初中数学相似三角形的存在性问题(word版+详解答案)

合集下载

专题03 动点引起的相似三角形存在性问题(解析版)

专题03 动点引起的相似三角形存在性问题(解析版)

专题04 动点引起的相似三角形存在性问题【相似三角形存在性】以A 、B 、C 为顶点的三角形与已知△DEF 相似,其中,∠ABC =∠DEF 分类讨论:①△ABC ∽△DEF ;②△CBA ∽△DEF 可得到:AB BC DE EF =;AB BC EF DE=,特殊地,当∠ABC =∠DEF =90°时,可借助tan ∠BAC =tan ∠DFE 或tan ∠BCA =tan ∠DFE 解答问题.【一题多解 · 典例剖析】例题1. (2021·山东省济宁市中考)如图,直线1322y x =-+分别交x 轴、y 轴于点A ,B ,过点A 的抛物线2y x bx c =-++与x 轴的另一交点为C ,与y 轴交于点()0,3D ,抛物线的对称轴l 交AD 于E ,连接OE 交AB于点F .(1)求抛物线解析式; (2)求证:OE AB ⊥;(3)P 为抛物线上的一动点,直线PO 交AD 于点M ,是否存在这样的点P ,使以A ,O ,M 为顶点的三角形与ACD △相似?若存在,求点P 的横坐标;若不存在,请说明理由.【答案】(1)y =-x 2+2x +3;(2)见解析;(3)存在,点P 113-±或±3 【解析】解:(1)∵直线1322y x =-+分别交x 轴、y 轴于点A ,B∴A (3,0),B (0,32), 又抛物线经过A (3,0),D (0,3),∴22033300b c c ⎧=-++⎨=-++⎩, 解得:23b c =⎧⎨=⎩即抛物线的解析式为y =-x 2+2x +3;(2)由y =-x 2+2x +3得,抛物线对称轴为x =1 设直线AD 的解析式为:y =kx +a , 将A (3,0),D (0,3)代入得:303k b b +=⎧⎨=⎩, 解得13k b =-⎧⎨=⎩即直线AD 的解析式为:y =-x +3, ∴E (1,2),G (1,0),在Rt △OEG 中,知tan ∠OEG =12OG EG = , 在Rt △OAB 中,tan ∠BAO =12OB OA =, ∴∠OEG =∠BAO , ∵∠OEG +∠EOG =90° ∴∠BAO +∠EOG =90° 即OE ⊥AB . (3)存在.∵A (3,0),抛物线的对称轴为直线x =1,∴C (-1,0), ∴AC =3-(-1)=4, ∵OA =OD =3,∠AOD =90°, ∴232AD OA ==,设直线CD 解析式为y =mx +n ,则:03m n n -+=⎧⎨=⎩,解得33m n =⎧⎨=⎩∴直线CD 解析式为y =3x +3, 易知,∠MAO =∠COD , 分类讨论:①当△AOM ∽△ACD 时,方法一:解析式法欲求P 点坐标,需求直线OP 的解析式,再与抛物线解析式联立即可. 可知,OM ∥CD即直线OP 的解析式为:y =3x , 联立y =3x ,y =-x 2+2x +3得: x 113-±即P 113-±方法二:比例法 易知AM AN AD OA =,AM AOAD AC=,∴=AN AOOA AC 即3=34AN ∴AN =94,ON =34即M (34,94)∴直线OM 解析式为:y =3x 联立y =3x ,y =-x 2+2x +3得: x =1132-±. 方法三:设参数法设M (m ,-m +3),0<m <3,A (3,0) 易知,AM AOAD AC =,即3432AM = 即AM =924∴(3-m )2+(-m +3)2=(924)2解析:m =34或m =214(舍)即M (34,94)∴直线OM 解析式为:y =3x 联立y =3x ,y =-x 2+2x +3得: x =1132-±. ②当△AMO ∽△ACD 时,方法一:比例法易知AM AOAC AD =, 即432AM = ∴AM 2由△AMN 为等腰直角三角形,知MN =AN =2, ∴ON =1,即M (1,2) ∴直线OM 的解析式为y =2x , 联立y =2x ,y =-x 2+2x +3得: x =±3方法二:设参数法 设M (m ,-m +3),0<m <3由AM 2得:(m -3)2+(-m +3)2=(22 解得:m =1或m =5(舍) ∴直线OM 的解析式为y =2x , 联立y =2x ,y =-x 2+2x +3得: x =±3综上所述,点P 113-±±3 【一题多解 · 对标练习】练习1.(2021·湖南省邵阳市中考)如图,在平面直角坐标系中,抛物线C :()20y ax bx c a =++≠经过点()1,1和()4,1.(1)求抛物线C 的对称轴.(2)当1a =-时,将抛物线C 向左平移2个单位,再向下平移1个单位,得到抛物线1C . ①求抛物线1C 的解析式.②设抛物线1C 与x 轴交于A ,B 两点(点A 在点B 的右侧),与y 轴交于点C ,连接BC .点D 为第一象限内抛物线1C 上一动点,过点D 作DE OA ⊥于点E .设点D 的横坐标为m .是否存在点D ,使得以点O ,D ,E 为顶点的三角形与BOC 相似,若存在,求出m 的值;若不存在,请说明理由.【答案】(1)x=2.5;(2)①y=-x2+x+2;②11+33【解析】解:(1)∵抛物线图像过(1,1)、(4,1)两点,∴抛物线对称轴为:x=(1+4)÷2=2.5;(2)①将点(1,1)、(4,1)向左平移2个单位,再向下平移1个单位,得到(-1,0),(2,0),将点(-1,0),(2,0),a=-1,代入抛物线解析式得:y=-x2+x+2.②根据①中的函数关系式,可得:A(2,0),B(-1,0),C(0,2),D(m,-m2+m+2),其中0<m<2可知∠BOC=∠DEO=90°,以点O,D,E为顶点的三角形与△OBC相似有两种情况,(i)当△ODE∽△BCO时,方法一、比例法则OE DEOB OC=,即2-++2=12m m m,解得m=1或-2(舍),方法二、三角函数tan∠BOC=tan∠ODE即OB OEOC DE=,21=2-++2mm m解得:m=1或-2(舍),(ii)当△ODE∽△CBO时,方法一、比例法则OE DEOC OB=,即2-++2=21m m m,解得:1+331-3344=或(舍)m方法二、三角函数tan∠BOC=tan∠DOE即OB DEOC OE=,21-++2=2m mm解得:1+331-3344=或(舍)m综上所述,满足条件的m的值为1或1+334.【多题一解·典例剖析】例题2.(2021·湖南省怀化市中考)如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且2OA=,4OB=,8OC=,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与MNB相似?若存在,求出点P的坐标,若不存在,请说明理由.【答案】(1)y=-x2+2x+8;(2)存在,(1,2)或17 1,2⎛⎫ ⎪⎝⎭.【解析】解:(1)∵OA=2,OB=4,OC=8,∴A(-2,0)、B(4,0)、C(0,8),设二次函数的解析式为y=ax2+bx+c,∴84201640c a b c a b c =⎧⎪-+=⎨⎪++=⎩ 解得:812c a b =⎧⎪=-⎨⎪=⎩∴二次函数的解析式为y =-x 2+2x +8;(2)存在以点P 、C 、M 为顶点的三角形与△MNB 相似, 理由如下:由(1)知抛物线对称轴为直线:x =1,设直线BC 的解析式为y =kx +t ,将点B 、C 坐标代入可得:408k b b +=⎧⎨=⎩, 解得:28a b =-⎧⎨=⎩,∴直线BC 的解析式为y =-2x +8, ∴点M (1,6),N (1,0),∴BN =3,MN =6,BM =35,CM =5, 由∠BMN =∠CMP 知,分两种情况讨论: ①当∠CPM =∠MNB =90°时,如图所示:易知CP ∥x 轴,∴点P 坐标为(1,8).②当∠PCM =∠MNB =90°时,如图所示:∴cos ∠CMP =cos ∠MNB 即CM MNPM BM=, 535=∴PM =52,即点P 坐标为171,2⎛⎫⎪⎝⎭.综上所述,符合要求的P 点坐标为(1,8)或171,2⎛⎫ ⎪⎝⎭. 【多题一解 · 对标练习】练习2.(2021·四川省遂宁市中考)如图,已知二次函数的图象与x 轴交于A 和B (-3,0)两点,与y 轴交于C (0,-3),对称轴为直线1x =-,直线y =-2x +m 经过点A ,且与y 轴交于点D ,与抛物线交于点E ,与对称轴交于点F .(1)求抛物线的解析式和m 的值;(2)在y 轴上是否存在点P ,使得以D 、E 、P 为顶点的三角形与△AOD 相似,若存在,求出点P 的坐标;若不存在,试说明理由.【答案】(1)y =(x +1)2-4;m =2;(2)存在,(0,12)或(0,14.5).【解析】解:(1)∵二次函数的图象与x 轴交于A 和B (-3,0)两点,对称轴为直线x =-1, ∴A (1,0),设二次函数解析式为:y =a (x -1)(x +3), 把C (0,-3)代入得: -3=a (0-1)(0+3), 解得:a =1,即二次函数解析式为:y = (x -1)(x +3),即:y =(x +1)2-4, ∵直线y =-2x +m 经过点A , ∴0=-2×1+m ,解得:m =2;(2)由(1)得:直线AF 的解析式为:y =-2x +2, 又直线y =-2x +2与y 轴交于点D ,与抛物线交于点E , ∴当x =0时,y =2,即D (0,2),联立()22214y x y x =-+⎧⎪⎨=+-⎪⎩,解得:11512x y =-⎧⎨=⎩,2210x y =⎧⎨=⎩, ∵点E 在第二象限, ∴E (-5,12),以D 、E 、P 为顶点的三角形与△AOD 相似,由∠EDP =∠ADO 知,分两种情况讨论. ①当∠EPD =∠AOD =90°时, 过点E 作EP ⊥y 轴于点P ,此时P (0,12);②当∠PED =∠AOD =90°时,过点E 作EP ’⊥AE ,则tan ∠ADO =tan ∠PEP’, ∴OA PP OD EP '=,即:125PP '=, 解得:PP ’=2.5,此时P’(0,14.5),综上所述:点P 的坐标为(0,12)或(0,14.5).练习3. (2021·四川省泸州市中考)如图,在平面直角坐标系xOy 中,抛物线213442y x x =-++与两坐标轴分别相交于A ,B ,C 三点(1)求证:∠ACB =90°(2)点D 是第一象限内该抛物线上的动点,过点D 作x 轴的垂线交BC 于点E ,交x 轴于点F . ①求DE +BF 的最大值;②点G 是AC 的中点,若以点C ,D ,E 为顶点的三角形与AOG 相似,求点D 的坐标.【答案】(1)(2)①9;②(4,6)或(3,254).【解析】解:(1)在213442y x x =-++中,当x =0,y =4即C (0,4)当y =0时,即2134042x x -++=解得:x =-2或x =8即A (-2,0),B (8,0)∴AB =10,AC 5BC 5则102=(52+(52即AB 2=AC 2+BC 2∴∠ACB =90°(2)①设直线BC 的解析式为:y =kx +b ,将(0,4),(8,0)代入得: 804k b b +=⎧⎨=⎩,解得:k =-0.5,b =4即直线BC 解析式为y =-0.5x +4设D (m ,213442m m -++),则BF =8-m ,DE =2124m m -+∴DE +BF =2124m m -++8-m =()21294m --+ ∵14-<0∴当m =2时DE +BF 取最大值,最大值为9.②∵点G 是AC 的中点,在Rt △AOC 中,OG =AG 5即△AOG 为等腰三角形,∵∠CAO +∠ACO =∠ACO +∠OCB =90°∴∠CAO =∠OCB又OC ∥DF∴∠OCB =∠CED∴∠CAO =∠CED设D (m ,213442m m -++),则E (m ,-0.5m +4),DE =2124m m-+ 当以点C ,D ,E 为顶点的三角形与△AOG 相似, 分两种情况讨论:①△ECD ∽△AOG 则CEDEAO AG =, 即212425m mCE -+=∴CE 21425m m -+又OC ∥DF ∴CEOFBC OB =845m=∴CE 5m21425m m -+5m解得:m =0(舍)或m =3即D (3,254)②△EDC ∽△AOG ,则CE DEAG OA=,212425m m-+=,∴CE=212452m m-+又OC∥DF,知,CE5m∴212452m m-+5m解得:m=0(舍)或m=4 即D(4,6)综上所述,D点坐标为(3,254)或(4,6).。

二次函数-相似三角形存在性问题(二)-含答案

二次函数-相似三角形存在性问题(二)-含答案

(1)求此抛物线的解析式; (2)在抛物线对称轴 l 上找一点 M,使 | MB − MD | 的值最大,并求出这个最大值;
(3)点 P 为 y 轴右侧抛物线上一动点,连接 PA,过点 P 作 PQ⊥PA 交 y 轴于点 Q,问:是
否存在点 P,使得以 A、P、Q 为顶点的三角形与△ABC 相似?若存在,请求出所有符合
1m− 3
=1,
m
2 4 22
解得: m1 = 4 , m2 = 8 , 对应 P 点坐标为(4,0)、(8,0).
y
y
A
A(Q)
Q
O
P
B Cx
O
B C(P) x
第5页,共29页
情况二:当 PQ = 2 时, OP
1 m2 − 3 m
由题意得: 4
2 =2,
m
化简为:
1 m2 4
− 3m 2
=2,
第3页,共29页
【2018 常德中考删减】 如图,已知二次函数的图象过点 O(0,0) 、 A(8, 4) ,与 x 轴交于另一点 B ,且对称轴是直线 x =3. (1)求该二次函数的解析式; (2)P 是 x 轴上的点,过 P 作 PQ ⊥ x 轴与抛物线交于 Q .过 A 作 AC ⊥ x 轴于 C ,当以 O ,
第12页,共29页
【2018 达州中考】 如图,抛物线经过原点 O(0,0),点 A(1,1),点 B(7 , 0) .
2 (1)求抛物线解析式; (2)连接 OA,过点 A 作 AC⊥OA 交抛物线于 C,连接 OC,求△AOC 的面积; (3)点 M 是 y 轴右侧抛物线上一动点,连接 OM,过点 M 作 MN⊥OM 交 x 轴于点 N.问:
yD

初中数学专题03相似三角形的存在性问题(解析版)

初中数学专题03相似三角形的存在性问题(解析版)

专题三 相似三角形的存在性问题【考题研究】相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。

难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快.【解题攻略】相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。

应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).【解题类型及其思路】相似三角形存在性问题需要注意的问题:1、若题目中问题为△ABC ∽△DEF ,则对应线段已经确定。

2、若题目中为△ABC 与 △DEF 相似,则没有确定对应线段,此时有三种情况:①△ABC ∽△DEF , ②△ABC ∽△FDE 、 ③△ABC ∽△EFD 、3、若题目中为△ABC 与 △DEF 并且有 ∠A 、 ∠D (或为90°),则确定了一条对应的线段,此时有二种情况:①、△ABC ∽△DEF ,②、△ABC ∽△DFE 需要分类讨论上述的各种情况。

