初中数学专题03相似三角形的存在性问题(原卷版)

合集下载

专题03 动点引起的相似三角形存在性问题(解析版)

专题03 动点引起的相似三角形存在性问题(解析版)

专题04 动点引起的相似三角形存在性问题【相似三角形存在性】以A 、B 、C 为顶点的三角形与已知△DEF 相似,其中,∠ABC =∠DEF 分类讨论:①△ABC ∽△DEF ;②△CBA ∽△DEF 可得到:AB BC DE EF =;AB BC EF DE=,特殊地,当∠ABC =∠DEF =90°时,可借助tan ∠BAC =tan ∠DFE 或tan ∠BCA =tan ∠DFE 解答问题.【一题多解 · 典例剖析】例题1. (2021·山东省济宁市中考)如图,直线1322y x =-+分别交x 轴、y 轴于点A ,B ,过点A 的抛物线2y x bx c =-++与x 轴的另一交点为C ,与y 轴交于点()0,3D ,抛物线的对称轴l 交AD 于E ,连接OE 交AB于点F .(1)求抛物线解析式; (2)求证:OE AB ⊥;(3)P 为抛物线上的一动点,直线PO 交AD 于点M ,是否存在这样的点P ,使以A ,O ,M 为顶点的三角形与ACD △相似?若存在,求点P 的横坐标;若不存在,请说明理由.【答案】(1)y =-x 2+2x +3;(2)见解析;(3)存在,点P 113-±或±3 【解析】解:(1)∵直线1322y x =-+分别交x 轴、y 轴于点A ,B∴A (3,0),B (0,32), 又抛物线经过A (3,0),D (0,3),∴22033300b c c ⎧=-++⎨=-++⎩, 解得:23b c =⎧⎨=⎩即抛物线的解析式为y =-x 2+2x +3;(2)由y =-x 2+2x +3得,抛物线对称轴为x =1 设直线AD 的解析式为:y =kx +a , 将A (3,0),D (0,3)代入得:303k b b +=⎧⎨=⎩, 解得13k b =-⎧⎨=⎩即直线AD 的解析式为:y =-x +3, ∴E (1,2),G (1,0),在Rt △OEG 中,知tan ∠OEG =12OG EG = , 在Rt △OAB 中,tan ∠BAO =12OB OA =, ∴∠OEG =∠BAO , ∵∠OEG +∠EOG =90° ∴∠BAO +∠EOG =90° 即OE ⊥AB . (3)存在.∵A (3,0),抛物线的对称轴为直线x =1,∴C (-1,0), ∴AC =3-(-1)=4, ∵OA =OD =3,∠AOD =90°, ∴232AD OA ==,设直线CD 解析式为y =mx +n ,则:03m n n -+=⎧⎨=⎩,解得33m n =⎧⎨=⎩∴直线CD 解析式为y =3x +3, 易知,∠MAO =∠COD , 分类讨论:①当△AOM ∽△ACD 时,方法一:解析式法欲求P 点坐标,需求直线OP 的解析式,再与抛物线解析式联立即可. 可知,OM ∥CD即直线OP 的解析式为:y =3x , 联立y =3x ,y =-x 2+2x +3得: x 113-±即P 113-±方法二:比例法 易知AM AN AD OA =,AM AOAD AC=,∴=AN AOOA AC 即3=34AN ∴AN =94,ON =34即M (34,94)∴直线OM 解析式为:y =3x 联立y =3x ,y =-x 2+2x +3得: x =1132-±. 方法三:设参数法设M (m ,-m +3),0<m <3,A (3,0) 易知,AM AOAD AC =,即3432AM = 即AM =924∴(3-m )2+(-m +3)2=(924)2解析:m =34或m =214(舍)即M (34,94)∴直线OM 解析式为:y =3x 联立y =3x ,y =-x 2+2x +3得: x =1132-±. ②当△AMO ∽△ACD 时,方法一:比例法易知AM AOAC AD =, 即432AM = ∴AM 2由△AMN 为等腰直角三角形,知MN =AN =2, ∴ON =1,即M (1,2) ∴直线OM 的解析式为y =2x , 联立y =2x ,y =-x 2+2x +3得: x =±3方法二:设参数法 设M (m ,-m +3),0<m <3由AM 2得:(m -3)2+(-m +3)2=(22 解得:m =1或m =5(舍) ∴直线OM 的解析式为y =2x , 联立y =2x ,y =-x 2+2x +3得: x =±3综上所述,点P 113-±±3 【一题多解 · 对标练习】练习1.(2021·湖南省邵阳市中考)如图,在平面直角坐标系中,抛物线C :()20y ax bx c a =++≠经过点()1,1和()4,1.(1)求抛物线C 的对称轴.(2)当1a =-时,将抛物线C 向左平移2个单位,再向下平移1个单位,得到抛物线1C . ①求抛物线1C 的解析式.②设抛物线1C 与x 轴交于A ,B 两点(点A 在点B 的右侧),与y 轴交于点C ,连接BC .点D 为第一象限内抛物线1C 上一动点,过点D 作DE OA ⊥于点E .设点D 的横坐标为m .是否存在点D ,使得以点O ,D ,E 为顶点的三角形与BOC 相似,若存在,求出m 的值;若不存在,请说明理由.【答案】(1)x=2.5;(2)①y=-x2+x+2;②11+33【解析】解:(1)∵抛物线图像过(1,1)、(4,1)两点,∴抛物线对称轴为:x=(1+4)÷2=2.5;(2)①将点(1,1)、(4,1)向左平移2个单位,再向下平移1个单位,得到(-1,0),(2,0),将点(-1,0),(2,0),a=-1,代入抛物线解析式得:y=-x2+x+2.②根据①中的函数关系式,可得:A(2,0),B(-1,0),C(0,2),D(m,-m2+m+2),其中0<m<2可知∠BOC=∠DEO=90°,以点O,D,E为顶点的三角形与△OBC相似有两种情况,(i)当△ODE∽△BCO时,方法一、比例法则OE DEOB OC=,即2-++2=12m m m,解得m=1或-2(舍),方法二、三角函数tan∠BOC=tan∠ODE即OB OEOC DE=,21=2-++2mm m解得:m=1或-2(舍),(ii)当△ODE∽△CBO时,方法一、比例法则OE DEOC OB=,即2-++2=21m m m,解得:1+331-3344=或(舍)m方法二、三角函数tan∠BOC=tan∠DOE即OB DEOC OE=,21-++2=2m mm解得:1+331-3344=或(舍)m综上所述,满足条件的m的值为1或1+334.【多题一解·典例剖析】例题2.(2021·湖南省怀化市中考)如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且2OA=,4OB=,8OC=,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与MNB相似?若存在,求出点P的坐标,若不存在,请说明理由.【答案】(1)y=-x2+2x+8;(2)存在,(1,2)或17 1,2⎛⎫ ⎪⎝⎭.【解析】解:(1)∵OA=2,OB=4,OC=8,∴A(-2,0)、B(4,0)、C(0,8),设二次函数的解析式为y=ax2+bx+c,∴84201640c a b c a b c =⎧⎪-+=⎨⎪++=⎩ 解得:812c a b =⎧⎪=-⎨⎪=⎩∴二次函数的解析式为y =-x 2+2x +8;(2)存在以点P 、C 、M 为顶点的三角形与△MNB 相似, 理由如下:由(1)知抛物线对称轴为直线:x =1,设直线BC 的解析式为y =kx +t ,将点B 、C 坐标代入可得:408k b b +=⎧⎨=⎩, 解得:28a b =-⎧⎨=⎩,∴直线BC 的解析式为y =-2x +8, ∴点M (1,6),N (1,0),∴BN =3,MN =6,BM =35,CM =5, 由∠BMN =∠CMP 知,分两种情况讨论: ①当∠CPM =∠MNB =90°时,如图所示:易知CP ∥x 轴,∴点P 坐标为(1,8).②当∠PCM =∠MNB =90°时,如图所示:∴cos ∠CMP =cos ∠MNB 即CM MNPM BM=, 535=∴PM =52,即点P 坐标为171,2⎛⎫⎪⎝⎭.综上所述,符合要求的P 点坐标为(1,8)或171,2⎛⎫ ⎪⎝⎭. 【多题一解 · 对标练习】练习2.(2021·四川省遂宁市中考)如图,已知二次函数的图象与x 轴交于A 和B (-3,0)两点,与y 轴交于C (0,-3),对称轴为直线1x =-,直线y =-2x +m 经过点A ,且与y 轴交于点D ,与抛物线交于点E ,与对称轴交于点F .(1)求抛物线的解析式和m 的值;(2)在y 轴上是否存在点P ,使得以D 、E 、P 为顶点的三角形与△AOD 相似,若存在,求出点P 的坐标;若不存在,试说明理由.【答案】(1)y =(x +1)2-4;m =2;(2)存在,(0,12)或(0,14.5).【解析】解:(1)∵二次函数的图象与x 轴交于A 和B (-3,0)两点,对称轴为直线x =-1, ∴A (1,0),设二次函数解析式为:y =a (x -1)(x +3), 把C (0,-3)代入得: -3=a (0-1)(0+3), 解得:a =1,即二次函数解析式为:y = (x -1)(x +3),即:y =(x +1)2-4, ∵直线y =-2x +m 经过点A , ∴0=-2×1+m ,解得:m =2;(2)由(1)得:直线AF 的解析式为:y =-2x +2, 又直线y =-2x +2与y 轴交于点D ,与抛物线交于点E , ∴当x =0时,y =2,即D (0,2),联立()22214y x y x =-+⎧⎪⎨=+-⎪⎩,解得:11512x y =-⎧⎨=⎩,2210x y =⎧⎨=⎩, ∵点E 在第二象限, ∴E (-5,12),以D 、E 、P 为顶点的三角形与△AOD 相似,由∠EDP =∠ADO 知,分两种情况讨论. ①当∠EPD =∠AOD =90°时, 过点E 作EP ⊥y 轴于点P ,此时P (0,12);②当∠PED =∠AOD =90°时,过点E 作EP ’⊥AE ,则tan ∠ADO =tan ∠PEP’, ∴OA PP OD EP '=,即:125PP '=, 解得:PP ’=2.5,此时P’(0,14.5),综上所述:点P 的坐标为(0,12)或(0,14.5).练习3. (2021·四川省泸州市中考)如图,在平面直角坐标系xOy 中,抛物线213442y x x =-++与两坐标轴分别相交于A ,B ,C 三点(1)求证:∠ACB =90°(2)点D 是第一象限内该抛物线上的动点,过点D 作x 轴的垂线交BC 于点E ,交x 轴于点F . ①求DE +BF 的最大值;②点G 是AC 的中点,若以点C ,D ,E 为顶点的三角形与AOG 相似,求点D 的坐标.【答案】(1)(2)①9;②(4,6)或(3,254).【解析】解:(1)在213442y x x =-++中,当x =0,y =4即C (0,4)当y =0时,即2134042x x -++=解得:x =-2或x =8即A (-2,0),B (8,0)∴AB =10,AC 5BC 5则102=(52+(52即AB 2=AC 2+BC 2∴∠ACB =90°(2)①设直线BC 的解析式为:y =kx +b ,将(0,4),(8,0)代入得: 804k b b +=⎧⎨=⎩,解得:k =-0.5,b =4即直线BC 解析式为y =-0.5x +4设D (m ,213442m m -++),则BF =8-m ,DE =2124m m -+∴DE +BF =2124m m -++8-m =()21294m --+ ∵14-<0∴当m =2时DE +BF 取最大值,最大值为9.②∵点G 是AC 的中点,在Rt △AOC 中,OG =AG 5即△AOG 为等腰三角形,∵∠CAO +∠ACO =∠ACO +∠OCB =90°∴∠CAO =∠OCB又OC ∥DF∴∠OCB =∠CED∴∠CAO =∠CED设D (m ,213442m m -++),则E (m ,-0.5m +4),DE =2124m m-+ 当以点C ,D ,E 为顶点的三角形与△AOG 相似, 分两种情况讨论:①△ECD ∽△AOG 则CEDEAO AG =, 即212425m mCE -+=∴CE 21425m m -+又OC ∥DF ∴CEOFBC OB =845m=∴CE 5m21425m m -+5m解得:m =0(舍)或m =3即D (3,254)②△EDC ∽△AOG ,则CE DEAG OA=,212425m m-+=,∴CE=212452m m-+又OC∥DF,知,CE5m∴212452m m-+5m解得:m=0(舍)或m=4 即D(4,6)综上所述,D点坐标为(3,254)或(4,6).。

