2+abD、a(a﹣b)=a2﹣ab考点:完全平方公式的几何背景。
分析:根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.解答:解:大正方形的面积=(a﹣b)2,还可以表示为a2﹣2ab+b2,∴(a﹣b)2=a2﹣2ab+b2.故选B.点评:正确列出正方形面积的两种表示是得出公式的关键,也考查了对完全平方公式的理解能力.4、已知如图,图中最大的正方形的面积是()A、a2B、a2+b2C、a2+2ab+b2D、a2+ab+b2考点:完全平方公式的几何背景。
分析:要求面积就要先求出边长,从图中即可看出边长.然后利用完全平方公式计算即可.解答:解:图中的正方形的边长为a+b,∴最大的正方形的面积等于=(a+b)2=a2+2ab+b2.故选C.点评:本题利用了完全平方公式求解.5、如图,将完全相同的四个矩形纸片拼成一个正方形,则可得出一个等式为()A、(a+b)2=a2+2ab+b2B、(a﹣b)2=a2﹣2ab+b2C、a2﹣b2=(a+b)(a﹣b)D、(a+b)2=(a﹣b)2+4ab考点:完全平方公式的几何背景。
分析:我们通过观察可看出大正方形的面积等于小正方形的面积加上4个长方形的面积,从而得出结论.解答:解:(a+b)2=(a﹣b)2+4ab.故选D.点评:认真观察,熟练掌握长方形、正方形、组合图形的面积计算方法是正确解题的关键.6、请你观察图形,依据图形面积之间的关系,不需要连其他的线,便可得到一个你非常熟悉的公式,这个公式是()A、(a+b)(a﹣b)=a2﹣b2B、(a+b)2=a2+2ab+b2C、(a﹣b)2=a2﹣2ab+b2D、(a+b)2=a2+ab+b2考点:完全平方公式的几何背景。
分析:此题观察一个正方形被分为四部分,把这四部分的面积相加就是边长为a+b的正方形的面积,从而得到一个公式.解答:解:由图知,大正方形的边长为a+b,∴大正方形的面积为,(a+b)2,根据图知,大正方形分为:一个边长为a的小正方形,一个边长为b的小正方形,两个长为b,宽为a的长方形,∵大正方形的面积等于这四部分面积的和,∴(a+b)2=a2+2ab+b2,故选B.点评:此题比较新颖,用面积分割法来证明完全平方式,主要考查完全平方式的展开式.7、我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图(3)可以用来解释(a+b)2﹣(a﹣b)2=4ab.那么通过图(4)面积的计算,验证了一个恒等式,此等式是()A、a2﹣b2=(a+b)(a﹣b)B、(a﹣b)2=a2﹣2ab+b2C、(a+b)2=a2+2ab+b2D、(a﹣b)(a+2b)=a2+ab﹣b2考点:完全平方公式的几何背景。
分析:图(3)求的是阴影部分的面积,同样,图(4)正方形的面积用代数式表示即可.解答:解:图(4)中,∵S正方形=a2﹣2b(a﹣b)﹣b2=a2﹣2ab+b2=(a﹣b)2,∴(a﹣b)2=a2﹣2ab+b2.故选B.点评:关键是找出阴影部分面积的两种表达式,化简即可.8、如果关于x的二次三项式x2﹣mx+16是一个完全平方式,那么m的值是()A、8或﹣8B、8C、﹣8D、无法确定考点:完全平方公式的几何背景。
分析:根据两平方项确定出这两个数,再根据乘积二倍项列式求解即可.解答:解:∵x2﹣mx+16是一个完全平方式,∴﹣mx=±2×4•x,解得m=±8.故选A.点评:本题是完全平方公式的考查,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.9、如图是一个正方形,分成四部分,其面积分别是a2,ab,b2,则原正方形的边长是()A、a2+b2B、a+bC、a﹣bD、a2﹣b2考点:完全平方公式的几何背景。
分析:四部分的面积和正好是大正方形的面积,根据面积公式可求得边长.解答:解:∵a2+2ab+b2=(a+b)2,∴边长为a+b.故选B.点评:本题考查了完全平方公式的几何意义,通过图形验证了完全平方公式,难易程度适中.10、若长方形的周长为6,面积为1,以此长方形的长与宽为边分别作两个正方形,则此两个正方形的面积之和是()A、7B、9C、5D、11考点:完全平方公式的几何背景。