【典例指引】类型一 【确定符合相似三角形的点的坐标】典例指引1.(2019·贵州中考真题)如图,抛物线212y x bx c =++与直线132y x =+分别相交于A ,B 两点,且此抛物线与x 轴的一个交点为C ,连接AC ,BC .已知(0,3)A ,(3,0)C -.(1)求抛物线的解析式;(2)在抛物线对称轴l 上找一点M ,使MB MC -的值最大,并求出这个最大值;(3)点P 为y 轴右侧抛物线上一动点,连接PA ,过点P 作PQ PA ⊥交y 轴于点Q ,问:是否存在点P 使得以A ,P ,Q 为顶点的三角形与ABC ∆相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由. 【答案】(1)215322y x x =++;(2)点M 的坐标为(52-,12-)时,MB MC -2;(3)存在点(1,6)P . 【解析】 【分析】(1)根据待定系数法求解即可;(2)根据三角形的三边关系可知:当点B 、C 、M 三点共线时,可使MB MC -的值最大,据此求解即可;(3)先求得90ACB ∠=︒,再过点P 作PQ PA ⊥于点P ,过点P 作PG y ⊥轴于点G ,如图,这样就把以A ,P ,Q 为顶点的三角形与ABC ∆相似问题转化为以A ,P ,G 为顶点的三角形与ABC ∆相似的问题,再分当13PG BC AG AC ==时与3PG ACAG BC==时两种情况,分别求解即可. 【详解】解:(1)将(0,3)A ,(3,0)C -代入212y x bx c =++得:39302c b c =⎧⎪⎨-+=⎪⎩,解得:523b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式是215322y x x =++; (2)解方程组:215322132y x x y x ⎧=++⎪⎪⎨⎪=+⎪⎩,得1103x y =⎧⎨=⎩,2241x y =-⎧⎨=⎩,∵(0,3)A ,∴(4,1)B -当点B 、C 、M 三点不共线时,根据三角形三边关系得MB MC BC -<, 当点B 、C 、M 三点共线时,MB MC BC -=,∴当点B 、C 、M 三点共线时,MB MC -取最大值,即为BC 的长, 如图,过点B 作BE ⊥x 轴于点E ,则在Rt BEC ∆中,由勾股定理得:222BC BE CE =+=,∴MB MC -取最大值为2;易求得直线BC 的解析式为:y =-x -3,抛物线的对称轴是直线52x =-,当52x =-时,12y =-,∴点M的坐标为(52-,12-);∴点M 的坐标为(52-,12-)时,MB MC -取最大值为2;(3)存在点P ,使得以A 、P 、Q 为顶点的三角形与ABC ∆相似.设点P 坐标为215,3(0)22x x x x ⎛⎫++> ⎪⎝⎭, 在Rt BEC ∆中,∵1BE CE ==,∴45BCE ∠=︒, 在Rt ACO ∆中,∵3AO CO ==,∴45ACO ∠=︒, ∴180454590ACB ∠=︒-︒-︒=︒,AC =过点P 作PQ PA ⊥于点P ,过点P 作PG y ⊥轴于点G ,如图, ∵90PGA APQ ∠=∠=︒,PAG QAP ∠=∠,∴PGA ∆∽QPA ∆, ∵90PGA ACB ∠=∠=︒,∴①当13PG BC AG AC ==时,PGA ∆∽BCA ∆, ∴211533322x x x =++-,解得11x =,20x =,(舍去)∴点P 的纵坐标为215113622⨯+⨯+=,∴点P 为(1,6);②当3PG AC AG BC==时,PGA ∆∽ACB ∆,∴23153322xx x =++-,解得1133x =-(舍去),20x =(舍去),∴此时无符合条件的点P ; 综上所述,存在点(1,6)P . 【名师点睛】本题考查的是二次函数的综合运用,主要考查待定系数法求二次函数的解析式、相似三角形的判定与性质、一元二次方程的解法、两函数的交点和线段差的最值等问题,其中(1)题是基础题型,(2)题的求解需运用三角形的三边关系,(3)题要注意分类求解,避免遗漏,解题的关键是熟练掌握二次函数图象上点的坐标特征、相似三角形的判定与性质以及一元二次方程的解法. 【举一反三】(2019·海南模拟)抛物线y =ax 2+bx +3经过点A (1,0)和点B (5,0). (1)求该抛物线所对应的函数解析式; (2)该抛物线与直线335y x =+ 相交于C 、D 两点,点P 是抛物线上的动点且位于x 轴下方,直线PM ∥y轴,分别与x 轴和直线CD 交于点M 、N .①连结PC 、PD ,如图1,在点P 运动过程中,△PCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB ,过点C 作CQ ⊥PM ,垂足为点Q ,如图2,是否存在点P ,使得△CNQ 与△PBM 相似?若存在,求出满足条件的点P 的坐标;若不存在,说明理由.【答案】(1)2318355y x x =-+;(2)① 102940;② 存在,((2,95)或(349,5527-).【解析】 【详解】试题分析:(1)由A 、B 两点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P 点坐标,则可表示出M 、N 的坐标,联立直线与抛物线解析式可求得C 、D 的坐标,过C 、D 作PN 的垂线,可用t 表示出△PCD 的面积,利用二次函数的性质可求得其最大值; ②当△CNQ 与△PBM 相似时有PQ PMCQ BM= 或NQ BM CQ PM =两种情况,利用P 点坐标,可分别表示出线段的长,可得到关于P 点坐标的方程,可求得P 点坐标.试题解析:(1)∵抛物线23y ax bx =++经过点A (1,0)和点B (5,0),∴3025530a b a b ++=⎧⎨++=⎩ ,解得35185a b ⎧=⎪⎪⎨⎪=-⎪⎩∴该抛物线对应的函数解析式为2318355y x x =-+ ; (2)①∵点P 是抛物线上的动点且位于x 轴下方,∴可设P (t ,2318355t t -+)(1<t <5), ∵直线PM ∥y 轴,分别与x 轴和直线CD 交于点M 、N , ∴M (t ,0),N (t ,335t +),∴22331837147335555220PN t t t t ⎛⎫⎛⎫=+--+=--+ ⎪ ⎪⎝⎭⎝⎭.联立直线CD 与抛物线解析式可得2335318355y x y x x ⎧=+⎪⎪⎨⎪=-+⎪⎩,解得03x y =⎧⎨=⎩ 或7365x y =⎧⎪⎨=⎪⎩,∴C (0,3),D (7,365), 分别过C 、D 作直线PN 的直线,垂足分别为E 、F ,如图1,则CE =t ,DF =7﹣t , ∴11772222PCD PCN PDN S S S PN CE PN DF PN =+=+==V V V g g 22371472171029522010240t t ⎡⎤⎛⎫⎛⎫--+=--+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦, ∴当72t =时,△PCD 的面积有最大值,最大值为102940; ②存在.∵∠CQN =∠PMB =90°, ∴当△CNQ 与△PBM 相似时,有PQ PMCQ BM= 或NQ BM CQ PM =两种情况, ∵CQ ⊥PM ,垂足为Q ,∴Q (t ,3),且C (0,3),N (t ,335t + ), ∴CQ =t ,333355Q t N t +-==, ∴35CQ NQ = , ∵P (t ,2318355t t -+),M (t ,0),B (5,0), ∴BM =5﹣t ,223183180335555PM t t t t ⎛⎫=--+=-- ⎪⎝+⎭, 当PQ PM CQ BM =时,则35PM BM =,即()2318335555t t t --=+-,解得t =2或t =5(舍去),此时P (2,95 ); 当NQ BM CQ PM =时,则35BM PM =,即2318355355t t t ⎛⎫-=+ ⎪⎝-⎭-,解得349t =或5t =(舍去),此时P (349,5527-); 综上可知存在满足条件的点P ,其坐标为P (2,95)或(349,5527-). 类型二 【确定符合相似三角形的动点的运动时间或路程等】典例指引2.(2019年广东模拟)如图,在矩形OABC 中,AO =10,AB =8,沿直线CD 折叠矩形OABC 的一边BC ,使点B 落在OA 边上的点E 处,分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系,抛物线2y ax bx c =++经过O ,D ,C 三点.(1)求AD 的长及抛物线的解析式;(2)一动点P 从点E 出发,沿EC 以每秒2个单位长的速度向点C 运动,同时动点Q 从点C 出发,沿CO 以每秒1个单位长的速度向点O 运动,当点P 运动到点C 时,两点同时停止运动,设运动时间为t 秒,当t 为何值时,以P ,Q ,C 为顶点的三角形与△ADE 相似?(3)点N 在抛物线对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使以M ,N ,C ,E 为顶点的四边形是平行四边形?若存在,请直接写出点M 与点N 的坐标(不写求解过程);若不存在,请说明理由.【解析】(1)根据折叠图形的轴对称性,△CED 、△CBD 全等,首先在Rt △CEO 中求出OE 的长,进而可得到AE 的长;在Rt △AED 中,AD =AB -BD 、ED =BD ,利用勾股定理可求出AD 的长.进一步能确定D 点坐标,利用待定系数法即可求出抛物线的解析式;(2)由于∠DEC =90°,首先能确定的是∠AED =∠OCE ,若以P 、Q 、C 为顶点的三角形与△ADE 相似,那么∠QPC =90°或∠PQC =90°,然后在这两种情况下,分别利用相似三角形的对应边成比例求出对应的t 的值; (3)由于以M ,N ,C ,E 为顶点的四边形,边和对角线都没明确指出,所以要分情况进行讨论: ①EC 做平行四边形的对角线,那么EC 、MN 必互相平分,由于EC 的中点正好在抛物线对称轴上,所以M 点一定是抛物线的顶点;②EC 做平行四边形的边,那么EC 、MN 平行且相等,首先设出点N 的坐标,然后结合E 、C 的横、纵坐标差表示出M 点坐标,再将点M 代入抛物线的解析式中,即可确定M 、N 的坐标. 试题解析:(1)∵四边形ABCO 为矩形, ∴∠OAB =∠AOC =∠B =90°,AB =CO =8,AO =BC =10, 由题意,得△BDC ≌△EDC ,∴∠B =∠DEC =90°,EC =BC =10,ED =BD ,由勾股定理易得EO =6, ∴AE =10﹣6=4,设AD =x ,则BD =ED =8﹣x ,由勾股定理,得()22248x x +=﹣ , 解得,x =3,∴AD =3,∵抛物线2y ax bx c =++过点D (3, 10),C (8, 0),O (0, 0),∴9310{ 6480a b a b +=+=,解得 23{163a b =-=,∴抛物线的解析式为: 221633y x x =-+;(2)∵∠DEA +∠OEC =90°,∠OCE +∠OEC =90°, ∴∠DEA =∠OCE ,由(1)可得AD =3,AE =4,DE =5, 而CQ =t ,EP =2t ,∴PC =10﹣2t , 当∠PQC =∠DAE =90°,△ADE ∽△QPC ,∴CQ CP AE DE =,即 10245t t-=, 解得4013t =,当∠QPC =∠DAE =90°,△ADE ∽△PQC ,∴PC CQ AE DE =,即 10245t t -=, 解得257t =, ∴当4013t =或257t =时,以P 、Q 、C 为顶点的三角形与△ADE 相似;(3)假设存在符合条件的M 、N 点,分两种情况讨论:①EC 为平行四边形的对角线,由于抛物线的对称轴经过EC 中点,若四边形MENC 是平行四边形,那么M 点必为抛物线顶点; 则: 3243M ⎛⎫ ⎪⎝⎭,;而平行四边形的对角线互相平分,那么线段MN 必被EC 中点(4,3)平分,则1443N ⎛⎫-⎪⎝⎭,; ②EC 为平行四边形的边,则EC //MN ,EC =MN ,设N (4,m ), 则M (4﹣8,m +6)或M (4+8,m ﹣6);将M (﹣4,m +6)代入抛物线的解析式中,得:m =﹣38, 此时 N (4,﹣38)、M (﹣4,﹣32);将M (12,m ﹣6)代入抛物线的解析式中,得:m =﹣26, 此时 N (4,﹣26)、M (12,﹣32);综上,存在符合条件的M 、N 点,且它们的坐标为:①()1432M --,, ()1438N -,; ②()21232M -,, 2(426N -,); ③33243M ⎛⎫⎪⎝⎭,, 31443N ⎛⎫- ⎪⎝⎭,. 【名师点睛】本题考查了二次函数综合题,题目涉及了图形的折叠变换、相似三角形的判定和性质、平行四边形的判定和性质等重点知识.后两问的情况较多,需要进行分类讨论,以免漏解. 【举一反三】(2019·湖南模拟)如图,已知直线y =-x +3与x 轴、y 轴分别交于A ,B 两点,抛物线y =-x 2+bx +c 经过A ,B 两点,点P 在线段OA 上,从点O 出发,向点A 以1个单位/秒的速度匀速运动;同时,点Q 在线段AB 上,从点A 出发,向点B /秒的速度匀速运动,连接PQ ,设运动时间为t 秒.(1)求抛物线的解析式;(2)问:当t为何值时,△APQ为直角三角形;(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标;(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.【答案】(1)y=-x2+2x+3;(2)t=1或t=32;(3)点F的坐标为(2,3).(4)94.【解析】【详解】试题分析:(1)先由直线AB的解析式为y=-x+3,求出它与x轴的交点A、与y轴的交点B的坐标,再将A、B两点的坐标代入y=-x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)由直线与两坐标轴的交点可知:∠QAP=45°,设运动时间为t秒,则QA2t,P A=3-t,然后再图①、图②中利用特殊锐角三角函数值列出关于t的方程求解即可;(3)设点P的坐标为(t,0),则点E的坐标为(t,-t+3),则EP=3-t,点Q的坐标为(3-t,t),点F的坐标为(3-t,-(3-t)2+2(3-t)+3),则FQ=3t-t2,EP∥FQ,EF∥PQ,所以四边形为平行线四边形,由平行四边形的性质可知EP=FQ,从而的到关于t的方程,然后解方程即可求得t的值,然后将t=1代入即可求得点F的坐标;(4)设运动时间为t秒,则OP=t,BQ=(3-t2M的坐标,从而可求得MB的长度,然后根据相似相似三角形的性质建立关于t的方程,然后即可解得t的值.试题解析:(1)∵y=-x+3与x轴交于点A,与y轴交于点B,∴当y=0时,x=3,即A点坐标为(3,0),当x=0时,y=3,即B点坐标为(0,3),将A(3,0),B(0,3)代入y=-x2+bx+c,得930{3b cc-++==,解得2{3bc==∴抛物线的解析式为y=-x2+2x+3;(2)∵OA=OB=3,∠BOA=90°,∴∠QAP=45°.如图①所示:∠PQA=90°时,设运动时间为t秒,则QA2t,P A=3-t.在Rt△PQA中,22QAPA=,即:2232tt=-,解得:t=1;如图②所示:∠QP A=90°时,设运动时间为t秒,则QA2t,P A=3-t.在Rt△PQA中,22PAQA=222t=,解得:t=32.综上所述,当t=1或t=32时,△PQA是直角三角形;(3)如图③所示:设点P的坐标为(t,0),则点E的坐标为(t,-t+3),则EP=3-t,点Q的坐标为(3-t,t),点F的坐标为(3-t,-(3-t)2+2(3-t)+3),则FQ=3t-t2.∵EP∥FQ,EF∥PQ,∴EP=FQ.即:3-t=3t-t2.解得:t1=1,t2=3(舍去).将t=1代入F(3-t,-(3-t)2+2(3-t)+3),得点F的坐标为(2,3).(4)如图④所示:设运动时间为t秒,则OP=t,BQ=(3-t2.∵y=-x2+2x+3=-(x-1)2+4,∴点M的坐标为(1,4).∴MB22112+=当△BOP∽△QBM时,MB BQOP OB=2(3)2t-=,整理得:t2-3t+3=0,△=32-4×1×3<0,无解:当△BOP ∽△MBQ 时,BM BQ OB OP =即:2(3)2t -=,解得t =94. ∴当t =94时,以B ,Q ,M 为顶点的三角形与以O ,B ,P 为顶点的三角形相似. 类型三 【确定符合相似三角形的函数解析式或字母参数的值】典例指引3.(2019·江苏中考真题)如图,二次函数245y x x =-++图象的顶点为D ,对称轴是直线l ,一次函数215y x =+的图象与x 轴交于点A ,且与直线DA 关于l 的对称直线交于点B .(1)点D 的坐标是 ______;(2)直线l 与直线AB 交于点C ,N 是线段DC 上一点(不与点D 、C 重合),点N 的纵坐标为n .过点N 作直线与线段DA 、DB 分别交于点P ,Q ,使得DPQ ∆与DAB ∆相似.①当275n =时,求DP 的长; ②若对于每一个确定的n 的值,有且只有一个DPQ ∆与DAB ∆相似,请直接写出n 的取值范围 ______.【答案】(1)()2,9;(2)①95DP =;②92155n <<. 【解析】 【分析】(1)直接用顶点坐标公式求即可; (2)由对称轴可知点C (2,95),A (-52,0),点A 关于对称轴对称的点(132,0),借助AD 的直线解析式求得B (5,3);①当n =275时,N (2,275),可求DA =952,DN =185,CD =365,当PQ ∥AB 时,△DPQ ∽△DAB ,DP 5PQ 与AB 不平行时,DP 5②当PQ ∥AB ,DB =DP 时,DB 5,DN =245,所以N (2,215),则有且只有一个△DPQ 与△DAB 相似时,95<n <215. 【详解】(1)顶点为()2,9D ; 故答案为()2,9; (2)对称轴2x =,9(2,)5C ∴,由已知可求5(,0)2A -, 点A 关于2x =对称点为13(,0)2, 则AD 关于2x =对称的直线为213y x =-+,(5,3)B ∴,①当275n =时,27(2,)5N ,2DA ∴=,182DN =,365CD =当PQ AB ∥时,PDQ DAB ∆∆:,DAC DPN ∆∆Q :,DP DNDA DC∴=,DP ∴=当PQ 与AB 不平行时,DPQ DBA ∆∆:,DNQ DCA ∴∆∆:,DP DNDB DC∴=,DP ∴=综上所述DP = ②当PQ AB ∥,DB DP =时,DB =DP DNDA DC∴=, 245DN ∴=,21(2,)5N ∴, ∴有且只有一个DPQ ∆与DAB ∆相似时,92155n <<; 故答案为92155n <<; 【点睛】本题考查二次函数的图象及性质,三角形的相似;熟练掌握二次函数的性质,三角形相似的判定与性质是解题的关键. 【举一反三】(2018武汉中考)抛物线L :y =﹣x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B . (1)直接写出抛物线L 的解析式;(2)如图1,过定点的直线y =kx ﹣k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值;(3)如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标.【答案】(1)y =﹣x 2+2x +1;(2)-3;(3)当m =2﹣1时,点P 的坐标为(0,)和(0,);当m =2时,点P 的坐标为(0,1)和(0,2). 【解析】【分析】(1)根据对称轴为直线x =1且抛物线过点A (0,1)利用待定系数法进行求解可即得;(2)根据直线y =kx ﹣k +4=k (x ﹣1)+4知直线所过定点G 坐标为(1,4),从而得出BG =2,由S △BMN =S △BNG ﹣S △BMG =BG •x N ﹣BG •x M =1得出x N ﹣x M =1,联立直线和抛物线解析式求得x =,根据x N ﹣x M =1列出关于k 的方程,解之可得;(3)设抛物线L1的解析式为y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再设P(0,t),分△PCD∽△POF和△PCD∽△POF两种情况,由对应边成比例得出关于t与m的方程,利用符合条件的点P恰有2个,结合方程的解的情况求解可得.【详解】(1)由题意知,解得:,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,设M点的横坐标为x M,N点的横坐标为x N,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴点B(1,2),则BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=BG•(x N﹣1)-BG•(x M-1)=1,∴x N﹣x M=1,由得:x2+(k﹣2)x﹣k+3=0,解得:x==,则x N=、x M=,由x N﹣x M=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如图2,设抛物线L1的解析式为y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),设P(0,t),(a)当△PCD∽△FOP时,,∴,∴t2﹣(1+m)t+2=0①;(b)当△PCD∽△POF时,,∴,∴t=(m+1)②;(Ⅰ)当方程①有两个相等实数根时,△=(1+m)2﹣8=0,解得:m=2﹣1(负值舍去),此时方程①有两个相等实数根t1=t2=,方程②有一个实数根t=,∴m=2﹣1,此时点P的坐标为(0,)和(0,);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:(m +1)2﹣(m +1)+2=0, 解得:m =2(负值舍去),此时,方程①有两个不相等的实数根t 1=1、t 2=2, 方程②有一个实数根t =1,∴m =2,此时点P 的坐标为(0,1)和(0,2); 综上,当m =2﹣1时,点P 的坐标为(0,)和(0,);当m =2时,点P 的坐标为(0,1)和(0,2).【新题训练】1.(2019·长沙市开福区青竹湖湘一外国语学校初三月考)如图1,已知抛物线;C 1:y =﹣1m(x +2)(x ﹣m )(m >0)与x 轴交于点B 、C (点B 在点C 的左侧),与y 轴交于点E .(1)求点B 、点C 的坐标;(2)当△BCE 的面积为6时,若点G 的坐标为(0,b ),在抛物线C 1的对称轴上是否存在点H ,使得△BGH 的周长最小,若存在,则求点H 的坐标(用含b 的式子表示);若不存在,则请说明理由;(3)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.