二次函数的存在性问题(相似三角形的存在性问题)

二次函数的存在性问题(相似三角形的存在性问题)

二次函数的存在性问题(相似三角形)1、已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一交点为B。

(1)求抛物线的解析式;(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;(3)连接OA、AB,如图②,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似若存在,求出P点的坐标;若不存在,说明理由。

,` "A AB BO^x x y yxyF-2,-6A CEPDB5 *1 24 6 G2、设抛物线22y ax bx =+-与x 轴交于两个不同的点A(一1,0)、B(m ,0),与y 轴交于点C.且∠ACB=90°. (1)求m 的值和抛物线的解析式;(2)已知点D(1,n )在抛物线上,过点A 的直线1y x =+交抛物线于另一点E .若点P 在x 轴上,以点P 、B 、D 为顶点的三角形与△AEB 相似,求点P 的坐标.(3)在(2)的条件下,△BDP 的外接圆半径等于________________.~解:(1)令x=0,得y=-2 ∴C(0,一2).∵ACB=90°,CO ⊥AB,.∴ △AOC ∽△COB,.∴OA ·OB=OC 2;∴OB=22241OC OA == ∴m=4.3、已知抛物线2y ax bx c =++经过点A (5,0)、B (6,-6)和原点.(1)求抛物线的函数关系式; (2)若过点B 的直线y kx b '=+与抛物线相交于点C (2,m ),请求出∆OBC 的面积S 的值.·(3)过点C 作平行于x 轴的直线交y 轴于点D ,在抛物线对称轴右侧位于直线DC 下方的抛物线上,任取一点P ,过点P 作直线PF 平行于y 轴交x 轴于点F ,交直线DC 于点E . 直线PF 与直线DC 及两坐标轴围成矩形OFED (如图),是否存在点P ,使得∆OCD 与∆CPE 相似若存在,求出点P 的坐标;若不存在,请说明理由.解:(1)由题意得:255036600a b c a b c c ++=⎧⎪++=⎨⎪=⎩ 解得150a b c =-⎧⎪=⎨⎪=⎩故抛物线的函数关系式为25y x x =-+(2)C 在抛物线上,2252,6m m ∴-+⨯=∴= C ∴点坐标为(2,6),B 、C 在直线y kx b '=+上∴6266k b k b '=+⎧⎨'-=+⎩解得3,12k b '=-=∴直线BC 的解析式为312y x =-+设BC 与x 轴交于点G ,则G 的坐标为(4,0)1146462422OBCS∴=⨯⨯+⨯⨯-= (3)存在P ,使得OCD ∽CPE 设P (,)m n ,90ODC E ∠=∠=︒ 故2,6CE m EP n =-=-若要OCD ∽CPE ,则要OD DC CE EP =或OD DC EP CE = 即6226m n =--或6262n m =-- 解得203m n =-或123n m =- 又(,)m n 在抛物线上,22035m n n m m =-⎧⎨=-+⎩或21235n mn m m=-⎧⎨=-+⎩ 解得12211023,,6509m m n n ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩或121226,66m m n n ==⎧⎧⎨⎨==-⎩⎩ 故P 点坐标为1050()39,和(6,6)-;4、如图,抛物线(1)(5)y a x x =+-与x 轴的交点为M N ,.直线y kx b =+与x 轴交于(20)P -,,与y 轴交于C .若A B ,两点在直线y kx b =+上,且AO BO ==,AO BO ⊥.D 为线段MN 的中点,OH 为Rt OPC △斜边上的高.(1)OH 的长度等于 ;k = ,b = .(2)是否存在实数a ,使得抛物线(1)(5)y a x x =+-以D N E ,,为顶点的三角形与AOB △是否还有符合条件的E 点(简要说明理由)每一个E 点,直线NE 与直线AB 的交点G 是否总满足】10PB PG <解:(1)1OH =;k =b =(2)设存在实数a ,使抛物线(1)(5)y a x x =+-上有一点E ,满足以D NE ,,为顶点的三角形与等腰直角AOB △相似.∴以D N E ,,为顶点的三角形为等腰直角三角形,且这样的三角形最多只有两类,一类是以DN 为直角边的等腰直角三角形,另一类是以DN 为斜边的等腰直角三角形.①若DN 为等腰直角三角形的直角边,则ED DN ⊥.由抛物线(1)(5)y a x x =+-得:(10)M -,,(50)N ,.(20)D ∴,,3ED DN ∴==.E ∴的坐标为(23),.把(23)E ,代入抛物线解析式,得13a =-.∴抛物线解析式为1(1)(5)3y x x =-+-.即2145333y x x =-++.②若DN 为等腰直角三角形的斜边,则DE EN ⊥,DE EN =.E ∴的坐标为(3.51.5),.把(3.51.5)E ,代入抛物线解析式,得29a =-. ∴抛物线解析式为2(1)(5)9y x x =-+-,即22810999y x x =-++当13a =-时,在抛物线2145333y x x =-++上存在一点(23)E ,满足条件,如果此抛物线上还有满足条件的E 点,不妨设为E '点,那么只有可能DE N '△是以DN 为斜边的等腰直角三角形,由此得(3.51.5)E ',, 显然E '不在抛物线2145333y x x =-++上,故抛物线2145333y x x =-++上没有符合条件的其他的E 点. {当29a =-时,同理可得抛物线22810999y x x =-++上没有符合条件的其他的E 点. 当E 的坐标为(23),,对应的抛物线解析式为2145333y x x =-++时,EDN △和ABO △都是等腰直角三角形,45GNP PBO ∴∠=∠=又NPG BPO ∠=∠,NPG BPO∴△∽△.PG PNPO PB∴=,2714PB PG PO PN ∴==⨯=,∴总满足10PB PG <.当E 的坐标为(3.51.5),,对应的抛物线解析式为22810999y x x =-++时,同理可证得:2714PB PG PO PN ==⨯=,∴总满足10PB PG <5、如图,抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B .(1)求抛物线的解析式;(2)在抛物线上求点M ,使△MOB 的面积是△AOB 面积的3倍;(3)连结OA ,AB ,在x 轴下方的抛物线上是否存在点N ,使△OBN 与△OAB 相似若存在,求出N 点的坐标;若不存在,说明理由.解:(1)由题意可设抛物线的解析式为1)2(2+-=x a y·∵抛物线过原点 ∴01)20(2=+-a ∴41-=a∴抛物线的解析式为1)2(412+--=x y 即x x y +-=241.(2)∵△AOB 与△MOB 同底不等高 又∵S △MOB =3 S △AOB ∴△MOB 的高是△AOB 高的3倍 即点M 的纵坐标是3-∴x x +-=-2413 ∴01242=--x x 解得 61=x ,22-=x∴)36(1-,M )32(2--,M (3)由抛物线的对称性可知:AO =ABABO AOB ∠=∠若△OBN 与△OAB 相似, 必须有BNO BOA BON ∠=∠=∠, 显然 )12('-,A ∴直线ON 的解析式为x y 21-=, 由x x x +-=24121,得01=x ,62=x ∴)36(-,N 过N 作NE ⊥x 轴,垂足为E . 在Rt △BEN 中,BE =2,NE =3,∴133222=+=NB 又OB =4 ∴NB ≠OB ∴∠BON ≠∠BNO ∴△OBN 与△OAB 不相似,同理说明在对称轴左边的抛物线上也不存在符合条件的N 点.故在抛物线上不存在N 点,使得△OBN 与△OAB 相似】6、如图所示,将矩形OABC 沿AE 折叠,使点O 恰好落在BC 上F 处,以CF 为边作正方形CFGH ,延长BC 至M , 使CM =|CE —EO |,再以CM 、CO 为边作矩形CMNO. (1)试比较EO 、EC 的大小,并说明理由;(2)令CMNOCFGH S S m 四边形四边形=,请问m 是否为定值若是,请求出m 的值;若不是,请说明理由;(3)在(2)的条件下,若CO =1,CE =31,Q 为AE 上一点且QF =32,抛物线y =mx 2+bx+c 经过C 、Q 两点,请求出此抛物线的解析式. (4)在(3)的条件下,若抛物线y =mx 2+bx+c 与线段AB 交于点P ,试问在直线BC 上是否存在点K ,使得以P 、B 、K 为顶点的三角形与△AEF 相似若存在,请求直线KP 与y 轴的交点T 的坐标若不存在,请说明理由。

中考数学复习---二次函数中三角形存在性问题压轴题练习(含答案解析)

中考数学复习---二次函数中三角形存在性问题压轴题练习(含答案解析)