分析:设长方形的长是a,宽是b,根据题意,得a+b=3,ab=1.再进一步运用完全平方公式的变形求得a2+b2的值.解答:解:设长方形的长是a,宽是b.根据题意,得a+b=3,ab=1.∴a2+b2=(a+b)2﹣2ab=9﹣2=7.故选A.点评:此题考查了完全平方公式在几何题目中的运用,渗透数形结合的思想.11、某班同学学习整式乘除这一章后,要带领本组的成员共同研究课题学习,现在全组同学有4个能够完全重合的长方形,长、宽分别为a、b.在研究的过程中,一位同学用这4个长方形摆成了一个大的正方形.如图所示,由左图至右图,利用面积的不同表示方法写出一个代数恒等式是()A、a2+2ab+b2=(a+b)2B、4ab=(a+b)2﹣(a﹣b)2C、a2﹣2ab+b2=(a﹣b)2D、(a+b)(a﹣b)=a2﹣b2考点:完全平方公式的几何背景。
分析:根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4个矩形的面积.解答:解:∵大正方形的面积﹣小正方形的面积=4个矩形的面积,∴(a+b)2﹣(a﹣b)2=4ab,即4ab=(a+b)2﹣(a﹣b)2.故选B.点评:考查了完全平方公式的几何背景,能够正确找到大正方形和小正方形的边长是难点.解决问题的关键是读懂题意,找到所求的量的等量关系.12、如图,由四个相同的直角三角板拼成的图形,设三角板的直角边分别为a、b(a>b),则这两个图形能验证的式子是()A、(a+b)2﹣(a﹣b)2=4abB、(a2+b2)﹣(a﹣b)2=2abC、(a+b)2﹣2ab=a2+b2D、(a+b)(a﹣b)=a2﹣b2考点:完全平方公式的几何背景。
分析:本题从图形的阴影面积着手算起,结果选项B符合.解答:解:前一个图阴影部分的面积:(a2+b2)﹣(a﹣b)2=2ab后一个图形面积:=2ab故选B.点评:本题考查了完全平方公式,从图形的阴影面积得到.很简单.13、如右图:由大正方形面积的两种算法,可得下列等式成立的是()A、a2+ab+b2=(a+b)2B、a2+b2=(a+b)2+2abC、a2+2ab+b2=(a+b)2D、a2+2ab=(a+b)2+b2考点:完全平方公式的几何背景。
分析:求出大正方形的边长可得出面积,求出四个分割出来的部分的面积可得出大正方形的面积,从而可得出答案.解答:解:由题意得:大正方形的面积=(a+b)2;大正方形的面积=a2+2ab+b2,∴可得:a2+2ab+b2=(a+b)2.故选C.点评:本题考查完全平方公式的集合背景,难度不大,通过几何图形之间的数量关系对完全平方公式做出几何解释是关键.14、现有纸片:1张边长为a的正方形,2张边长为b的正方形,3张宽为a、长为b的长方形,用这6张纸片重新拼出一个长方形,那么该长方形的长为()A、a+bB、a+2bC、2a+bD、无法确定考点:完全平方公式的几何背景。
分析:此题需先根据题意表示出重新拼出的长方形的面积是a2+3ab+2b2,再把a2+3ab+2b2因式分解,即可求出该长方形的长.解答:解:根据题意得:a2+3ab+2b2=(a+b)(a+2b),所以可以拼成(a+2b)(a+b)的长方形,该长方形的长为a+2b.故选B.点评:本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义,要与因式分解相结合.15、有三种卡片,其中边长为a的正方形卡片1张,边长为a、b的长方形卡片6张,边长为b的正方形卡片9张.用这16张卡片拼成一个正方形,则这个正方形的边长为()A、a+3bB、3a+bC、a+2bD、2a+b考点:完全平方公式的几何背景。
专题:计算题。
分析:1张边长为a的正方形卡片的面积为a2,6张边长分别为a、b的矩形卡片的面积为6ab,9张边长为b的正方形卡片面积为9b2,∴16张卡片拼成一个正方形的总面积=a2+6ab+9b2=(a+3b)2,∴大正方形的边长为:a+3b.解答:解:由题可知,16张卡片总面积为a2+6ab+9b2,∵a2+6ab+9b2=(a+3b)2,∴新正方形边长为a+3b.故选A.点评:本题考查了完全平方公式几何意义的理解,利用完全平方公式分解因式后即可得出大正方形的边长.16、如图是用四个相同的矩形和一个正方形拼成的图案,已知此图案的总面积是49,小正方形的面积是4,x,y分别表示矩形的长和宽,那么下面式子中不正确的是()A、x+y=7B、x﹣y=2C、4xy+4=49D、x2+y2=25考点:完全平方公式的几何背景。