【答案】(1)点B 、C 的坐标分别为:(﹣2,0)、(m ,0);(2)存在,点H (1,34b );(3)存在,m =222+ 【详解】 解:(1)()()()120y x x m m m=-+->,令y =0,则x =﹣2或m , 故点B 、C 的坐标分别为:(﹣2,0)、(m ,0); (2)存在,理由:()()12y x x m m=-+-,令x =0,则y =2,故点E (0,2), △BCE 的面积为:()1122622BC OE m ⨯⨯=+⨯= ,解得:m =4,则抛物线的对称轴为: ()12412x =-+= ,点B 关于函数对称轴的对称点为点C (m ,0),连接CE 交对称轴于点H ,则点H 为所求, 将点C 、E 的坐标代入一次函数表达式并解得: 直线CE 的表达式为: 14y bx b =-+ ,当x =1时,34y b = , 故点H (1,34b ); (3)∵OE =OB =2,故∠EBO =45°,过点F 作FT ⊥x 轴于点F ; ①当△BEC ∽△BCF 时,则BC 2=BE •BF ,∠FBO =EBO =45°,则直线BF 的函数表达式为:y =﹣x ﹣2,故点F (x ,﹣x ﹣2); 将点F 的坐标代入抛物线表达式得: ()()122x x x m m--=-+- 解得:x =﹣2(舍去)或2m , 故点F (2m ,﹣2m ﹣2), 则)221,22BF m BE =+= ∵BC 2=BE •BF ,则())2222221m m +=+ 解得: 222m =±(舍去负值), 故2m =②当△BEC ∽△FCB 时,则BC 2=BF •EC ,∠CBF =∠ECO , 则△BFT ∽△COE , 则2TF EO BT CO m == ,则点()2,2F x x m ⎡⎤-+⎢⎥⎣⎦将点F 的坐标代入抛物线表达式得: ()()()2122x x x m m m-+=-+- 解得:x =﹣2(舍去)或m +2; 则点()22,4F m m m ⎡⎤+-+⎢⎥⎣⎦BC 2=BF •EC ,则()()()2222242222m m m m m +⎛⎫+=++++ ⎪⎝⎭化简得:m 3+4m 2+4m =m 3+4m 2+4m +16, 此方程无解; 综上,m =222+.2.(2020·浙江初三期末)边长为2的正方形OABC 在平面直角坐标系中的位置如图所示,点D 是边OA 的中点,连接CD ,点E 在第一象限,且DE DC ⊥,DE DC =.以直线AB 为对称轴的抛物线过C ,E 两点.(1)求抛物线的解析式;(2)点P 从点C 出发,沿射线CB 每秒1个单位长度的速度运动,运动时间为t 秒.过点P 作PF CD ⊥于点F ,当t 为何值时,以点P ,F ,D 为顶点的三角形与COD ∆相似?(3)点M 为直线AB 上一动点,点N 为抛物线上一动点,是否存在点M ,N ,使得以点M ,N ,D ,E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.【答案】(1)212(2)33y x =-+;(2)1t =或52t =时,以点P ,F ,D 为顶点的三角形与COD ∆相似;(3)存在,四边形MDEN 是平行四边形时,1(2,1)M ,1(4,2)N ;四边形MNDE 是平行四边形时,2(2,3)M ,2(0,2)N ;四边形NDME 是平行四边形时,322,3M ⎛⎫ ⎪⎝⎭,312,3N ⎛⎫⎪⎝⎭【详解】解:(1)过点E 作EG x ⊥轴于G 点.∵四边形OABC 是边长为2的正方形,D 是OA 的中点, ∴2OA OC ==,1OD =,90AOC DGE ∠=∠=︒. ∵90CDE ∠=︒,∴90ODC GDE ∠+∠=︒. ∵90ODC OCD ∠+∠=︒,∴OCD GDE ∠=∠.在OCD ∆和GED ∆中COD DGEOCD GDE DC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ODC GED AAS ∆∆≌,1EG OD ==,2DG OC ==. ∴点E 的坐标为(3,1).∵抛物线的对称轴为直线AB 即直线2x =,∴可设抛物线的解析式为2(2)y a x k =-+,将C 、E 点的坐标代入解析式,得421a k a k +=⎧⎨+=⎩,解得1323a k ⎧=⎪⎪⎨⎪=⎪⎩. ∴抛物线的解析式为212(2)33y x =-+; (2)①若DFP COD ∆∆∽,则PDF DCO ∠=∠,//PD OC , ∴90PDO OCP AOC ∠=∠=∠=︒,∴四边形PDOC 是矩形, ∴1PC OD ==,∴1t =;②若PFD COD ∆∆∽,则PDF DCO ∠=∠,∴PD DFCD OD=. ∴9090PCF DCO DPF PDF ∠=︒-∠=-∠=∠. ∴PC PD =,∴12DF CD =. ∵22222215CD OD OC =+=+=,∴5CD =,∴5DF =. ∵PD DFCD OD=, ∴55522PC PD ==⨯=,52t =,综上所述:1t =或52t =时,以点P ,F ,D 为顶点的三角形与COD ∆相似: (3)存在,①若以DE 为平行四边形的对角线,如图2,此时,N 点就是抛物线的顶点(2,23), 由N 、E 两点坐标可求得直线NE 的解析式为:y =13x ; ∵DM ∥EN ,∴设DM 的解析式为:y =13x +b , 将D (1,0)代入可求得b =−13,∴DM 的解析式为:y =13x −13,令x =2,则y =13,∴M (2,13);②过点C 作CM ∥DE 交抛物线对称轴于点M ,连接ME ,如图3,∵CM ∥DE ,DE ⊥CD , ∴CM ⊥CD , ∵OC ⊥CB , ∴∠OCD =∠BCM , 在△OCD 和△BCM 中BCM OCD CBM COD CO CB ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△OCD ≌△BCM (ASA ), ∴CM =CD =DE ,BM =OD =1, ∴CDEM 是平行四边形, 即N 点与C 占重合, ∴N (0,2),M (2,3);③N 点在抛物线对称轴右侧,MN ∥DE ,如图4,作NG ⊥BA 于点G ,延长DM 交BN 于点H , ∵MNED 是平行四边形,∴∠MDE =MNE ,∠ENH =∠DHB , ∵BN ∥DF ,∴∠ADH =∠DHB =∠ENH ,∴∠MNB =∠EDF , 在△BMN 和△FED 中MBN EFD BNM FDE MN DE ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△BMN ≌△FED (AAS ), ∴BM =EF =1, BN =DF =2,∴M (2,1),N (4,2); 综上所述,四边形MDEN 是平行四边形时,1(2,1)M ,1(4,2)N ; 四边形MNDE 是平行四边形时,2(2,3)M ,2(0,2)N ; 四边形NDME 是平行四边形时,322,3M ⎛⎫ ⎪⎝⎭,312,3N ⎛⎫⎪⎝⎭. 3.(2020·长沙市长郡双语实验中学初三开学考试)如图,抛物线y =ax 2﹣2ax +c 的图象经过点C (0,﹣2),顶点D 的坐标为(1,﹣83),与x 轴交于A 、B 两点.(1)求抛物线的解析式.(2)连接AC ,E 为直线AC 上一点,当△AOC ∽△AEB 时,求点E 的坐标和AEAB的值. (3)点C 关于x 轴的对称点为H ,5FC +BF 取最小值时,在抛物线的对称轴上是否存在点Q ,使△QHF 是直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由. 【答案】(1)224233y x x =--;(2)E (﹣15,﹣85)5;(3)(1133+1133-)或Q(1,2)或Q(1,﹣32).【详解】(1)由题可列方程组:2823ca a c=-⎧⎪⎨-+=-⎪⎩,解得:232ac⎧=⎪⎨⎪=-⎩∴抛物线解析式为:y=23x2﹣43x﹣2;(2)由题意和勾股定理得,∠AOC=90°,AC=5,AB=4,设直线AC的解析式为:y=kx+b,则k b0b2-+=⎧⎨=-⎩,解得:22kb=-⎧⎨=-⎩,∴直线AC的解析式为:y=﹣2x﹣2;当△AOC∽△AEB时AOCAEBSS△△=(ACAB)252=516,∵S△AOC=1,∴S△AEB=165,∴12AB×|y E|=165,AB=4,则y E=﹣85,则点E(﹣15,﹣85);由△AOC∽△AEB得:5AO AEAC AB==∴AE5 AB5=;(3)如图2,连接BF,过点F作FG⊥AC于G,则FG=CFsin∠FCG=5 CF,∴5CF+BF=GF+BF≥BE,当折线段BFG与BE重合时,取得最小值,由(2)可知∠ABE=∠ACO|y|=OBtan∠ABE=OBtan∠ACO=3×12=32,∴当y=﹣32时,即点F(0,﹣32),5CF+BF有最小值;①当点Q为直角顶点时(如图3)F(0,﹣32),∵C(0,﹣2)∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.则Rt△QHM∽Rt△FQM∴QM2=HM•FM,∴12=(2﹣m)(m+32),解得:m 133±,则点Q(1133+1133-)当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:同理可得:点Q(1,﹣32);综上,点Q的坐标为:(1,1334+)或(1,1334-)或Q(1,2)或Q(1,﹣32).4.(2019·贵州初三)如图,已知抛物线y=13x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.【答案】(1) 抛物线的解析式为y=13x2-2x+1,(2) 四边形AECP的面积的最大值是814,点P(92,﹣54);(3) Q(4,1)或(-3,1).【详解】解:(1)将A(0,1),B(9,10)代入函数解析式得:13×81+9b+c=10,c=1,解得b=−2,c=1,所以抛物线的解析式y=13x2−2x+1;(2)∵AC∥x轴,A(0,1),∴13x2−2x+1=1,解得x1=6,x2=0(舍),即C点坐标为(6,1),∵点A(0,1),点B(9,10),∴直线AB的解析式为y=x+1,设P(m,13m2−2m+1),∴E(m,m+1),∴PE=m+1−(13m2−2m+1)=−13m2+3m.∵AC⊥PE,AC=6,∴S四边形AECP=S△AEC+S△APC=12AC⋅EF+12AC⋅PF=12AC⋅(EF+PF)=12AC⋅EP=12×6(−13m2+3m)=−m2+9m.∵0<m<6,∴当m=92时,四边形AECP的面积最大值是814,此时P(9524,);(3)∵y=13x2−2x+1=13(x−3)2−2,P(3,−2),PF=y F−y p=3,CF=x F−x C=3,∴PF=CF,∴∠PCF=45∘,同理可得∠EAF=45∘,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的点Q,设Q(t,1)且AB=92,AC=6,CP=32,∵以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,CQ:AC=CP:AB,(6−t):6=32:92,解得t=4,所以Q(4,1);②当△CQP∽△ABC时,CQ:AB=CP:AC,(6−t):9232:=6,解得t=−3,所以Q(−3,1).综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形与△ABC 相似,Q点的坐标为(4,1)或(−3,1).5.(2020·河南初三)如图,在平面直角坐标系中,抛物线243y x bx c =-++与x 轴交于A 、D 两点,与y 轴交于点B ,四边形OBCD 是矩形,点A 的坐标为(1,0),点B 的坐标为(0,4),已知点E (m ,0)是线段DO 上的动点,过点E 作PE ⊥x 轴交抛物线于点P ,交BC 于点G ,交BD 于点H . (1)求该抛物线的解析式;(2)当点P 在直线BC 上方时,请用含m 的代数式表示PG 的长度;(3)在(2)的条件下,是否存在这样的点P ,使得以P 、B 、G 为顶点的三角形与△DEH 相似?若存在,求出此时m 的值;若不存在,请说明理由.【答案】(1)248433y x x =--+;(2)PG =24833m m --;(3)存在点P ,使得以P 、B 、G 为顶点的三角形与△DEH 相似,此时m 的值为﹣1或2316-.【详解】解:(1)∵抛物线243y x bx c =-++与x 轴交于点A (1,0),与y 轴交于点B (0,4), ∴40{34b c c -++==,解得8{34b c =-=. ∴抛物线的解析式为248433y x x =--+. (2)∵E (m ,0),B (0,4),PE ⊥x 轴交抛物线于点P ,交BC 于点G ,∴P (m ,248433m m --+),G (m ,4). ∴PG =224848443333m m m m --+-=--.(3)在(2)的条件下,存在点P ,使得以P 、B 、G 为顶点的三角形与△DEH 相似. ∵248433y x x =--+,∴当y =0时,2484033x x --+=,解得x =1或﹣3.∴D(﹣3,0).当点P在直线BC上方时,﹣3<m<0.设直线BD的解析式为y=kx+4,将D(﹣3,0)代入,得﹣3k+4=0,解得k=4 3 .∴直线BD的解析式为y=43x+4. ∴H(m,43m+4).分两种情况:①如果△BGP∽△DEH,那么BG GPDE EH=,即248334343m mmm m---=++.由﹣3<m<0,解得m=﹣1.②如果△PGB∽△DEH,那么PG BGDE HE=,即248334343m m mm m---=++.由﹣3<m<0,解得m=2316-.综上所述,在(2)的条件下,存在点P,使得以P、B、G为顶点的三角形与△DEH相似,此时m的值为﹣1或2316-.6.(2020·浙江初三期末)如图①,在平面直角坐标系中,抛物线2y x=的对称轴为直线l,将直线l绕着点()0,2P顺时针旋转α∠的度数后与该抛物线交于AB两点(点A在点B的左侧),点Q是该抛物线上一点(1)若45α∠=︒,求直线AB的函数表达式(2)若点p将线段分成2:3的两部分,求点A的坐标(3)如图②,在(1)的条件下,若点Q在y轴左侧,过点p作直线//l x轴,点M是直线l上一点,且位于y 轴左侧,当以P ,B ,Q 为顶点的三角形与PAM ∆相似时,求M 的坐标 【答案】(1)2y x =+;(2)234,3⎛⎫- ⎪ ⎪⎝⎭或()3,3-;(3)(1,2)-,(2,2)-,(13,2)--,(13,2)- 【详解】(1)如图①,设直线AB 与x 轴的交点为M .∵∠OP A =45°,∴OM =OP =2,即M (-2,0).设直线AB 的解析式为y =kx +b (k ≠0),将M (-2,0),P (0,2)两点坐标代入,得0(202)k bk b ⨯+⨯-⎩+⎧⎨==, 解得,12k b ⎧⎨⎩==.故直线AB 的解析式为y =x +2; (2)①:2:3AP PB = 设()22,4A a a-()23,9B a a (a >0)∵点A 、点B 在直线y =x +2上和抛物线y =x 2的图象上, ∴2422a a =-+,2932a a =+∴24212a a -=-,292=13a a -∴22429223a a a a--=-解得,13a =,23a =-(舍去) 234,3A ⎛⎫∴- ⎪ ⎪⎝⎭②:3:2AP PB = 设()23,9A a a-()22,4B a a (a >0)∵点A 、点B 在直线y =x +2上和抛物线y =x 2的图象上, ∴2932a a =-+,2422a a =+∴29213a a -=-,242=12a a -∴22924232a a a a--=- 解得:133a =,233a =-(舍去) (3,3)A ∴-综上234,33⎛⎫- ⎪ ⎪⎝⎭或()3,3-(3)45MPA ∠=︒,45QPB ∠≠︒ (1,1)A -,(2,4)B①45QBP ∠=︒此时B ,Q 关于y 轴对称,PBQ ∆为等腰直角三角形1(1,2)M ∴-2(2,2)M -②45BQP ∠=︒此时()2,4Q -满足,左侧还有Q '也满足BQP BQ P '∠=∠QQ '∴,B ,P ,Q 四点共圆,易得圆心为BQ 中点()0,4D设()2,Q x x',()0x <∵Q D BD '=()2222(0)42x x ∴-+-=()()22430xx --=0x <Q 且不与Q 重合3x ∴=(3,3)Q '∴-,2Q P '=2Q P DQ DP ''===Q DPQ '∴∆为正三角形,160302PBQ '∠=⨯=︒︒过P 作PE BQ '⊥,则2PE Q E '==2BE =26Q B '∴=∵Q PB PMA '∆∆: ∴PQ Q BPA PM''=∴262+=解得,13PM =+ ∴(13,2)M -- ∵Q PB PMA '∆∆: ∴PQ Q B PM PA''=∴2262PM +=解得,31PM =- ∴(13,2)M -综上所述,满足条件的点M 的坐标为:(1,2)-,(2,2)-,(13,2)--,(13,2)-. 7.(2020·上海初三)如图,在平面直角坐标系xOy 中,抛物线y =13x 2+mx +n 经过点B (6,1),C (5,0),且与y 轴交于点A .(1)求抛物线的表达式及点A 的坐标;(2)点P 是y 轴右侧抛物线上的一点,过点P 作PQ ⊥OA ,交线段OA 的延长线于点Q ,如果∠P AB =45°.求证:△PQA ∽△ACB ;(3)若点F 是线段AB (不包含端点)上的一点,且点F 关于AC 的对称点F ′恰好在上述抛物线上,求FF ′的长.【答案】(1)y =13x 2﹣83x +5,点A 坐标为(0,5);(2)详见解析;(372.【详解】解:(1)将B(6,1),C(5,0)代入抛物线解析式y=13x2+mx+n,得1126+n,250=5,3mm n=+⎧⎪⎨++⎪⎩解得,m=﹣83,n=5,则抛物线的解析式为:y=13x2﹣83x+5,点A坐标为(0,5);(2)∵AC=225552+=,BC=22(65)12-+=,AB=22(51)6213-+=,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,当∠P AB=45°时,点P只能在点B右侧,过点P作PQ⊥y轴于点Q,∴∠QAB+∠OAB=180°﹣∠P AB=135°,∴∠QAP+∠CAB=135°﹣∠OAC=90°,∵∠QAP+∠QP A=90°,∴∠QP A=∠CAB,又∵∠AQP=∠ACB=90°,∴△PQA∽△ACB;(3)做点B关于AC的对称点B',则A,F',B'三点共线,由于AC⊥BC,根据对称性知点B'(4,﹣1),将B'(4,﹣1)代入直线y=kx+5,∴k=﹣32,∴y AB'=﹣32x+5,联立235,218533y x y x x ⎧=+⎪⎪⎨⎪=-+⎪⎩解得,x 1=72,x 2=0(舍去),则F '(72,﹣14), 将B (6,1),B '(4,﹣1)代入直线y =mx +n , 得,61,41,k b k b +=⎧⎨+=-⎩解得,1,5.k b =⎧⎨=-⎩∴y BB '=x ﹣5,由题意知,k FF '=K BB ',∴设y FF '=x +b , 将点F '(72,﹣14)代入,得,b =﹣154,∴y FF '=x ﹣154, 联立25,354y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩解得,21,43.2x y ⎧=⎪⎪⎨⎪=⎪⎩ ∴F (214,32), 则FF '=2221731()()4224-++=724.8.(2019·江苏初三期末)如图,抛物线y =ax 2+5ax +c (a <0)与x 轴负半轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C 点,D 是抛物线的顶点,过D 作DH ⊥x 轴于点H ,延长DH 交AC 于点E ,且S △ABD :S △ACB =9:16,(1)求A 、B 两点的坐标;(2)若△DBH 与△BEH 相似,试求抛物线的解析式. 【答案】(1) 4c a =;(2) 见解析. 【解析】 【详解】解:(1)222525525(5)()4424y a x x a c a x a c =++-+=+-+ ∴525,24D a c ⎛⎫--+ ⎪⎝⎭∵C (0,c ) ∴OC =-c ,DH =254a c -+ ∵S △ABD :S △ACB =9∶16 ∴25();()9:164DH a c c OC =-+-= ∴4c a = ∴254(1)(4)y ax ax a a x x =++=++ ∴ (4,0),(1,0)A B --(2)① ∵EH ∥OC ∴△AEH ∽△ACO ∴EH AHOC AO= ∴1.544EH a =- ∴ 1.5EH a =- ∵ 2.25DH a EH =-≠ ∵△DBH 与△BEH 相似 ∴∠BDH =∠EBH , 又∵∠BHD =∠BHE =90°∴△DBH ∽△BEH ∴DH BHBH EH = ∴ 2.25 1.5a BH BH a-=- ∴63a =±(舍去正值) ∴265646y =9.(2019·湖南中考模拟)如图,顶点坐标为(2,﹣1)的抛物线y =ax 2+bx +c (a ≠0)与y 轴交于点C (0,3),与x 轴交于A 、B 两点. (1)求抛物线的表达式;(2)设抛物线的对称轴与直线BC 交于点D ,连接AC 、AD ,求△ACD 的面积;(3)点E 为直线BC 上一动点,过点E 作y 轴的平行线EF ,与抛物线交于点F .问是否存在点E ,使得以D 、E 、F 为顶点的三角形与△BCO 相似?若存在,求点E 的坐标;若不存在,请说明理由.【答案】(1)y ==x 2-4x +3;(2)AS △ACD =2;(3)①∠DFE =90°时,E 1(22); E 2(22);②∠EDF =90°时,E 3(1,2)、E 4(4,-1). 【详解】解:(1)依题意,设抛物线的解析式为 y =a (x -2)2-1,代入C (O ,3)后,得: a (0-2)2-1=3,a =1∴抛物线的解析式:y =(x -2)2-1=x 2-4x +3. (2)由(1)知,A (1,0)、B (3,0);设直线BC 的解析式为:y =kx +3,代入点B 的坐标后,得: 3k +3=0,k =-1 ∴直线BC :y =-x +3;由(1)知:抛物线的对称轴:x =2,则 D (2,1); ∴AD 22AG DG +2,AC 22OC OA +10CD 22(31)2-+2,即:AC 2=AD 2+CD 2,△ACD 是直角三角形,且AD ⊥CD ; ∴S △ACD =12AD •CD =12×2×2=2. (3)由题意知:EF ∥y 轴,则∠FED =∠OCB ,若△OCB 与△FED 相似,则有: ①∠DFE =90°,即 DF ∥x 轴;将点D 纵坐标代入抛物线的解析式中,得: x 2-4x +3=1,解得 x =2±2; 当x 2时,y =-x 2;当x =2-2时,y =-x +3=1+2;∴E 1(2+2,1-2)、E 2(2-2,1+2). ②∠EDF =90°;易知,直线AD :y =x -1,联立抛物线的解析式有: x 2-4x +3=x -1, x 2-5x +4=0, 解得 x 1=1、x 2=4; 当x =1时,y =-x +3=2; 当x =4时,y =-x +3=-1; ∴E 3(1,2)、E 4(4,-1);综上,存在符合条件的点E ,且坐标为:(2+2,1-2)、(2-2,1+2)、(1,2)或(4,-1).10.(2019·西安市铁一中学中考模拟)如图,抛物线2(0)y ax bx c a =++≠的顶点坐标为(2,1)-,并且与y轴交于点(0,3)C ,与x 轴交于A 、B 两点. (1)求抛物线的表达式.(2)如图1,设抛物线的对称轴与直线BC 交于点D ,点E 为直线BC 上一动点,过点E 作y 轴的平行线EF ,与抛物线交于点F ,问是否存在点E ,使得以D 、E 、F 为顶点的三角形与BCO V 相似.若存在,求出点E 的坐标;若不存在,请说明理由.。