中考数学复习---二次函数中三角形存在性问题压轴题练习(含答案解析)一.相似三角形的存在性1.(2022•陕西)已知抛物线y=ax2+bx﹣4经过点A(﹣2,0),B(4,0),与y 轴的交点为C.(1)求该抛物线的函数表达式;(2)若点P是该抛物线上一点,且位于其对称轴l的右侧,过点P分别作l,x 轴的垂线,垂足分别为M,N,连接MN.若△PMN和△OBC相似,求点P的坐标.【解答】解:(1)把A(﹣2,0),B(4,0)代入y=ax2+bx﹣4得:,解得,∴抛物线的函数表达式为y=x2﹣x﹣4;(2)如图:∵y=x2﹣x﹣4=(x﹣1)2﹣,∴抛物线y=x2﹣x﹣4的对称轴是直线x=1,在y=x2﹣x﹣4中,令x=0得y=﹣4,∴C(0,﹣4),∴OB=OC=4,∴△BOC是等腰直角三角形,∵△PMN和△OBC相似,∴△PMN是等腰直角三角形,∵PM⊥直线x=1,PN⊥x轴,∴∠MPN=90°,PM=PN,设P(m,m2﹣m﹣4),∴|m﹣1|=|m2﹣m﹣4|,∴m﹣1=m2﹣m﹣4或m﹣1=﹣m2+m+4,解得m=+2或m=﹣+2或m=或m=﹣,∵点P是该抛物线上一点,且位于其对称轴直线x=1的右侧,∴P的坐标为(+2,+1)或(,1﹣).2.(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.【解答】解:(1)∵顶点D的横坐标为1,∴抛物线的对称轴为直线x=1,∵A(﹣1,0),∴B(3,0),∴设抛物线的解析式为:y=a(x+1)(x﹣3),将C(0,3)代入抛物线的解析式,则﹣3a=3,解得a=﹣1,∴抛物线的解析式为:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)存在,P(0,﹣1),理由如下:∵∠APB+∠ACB=180°,∴∠CAP+∠CBP=180°,∴点A,C,B,P四点共圆,如图所示,由(1)知,OB=OC=3,∴∠OCB=∠OBC=45°,∴∠APC=∠ABC=45°,∴△AOP是等腰直角三角形,∴OP=OA=1,∴P(0,﹣1).(3)存在,理由如下:由(1)知抛物线的解析式为:y=﹣x2+2x+3,∴D(1,4),由抛物线的对称性可知,E(2,3),∵A(﹣1,0),∴AD=2,DE=,AE=3.∴AD2=DE2+AE2,∴△ADE是直角三角形,且∠AED=90°,DE:AE=1:3.∵点M在直线l下方的抛物线上,∴设M(t,﹣t2+2t+3),则t>2或t<0.∴EF=|t﹣2|,MF=3﹣(﹣t2+2t+3)=t2﹣2t,若△MEF与△ADE相似,则EF:MF=1:3或MF:EF=1:3,∴|t﹣2|:(t2﹣2t)=1:3或(t2﹣2t):|t﹣2|=1:3,解得t=2(舍)或t=3或﹣3或(舍)或﹣,∴M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).综上,存在点M,使以M,F,E三点为顶点的三角形与△ADE相似,此时点M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).3.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y 轴交于点P(0,4).(1)直接写出抛物线的解析式.(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似,若存在,请求出点T的坐标;若不存在,请说明理由.(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.【解答】解:(1)∵抛物线y=﹣x2+c与y轴交于点P(0,4),∴c=4,∴抛物线的解析式为y=﹣x2+4;(2)△BCQ是直角三角形.理由如下:将抛物线y=﹣x2+4向左平移1个单位长度,得新抛物线y=﹣(x+1)2+4,∴平移后的抛物线顶点为Q(﹣1,4),令x=0,得y=﹣1+4=3,∴C(0,3),令y=0,得﹣(x+1)2+4=0,解得:x1=1,x2=﹣3,∴B(﹣3,0),A(1,0),如图1,连接BQ,CQ,PQ,∵P(0,4),Q(﹣1,4),∴PQ⊥y轴,PQ=1,∵CP=4﹣3=1,∴PQ=CP,∠CPQ=90°,∴△CPQ是等腰直角三角形,∴∠PCQ=45°,∵OB=OC=3,∠BOC=90°,∴△BOC是等腰直角三角形,∴∠BCO=45°,∴∠BCQ=180°﹣45°﹣45°=90°,∴△BCQ是直角三角形.(3)在x轴上存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似.∵△ABC是锐角三角形,∠ABC=45°,∴以B、N、T三点为顶点的三角形与△ABC相似,必须∠NBT=∠ABC=45°,即点T在y轴的右侧,设T(x,0),且x>0,则BT=x+3,∵B(﹣3,0),A(1,0),C(0,3),∴∠ABC=45°,AB=4,BC=3,设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=x+3,由,解得:,,∴M(﹣,),N(,),∴BN=×=,①当△NBT∽△CBA时,则=,∴=,解得:x=,∴T(,0);②当△NBT∽△ABC时,则=,∴=,解得:x=,∴T(,0);综上所述,点T的坐标T(,0)或(,0).(4)抛物线y=﹣x2+4的顶点为P(0,4),∵直线BC的解析式为y=x+3,∴直线BC与y轴的夹角为45°,当抛物线沿着垂直直线BC的方向平移到只有1个公共点时,平移距离最小,此时向右和向下平移距离相等,设平移后的抛物线的顶点为P′(t,4﹣t),则平移后的抛物线为y=﹣(x﹣t)2+4﹣t,由﹣(x﹣t)2+4﹣t=x+3,整理得:x2+(1﹣2t)x+t2+t﹣1=0,∵平移后的抛物线与直线BC最多只有一个公共点,∴Δ=(1﹣2t)2﹣4(t2+t﹣1)=0,解得:t=,∴平移后的抛物线的顶点为P′(,),平移的最短距离为.二.直角三角形的存在性4.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C 坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△P AB为直角三角形,请求出点P 的坐标.【解答】解:(1)∵抛物线y=ax2+x+m(a≠0)的图象经过点B(0,﹣4),点C(2,0),∴,解得,∴抛物线的解析式为y=x2+x﹣4;(2)存在.理由:如图1中,设D (t ,t 2+t ﹣4),连接OD .令y =0,则x 2+x ﹣4=0,解得x =﹣4或2,∴A (﹣4,0),C (2,0),∵B (0,﹣4),∴OA =OB =4,∵S △ABD =S △AOD +S △OBD ﹣S △AOB =×4×(﹣﹣t +4)+×4×(﹣t )﹣×4×4=﹣t 2﹣4t =﹣(t +2)2+4,∵﹣1<0,∴t =﹣2时,△ABD 的面积最大,最大值为4,此时D (﹣2,﹣4); (3)如图2中,设抛物线的对称轴交x 轴于点N ,过点B 作BM ⊥抛物线的对称轴于点M .则N (﹣1.0).M (﹣1,﹣4);∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,当∠P1AB=90°时,△ANP1是等腰直角三角形,∴AN=NP1=3,∴P1(﹣1,3),当∠ABP2=90°时,△BMP2是等腰直角三角形,可得P2(﹣1,﹣5),当∠APB=90°时,设P(﹣1,n),设AB的中点为J,连接PJ,则J(﹣2,﹣2),∴PJ=AB=2,∴12+(n+2)2=(2)2,解得n=﹣2或﹣﹣2,∴P3(﹣1,﹣2),P4(﹣1,﹣﹣2),综上所述,满足条件的点P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2)或(﹣1,﹣﹣2).5.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC 于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.