中考数学压轴题分析:相似三角形的存在性问题

中考数学压轴题分析:相似三角形的存在性问题

中考数学压轴题分析:相似三角形的存在性问题几何图形的存在性问题是中考常见的问题。

本文内容选自2020年广东省中考数学压轴题,考查相似三角形的存在性问题,难度不小。

一个三角形形状大小确定,另外一个三角形有两个动点。

具体请看下面内容。

【中考真题】(2020·广东)如图,抛物线与轴交于,两点,点,分别位于原点的左、右两侧,,过点的直线与轴正半轴和抛物线的交点分别为,,.(1)求,的值;(2)求直线的函数解析式;(3)点在抛物线的对称轴上且在轴下方,点在射线上.当与相似时,请直接写出所有满足条件的点的坐标.【分析】题(1)利用待定系数法求解析式,根据BO=3AO=3,得出点,点坐标,代入求抛物线解析式。

题(2)求BD的解析式,需要确定点D的坐标。

由于题目已知BC与CD的比例关系,可以考虑过点D作x轴的垂线,得到一个A字型的相似,求出点D的横坐标,代入二次函数的解析式,然后即可得到结论。

当然,如果先设直线BD的解析式为y=kx-3k,联立二次函数的解析式,得到一元二次方程的两根x1与x2的关系即可求出k的值。

题(3)中需要确定与△ABD相似的△BPQ。

由于A、B、D三点的位置的固定的,坐标也是确定的。

那么形状与大小就确定了。

先求出3边长度,且易得∠BAD为钝角。

而∠PBQ不可能为钝角,所以只需要分两种情况讨论即可:①点B与点B对应;②点B与点D对应。

两种情况中边的比例又有两种情况,因此分为4种情况讨论。

设PQ的坐标,然后根据比例关系得出结论。

【答案】解:(1),点,点,抛物线解析式为:,,;(2)如图1,过点作于,,,,,,,点横坐标为,点坐标为,,设直线的函数解析式为:,由题意可得:,解得:,直线的函数解析式为;(3)点,点,点,,,,,对称轴为直线,直线与轴交于点,点,,,,如图2,过点作于,,,,,如图,设对称轴与轴的交点为,即点,若,,,,,当,,,点,;当,,,点,;若,,,当,,,点,;当,,,点,;综上所述:满足条件的点的坐标为,或,或,或,.。

九年级数学相似三角形的存在性(含答案)

九年级数学相似三角形的存在性(含答案)

相似三角形的存在性
一、解答题(共2道,每道11分)
1.如图,在平面直角坐标系中,抛物线与x轴交于A,B两点,与y轴交于点C,点A的坐标为(-1,0),点C的坐标为(0,-2),已知点E(m,0)是线段AB上的动点(点E不与点A,B重合),过点E作PE⊥x轴交抛物线于点P,交BC于点F.
(1)求该抛物线的解析式.
(2)当时,请求出m的值.
(3)是否存在这样的m值,使得△BEP与△ABC相似?若存在,直接写出此时m的值;若不存在,请说明理由.
答案:
解题思路:略
试题难度:三颗星知识点:存在性问题
2.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”,[a,b,c]称为“抛物线系数”.
(1)任意抛物线都有“抛物线三角形”是(填“真”或“假”)命题;
(2)若一条抛物线系数为[1,0,-2],则其“抛物线三角形”的面积为;
(3)若一条抛物线系数为[-1,2b,0],其“抛物线三角形”是个直角三角形,求该抛物线的解析式;
(4)在(3)的前提下,该抛物线的顶点为A,与x轴交于O,B两点,点P在抛物线上,过点P作PQ⊥x轴于点Q.若△PQB∽△OAB,请直接写出此时点P的坐标.
答案:
解题思路:略
试题难度:三颗星知识点:存在性问题。

2018中考数学压轴题探究专题:相似三角形的存在性问题

2018中考数学压轴题探究专题:相似三角形的存在性问题

中考数学解法探究专题相似三角形的存在性问题考题研究:相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。

难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快.解题攻略:相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。

应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).解题思路:相似三角形存在性问题需要注意的问题:1、若题目中问题为,则对应线段已经确定。

2、若题目中为与相似,则没有确定对应线段,此时有三种情况:①,②、③、3、若题目中为与,并且有、(或为90°),则确定了一条对应的线段,此时有二种情况:①、,②、需要分类讨论上述的各种情况。

例题解析1.如图,已知抛物线y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点A、B,与y轴相交于点C,且点A在点B的左侧.(1)若抛物线过点G(2,2),求实数m的值;(2)在(1)的条件下,解答下列问题:①求出△ABC的面积;②在抛物线的对称轴上找一点H,使AH+CH最小,并求出点H的坐标;(3)在第四象限内,抛物线上是否存在点M,使得以点A、B、M为顶点的三角形与△ACB相似?若存在,求m的值;若不存在,请说明理由.2.图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连结AB、AE、BE.已知tan∠CBE=,A(3,0),D(﹣1,0),E(0,3).(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是△ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE 相似,若存在,求出点P的坐标;若不存在,请说明理由.3.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)如果点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,连接BC,BE,求tan∠CBE的值;(3)点M是抛物线对称轴上一点,且△DAM和△BCE相似,求点M坐标.4.在平面直角坐标系xoy中,一块含60°角的三角板作如图摆放,斜边AB在x 轴上,直角顶点C在y轴正半轴上,已知点A(﹣1,0).(1)请直接写出点B、C的坐标:B(,)、C(,);并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(1)中的抛物线交于第一象限的点M.连接MB和MC,当△OCE∽△OBC时,判断四边形AEMC的形状,并给出证明;(3)有一动点P在(1)中的抛物线上运动,是否存在点P,以点P为圆心作圆能和直线AC和x轴同时相切?若存在,求出圆心P的坐标;若不存在,请说明理由.5.如图,在矩形ABCD中,AO=10,AB=8,分别以OC、OA所在的直线为x轴,y轴建立平面直角坐标系,点D(3,10)、E(0,6),抛物线y=ax2+bx+c经过O,D,C三点.(1)求抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使四边形MENC是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.6.如图,抛物线C1:y=ax2+bx+4与x轴交于A(﹣3,0),B两点,与y轴交于点C,点M(﹣,5)是抛物线C1上一点,抛物线C2与抛物线C1关于y轴对称,点A、B、M关于y轴的对称点分别为点A′、B′、M′.(1)求抛物线C1的解析式;(2)过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.7.如图,已知抛物线y=﹣x2+2x的顶点为A,直线y=x﹣2与抛物线交于B,C两点.(1)求A,B,C三点的坐标;(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由.8.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.9.如图,已知抛物线y=ax2﹣x+c的对称轴为直线x=1,与x轴的一个交点为A (﹣1,0),顶点为B.点C(5,m)在抛物线上,直线BC交x轴于点E.(1)求抛物线的表达式及点E的坐标;(2)联结AB,求∠B的正切值;(3)点G为线段AC上一点,过点G作CB的垂线交x轴于点M(位于点E右侧),当△CGM与△ABE相似时,求点M的坐标.10.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点B、C的坐标;(2)求△ABC的内切圆半径;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.11.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)、B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)设点P是位于直线BC下方的抛物线上一动点,过点P作y轴的平行线交直线BC于点Q,求线段PQ的最大值;(3)在(2)的条件下,抛物线的对称轴与直线BC交于点M,问是否存在点P,使以M、P、Q为顶点的三角形与△CBO相似?若存在,请求出点P的坐标;若不存在,请说明理由.12.已知某二次函数的图象与x轴分别相交于点A(﹣3,0)和点B(1,0),与y轴相交于C(0,﹣3m)(m>0),顶点为点D.(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图①,当m=2时,点P为第三象限内抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值;(3)如图②,当m取何值时,以A、D、C三点为顶点的三角形与△OBC相似?13.如图,已知抛物线y=﹣x2+bx+3与x轴相交于点A和点B(点A在点B的左侧),与y轴交于点C,且OB=OC,点D是抛物线的顶点,直线AC和BD交于点E.(1)求点D的坐标;(2)连接CD、BC,求∠DBC余切值;(3)设点M在线段CA的延长线上,如果△EBM和△ABC相似,求点M的坐标.14.如图,抛物线y=ax2+bx+3与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于C点,抛物线的对称轴l与x轴交于M点.(1)求抛物线的函数解析式;(2)设点P是直线l上的一个动点,当PA+PC的值最小时,求PA+PC长;(3)在直线l上是否存在点Q,使以M、O、Q为顶点的三角形与△AOC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.15.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴的正半轴相交于点A,与y轴相交于点B,点C在线段OA上,点D在此抛物线上,CD⊥x轴,且∠DCB=∠DAB,AB与CD相交于点E.(1)求证:△BDE∽△CAE;(2)已知OC=2,tan∠DAC=3,求此抛物线的表达式.参考答案与试题解析一.解答题(共15小题)1.如图,已知抛物线y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点A、B,与y轴相交于点C,且点A在点B的左侧.(1)若抛物线过点G(2,2),求实数m的值;(2)在(1)的条件下,解答下列问题:①求出△ABC的面积;②在抛物线的对称轴上找一点H,使AH+CH最小,并求出点H的坐标;(3)在第四象限内,抛物线上是否存在点M,使得以点A、B、M为顶点的三角形与△ACB相似?若存在,求m的值;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)把点G的坐标代入抛物线的解析式中可求得m的值;(2)①根据(1)中的m值写出抛物线的解析式,分别求抛物线与x轴和y轴的交点坐标,根据坐标特点写出AB和OC的长,利用三角形面积公式求△ABC 的面积;②由对称性可知:x=1,点A和B关于抛物线的对称轴对称,所以由轴对称的最短路径可知:连接BC与对称轴的交点即为点H,依据待定系数法可求得直线BC 的解析式,将x=1代入得:y=,则点H的坐标为(1,);(3)在第四象限内,抛物线上存在点M,使得以点A、B、M为顶点的三角形与△ACB相似,根据∠ACB与∠ABM为钝角,分两种情况考虑:①当△ACB∽△ABM 时;②当△ACB∽△MBA时,利用相似三角形的判定与性质,确定出m的值即可.【解答】解:(1)把点G(2,2)代入抛物线y=﹣(x+2)(x﹣m)中得:2=﹣(2+2)(2﹣m),m=4;(2)①由(1)得抛物线的解析式为:y=﹣(x+2)(x﹣4),当x=0时,y=﹣(0+2)(0﹣4)=2,∴C(0,2),∴OC=2,当y=0时,﹣(x+2)(x﹣4)=0,x=﹣2或4,∴A(﹣2,0),B(4,0),∴AB=2+4=6,∴S△ABC=AB?OC=×6×2=6;则△ABC的面积是6;②∵A(﹣2,0),B(4,0),由对称性得:抛物线的对称轴为:x=1,∵点A和B关于抛物线的对称轴对称,∴连接BC与对称轴的交点即为点H,此时AH+CH为最小,设直线BC的解析式为:y=kx+b,把B(4,0),C(0,2)代入得:,解得:,∴直线BC的解析式为:y=﹣x+2,当x=1时,y=,∴H(1,);(3)存在符合条件的点M,由图形可知:∠ACB与∠ABM为钝角,分两种情况考虑:①当△ACB∽△ABM时,则有,即AB2=AC?AM,∵A(﹣2,0),C(0,2),即OA=OC=2,∴∠CAB=45°,∠BAM=45°,如图2,过M作MN⊥x轴于N,则AN=MN,∴OA+ON=2+ON=MN,设M(x,﹣x﹣2)(x>0),把M坐标代入抛物线解析式得:﹣x﹣2=﹣(x+2)(x﹣m),∵x>0,∴x+2>0,∵m>0,∴x=2m,即M(2m,﹣2m﹣2),∴AM==2(m+1),∵AB2=AC?AM,AC=2,AB=m+2,∴(m+2)2=2 ?2(m+1),解得:m=2±2,∵m>0,∴m=2+2;②当△ACB∽△MBA时,则,即AB2=CB?MA,∵∠CBA=∠BAM,∠ANM=∠BOC=90°,∴△ANM∽△BOC,∴,∵OB=m,设ON=x,∴=,即MN=(x+2),令M[x,﹣(x+2)](x>0),把M坐标代入抛物线解析式得:﹣(x+2)=﹣(x+2)(x﹣m),同理解得:x=m+2,即M[m+2,﹣(m+4)],∵AB2=CB?MA,CB=,AN=m+4,MN=(m+4),∴(m+2)2=?,整理得:=0,显然不成立,综上,在第四象限内,当m=2 +2时,抛物线上存在点M,使得以点A、B、M为顶点的三角形与△ACB相似.2.图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连结AB、AE、BE.已知tan∠CBE=,A(3,0),D(﹣1,0),E(0,3).(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是△ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE 相似,若存在,求出点P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)设抛物线的解析式为y=a(x+1)(x﹣3),将点E(0,3)代入抛物线的解析式求得a的值,从而可得到抛物线的解析式;(2)过点B作BF⊥y轴,垂足为F.先依据配方法可求得点B的坐标,然后依据点A、B、E三点的坐标可知△BFE和△EAO为等腰直角三角形,从而可证明△BAE为直角三角形,接下来证明△BFE∽△EOA,由相似三角形的性质可证明=,从而可得到∠CBE=∠EAB,于是可证明∠CBA=90°,故此CB是△ABE 的外接圆的切线;(3)过点D作DP′⊥DE,交y轴与点P′,过点E作EP″⊥DE,交x轴与点P″.然后证明△DEO、△P′DO、△EP″O均与△BAE相似,然后依据相似三角形的性质分别可求得DO、OP′、OP″的长度,从而可求得点P的坐标.【解答】解:(1)设抛物线的解析式为y=a(x+1)(x﹣3).∵将点E(0,3)代入抛物线的解析式得:﹣3a=3,∴a=﹣1.∴抛物线的解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3.∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴B(1,4).(2)如图1所示:过点B作BF⊥y轴,垂足为F.∵A(3,0),E(0,3),∴OE=OA=3.∴∠OEA=45°.∵E(0,3),B(1,4),∴EF=BF.∴∠FEB=45°.∴∠BEA=90°.∴AB为△ABE的外接圆的直径.∵∠FEB=∠OEA=45°,∠EOA=∠BFE,∴△BFE∽△AOE.∴tan∠EAB==.∵tan∠CBE=,∴∠CBE=∠EAB.∵∠EAB+∠EBA=90°,∴∠CBE+∠EBA=90°,即∠CBA=90°.∴CB是△ABE的外接圆的切线.(3)如图2所示:∵且∠DOE=∠BEA=90°,∴△EOD∽△AEB.∴当点P与点O重合时,△EPD∽△AEB.∴点P的坐标为(0,0).过点D作DP′⊥DE,交y轴与点P′.∵∠P′ED=∠DEO,∠DOE=∠EDP′,∴△EDP′∽△EOD.又∵△EOD∽△AEB,∴△EDP′∽△AEB.∵∠ODP′+∠OP′D=90°,∠DEP′+∠OP′D=90°,∴∠ODP′=∠DEP′.∴=,即.∴OP′=.∴点P′的坐标为(0,﹣).过点E作EP″⊥DE,交x轴与点P″.∵∠EDP″=∠EDO,∠EOD=∠DEP″,∴△EDO∽△P″DE.∵又∵△EOD∽△AEB,∴△EDP″∽△AEB.∴∠EP″O=∠BAE.∴tan∠EP″O==,即=.∴OP″=9.∴P″(9,0).综上所述,点P的坐标为(0,0)或(0,﹣)或(9,0).3.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)如果点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,连接BC,BE,求tan∠CBE的值;(3)点M是抛物线对称轴上一点,且△DAM和△BCE相似,求点M坐标.【考点】HF:二次函数综合题.【分析】(1)利用待定系数法求抛物线,然后把解析式配成顶点式,从而得到D 的坐标;(2)先利用抛物线的对称性得到E(2,3),作EH⊥BC于H,如图1,易得△OBC为等腰直角三角形得到∠OCB=45°,BC=OB=3,接着判断△CHE为等腰直角三角形得到CH=EH=CE=,所以BH=2,然后利用正切的定义求解;(3)直线x=﹣1交x轴于F,如图2,解方程﹣x2+2x+3=0得A(﹣1,0),再利用正切定义得到tan∠AD=,所以∠CBE=∠ADF,根据相似三角形的判定方法,当点M在点D的下方时,设M(1,m),当=时,△DAM∽△BCE;当=时,△DAM∽△BEC,于是利用相似比得到关于m的方程,解方程求出m即可得到对应的M点的坐标;当点M在D点上方时,则∠ADM与∠CBE互补,则可判断△DAM和△BCE不相似,【解答】解:(1)∵抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),∴,解得,∴抛物线解析式为y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4);(2)抛物线的对称轴为直线x=1,∵点C与E点为抛物线上的对称点,∴E(2,3),作EH⊥BC于H,如图1,∵OC=OB,∴△OBC为等腰直角三角形,∴∠OCB=45°,BC=OB=3,∴∠ECB=45°,∴△CHE为等腰直角三角形,∴CH=EH=CE=,∴BH=BC﹣CH=2,在Rt△BEH中,tan∠EBH===,即tan∠CBE的值为;(3)直线x=﹣1交x轴于F,如图2,当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则A(﹣1,0)∵A(﹣1,0),D(1,4),∴AF=2,DF=4,∴tan∠ADF==,而tan∠CBE=,∴∠CBE=∠ADF,AD==2,BE==,BC=3,当点M在点D的下方时,设M(1,m),当=时,△DAM∽△BCE,即=,解得m=,此时M点的坐标为(1,);当=时,△DAM∽△BEC,即=,解得m=﹣2,此时M点的坐标为(1,﹣2);当点M在D点上方时,则∠ADM与∠CBE互补,则△DAM和△BCE不相似,综上所述,满足条件的点M坐标为(1,),(1,﹣2).4.在平面直角坐标系xoy中,一块含60°角的三角板作如图摆放,斜边AB在x 轴上,直角顶点C在y轴正半轴上,已知点A(﹣1,0).(1)请直接写出点B、C的坐标:B(3,0)、C(0,);并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(1)中的抛物线交于第一象限的点M.连接MB和MC,当△OCE∽△OBC时,判断四边形AEMC的形状,并给出证明;(3)有一动点P在(1)中的抛物线上运动,是否存在点P,以点P为圆心作圆能和直线AC和x轴同时相切?若存在,求出圆心P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)利用解直角三角形求出OC的长度,再求出OB的长度,从而可得点B、C的坐标,然后利用待定系数法求二次函数解析式解答;(2)根据相似三角形对应边成比例列式求出OE的长度,再根据点A的坐标求出AO的长度,进而∠MEB=∠AEC=60°.即可得出结论;(3)分在x轴上方和x轴上方两种情况,利用含30°的直角三角形的性质即可得出结论.【解答】解:(1)∵点A(﹣1,0),∴OA=1,由图可知,∠BAC是三角板的60°角,∠ABC是30°角,所以,OC=OA?t a n60°=1×=,OB=OC?cot30°=×=3,所以,点B(3,0),C(0,),设抛物线解析式为y=ax2+bx+c,则,解得,所以,抛物线的解析式为y=﹣x2+x+;故答案为:3,0,0,;学科网(2)四边形AEMC是菱形.∵△OCE∽△OBC,∴,即,解得OE=1,∴E(1,0)在抛物线对称轴上,∴△CAE为等边三角形,∴∠AEC=∠A=60°.又∵∠CEM=60°,∴∠MEB=∠AEC=60°.∴点C与点M关于抛物线的对称轴(x=1)对称.C(0,),∴M(2,).∴MC=AE=2,MC∥AE∴四边形AEMC是平行四边形.∵AC=CM=2∴四边形AEMC是菱形.(3)由⊙P与直线AC和x轴同时相切,易知点P在两线夹角的平分线上,①当在x轴上方时,如图,∠PAO=30°,设点P坐标为(m,﹣m2+m+),过P作PQ⊥x轴,交点为Q,则AQ=PQ,得m+1=(﹣m2+m+)解得,m1=2,m2=﹣1(舍去),所以点P坐标为(2,)②当在x轴下方时,∠PAO=60°,设点P坐标为(n,﹣n2+n+),过P'作P'Q'⊥x轴,交点为Q',则AQ'=P'Q',得(n+1)=﹣(﹣n2+n+)解得,n1=6,n2=﹣1(舍去),所以点P坐标为(6,﹣7)综上所述,存在点P满足条件,点P坐标为(2,)或(6,﹣7).5.如图,在矩形ABCD中,AO=10,AB=8,分别以OC、OA所在的直线为x轴,y轴建立平面直角坐标系,点D(3,10)、E(0,6),抛物线y=ax2+bx+c经过O,D,C三点.(1)求抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使四边形MENC是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由矩形的性质可求得C点坐标,再利用待定系数法可求得抛物线的解析式;(2)用t可分别表示出CQ、PC的长,当∠PQC=∠DAE=90°,有△ADE∽△QPC;当∠QPC=∠DAE=90°,有△ADE∽△PQC,利用相似三角形的性质可分别得到关于t的方程,可求得t的值;(3)由题意可知CE为平行四边形的对角线,根据抛物线的对称性可知当M为抛物线顶点时满足条件,再由平行四边形的性质可知线段MN被线段EC平分,可求得N点坐标.【解答】解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.∴C(8,0),∵抛物线y=ax2+bx+c过点D(3,10),C(8,0),O(0,0),∴,解得,∴抛物线的解析式为y=﹣x2+x;(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE,由(1)可得AD=3,AE=4,DE=5.而CQ=t,EP=2t,∴PC=10﹣2t.当∠PQC=∠DAE=90°,△ADE∽△QPC,∴=,即=,解得t=.当∠QPC=∠DAE=90°,△ADE∽△PQC,∴=,即=,解得t=.∴当t的或时,以P、Q、C为顶点的三角形与△ADE相似;(3)存在符合条件的M、N点,EC为平行四边形的对角线,由于抛物线的对称轴经过EC中点,若四边形MENC是平行四边形,那么M点必为抛物线顶点;则M(4,);而平行四边形的对角线互相平分,那么线段MN必被EC中点(4,3)平分,则N(4,﹣);∴存在符合条件的M、N点,且它们的坐标为M(4,),N(4,﹣).6.如图,抛物线C1:y=ax2+bx+4与x轴交于A(﹣3,0),B两点,与y轴交于点C,点M(﹣,5)是抛物线C1上一点,抛物线C2与抛物线C1关于y轴对称,点A、B、M关于y轴的对称点分别为点A′、B′、M′.(1)求抛物线C1的解析式;(2)过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)把A(﹣3,0),M(﹣,5)代入y=ax2+bx+4,得到关于a、b 的二元一次方程组,解方程组求出a、b的值,即可得到抛物线C1的解析式;(2)根据抛物线C1的解析式求出B(1,0),C(0,4).根据关于y轴对称的两点坐标特征以及抛物线的对称性得出M′(,5),B′(﹣1,0),A′(3,0),∠∠CA′A,那么AB′=2.利用待定系数法求出直线A′C的解析式,求出D(,CAA′=2).由勾股定理得出AC==5,DA′==.设P(m,0).分m<3与m>3两种情况讨论即可.【解答】解:(1)把A(﹣3,0),M(﹣,5)代入y=ax2+bx+4得,,解得,所以抛物线C1的解析式为y=﹣x2﹣x+4;学科网(2)令y=0,则﹣x2﹣x+4=0,解得x1=﹣3,x2=1,∴B(1,0),令x=0,则y=4,∴C(0,4).由题意,知M′(,5),B′(﹣1,0),A′(3,0),∠CAA′=∠CA′A,∴AB′=2.设直线A′C的解析式为y=px+q.把A′(3,0),C(0,4)代入,得,解得,∴y=﹣x+4,当x=时,y=﹣×+4=2,∴D(,2).由勾股定理得,AC==5,DA′==.设P(m,0).当m<3时,此时点P在点A′的左边,若=,即有△DA′P∽△CAB′,∴=(3﹣m),解得m=2,∴P(2,0).若=,即有△DA′P∽△B′AC,∴=(3﹣m),解得m=﹣,∴P(﹣,0).当m>3时,此时点P在点A′的右边,∵∠CB′O≠∠DA′E,∴∠AB′C≠∠DA′P,∴此情况,△DA′P与△B′AC不能相似.综上所述,存在点P(2,0)或(﹣,0)满足条件.7.如图,已知抛物线y=﹣x2+2x的顶点为A,直线y=x﹣2与抛物线交于B,C两点.(1)求A,B,C三点的坐标;(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)把抛物线解析式化为顶点式可求得A点坐标,联立直线与抛物线解析式,解方程组,可求得B、C的坐标;(2)由A、B、C三点的坐标可求得AB、BC和AC的长,可判定△ABC为直角三角形,且可得=,可证得结论;(3)设M(x,0),则P(x,﹣x2+2x),从而可表示出OM和PM的长,分=和=两种情况,分别得到关于x的方程,可求得x的值,可求得P点坐标.【解答】解:(1)∵y=﹣x2+2x=﹣(x﹣1)2+1,∴A(1,1),联立直线与抛物线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3);(2)证明:∵A(1,1),B(2,0),C(﹣1,﹣3),∴AB==,BC==3,AC==2,∴AB2+BC2=2+18=20=AC2,∴△ABC是以AC为斜边的直角三角形,∴∠ABC=∠ODC,∵C(﹣1,﹣3),∴OD=1,CD=3,∴==,∴△ODC∽△ABC;(3)设M(x,0),则P(x,﹣x2+2x),∴OM=|x|,PM=|﹣x2+2x|,∵∠OMP=∠ABC=90°,∴当以△OPM与△ABC相似时,有=或=两种情况,①当=时,则=,解得x=或x=,此时P点坐标为(,)或(,﹣);②当=时,则=,解得x=5或x=﹣1(与C点重合,舍去),此时P点坐标为(5,﹣15);综上可知存在满足条件的点P,其坐标为(,)或(,﹣)或(5,﹣15).8.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.【考点】HF:二次函数综合题.【分析】(1)观察图象可知,AD=BC=5×2=10,BE=1×10=10,ED=4×1=4,AE=10﹣4=6在Rt△ABE中,AB===8,如图1中,作PM⊥BC于M.由△ABE∽△MPB,得=,求出PM,根据△BPQ的面积y=?BQ?PM计算即可问题.(2)观察图象(1)(2),即可解决问题.(3)分三种情形讨论①P在BE上,②P在DE上,③P在CD上,分别求解即可.(4)由∠BIH=∠BCG=90°,推出B、I、C、G四点共圆,推出∠BGH=∠BCI,由△GBH∽△CBI,可得=,由此只要求出GH即可解决问题.【解答】解:(1)观察图象可知,AD=BC=5×2=10,BE=1×10=10,ED=4×1=4,AE=10﹣4=6在Rt△ABE中,AB===8,如图1中,作PM⊥BC于M.∵△ABE∽△MPB,∴=,∴=,∴PM=t,当0<t≤5时,△BPQ的面积y=?BQ?PM=?2t?t=t2.(2)由(1)可知BC=BE=10,ED=4.(3)①当P在BE上时,点C在C处时,∵BE=BC=10,∴当AE=AP=6时,△PQB与△ABE相似,∴t=6.②当点P在ED上时,观察图象可知,不存在△.③当点P在DC上时,设PC=a,当=时,∴=,∴a=,此时t=10+4+(8﹣)=14.5,∴t=14.5s时,△PQB与△ABE相似.(4)如图3中,设EG=m,GH=n,∵DE∥BC,∴=,∴=,∴m=,在Rt△BIG中,∵BG2=BI2+GI2,∴()2=62+(8+n)2,∴n=﹣8+或﹣8﹣(舍弃),∵∠BIH=∠BCG=90°,∴B、I、C、G四点共圆,∴∠BGH=∠BCI,∵∠GBF=∠HBI,∴∠GBH=∠CBI,∴△GBH∽△CBI,(也可以先证明△BFI∽△GFC,想办法推出△GFB∽△CFI,推出∠BGH=∠BCI)。