【解答】解:(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,∴,解得,∴y=﹣x2﹣3x+4;(2)过点D作DG⊥AB交于G,交AC于点H,设直线AC的解析式为y=kx+b,∴,解得,∴y=x+4,设D(n,﹣n2﹣3n+4),H(n,n+4),∴DH=﹣n2﹣4n,∵DH∥OC,∴==,∵OC=4,∴DH=3,∴﹣n2﹣4n=3,解得n=﹣1或n=﹣3,∴D(﹣1,6)或(﹣3,4);(3)设F(t,t+4),当∠FDO=90°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,∵∠DOF=45°,∴DF=DO,∵∠MDF+∠NDO=90°,∠MDF+∠MFD=90°,∴∠NDO=∠MFD,∴△MDF≌△NOD(AAS),∴DM=ON,MF=DN,∴DN+ON=﹣t,DN=ON+(﹣t﹣4),∴DN=﹣t﹣2,ON=2,∴D点纵坐标为2,∴﹣x2﹣3x+4=2,解得x=或x=,∴D点坐标为(,2)或(,2);当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,∵∠KFD+∠LFO=90°,∠KFD+∠KDF=90°,∴∠LFO=∠KDF,∵DF=FO,∴△KDF≌△LFO(AAS),∴KD=FL,KF=LO,∴KL=t+4﹣t=4,∴D点纵坐标为4,∴﹣x2﹣3x+4=4,解得x=0或x=﹣3,∴D(0,4)或(﹣3,4);综上所述:D点坐标为(,2)或(,2)或(0,4)或(﹣3,4).三.等腰三角形的存在性6.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O 为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.【解答】(1)解:设抛物线的表达式为y=ax2+bx+c,把A(﹣1,0)、B(0,3)、C(3,0)代入得:,解得,∴抛物线的表达式为:y=﹣x2+2x+3;(2)证明:∵正方形OBDC,∴∠OBC=∠DBC,BD=OB,∵BF=BF,∴△BOF≌△BDF,∴∠BOF=∠BDF;(3)解:∵抛物线交正方形OBDC的边BD于点E,∴令y=3,则3=﹣x2+2x+3,解得:x1=0,x2=2,∴E(2,3),①如图,当M在线段BD的延长线上时,∠BDF为锐角,∴∠FDM为钝角,∵△MDF为等腰三角形,∴DF=DM,∴∠M=∠DFM,∴∠BDF=∠M+∠DFM=2∠M,∵BM∥OC,∴∠M=∠MOC,由(2)得∠BOF=∠BDF,∴∠BDF+∠MOC=3∠M=90°,∴∠M=30°,在Rt△BOM中,BM=,∴ME=BM﹣BE=3﹣2;②如图,当M在线段BD上时,∠DMF为钝角,∵△MDF为等腰三角形,∴MF=DM,∴∠BDF=∠MFD,∴∠BMO=∠BDF+∠MFD=2∠BDF,由(2)得∠BOF=∠BDF,∴∠BMO=2∠BOM,∴∠BOM+∠BMO=3∠BOM=90°,∴∠BOM=30°,在Rt△BOM中,BM=,∴ME=BE﹣BM=2﹣,综上所述,ME的值为:3﹣2或2﹣.7.(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P 运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.【解答】解:(1)在y=﹣x2+x+4中,令x=0得y=4,令y=0得x=8或x=﹣2,∴A(﹣2,0),B(8,0),C(0,4),设直线BC解析式为y=kx+4,将B(8,0)代入得:8k+4=0,解得k=﹣,∴直线BC解析式为y=﹣x+4;(2)过C作CG⊥PD于G,如图:设P(m,﹣m2+m+4),∴PD=﹣m2+m+4,∵∠COD=∠PDO=∠CGD=90°,∴四边形CODG是矩形,∴DG=OC=4,CG=OD=m,∴PG=PD﹣DG=﹣m2+m+4﹣4=﹣m2+m,∵CP=CE,CG⊥PD,∴GE=PG=﹣m2+m,∵∠GCE=∠OBC,∠CGE=90°=∠BOC,∴△CGE∽△BOC,∴=,即=,解得m=0(舍去)或m=4,∴P(4,6);(3)存在点P,使得CE=FD,理由如下:过C作CH⊥PD于H,如图:设P(m,﹣m2+m+4),由A(﹣2,0),C(0,4)可得直线AC解析式为y=2x+4,根据PF∥AC,设直线PF解析式为y=2x+b,将P(m,﹣m2+m+4)代入得:﹣m2+m+4=2m+b,∴b=﹣m2﹣m+4,∴直线PF解析式为y=2x﹣m2﹣m+4,令x=0得y=﹣m2﹣m+4,∴F(0,﹣m2﹣m+4),∴OF=|﹣m2﹣m+4|,同(2)可得四边形CODH是矩形,∴CH=OD,∵CE=FD,∴Rt△CHE≌Rt△DOF(HL),∴∠HCE=∠FDO,∵∠HCE=∠CBO,∴∠FDO=∠CBO,∴tan∠FDO=tan∠CBO,∴=,即=,∴﹣m2﹣m+4=m或﹣m2﹣m+4=﹣m,解得m=2﹣2或m=﹣2﹣2或m=4或m=﹣4,∵P在第一象限,∴m=2﹣2或m=4.8.(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx﹣3,∴,解得,∴y=x2﹣2x﹣3;(2)连接CB交对称轴于点Q,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,∵A、B关于对称轴x=1对称,∴AQ=BQ,∴AC+AQ+CQ=AC+CQ+BQ≥AC+BC,当C、B、Q三点共线时,△ACQ的周长最小,∵C(0,﹣3),B(3,0),设直线BC的解析式为y=kx+b,∴,解得,∴y=x﹣3,∴Q(1,﹣2);(3)当∠BPM=90°时,PM=PB,∴M点与A点重合,∴M(﹣1,0);当∠PBM=90°时,PB=BM,如图1,当P点在M点上方时,过点B作x轴的垂线GH,过点P作PH⊥GH 交于H,过点M作MG⊥HG交于G,∵∠PBM=90°,∴∠PBH+∠MBG=90°,∵∠PBH+∠BPH=90°,∴∠MBG=∠BPH,∵BP=BM,∴△BPH≌△MBG(AAS),∴BH=MG,PH=BG=2,设P(1,t),则M(3﹣t,﹣2),∴﹣2=(3﹣t)2﹣2(3﹣t)﹣3,解得t=2+或t=2﹣,∴M(1﹣,﹣2)或(1+,﹣2),∵M点在对称轴的左侧,∴M点坐标为(1﹣,﹣2);如图2,当P点在M点下方时,同理可得M(3+t,2),∴2=(3+t)2﹣2(3+t)﹣3,解得t=﹣2+(舍)或t=﹣2﹣,∴M(1﹣,2);综上所述:M点的坐标为(1﹣,﹣2)或(1﹣,2)或(﹣1,0).9.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE 内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),∴,解得,∴抛物线的解析式为:y=x2﹣4x+3;(2)如图,过P作PG∥y轴,交OE于点G,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),∴直线OE的解析式为:y=x,∴G(m,m),∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,∴S△OPE =S△OPG+S△EPG=PG•AE=×3×(﹣m2+5m﹣3)=﹣(m2﹣5m+3)=﹣(m﹣)2+,∵﹣<0,∴当m=时,△OPE面积最大,此时,P点坐标为(,﹣);(3)由y=x2﹣4x+3=(x﹣2)2﹣1,得抛物线l的对称轴为直线x=2,顶点为(2,﹣1),抛物线L向上平移h个单位长度后顶点为F(2,﹣1+h).设直线x=2交OE于点M,交AE于点N,则E(3,3),∵直线OE的解析式为:y=x,∴M(2,2),∵点F在△OAE内(包括△OAE的边界),∴2≤﹣1+h≤3,解得3≤h≤4;(4)设P(m,m2﹣4m+3),分四种情况:①当P在对称轴的左边,且在x轴下方时,如图,过P作MN⊥y轴,交y轴于M,交l于N,∴∠OMP=∠PNF=90°,∵△OPF是等腰直角三角形,∴OP=PF,∠OPF=90°,∴∠OPM+∠NPF=∠PFN+∠NPF=90°,∴∠OPM=∠PFN,∴△OMP≌△PNF(AAS),∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=(舍)或,∴P的坐标为(,);②当P在对称轴的左边,且在x轴上方时,同理得:2﹣m=m2﹣4m+3,解得:m1=(舍)或m2=,∴P的坐标为(,);③当P在对称轴的右边,且在x轴下方时,如图,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:m1=或m2=(舍);P的坐标为(,);④当P在对称轴的右边,且在x轴上方时,如图,同理得m2﹣4m+3=m﹣2,解得:m=或(舍),P的坐标为:(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).