第5讲-相似三角形存在性问题参考答案

第5讲-相似三角形存在性问题参考答案

【例1】(1)抛物线:223y x x =--;(2)思路:考虑到△ABC 和△BOE 有一组公共角,公共角必是对应角.∠ABC 的两边BA 、BC 与∠OBE 的两边BO 、BE 成比例即可,故可得:BE BA BO BC =或BE BCBO BA =.解得:BE =BE 故E 点坐标为()1,2-或39,44⎛⎫- ⎪⎝⎭.当E 点坐标为()1,2-时,直线OE 解析式为2y x =-, 联立方程:2223x x x -=--,解得:1x2x = 此时Q点坐标为-或(;当E 点坐标为39,44⎛⎫- ⎪⎝⎭时,直线OE 解析式为3y x =-,联立方程:2323x x x -=--,解得:1x2x =此时Q点坐标为⎝⎭或⎝⎭.综上所述,Q点坐标为-或(或⎝⎭或⎝⎭. 说明:过程应详细分类讨论两种情况,分别求出结果.【例2】(1)21213y x x =-+;(2)1tan 2ABC ∠=; (3)思路:平行得相等角,构造两边成比例若点D 为抛物线的顶点,则D 点坐标为(3,-2), ∴直线CD 解析式为:y =x -5, 又直线AB 解析式为:y =x +9, 故CD ∥AB ,∴∠BAC =∠ACD ,故点E 在点C 左侧,考虑∠BAC 的两边AB 、AC 与CE 、CD 成比例:CD AC CE AB =或CD ABCE AC =解得:CE =9或2,故E 点坐标为(-3,1)或(4,1).【例3】(1)解析式:234y x x =-++;D 点坐标为325,24⎛⎫⎪⎝⎭.(2)由B 、C 两点坐标易求直线BC 解析式:4y x =-+,不难得出∠CPQ =∠BCO =∠OBC ,即在△CPQ 和△ABC 中,∠CPQ =∠ABC . 接下来求角两边对应成比例:表示点:设P 点坐标为(),4m m -+(0<m <4),则Q 点坐标为()2,34m m m -++,表示线段:PC ,24PQ m m =-+, 分类讨论情况一:当△CPQ ∽△ABC 时,则CP PQAB BC=,2=,解得:1125m =,20m =(舍), 对应P 点坐标为12855⎛⎫⎪⎝⎭,,9625PQ =,112965762525125PCQS=⨯⨯=.情况二:当△CPQ ∽△CBA 时,则CP PQCB BA=,245m m -+=,解得:3114m =,40m =(舍), 对应P 点坐标为115,44⎛⎫⎪⎝⎭,5516PQ =,111556052416128PCQS=⨯⨯=.综上所述,当PQC ∆与ABC ∆相似时,△PQC 的面积为576125或605128.【例4】(1)解析式:215322y x x =++; (2)连接MC ,则MC =MD ,故问题可转化为MB MC -的最大值.如图当B 、C 、M三点共线时,MB MC BC -=(3)思路:已知直角构造直角边成比例,化斜为直考虑到A (0,3)、C (-3,0)、B (-4,1),易得△ABC 是直角三角形,∠ACB =90°,且两直角边之比3ACBC=, 若△APQ 与△ABC 相似,则3AP PQ =或13AP PQ =. 考虑到AP 、PQ 均为斜线,并不容易表示,可转化比例: 过点P 作PH ⊥y 轴交y 轴于H 点,则AP AHPQ HP=表示点:设P 点坐标为215,322m m m ⎛⎫++ ⎪⎝⎭(m >0),则H 点坐标为2150,322m m ⎛⎫++ ⎪⎝⎭,表示线段:21522AH m m =+,=PH m分类讨论: 情况一:当3AP PQ =时,即3AH HP=, 由题意得:215223m m m+=,解得:m =1, 对应的P 点坐标为(1,6).情况二:当13AP PQ =时,即13AH HP =, 由题意得:2151223m m m +=,解得:133m =-(舍).综上所述,P 点坐标为(1,6). 【例5】(1)解析式:21262y x x =--; (2)考虑到∠BED =90°=∠AOC ,故只需再满足有一组锐角相等即可.情况一:当∠BDE =∠CAO 时,即1tan tan 3BDE CAO ∠=∠=, 如图,构造三垂直相似:△DNE ∽△EMB ,相似比为13DE BE =,设E 点坐标为21,262m m m ⎛⎫-- ⎪⎝⎭,则2EN m =-,21262BM m m =-++,考虑到13EN DE BM BE ==,即22113262m m m -=-++, 解得:14m =,26m =-(舍), 故E 点坐标为(4,-6).情况二:当∠BDE =∠ACO 时,即1tan tan 3BDE ACO ∠=∠=, 如图,构造三垂直相似:△DNE ∽△EMB ,相似比3DEEB=,同上设点E 坐标为21,262m m m ⎛⎫-- ⎪⎝⎭,则2EN m =-,21262BM m m =-++,考虑到3EN DEBM BE ==,即2231262m m m -=-++,解得:3x =,4x , ∴E点坐标为⎝⎭, 综上所述,E 点坐标为(4,-6)或⎝⎭.【例6】(1)解析式:221y x x =-++;(2)题目要求恰好有2个P 点,且是求m 的值,所以一定是个特殊位置.考虑到∠DCP =∠FOP ,故有两种对应关系: ①若△DCP ∽△FOP ,无论m 为何值,有且仅有一个这样的P 点使得△DCP ∽△FOP . ②若△DCP ∽△POF , 不难求得∠DPF =90°,作辅助圆:连接DF ,以DF 为直径作圆, 当圆与线段OC 相离时,P 点个数为0; 当圆与线段OC 相切时,P 点个数为1; 当圆与线段OC 相交时,P 点个数为2.∴圆与线段相切的时候,有且仅有一个P 点,使得△DCP ∽△POF .由题意得:C (0,1+m ),故D (2,1+m ), 又F (1,0),可得DF 中点E 点坐标为31,22m +⎛⎫ ⎪⎝⎭,由圆E 与y 轴相切,得:EP =EF ,即3211m =-+,21m =--(舍), 故m 的值为1-+,若△DCP ∽△FOP ,P 点坐标为⎛ ⎝⎭,若△DCP∽△POF ,P 点坐标为(.但是,若圆E 与y 轴相交,且其中一个交点与①中的点是同一点,则同样满足恰有2个P 点,使得△PCD 与△POF 相似,即此P 点既满足△DCP ∽△FOP ,也满足△DCP ∽△POF ,△DCP 与△POF 均为等腰直角三角形. OP =OF =1,PC =CD =2,故m 的值为2, 若△DCP ∽△FOP ,P 点坐标为(0,1), 若△DCP ∽△POF ,P 点坐标为(0,2).综上所述,m的值为1-+时,对应的P 点坐标为⎛ ⎝⎭或(;m 的值为2时,对应的P 点坐标为(0,1)或(0,2).。

二、相似三角形的存在性问题

二、相似三角形的存在性问题

二、相似三角形的存在性问题
DE∥BC交CA于点E.
(1)若CE=x,BD=y,求y与x的函数关系式,并写出函数的定义域;(2)在BC边上是否存在点F,使△ABC与△DEF相似?若存在,请求出线段BF的长;若不存在,请说明理由.
2.如图,二次函数y=ax2+bx(a≠0)的图象经过点A(1,4),对称轴是直线x=﹣,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD.
(1)求该二次函数的解析式;
(2)求点B坐标和坐标平面内使△EOD∽△AOB的点E的坐标;
(3)设点F是BD的中点,点P是线段DO上的动点,问PD为何值时,将△BPF沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的?
3.在平面直角坐标系XOY中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点
相交于点F.
(1)若点E与点P重合,求k的值;
(2)连接OE、OF、EF.若k>2,且△OEF的面积为△PEF的面积的2倍,求E点的坐标;
(3)是否存在点E及y轴上的点M,使得以点M、E、F为顶点的三角形与△PEF全等?若存在,求E点坐标;若不存在,请说明理由.
4.如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.
角形时,求t的值;
(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:3
AQ.
⋅BP
=。

中考数学“全等、相似三角形的存在性问题”题型解析

中考数学“全等、相似三角形的存在性问题”题型解析

中考数学“全等、相似三角形的存在性问题”题型解析解此类问题,一般分为三个步骤:第一步寻找分类标准;第二步列方程;第三步解方程并验根 .难点在于寻找分类标准,寻找恰当的分类标准,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快 .一般情况下,寻找一组相等的角或边,分情况列方程 .本节主要来讨论下全等三角形和相似三角形的存在性问题 .类型一:全等三角形存在性问题【例题1】如图,抛物线y = ax^2 + c (a ≠0)与y 轴交于点A,与x 轴交于B , C 两点(点C 在x 轴正半轴上),△ABC 为等腰直角三角形,且面积为4,现将抛物线沿BA 方向平移,平移后的抛物线过点C 时,与x 轴的另一交点为E,其顶点为F,对称轴与x 轴的交点为H .(1)求a , c 的值;(2)连接OF,试判断△OEF 是否为等腰三角形,并说明理由;(3)现将一足够大的三角板的直角顶点Q 放在射线AF 或射线HF 上,一直角边始终过点E,另一直角边与y 轴相交于点P,是否存在这样的点Q,使以点P、Q、E 为顶点的三角形与△POE 全等?若存在,求出点Q 的坐标;若不存在,请说明理由 .【解题策略】(1)关键是利用等腰直角三角形的性质及面积,求出关键点坐标,用待定系数法求解;(2)关键是求得平移后的函数抛物线,证明两边相等即可;(3)关键是分类讨论分两种情形,而情形一又分两种情形,依据全等三角形性质,寻找边角相等求解 .类型二:相似三角形存在性问题【例题2】如图,已知抛物线y = ax^2 + 8/5 x + c 与x 轴交于A , B 两点,与y 轴交于点C,且A(2,0),C(0,-4),直线l : y = -1/2 x - 4 与x 轴交于点D,点P 是抛物线y = ax^2 + 8/5 x + c 上的一动点,过点P 作PE⊥x 轴,垂足为E , 交直线l 于点F .(1)试求该抛物线表达式;(2)如图(1),若点P 在第三象限,四边形PCOF 是平行四边形,求P 点的坐标;(3)如图(2),过点P 作PH⊥y 轴, 垂足为H,连接AC .①求证:△ACD 是直角三角形;②试问当P 点横坐标为何值时,使得以点P , C , H 为顶点的三角形与△ACD 相似?【解题策略】解析本题主要应用了待定系数法求二次函数的解析式、平行四边形的性质、勾股定理的逆定理、相似三角形的性质 .依据平行四边形的对边相等列出关于m 的方程是解析问题(2)的关键;利用相似三角形的性质列出关于n 的方程是解析问题(3)的关键 .。

初三最详细相似三角形解答题以及答案

初三最详细相似三角形解答题以及答案

一.解答题(共7小题)1.(2003•常德)如图1,D是△ABC的BC边上的中点,过点D的一条直线交AC于F,交BA的延长线于E,AG∥BC 交EF于G,我们可以证明EG•DC=ED•AG成立(不要求考生证明).(1)如图2,若将图1中的过点D的一条直线交AC于F,改为交CA的延长线于F,交BA的延长线于E,改为交BA于E,其它条件不变,则EG•DC=ED•AG还成立吗?如果成立,请给出证明;如果不成立,请说出理由;(2)根据图2,请你找出EG、FD、ED、FG四条线段之间的关系,并给出证明;(3)如图3,若将图1中的过点D的一条直线交AC于F,改为交CA的反向延长线于F,交BA的延长线于E,改为交BA于E,其它条件不变,则(2)得到的结论是否成立?2.(2003•厦门)如图,BD、BE分别是∠ABC与它的邻补角∠ABP的平分线,AE⊥BE,AD⊥BD,E、D为垂足.(1)求证:四边形AEBD是矩形;(2)若=3,F、G分别为AE、AD上的点,FG交AB于点H,且=3,求证:△AHG是等腰三角形.3.(2003•金华)如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x.(1)当x为何值时,PQ∥BC;(2)当,求的值;(3)△APQ能否与△CQB相似?若能,求出AP的长;若不能,请说明理由.4.(2003•绍兴)已知∠AOB=90°,OM是∠AOB的平分线,按以下要求解答问题:(1)将三角板的直角顶点P在射线OM上移动,两直角边分别与边OA,OB交于点C,D.①在图甲中,证明:PC=PD;②在图乙中,点G是CD与OP的交点,且PG=PD,求△POD与△PDG的面积之比;(2)将三角板的直角顶点P在射线OM上移动,一直角边与边OB交于点D,OD=1,另一直角边与直线OA,直线OB分别交于点C,E,使以P,D,E为顶点的三角形与△OCD相似,在图丙中作出图形,试求OP的长.5.(2002•盐城)已知:如图,在直角三角形ABC中,∠BAC=90°,AB=AC,D为BC的中点,E为AC上一点,点G在BE上,连接DG并延长交AE于F,若∠FGE=45°.(1)求证:BD•BC=BG•BE;(2)求证:AG⊥BE;(3)若E为AC的中点,求EF:FD的值.6.(2002•黄冈)已知:如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AD和BC相交于点E,EF⊥BD,垂足为F,我们可以证明成立(不要求考生证明).若将图中的垂线改为斜交,如图,AB∥CD,AD,BC相交于点E,过点E作EF∥AB交BD于点F,则:(1)还成立吗?如果成立,请给出证明;如果不成立,请说明理由;(2)请找出S△ABD,S△BED和S△BDC间的关系式,并给出证明.7.如图,已知直角梯形ABCD中,AB∥CD,∠D=90°,AB=AC,AE⊥AC且AE=AD,连BE交AC于F.(1)如图1,若CD=AD,试猜想BF与EF的数量关系;(2)如图2,若CD≠AD,问题(1)BF与EF的数量关系是否仍然成立?若成立,请证明.若不成立,请说明理由;(3)如图2,在第(2)问的条件下,取BC中点M,问线段MF与线段BD之间是否存在某种确定的数量关系?若存在,证明你的结论,若不存在,说明理由.答案与评分标准一.解答题(共7小题)1.(2003•常德)如图1,D是△ABC的BC边上的中点,过点D的一条直线交AC于F,交BA的延长线于E,AG∥BC 交EF于G,我们可以证明EG•DC=ED•AG成立(不要求考生证明).(1)如图2,若将图1中的过点D的一条直线交AC于F,改为交CA的延长线于F,交BA的延长线于E,改为交BA于E,其它条件不变,则EG•DC=ED•AG还成立吗?如果成立,请给出证明;如果不成立,请说出理由;(2)根据图2,请你找出EG、FD、ED、FG四条线段之间的关系,并给出证明;(3)如图3,若将图1中的过点D的一条直线交AC于F,改为交CA的反向延长线于F,交BA的延长线于E,改为交BA于E,其它条件不变,则(2)得到的结论是否成立?考点:相似三角形的判定与性质。

相似三角形的存在性问题

相似三角形的存在性问题

1. 已知24AB AD ==,,90DAB ∠=,AD BC ∥(如图13).E 是射线BC 上的动点(点E 与点B 不重合),M 是线段DE 的中点.(1)设BE x =,ABM △的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (2)如果以线段AB 为直径的圆与以线段DE 为直径的圆外切,求线段BE 的长; (3)联结BD ,交线段AM 于点N ,如果以A N D ,,为顶点的三角形与BME △相似,求线段BE 的长.2.在平面直角坐标系xOy 中,将抛物线22y x =沿y 轴向上平移1个单位,再沿x 轴向右平移两个单位,平移后抛物线的顶点坐标记作A ,直线3x =与平移后的抛物线相交于B ,与直线OA 相交于C . (1)求△ABC 面积;(2)点P 在平移后抛物线的对称轴上,如果△ABP 与△ABC 相似,求所有满足条件的P 点坐标.B A D M E C图13 B A D C 备用图 B A D M E C图13B A DC 备用图24题图Oy x D C BA OyxDCBA3.如图九,△ABC 中,AB=5,AC=3,cosA=310.D 为射线BA 上的点(点D 不与点B 重合),作DE//BC 交射线CA 于点E..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域; (2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.5、如图,双曲线x y 2-=和x y 8-=在第二象限中的图像,A 点在xy 8-=的图像上,点A 的横坐标为m (m <0),AC ∥y 轴交x y 2-=图像于点C ,AB 、DC 均平行x 轴,分别交xy 2-=、xy 8-=的图像于点B 、D .(1)用m 表示A 、B 、C 、D 的坐标; (2)求证:梯形ABCD 的面积是定值; (3)若△ABC 与△ACD 相似,求m 的值.B (备用图二)B(图九)B (图九)B (备用图一)B (备用图一)B (备用图二)6.已知∠AOB=45°,P 是边OA 上一点,OP=24,以点P 为圆心画圆,圆P 交OA 于点C (点P 在O 、C 之间,如图)。

相似三角形的存在性(六)(含答案)

相似三角形的存在性(六)(含答案)

学生做题前请先回答以下问题问题1:相似三角形存在性的处理思路①分析特征:分析背景图形中的_________、_________及_________,结合图形形成因素(判定等)考虑分类.注:相似三角形存在性问题主要结合_________及不变特征考虑分类.②画图求解:往往先从____________入手,再结合背景中的不变特征分析,综合考虑对应关系和不变特征后列方程求解.注:相似三角形列方程往往借助_____________;③结果验证:回归点的运动范围,画图或推理,验证结果.问题2:相似三角形的判定有哪些?相似三角形的存在性(六)一、单选题(共5道,每道20分)1.如图,在平面直角坐标系xOy中,点A的坐标为(-2,2),点B的坐标为(6,6),抛物线经过A,O,B三点,M为线段OB下方的抛物线上一动点(不与点O,B重合).(1)设△BOM的面积为S,则S的最大值为( )A. B.C. D.12答案:B解题思路:试题难度:三颗星知识点:二次函数之面积问题2.(上接第1题)如图,当△BOM的面积最大时,过点A作x轴的平行线,过点M作y轴的平行线交于点H,则的值为( )A.4B.C. D.答案:B解题思路:试题难度:三颗星知识点:锐角三角函数的定义3.(上接第1,2题)(3)当△BOM的面积最大时,若P为射线OM上一点,且△BOP与△OAM 相似,则点P的坐标为( )A. B. C. D.答案:C解题思路:试题难度:三颗星知识点:相似三角形的存在性4.如图,已知抛物线的图象与x轴的一个交点为B(5,0).另一个交点为A,且与y轴交于点C(0,5).(1)直线BC与抛物线的解析式为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:二次函数与几何综合5.(上接第4题)(2)取BC的中点为点N,过点N作MN∥y轴交抛物线于一点M.若点P 是坐标轴上一点,则以C,B,P为顶点的三角形与△CMN相似的点P的坐标为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的存在性。

(完整word版)九年级下数学相似三角形经典习题(含答案)

(完整word版)九年级下数学相似三角形经典习题(含答案)

九年级下数学相似三角形经典习题例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,如果2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 下列命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似. (3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,并且点D 、点E 和ABC ∆的一个顶点组成的小三角形与ABC ∆相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m ).例8 格点图中的两个三角形是否是相似三角形,说明理由.例9 根据下列各组条件,判定ABC ∆和C B A '''∆是否相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A . (2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长分别为5、12、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.例14.如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确定BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),并且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)如果有一个正方形的边在AB 上,另外两个顶点分别在AC ,BC 上,求这个正方形的面积.相似三角形经典习题答案例1. 解 ①、⑤、⑥相似,②、⑦相似,③、④、⑧相似例2. 解 ABCD 是平行四边形,∴CD AB CD AB =,//,∴AEF ∆∽CDF ∆,又2:1:=EB AE ,∴3:1:=CD AE ,∴AEF ∆与CDF ∆的周长的比是1:3. 又)cm (6,)31(22==∆∆∆AEF CDF AEF S S S ,∴)cm (542=∆CDF S . 例3 分析 由于ABD ∆∽ACE ∆,则CAE BAD ∠=∠,因此DAE BAC ∠=∠,如果再进一步证明AECAAD BA =,则问题得证.证明 ∵ABD ∆∽ACE ∆,∴CAE BAD ∠=∠.又DAC BAD BAC ∠+∠=∠ ,∴CAE DAC DAE ∠+∠=∠, ∴DAE BAC ∠=∠.∵ABD ∆∽ACE ∆,∴AEACAD AB =. 在ABC ∆和ADE ∆中,∵AEACAD AB ADE BAC =∠=∠,,∴ABC ∆∽ADE ∆ 例4.分析 (1)不正确,因为在直角三角形中,两个锐角的大小不确定,因此直角三角形的形状不同.(2)也不正确,等腰三角形的顶角大小不确定,因此等腰三角形的形状也不同. (3)正确.设有等腰直角三角形ABC 和C B A ''',其中︒='∠=∠90C C ,则︒='∠=∠︒='∠=∠45,45B B A A ,设ABC ∆的三边为a 、b 、c ,C B A '''∆的边为c b a '''、、, 则a c b a a c b a '=''='==2,,2,,∴a ac c b b a a '=''=',,∴ABC ∆∽C B A '''∆. (4)也正确,如ABC ∆与C B A '''∆都是等边三角形,对应角相等,对应边都成比例,因此ABC ∆∽C B A '''∆.答:(1)、(2)不正确.(3)、(4)正确. 例5.解:画法略.例6.分析 本题所叙述的内容可以画出如下图那样的几何图形,即60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=CE 米,求BC .由于ADF ∆∽ACAF EC DF AEC =∆,,又ACF ∆∽ABC ∆,∴BC GFEC DF =,从而可以求出BC 的长. 解 EC DF EC AE //,⊥ ,∴EAC DAF AEC ADF ∠=∠∠=∠,,∴ADF ∆∽AEC ∆.∴ACAFEC DF =. 又EC BC EC GF ⊥⊥,,∴ABC AGF ACB AFG BC GF ∠=∠∠=∠,,//, ∴AGF ∆∽ABC ∆,∴BC GF AC AF =,∴BCGFEC DF =.又60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=EC 米,∴6=BC 米.即电线杆的高为6米. 例7.分析 根据物理学定律:光线的入射角等于反射角,这样,BCA ∆与MNA ∆的相似关系就明确了.解 因为MAN BAC AN MN CA BC ∠=∠⊥⊥,,,所以BCA ∆∽MNA ∆.所以AC AN BC MN ::=,即5.1:206.1:=MN .所以3.215.1206.1≈÷⨯=MN (m ). 说明 这是一个实际应用问题,方法看似简单,其实很巧妙,省却了使用仪器测量的麻烦.例8.分析 这两个图如果不是画在格点中,那是无法判断的.实际上格点无形中给图形增添了条件——长度和角度.解 在格点中BC AB EF DE ⊥⊥,,所以︒=∠=∠90B E , 又4,2,2,1====AB BC DE EF .所以21==BC EF AB DE .所以DEF ∆∽ABC ∆. 说明 遇到格点的题目一定要充分发现其中的各种条件,勿使遗漏.例9.解 (1)因为7128cm 4cm ,7117.5cm 2.5cm ,7124.5cm 3.5cm ==''==''==''A C CA C B BC B A AB ,所以ABC ∆∽C B A '''∆; (2)因为︒=∠-∠-︒=∠41180B A C ,两个三角形中只有A A '∠=∠,另外两个角都不相等,所以ABC ∆与C B A '''∆不相似;(3)因为12,=''='''∠=∠C B BC B A AB B B ,所以ABC ∆相似于C B A '''∆.例10.解 (1)ADE ∆∽ABC ∆ 两角相等; (2)ADE ∆∽ACB ∆ 两角相等;(3)CDE ∆∽CAB ∆ 两角相等; (4)EAB ∆∽ECD ∆ 两边成比例夹角相等; (5)ABD ∆∽ACB ∆ 两边成比例夹角相等; (6)ABD ∆∽ACB ∆ 两边成比例夹角相等.例11.分析 有一个角是65°的等腰三角形,它的底角是72°,而BD 是底角的平分线,∴︒=∠36CBD ,则可推出ABC ∆∽BCD ∆,进而由相似三角形对应边成比例推出线段之间的比例关系.证明 AC AB A =︒=∠,36 ,∴︒=∠=∠72C ABC . 又BD 平分ABC ∠,∴︒=∠=∠36CBD ABD .∴BC BD AD ==,且ABC ∆∽BCD ∆,∴BC CD AB BC ::=,∴CD AB BC ⋅=2,∴CD AC AD ⋅=2. 说明 (1)有两个角对应相等,那么这两个三角形相似,这是判断两个三角形相似最常用的方法,并且根据相等的角的位置,可以确定哪些边是对应边.(2)要说明线段的乘积式cd ab =,或平方式bc a =2,一般都是证明比例式,b dc a =,或caa b =,再根据比例的基本性质推出乘积式或平方式.例12分析 由ABC ∆的三边长可以判断出ABC ∆为直角三角形,又因为ABC ∆∽C B A '''∆,所以C B A '''∆也是直角三角形,那么由C B A '''∆的最大边长为26,可以求出相似比,从而求出C B A '''∆的两条直角边长,再求得C B A '''∆的面积.解 设ABC ∆的三边依次为,13,12,5===AB AC BC ,则222AC BC AB += ,∴︒=∠90C .又∵ABC ∆∽C B A '''∆,∴︒=∠='∠90C C .212613==''=''=''B A AB C A AC C B BC , 又12,5==AC BC ,∴24,10=''=''C A C B . ∴12010242121=⨯⨯=''⨯''=C B C A S .例13.分析 判断方法是否可行,应考虑利用这种方法加之我们现有的知识能否求出旗杆的高.按这种测量方法,过F作AB FG ⊥于G ,交CE 于H ,可知AGF ∆∽EHF ∆,且GF 、HF 、EH 可求,这样可求得AG ,故旗杆AB 可求.解 这种测量方法可行.理由如下:设旗杆高x AB =.过F 作AB FG ⊥于G ,交CE 于H (如图).所以AGF ∆∽EHF ∆.因为3,30327,5.1==+==HF GF FD ,所以5.1,25.15.3-==-=x AG EH .由AGF ∆∽EHF ∆,得HF GF EH AG =,即33025.1=-x ,所以205.1=-x ,解得5.21=x (米) 所以旗杆的高为21.5米.说明 在具体测量时,方法要现实、切实可行. 例14. 解:︒=∠=∠∠=∠90,ECD ABC EDC ADB ,∴ABD ∆∽ECD ∆,1006050120,=⨯=⨯==CD EC BD AB CD BD EC AB (米),答:两岸间AB 大致相距100米. 例15. 答案:1506=AB 米,30750=BD 步,(注意:AK FEFHKE AK CD DG KC ⋅=⋅=,.) 例16. 分析:要求BC 的长,需画图来解,因AB 、AC 都大于高AD ,那么有两种情况存在,即点D 在BC 上或点D 在BC 的延长线上,所以求BC 的长时要分两种情况讨论.求正方形的面积,关键是求正方形的边长. 解:(1)如上图,由AD ⊥BC ,由勾股定理得BD =3,DC =1,所以BC =BD +DC =3+1=4. 如下图,同理可求BD =3,DC =1,所以BC =BD -CD =3-1=2.(2)如下图,由题目中的图知BC =4,且162)32(2222=+=+AC AB ,162=BC ,∴222BC AC AB =+.所以△ABC 是直角三角形.由AE G F 是正方形,设G F =x ,则FC =2-x , ∵G F ∥AB ,∴AC FCAB GF =,即2232x x -=. ∴33-=x ,∴3612)33(2-=-=AEGF S 正方形. 如下图,当BC =2,AC =2,△ABC 是等腰三角形,作CP ⊥AB 于P ,∴AP =321=AB ,在Rt △APC 中,由勾股定理得CP =1, ∵GH ∥AB ,∴△C GH ∽△CBA ,∵x x x -=132,32132+=x ∴121348156)32132(2-=+=GFEH S 正方形 因此,正方形的面积为3612-或121348156-.。

相似三角形的存在性(一)(含答案)

相似三角形的存在性(一)(含答案)