方法二:作直线DE:y=x﹣2,E(1,﹣1)是D点(2,0)绕O点顺时针旋转45°并且OD缩小倍得到,易知直线DE即为对称轴上的点绕O点顺时针旋转45°,且到O点距离缩小倍的轨迹,联立直线DE和抛物线解析式得x2﹣4x+3=x﹣2,解得x1=,x2=,同理可得x3=或x4=;综上所述,点P的坐标是:(,)或(,)或(,)或(,).10.(2023•澄城县一模)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B,与y轴交于点C(0,3),直线l是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在对称轴l上是否存在点M,使△MAC为等腰三角形,若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)把点A(﹣1,0)、点C(0,3)分别代入y=﹣x2+bx+c,得.解得.故该抛物线解析式为:y=﹣x2+2x+3;(2)由(1)知,该抛物线解析式为:y=﹣x2+2x+3.则该抛物线的对称轴为直线x=﹣=1.故设M(1,m).∵A(﹣1,0)、点C(0,3),∴AC2=10,AM2=4+m2,CM2=1+(m﹣3)2.①若AC=AM时,10=4+m2,解得m=±.∴点M的坐标为(1,)或(1,﹣);②若AC=CM时,10=1+(m﹣3)2,解得m=0或m=6,∴点M的坐标为(1,0)或(1,6).当点M的坐标为(1,6)时,点A、C、M共线,∴点M的坐标为(1,0);③当AM=CM时,4+m2=1+(m﹣3)2,解得m=1,∴点M的坐标为(1,1).综上所述,符合条件的点M的坐标为(1,)或(1,﹣)或(1,0)或(1,1).11.(2023•碑林区校级一模)二次函数y=ax2+bx+2的图象交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.【解答】解:(1)将点(﹣1,0),B(4,0)代入y=ax2+bx+2,∴a=﹣,b=,∴y=﹣x2+x+2;(2)∵BM=5﹣2t,∴M(2t﹣1,0),设P(2t﹣1,m),∵PC2=(2t﹣1)2+(m﹣2)2,PB2=(2t﹣5)2+m2,∵PB=PC,∴(2t﹣1)2+(m﹣2)2=(2t﹣5)2+m2,∴m=4t﹣5,∴P(2t﹣1,4t﹣5),∵PC⊥PB,∴×=﹣1,∴t=1或t=2,∴M(1,0)或M(3,0),∴D(1,3)或D(3,2).12.(2023•东洲区模拟)抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,与y轴正半轴交于点C.(1)求此抛物线解析式;(2)如图①,连接BC,点P为抛物线第一象限上一点,设点P的横坐标为m,△PBC的面积为S,求S与m的函数关系式,并求S最大时P点坐标;(3)如图②,连接AC,在抛物线的对称轴上是否存在点M,使△MAC为等腰三角形?若存在,请直接写出符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)点P作PF⊥x轴于点F,交BC于点E,设BC直线解析式为:y=kx+b,∵B(3,0),C(0,3),∴,解得,∴y=﹣x+3,由题意可知P(m,﹣m2+2m+3),E(m,﹣m+3),S=S△PBE+S△PCE,S=PE•OB=(﹣m2+2m+3+m﹣3)×3,,∵,∴当时,S有最大值,此时P点坐标为;(3)存在,M1(1,0),,,M4(1,1),①当AC=AM时,如图,设对称轴l与AB交于点E,则,∵AM2=AE2+EM2,∴,解得:,∴M点的坐标为或,②当AC=MC时,则OC为AM的垂直平分线.因此M与E重合,因此,M点的坐标为(1,0),③当AM=CM时,如图,设M点的坐标为(1,n),则AM2=22+n2=4+n2,CM2=12+(3﹣n)2,∴4+n2=12+(3﹣n)2,解得:n=1,∴M点的坐标为(1,1),综上可知,潢足条件的M点共四个,其坐标为M1(1,0),,,M4(1,1).13.(2023•三亚一模)如图,抛物线y=ax2+3x+c(a≠0)与x轴交于点A(﹣2,0)和点B,与y轴交于点C(0,8),顶点为D,连接AC,CD,DB,直线BC 与抛物线的对称轴l交于点E.(1)求抛物线的解析式和直线BC的解析式;(2)求四边形ABDC的面积;(3)P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC =S△ABC时,求点P的坐标;(4)在抛物线的对称轴l上是否存在点M,使得△BEM为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+3x+c(a≠0)过点A(﹣2,0)和C(0,8),∴,解得,∴抛物线的解析式为y=﹣x2+3x+8.令y=0,得.解得x1=﹣2,x2=8.∴点B的坐标为(8,0).设直线BC的解析式为y=kx+b.把点B(8,0),C(0,8)分别代入y=kx+b,得,解得,∴直线BC的解析式为y=﹣x+8.(2)如图1,设抛物线的对称轴l与x轴交于点H.∵抛物线的解析式为,∴顶点D的坐标为.∴S四边形ABDC =S△AOC+S梯形OCDH+S△BDH===70.(3)∵.∴.如图2,过点P作PG⊥x轴,交x轴于点G,交BC于点F.设点.∵点F在直线BC上,∴F(t,﹣t+8).∴.∴.∴.解得t1=2,t2=6.∴点P的坐标为(2,12)或P(6,8).(4)存在.∵△BEM为等腰三角形,∴BM=EM或BE=BM或BE=EM,设M(3,m),∵B(8,0),E(3,5),∴BE==5,EM=|m﹣5|,BM==,当BM=EM时,=|m﹣5|,∴m2+25=(m﹣5)2,解得:m=0,∴M(3,0);当BE=BM时,5=,∴m2+25=50,解得:m=﹣5或m=5(舍去),∴M(3,﹣5);当BE=EM时,5=|m﹣5|,解得:m=5+5或m=5﹣5,∴M(3,5+5)或(3,5﹣5),综上所述,点M的坐标为(3,0)或(3,﹣5)或(3,5+5)或(3,5﹣5).14.(2023•南海区一模)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a >0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC 于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.【解答】解:(1)将A(﹣1,0),B(3,0)代入函数y=ax2+bx﹣3(a>0)中,得,解得,∴解析式为y=x2﹣2x﹣3,故抛物线解析式为y=x2﹣2x﹣3;(2)当x=0时,y=3,∴C(0,﹣3),∵B(3,0),∴∠OCB=∠OBC=45°,∵PN∥y轴,∴∠MNP=45°,∵PM⊥BC,∴PM=PN,则当PN最大时,PM也最大,设BC的解析式为y=mx+n,∴,解得,∴BC解析式为y=x﹣3,设P(x,x2﹣2x﹣3),N(x,x﹣3),∴PN=x﹣3﹣(x2﹣2x﹣3)=﹣(x﹣)2+,当x=时,PN最大,则PM=PN=×=,∴P(,),故PM最大值为,P点坐标为(,﹣);(3)存在,点E的坐标为(﹣5,0),(,0),(0,0),(,0).∵CEQ是以CQ为斜边的等腰直角三角形,∴设Q(x,x2﹣2x﹣3),①如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,∵∠CEQ=90°,∴∠QEM+∠CEN=90°,∵∠QEM+∠MQE=90°,∴∠EQM=∠CEN,∵∠CNE=∠QME=90°,EC=EQ,∴△EMQ≌△CNE(AAS),∴CN=EM=x2﹣2x﹣3,MQ=EN=3,∴|x Q|+MQ=CN,﹣x+3=x2﹣2x﹣3,解得x=﹣2,x=3(舍去),∴OE=CM=2+3=5,E(﹣5,0),②如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴﹣x+x2﹣2x﹣3=3,解得x=,x=(舍去),∴OE=CM=,E(,0),③如图,点E和点O重合,点Q和点B重合,此时E(0,0),④如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴x+3=x2﹣2x﹣3,解得x=,x=(舍去),∴OE=CM=,E(,0),综上所述,点E的坐标为(﹣5,0),(,0),(0,0),(,0)41。