学生做题前请先回答以下问题问题1:相似三角形存在性的处理思路①分析特征:分析背景图形中的_________、_________及_________,结合图形形成因素(判定等)考虑分类.注:相似三角形存在性问题主要结合_________及不变特征考虑分类.②画图求解:往往先从____________入手,再结合背景中的不变特征分析,综合考虑对应关系和不变特征后列方程求解.注:相似三角形列方程往往借助_____________;③结果验证:回归点的运动范围,画图或推理,验证结果.问题2:相似三角形的判定有哪些?相似三角形的存在性(一)一、单选题(共4道,每道25分)1.如图,已知二次函数的图象经过三点,直线与x轴交于点D,与抛物线交于点E.连接AC,BE,若△BDE与△AOC相似,则点E的坐标为( )A.B.C.D.答案:A解题思路:试题难度:三颗星知识点:二次函数背景下的存在性问题2.如图,抛物线过A,B两点,把△AOB沿y轴翻折,点A落到点C处.M 为第一象限内的抛物线上一点,过点M作MN垂直于x轴,垂足为点N.若以M,O,N为顶点的三角形与△BOC相似,则点M的坐标为( )A.B.C.D.答案:B解题思路:试题难度:三颗星知识点:二次函数背景下的存在性问题3.如图,抛物线与x轴交于点,与y轴交于点,连接BC.N 为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t,且,当△OPN∽△COB时,点N的坐标为( )A.B.C.D.答案:B解题思路:试题难度:三颗星知识点:二次函数背景下的存在性问题4.如图,在平面直角坐标系中,抛物线与x轴交于AD两点,与y轴交于点B.四边形OBCD是矩形,已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.当点P在直线BC上方时,若以P,B,G为顶点的三角形与△DEH相似,则m的值为( )A.-1B.C.-1或-3D.答案:B解题思路:试题难度:三颗星知识点:二次函数背景下的存在性问题。

相似三角形的存在性(分析对应关系)(含答案)

相似三角形的存在性(分析对应关系)(含答案)

学生做题前请先回答以下问题问题1:图形间关系的存在性问题,关键是___________,找准_________,根据__________尝试分类、画图,结合________探索解决一种情形,再类比处理其他情形.问题2:相似三角形存在性问题处理思路是什么?相似三角形的存在性(分析对应关系)一、单选题(共4道,每道25分)1.如图,二次函数的图象经过点A(1,4),对称轴是直线,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD.(1)该二次函数的解析式及点B的坐标为( )A.,B.,C.,D.,,答案:A解题思路:试题难度:三颗星知识点:二次函数的表达式2.(上接第1题)(2)坐标平面内使△EOD∽△AOB的点E的坐标为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的存在性3.如图,在平面直角坐标系xOy中,点A的坐标为(-2,2),点B的坐标为(6,6),抛物线经过A,O,B三点,M为线段OB下方的抛物线上一动点(不与点O,B重合).(1)设△BOM的面积为S,则S的最大值为( )A. B. C. D.答案:B解题思路:试题难度:三颗星知识点:铅垂法4.(上接第3题)(2)当△BOM的面积最大时,连接AM,若P为坐标平面内一点,且△BOP∽△OAM,则点P的坐标为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:相似三角形的存在性学生做题后建议通过以下问题总结反思问题1:结合试题4分析,如何分析相似三角形的存在性问题?问题2:图形间关系的存在性问题,关键是___________,找准_________,根据__________尝试分类、画图,结合________探索解决一种情形,再类比处理其他情形.问题3:相似三角形存在性问题处理思路是什么?。

数学人教版九年级下册相似三角形的存在性问题

数学人教版九年级下册相似三角形的存在性问题

相似三角形的存在性问题
例1、已知,抛物线
342-+-=x x y 与x 轴交于A 、B,与y 轴交于点D ,顶点为C.
在y 轴负半轴上能否找到一点P ,使得以P 、O 、B 为顶点的三角形与△AOD 相似,求符合条件的点P 的坐标。

练习1、已知,抛物线
342
-+-=x x y 与x 轴交于A 、B,与y 轴交于点D ,顶点为C.
在x 轴下方A 点右侧抛物线上能否找到一点M ,过M 作MN ⊥ x 轴于点N ,使得以A 、M 、N 为顶点的三角形与△BCD 相似,求符合条件的点M 的坐标。

例2:抛物线1)2(22
+-=x y 的图像如图所示,直线x=3与抛物线相交于点B ,过原点O 与抛物线的顶点A 的直线与x=3相交于点C ,在抛物线的对称轴上是否存在点P ,使得△ABP 与△ABC 相似。

存在求出P点坐标。

y O x D
A B C y O x
D
A B
C
练习2 点D 在x 轴的正半轴上,若以点D 、C 、B 组成的三角形与△OAB 相似,试求点D 坐标.
课堂小结:
用“SAS ”解相似三角形存在性问题的解题步骤: 1、 2、
3、 课后思考题:
如图,在平面直角坐标系xOy 中,抛物线
过点A(1,3)、B(0,1),过
点A 作x 轴的平行线交抛物线于另一点C(4,3) ,在y 轴上取一点P ,使△ABP 与△ABC 相似,求满足条件的所有P 点坐标。

y O x
A B
C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形的存在性问题【考题研究】相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。

难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快.【解题攻略】相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。

应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).【解题类型及其思路】相似三角形存在性问题需要注意的问题:1、若题目中问题为△ABC ∽△DEF ,则对应线段已经确定。

2、若题目中为△ABC 与 △DEF 相似,则没有确定对应线段,此时有三种情况:①△ABC ∽△DEF , ②△ABC ∽△FDE 、 ③△ABC ∽△EFD 、3、若题目中为△ABC 与 △DEF 并且有 ∠A 、 ∠D (或为90°),则确定了一条对应的线段,此时有二种情况:①、△ABC ∽△DEF ,②、△ABC ∽△DFE 需要分类讨论上述的各种情况。

【典例指引】类型一 【确定符合相似三角形的点的坐标】典例指引1.(2019·贵州中考真题)如图,抛物线212y x bx c =++与直线132y x =+分别相交于A ,B 两点,且此抛物线与x 轴的一个交点为C ,连接AC ,BC .已知(0,3)A ,(3,0)C -.(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使MB MC-的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ PA⊥交y轴于点Q,问:是否存在点P 使得以A,P,Q为顶点的三角形与ABC∆相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【举一反三】(2019·海南模拟)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线335y x=+相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.类型二 【确定符合相似三角形的动点的运动时间或路程等】典例指引2.(2019年广东模拟)如图,在矩形OABC 中,AO=10,AB=8,沿直线CD 折叠矩形OABC 的一边BC ,使点B 落在OA 边上的点E 处,分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系,抛物线2y ax bx c =++经过O ,D ,C 三点.(1)求AD 的长及抛物线的解析式;(2)一动点P 从点E 出发,沿EC 以每秒2个单位长的速度向点C 运动,同时动点Q 从点C 出发,沿CO 以每秒1个单位长的速度向点O 运动,当点P 运动到点C 时,两点同时停止运动,设运动时间为t 秒,当t 为何值时,以P ,Q ,C 为顶点的三角形与△ADE 相似?(3)点N 在抛物线对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使以M ,N ,C ,E 为顶点的四边形是平行四边形?若存在,请直接写出点M 与点N 的坐标(不写求解过程);若不存在,请说明理由.【举一反三】(2019·湖南模拟)如图,已知直线y=-x+3与x 轴、y 轴分别交于A ,B 两点,抛物线y=-x 2+bx+c 经过A ,B 两点,点P 在线段OA 上,从点O 出发,向点A 以1个单位/秒的速度匀速运动;同时,点Q 在线段AB 上,从点A 出发,向点B 以2个单位/秒的速度匀速运动,连接PQ ,设运动时间为t 秒.(1)求抛物线的解析式;(2)问:当t 为何值时,△APQ 为直角三角形;(3)过点P 作PE ∥y 轴,交AB 于点E ,过点Q 作QF ∥y 轴,交抛物线于点F ,连接EF ,当EF ∥PQ 时,求点F 的坐标;(4)设抛物线顶点为M ,连接BP ,BM ,MQ ,问:是否存在t 的值,使以B ,Q ,M 为顶点的三角形与以O ,B ,P 为顶点的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.类型三 【确定符合相似三角形的函数解析式或字母参数的值】典例指引3.(2019·江苏中考真题)如图,二次函数245y x x =-++图象的顶点为D ,对称轴是直线l ,一次函数215y x =+的图象与x 轴交于点A ,且与直线DA 关于l 的对称直线交于点B .(1)点D 的坐标是 ______;(2)直线l 与直线AB 交于点C ,N 是线段DC 上一点(不与点D 、C 重合),点N 的纵坐标为n .过点N 作直线与线段DA 、DB 分别交于点P ,Q ,使得DPQ ∆与DAB ∆相似.①当275n =时,求DP 的长; ②若对于每一个确定的n 的值,有且只有一个DPQ ∆与DAB ∆相似,请直接写出n 的取值范围 ______.【举一反三】(2018武汉中考)抛物线L :y=﹣x 2+bx+c 经过点A (0,1),与它的对称轴直线x=1交于点B . (1)直接写出抛物线L 的解析式;(2)如图1,过定点的直线y=kx ﹣k+4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值;(3)如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标.【新题训练】1.(2019·长沙市开福区青竹湖湘一外国语学校初三月考)如图1,已知抛物线;C 1:y =﹣1m(x +2)(x ﹣m )(m >0)与x 轴交于点B 、C (点B 在点C 的左侧),与y 轴交于点E .(1)求点B 、点C 的坐标;(2)当△BCE 的面积为6时,若点G 的坐标为(0,b ),在抛物线C 1的对称轴上是否存在点H ,使得△BGH 的周长最小,若存在,则求点H 的坐标(用含b 的式子表示);若不存在,则请说明理由;(3)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.2.(2020·浙江初三期末)边长为2的正方形OABC 在平面直角坐标系中的位置如图所示,点D 是边OA 的中点,连接CD ,点E 在第一象限,且DE DC ⊥,DE DC =.以直线AB 为对称轴的抛物线过C ,E 两点.(1)求抛物线的解析式;(2)点P 从点C 出发,沿射线CB 每秒1个单位长度的速度运动,运动时间为t 秒.过点P 作PF CD ⊥于点F ,当t 为何值时,以点P ,F ,D 为顶点的三角形与COD ∆相似?(3)点M 为直线AB 上一动点,点N 为抛物线上一动点,是否存在点M ,N ,使得以点M ,N ,D ,E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.3.(2020·长沙市长郡双语实验中学初三开学考试)如图,抛物线y =ax 2﹣2ax +c 的图象经过点C (0,﹣2),顶点D 的坐标为(1,﹣83),与x 轴交于A 、B 两点.(1)求抛物线的解析式.(2)连接AC ,E 为直线AC 上一点,当△AOC ∽△AEB 时,求点E 的坐标和AEAB的值. (3)点C 关于x 轴的对称点为H ,当55FC +BF 取最小值时,在抛物线的对称轴上是否存在点Q ,使△QHF 是直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由. 4.(2019·贵州初三)如图,已知抛物线y=13x 2+bx+c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点. (1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与△ABC 相似,若存在,求出点Q 的坐标,若不存在,请说明理由.5.(2020·河南初三)如图,在平面直角坐标系中,抛物线243y x bx c =-++与x 轴交于A 、D 两点,与y 轴交于点B ,四边形OBCD 是矩形,点A 的坐标为(1,0),点B 的坐标为(0,4),已知点E (m ,0)是线段DO 上的动点,过点E 作PE ⊥x 轴交抛物线于点P ,交BC 于点G ,交BD 于点H . (1)求该抛物线的解析式;(2)当点P 在直线BC 上方时,请用含m 的代数式表示PG 的长度;(3)在(2)的条件下,是否存在这样的点P ,使得以P 、B 、G 为顶点的三角形与△DEH 相似?若存在,求出此时m 的值;若不存在,请说明理由.6.(2020·浙江初三期末)如图①,在平面直角坐标系中,抛物线2yx 的对称轴为直线l ,将直线l 绕着点()0,2P 顺时针旋转α∠的度数后与该抛物线交于AB 两点(点A 在点B 的左侧),点Q 是该抛物线上一点(1)若45α∠=︒,求直线AB 的函数表达式 (2)若点p 将线段分成2:3的两部分,求点A 的坐标(3)如图②,在(1)的条件下,若点Q 在y 轴左侧,过点p 作直线//l x 轴,点M 是直线l 上一点,且位于y 轴左侧,当以P ,B ,Q 为顶点的三角形与PAM ∆相似时,求M 的坐标 7.(2020·上海初三)如图,在平面直角坐标系xOy 中,抛物线y =13x 2+mx +n 经过点B (6,1),C (5,0),且与y 轴交于点A .(1)求抛物线的表达式及点A 的坐标;(2)点P 是y 轴右侧抛物线上的一点,过点P 作PQ ⊥OA ,交线段OA 的延长线于点Q ,如果∠PAB =45°.求证:△PQA ∽△ACB ;(3)若点F 是线段AB (不包含端点)上的一点,且点F 关于AC 的对称点F ′恰好在上述抛物线上,求FF ′的长.8.(2019·江苏初三期末)如图,抛物线y=ax2+5ax+c(a<0)与x轴负半轴交于A、B两点(点A在点B的左侧),与y轴交于C点,D是抛物线的顶点,过D作DH⊥x轴于点H,延长DH交AC于点E,且S△ABD:S△ACB=9:16,(1)求A、B两点的坐标;(2)若△DBH与△BEH相似,试求抛物线的解析式.9.(2019·湖南中考模拟)如图,顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的表达式;(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求点E的坐标;若不存在,请说明理由.10.(2019·西安市铁一中学中考模拟)如图,抛物线2(0)y ax bx c a =++≠的顶点坐标为(2,1)-,并且与y轴交于点(0,3)C ,与x 轴交于A 、B 两点. (1)求抛物线的表达式.(2)如图1,设抛物线的对称轴与直线BC 交于点D ,点E 为直线BC 上一动点,过点E 作y 轴的平行线EF ,与抛物线交于点F ,问是否存在点E ,使得以D 、E 、F 为顶点的三角形与BCO 相似.若存在,求出点E 的坐标;若不存在,请说明理由.11.(2019·广东中考模拟)如图,在平面直角坐标系xoy 中,直线122y x =+与x 轴交于点A ,与y 轴交于点C .抛物线y=ax 2+bx+c 的对称轴是32x =-且经过A 、C 两点,与x 轴的另一交点为点B . (1)①直接写出点B 的坐标;②求抛物线解析式.(2)若点P 为直线AC 上方的抛物线上的一点,连接PA ,PC .求△PAC 的面积的最大值,并求出此时点P 的坐标.(3)抛物线上是否存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似?若存在,直接写出点M 的坐标;若不存在,请说明理由.12.(2019·江苏泗洪姜堰实验学校中考模拟)如图,抛物线2481293y x x =--与x 轴交于A 、C 两点,与y 轴交于B 点.(1)求△AOB 的外接圆的面积;(2)若动点P 从点A 出发,以每秒2个单位沿射线AC 方向运动;同时,点Q 从点B 出发,以每秒1个单位沿射线BA 方向运动,当点P 到达点C 处时,两点同时停止运动.问当t 为何值时,以A 、P 、Q 为顶点的三角形与△OAB 相似?(3)若M 为线段AB 上一个动点,过点M 作MN 平行于y 轴交抛物线于点N .①是否存在这样的点M ,使得四边形OMNB 恰为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.②当点M 运动到何处时,四边形CBNA 的面积最大?求出此时点M 的坐标及四边形CBAN 面积的最大值.13.(2019·陕西中考真题)在平面直角坐标系中,已知抛物线L :()2y ax c a x c =+-+经过点A (-3,0)和点B (0,-6),L 关于原点O 对称的抛物线为L '. (1)求抛物线L 的表达式;(2)点P 在抛物线L '上,且位于第一象限,过点P 作PD ⊥y 轴,垂足为D.若△POD 与△AOB 相似,求符合条件的点P 的坐标.14.(2019·湖南中考真题)如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点. (1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.15.(2018·四川中考真题)如图,抛物线y=12x 2+bx+c 与直线y=12x+3交于A ,B 两点,交x 轴于C 、D 两点,连接AC 、BC ,已知A (0,3),C (﹣3,0). (1)求抛物线的解析式;(2)在抛物线对称轴l 上找一点M ,使|MB ﹣MD|的值最大,并求出这个最大值;(3)点P 为y 轴右侧抛物线上一动点,连接PA ,过点P 作PQ ⊥PA 交y 轴于点Q ,问:是否存在点P 使得以A ,P ,Q 为顶点的三角形与△ABC 相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.16.(2019·湖南中考真题)如图1,△AOB 的三个顶点A 、O 、B 分别落在抛物线F 1:21733y x x =+的图象上,点A 的横坐标为﹣4,点B 的纵坐标为﹣2.(点A 在点B 的左侧) (1)求点A 、B 的坐标;(2)将△AOB 绕点O 逆时针旋转90°得到△A 'OB ',抛物线F 2:24y ax bx =++经过A '、B '两点,已知点M为抛物线F 2的对称轴上一定点,且点A '恰好在以OM 为直径的圆上,连接OM 、A 'M ,求△OA 'M 的面积; (3)如图2,延长OB '交抛物线F 2于点C ,连接A 'C ,在坐标轴上是否存在点D ,使得以A 、O 、D 为顶点的三角形与△OA 'C 相似.若存在,请求出点D 的坐标;若不存在,请说明理由.相似三角形的存在性问题【考题研究】相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。

相关文档
最新文档