专题03 相似三角形的应用综合(五大类型)(题型专练)(原卷版)

专题03 相似三角形的应用综合(五大类型)(题型专练)(原卷版)

专题03 相似三角形的应用综合(五大类型)【题型1 利用相似三角形测量高度-平面镜测量法】【题型2 利用相似三角形测量高度-影子测量法】【题型3 利用相似三角形测量高度-手臂测量法】【题型4 利用相似三角形测量高度-标杆测量法】【题型5 利用相似三角形测量距离】【题型1 利用相似三角形测量高度-平面镜测量法】1.(2022秋•郑州期末)如图,小明探究“利用镜子反射测量旗杆的高度”.小明作为观测者,在旗杆和小明之间的地面上平放一面镜子,在镜子上作一个标记,小明看着镜子来回移动,当看到旗杆顶端在镜子中的像与镜子上的标记重合时,通过测量得到以下数据:小明的眼睛到地面的距离为1.5m,小明的站的位置到镜子上标记的距离是3.2m,旗杆的底部到小明的位置是19.2m,则旗杆的高度为()A.19.2B.16C.9D.7.5 2.(2023•龙华区一模)数学兴趣小组的同学们来到宝安区海淀广场,设计用手电来测量广场附近某大厦CD的高度,如图,点P处放一水平的平面镜.光线从点A出发经平面镜反射后刚好射到大厦CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1米,BP=1.5米,PD=48米,那么该大厦的高度约为()A.32米B.28米C.24米D.16米3.(2023•深圳模拟)如图,九年级(1)班课外活动小组利用平面镜测量学校旗杆的高度,在观测员与旗杆AB之间的地面上平放一面镜子,在镜子上做一个标记E,当观测到旗杆顶端在镜子中的像与镜子上的标记重合时,测得观测员的眼睛到地面的高度CD为1.6m,观测员到标记E的距离CE为2m,旗杆底部到标记E的距离AE为16m,则旗杆AB的高度约是()A.22.5m B.20m C.14.4m D.12.8m 4.(2023•青原区校级一模)为了测量校园内一棵树的高度,学校数学应用实践小组做了如下的探索实践.根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把镜子放在离树(AB)9m的水平地面点E处,然后一同学沿着直线BE后退到点D,这时该同学恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3m,该同学身高CD=1.6m.请你计算树(AB)的高度.5.(2023•新城区校级一模)【学科融合】如图1,在反射现象中,反射光线,入射光线和法线都在同一个平面内;反射光线和入射光线分别位于法线两侧;反射角r等于入射角i.这就是光的反射定律.【同题解决】如图2.小红同学正在使用手电筒进行物理光学实验,地面上从左往右依次是墙、木板和平面镜,手电筒的灯泡在点G处,手电筒的光从平面镜上点B处反射后,恰好经过木板的边缘点F,落在墙上的点E处,点E 到地面的高度DE=3.5m,点F到地面的高度CF=1.5m,灯泡到木板的水平距离AC=5.4m,本板到墙的水平距离为CD=4m.图中点A,B,C,D在同一条直线上.(1)求BC的长;(2)求灯泡到地面的高度AG.6.(2023•灞桥区校级模拟)小雁塔位于西安市南郊的荐福寺内,又称“荐福寺塔”,建于唐景龙年间,与大雁塔同为唐长安城保留至今的重要标志.小明同学对该塔进行了测量,测量方法如下,如图所示,先在点A处放一平面镜,从A处沿NA方向后退1米到点B处,恰好在平面镜中看到塔的顶部点M,再将平面镜沿NA方向继续向后移动15米放在D处(即AD=15米),从点D处向后退1.6米,到达点E处,恰好再次在平面镜中看到塔的顶部点M、已知小明眼睛到地面的距离CB=EF=1.74米,请根据题中提供的相关信息,求出小雁塔的高度MN﹒(平面镜的大小忽略不计)7.(2022秋•大名县校级期末)小明利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示.于是他们先在古树周围的空地上选择一点D,并在点D处安装了测量器CD,测得∠ACD=135°;再在BD的延长线上确定一点G,使DG=5米,并在G处的地面上水平放置了一个小平面镜,小明沿着BG方向移动,当移动到点F时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得FG=2米,小明眼睛与地面的距离EF =1.6米,测量器的高度CD=0.5米.已知点F、G、D、B在同一水平直线上,且EF、CD、AB均垂直于FB,则这棵古树的高度AB为多少米?(小平面镜的大小忽略不计)【题型2 利用相似三角形测量高度-影子测量法】8.(2021秋•蓝山县期末)如图,某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为米.9.(2022•兴化市模拟)如图,电线杆上的路灯距离地面8m,身高1.6m的小明(AB)站在距离电线杆的底部(点O)20m的A处,则小明的影子AM为m.【题型3 利用相似三角形测量高度-手臂测量法】10.(2022秋•房山区期中)在设计“利用相似三角形的知识测量树高”的综合实践方案时,晓君想到了素描课上老师教的方法,如图,请一位同学右手握笔,手臂向前伸直保持笔杆与地面垂直,前后移动调整自己的位置,直到看见笔杆露出的部分刚好遮住树的主干,这时测量同学眼睛到笔的距离AB、同学到树干的距离AC,以及露出笔的长度DE,就可通过计算得到树的高度,这种实践方案主要应用了相似三角形的性质定理:相似三角形对应高的比等于相似比.(填写定理内容)11.(2022•姑苏区一模)小明把手臂水平向前伸直,手持小尺竖直,瞄准小尺的两端E、F,不断调整站立的位置,使在点D处时恰好能看到铁塔的顶部B 和底部A(如图).设小明的手臂长l=50cm,小尺长a=20cm,点D到铁塔底部的距离AD=20m,则铁塔的高度为m.12.(2023•长安区校级二模)如图,是位于西安市长安区香积寺内的善导塔,善导塔为楼阁式砖塔,塔身全用青砖砌成,平面呈正方形,原为十三层,现存十一层,建筑形式独具一格.数学兴趣小组测量善导塔的高度AB,有以下两种方案:方案一:如图1,在距离塔底B点45m远的D处竖立一根高1.5m的标杆CD,小明在F处蹲下,他的眼睛所在位置E、标杆的顶端C和塔顶点A三点在一条直线上.已知小明的眼睛到地面的距离EF=0.8m,DF=1m,AB⊥BM,CD ⊥BM,EF⊥BM,点B、D、F、M在同一直线上.方案二:如图2,小华拿着一把长为22cm的直尺CD站在离善导塔45m的地方(即点E到AB的距离为45m).他把手臂向前伸,尺子竖直,CD∥AB,尺子两端恰好遮住善导塔(即A、C、E在一条直线上,B、D、E在一条直线上),已知点E到直尺CD的距离为30cm.请你结合上述两个方案,选择其中的一个方案求善导塔的高度AB.我选择方案.【题型4 利用相似三角形测量高度-标杆测量法】13.(2023•费县二模)如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=10.8m,则建筑物CD 的高是m.14.(2021秋•吉林期末)小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为.15.(2022秋•花都区期末)如图,利用标杆BE测量建筑物的高度,如果标杆BE高1.2m,测得AB=1.6m,BC=12.4m,楼高CD是多少?16.(2023•雁塔区一模)为测量一棵大树的高度,设计的测量方案如图所示:标杆高度CD=3m,人的眼睛A、标杆的顶端C和大树顶端M在一条直线上,标杆与大树的水平距离DN=14m,人的眼睛与地面的高度AB=1.6m,人与标杆CD的水平距离BD=2m,B、D、N三点共线,AB⊥BN,CD⊥BN,MN⊥BN,求大树MN的高度.17.(2023•碑林区校级一模)某数学兴趣小组决定利用所学知识测量一古建筑的高度.如图2,古建筑的高度为AB,在地面BC上取E,G两点,分别竖立两根高为1.5m的标杆EF和GH,两标杆间隔EG为26m,并且古建筑AB,标杆EF和GH在同一竖直平面内.从标杆EF后退2m到D处(即ED=2m),从D处观察A点,A,F,D在一直线上;从标杆GH后退4m到C处(即CG =4m),从C处观察A点,A、H、C三点也成一线.已知B、E、D、G、C 在同一直线上,AB⊥BC,EF⊥BC,GH⊥BC,请你根据以上测量数据,帮助兴趣小组求出该古建筑AB的高度.18.(2022秋•高新区期末)某校同学参与“项目式学习”综合实践活动,小明所在的数学活动小组利用所学知识测量旗杆EF的高度,他在距离旗杆40米的D处立下一根3米高的竖直标杆CD,然后调整自己的位置,当他与标杆的距离BD为4米时,他的眼睛、标杆顶端和旗杆顶位于同一直线上,若小明的眼睛离地面高度AB为1.6米,求旗杆EF的高度.19.(2023•碑林区一模)杭州市西湖风景区的雷峰塔又名“皇妃塔”,某校社会实践小组为了测量雷峰塔的高度,在地面上C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,雷峰塔的塔尖点B正好在同一直线上,测得EC=3米,将标杆CD向后平移到点G处,这时地面上的点F,标杆的顶端点H,雷峰塔的塔尖点B正好又在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=5米,GC=60米,请你根据以上数据,计算雷峰塔的高度AB.20.(2022秋•益阳期末)大雁塔是现存最早规模最大的唐代四方楼阁式砖塔,被国务院批准列入第一批全国重点文物保护单位,某校社会实践小组为了测量大雁塔的高度,在地面上C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,古塔的塔尖点B正好在同一直线上,测得EC=1.28米,将标杆向后平移到点G处,这时地面上的点F,标杆的顶端点H,古塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与古塔底处的点A在同一直线上),这时测得FG=1.92米,CG=20米,请你根据以上数据,计算古塔的高度AB.21.(2022秋•雁塔区校级期中)青龙寺是西安最著名的樱花观赏地,品种达到了13种之多,每年3、4月陆续开放的樱花让这里成为了花的海洋,一天,小明和小刚去青龙守游玩,想利用所学知识测量一棵樱花树的高度(樱花树四周被围起来了,底部不易到达).小明在F处竖立了一根标杆EF,小刚走到C处时,站立在C处看到标杆顶端E和树的顶端B在一条直线上.此时测得小刚的眼睛到地面的距离DC=1.6米;然后,小明在地面上放一个镜子,恰好在G处时,小刚刚好能从镜子里看到树的顶端B.已知EF=3.2米,CF =3米,CG=2米,点小C、F、G在一条直线上,CD⊥AC,EF⊥AC,AB ⊥AC.根据以上测量过程及测量数据,请你求出这棵樱花树AB的高度.【题型5 利用相似三角形测量距离】22.(2022秋•开封期末)如图,某“综合实践”小组为估算开封护城河的宽度,可以在河对岸选定一个目标点P,在近岸取点A和点C,使AC=30m,且AC ⊥AP,再过点C作CD⊥BC,且CD=20m,PD与AC交于点B,若测得AB =20m,则河宽AP的宽度为()A.40m B.30m C.20m D.10m 23.(2022秋•上海月考)如图,A,B是河边上的两根水泥电线杆,C,D是河对岸不远处的两根木质电话线杆,且电线、电话线及河两边都是平行的.O 是A、B对岸河边上一点,且O与A、C在同一直线上,与B、D也在同一直线上,已知AB=35m,CD=20m,OD=20m,根据所给的已知条件是否一定能求出河的大约宽度能(填能或不能或不一定).24.(2023•山西模拟)如图,为了估算河的宽度,我们可以在河对岸选定一个目标点A,在近岸取点B和点C,观察者在点E.适当调整,使得AB与EC 都与河岸BC垂直.此时AE与BC相交于点D,若测得BD=100m,DC=50m,EC=45m,请利用这些数据计算河的宽度.25.(2022秋•济南期末)如图,矩形ABCD为台球桌面,AD=280cm,AB=140cm,球目前在E点位置,AE=35cm,如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.(1)求证:△BEF∽△CDF;(2)求CF的长.26.(2023•西吉县一模)如图,A,B两点被池塘隔开,在AB外取一点C,连接AC,BC,在AC上取点M,使AM=3MC,作MN∥AB交BC于点N,量得MN=38m,求AB的长.27.(2023•莲湖区模拟)如图,为了测量平静的河面的宽度(EP),在离河岸D点3m远的B点,立一根长为1.5m的标杆AB,已知河岸高出水面0.6m,即DE=0.6m.在河对岸的水里有一棵高出水面4.6m的大树MP,大树的顶端M在河里的倒影为点N,即PM=PN.经测量此时A,D,N三点在同一直线上,并且点M,P,N共线,若AB,DE,MP均垂直于河面EP,则河宽EP 是多少米?。

中考数学总复习《二次函数中的相似三角形存在性问题》专题训练-附答案

中考数学总复习《二次函数中的相似三角形存在性问题》专题训练-附答案

中考数学总复习《二次函数中的相似三角形存在性问题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,在平面直角坐标系xOy 中,直线AB 的函数表达式为2(0y ax a a =-≠,a 为常数),点A 、B 分别在y 轴和x 轴上,且2OA OB =,点A 关于x 轴的对称点为C ,点B 关于y 轴的对称点为D ,以点C 为顶点的抛物线经过点D .(1)求点,A B 的坐标;(2)求抛物线的解析式;(3)在(2)中拋物线的对称轴上有一点P ,且以点D O P 、、为顶点的三角形与AOB 相似,求出所有满足条件的点P 的坐标.2.已知在平面直角坐标系中,抛物线212y x bx c =-++与x 轴相交于点A ,B ,与y 轴相交于点C ,直线4y x =+经过A ,C 两点(1)求抛物线的表达式;(2)如果点P ,Q 在抛物线上,并与对称轴对称,(P 点在对称轴左边),且2PQ AO =,求P ,Q 的坐标;(3)动点M 在直线4y x =+上,且ABC 与COM 相似,求点M 的坐标.3.已知:抛物线2:3L y x bx =+-交x 轴于(),3,0A B 两点,交y 轴于C .(1)求抛物线的解析式;(2)如图1,点D 在第四象限的抛物线上,DE BC ⊥于点E ,若12DE BE =,求点D 的坐标; (3)如图2,抛物线L 经过平移后得到抛物线21:4H y x =-,直线OP 交抛物线的其中一个点为P ,直线PQ 与抛物线有且只有一个交点P ,且与y 轴不平行,⊥OQ OP 交PQ 于点Q ,求点Q 的纵坐标.4.如图,抛物线22y ax x c =++与x 轴交于1,0A ,B 两点,与y 轴交于点G ,抛物线的对称轴为直线=1x -,交x 轴于点E ,交抛物线于点F ,连接BC .(1)求抛物线的解析式.(2)如图,点P 是线段BC 上一动点,过点P 作PD x ⊥轴,交抛物线于点D ,问当动点P 运动到什么位置时,四边形CEBD 的面积最大?求出四边形CEBD 的最大面积及此时P 点的坐标.(3)坐标轴上是否存在点G ,使得以A ,C ,G 为顶点的三角形与BCF △相似?若存在,请求出点G 的坐标;若不存在,请说明理由.5.如图,抛物线22y ax bx =-+-经过A (4,0),B (1,0)两点.(1)求出抛物线的解析式;(2)P 是抛物线在第一象限上的一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)若抛物线上有一点Q (点Q 不与点B 重合),使得点Q 与点B 到直线AC 的距离相等,请直接写出点Q 坐标.6.如图,已知二次函数的图象与x 轴交于1,0A 和()3,0B -两点,与y 轴交于点()0,3C -,直线2y x m =-+经过点A ,且与y 轴交于点D ,与抛物线交于点E .(1)求抛物线的解析式;(2)如图1,点M 在AE 下方的抛物线上运动,求AME △的面积最大值;(3)如图2,在y 轴上是否存在点P ,使得以D 、E 、P 为顶点的三角形与AOD △相似,若存在,求出点P 的坐标;若不存在,试说明理由.7.如图1,平面直角坐标系中,抛物线2y ax bx c =++交x 轴于1,0A ,()3,0B -两点,交y 轴于点()0,3C ,点M 是线段OB 上一个动点,过点M 作x 轴的垂线,交直线BC 于点F ,交抛物线于点E .(1)求抛物线的解析式; (2)当BCE 面积最大时,求M 点的坐标;(3)如图2,是否存在以点C 、E 、F 为顶点的三角形与ABC 相似,若存在,求点M 的坐标;若不存在,请说明理由.8.如图①,抛物线2y x bx c =-++与x 轴交于两点A ,()4,0B (点A 位于点B 的左侧),与y 轴交于点()0,4C ,拋物线的对称轴l 与x 轴交于点N ,长为2的线段PQ (点P 位于点Q 的上方)在x 轴上方的抛物线对称轴上运动.(1)求抛物线的关系式;(2)在线段PQ 运动过程中,当PC PA +的值最小时,求此时点P 的坐标;(3)如图①过点P 作PM y ⊥轴于点M ,当CPM △和QBN 相似时,求点Q 的坐标.9.如图,已知抛物线2y ax bx c =++与x 轴交于A 、()3,0B 两点,与y 轴交于点C ,顶点为()2,1D -,直线l 是抛物线的对称轴.(1)求抛物线的函数表达式;(2)点M 是直线l 上的动点,当以点M 、B 、D 为顶点的三角形与ABC 相似时,求点M 的坐标. 10.如图,抛物线23y ax bx =++经过点于()1,0A -,()3,0B 两点,与y 轴交于点C ,连接AC .(1)求抛物线的解析式;(2)如图①,若点E 是第二象限内抛物线上的一点,直线AE 与BC 相交于点F ,连接CE ,BE ,若BCE 的面积3,求点E 的横坐标;(3)如图①,点D 与点C 关于抛物线的对称轴对称,直线AD 交y 轴于点G ,点P 在平面内,以点B ,C ,P 为顶点的三角形与ACG 相似且∠=∠CBP CAG 时,请直接写出符合条件的点P 的坐标.11.如图,顶点为D 的抛物线2y x bx c =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,直线3y x =-+经过点B ,C .(1)求抛物线的解析式;(2)连接AC ,CD ,BD .求证:ACO DBC ∽△△;(3)点P 为抛物线对称轴上的一个动点,点M 是平面直角坐标系内一点,当以点A ,C ,M ,P 为顶点的四边形是菱形时,请直接写出点P 的坐标.12.已知抛物线2y x bx c =++与x 轴交于()()1030A B ,、,两点,且与y 轴的公共点为点C ,设该抛物线的顶点为D .(1)求抛物线的表达式,并求出顶点D 的坐标;(2)若点P 为抛物线上一点,且满足PB PC =,求点P 的横坐标;(3)连接CD BC ,,点E 为线段BC 上一点,过点E 作EF CD ⊥交CD 于点F ,若12=DF CF ,求点E 的坐标. 13.如图,在平面直角坐标系xOy 中,抛物线213442y x x =-++与两坐标轴分别相交于A B C ,,三点.(1)求证:90ACB ∠=︒;(2)点D 是第一象限内抛物线上的动点,过点D 作x 轴的垂线交BC 于点E ,交x 轴于点F .①求255DE BE +的最大值; ①点G 是AC 的中点,若以点C D E ,,为顶点的三角形与AOG 相似,求点D 的坐标.14.如图,抛物线2134y x x =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D ,抛物线的对称轴与x 轴交于点E ,连接AC ,BD .(1)求点A ,B ,C ,D 的坐标;(2)点F 为抛物线对称轴上的动点,且BEF △与AOC 相似,请直接写出符合条件的点F 的坐标;(3)点P 为抛物线上的动点,是否存在这样的点P ,使BDP △是直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.15.如图,已知A (﹣2,0)、B (3,0),抛物线y =ax 2+bx +4经过A 、B 两点,交y 轴于点C .点P 是第一象限内抛物线上的一动点,点P 的横坐标为m .过点P 作PM ①x 轴,垂足为点M ,PM 交BC 于点Q .过点P 作PN ①BC ,垂足为点N .(1)直接写出抛物线的函数关系式 ;(2)请用含m 的代数式表示线段PN 的长 ;(3)连接PC ,在第一象限的抛物线上是否存在点P ,使得①BCO +2①PCN =90°?若存在,请求出m 的值;若不存在,请说明理由;(4)连接AQ ,若△ACQ 为等腰三角形,请直接写出m 的值 .参考答案:1.(1)()0,4A ()2,0B(2)抛物线的解析式为24y x =-(3)满足条件的点P 的坐标为()0,4或()0,4-或()0,1或()0,1-2.(1)2142y x x =--+(2)775,,3,22P Q ⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭ (3)84,33⎛⎫- ⎪⎝⎭或()3,1-3.(1)抛物线解析式为223y x x =--(2)()2,3D -(3)12Q y =-4.(1)223y x x =+-(2)当32m =-,四边形CEBD 的面积最大,最大面积为518,此时点P 的坐标为33,22⎛⎫-- ⎪⎝⎭(3)存在,点G 的坐标为()()10,0,0,,9,03⎛⎫- ⎪⎝⎭5.(1)抛物线的解析式为215222y x x =-+- (2)存在,符合条件的点P 的坐标为(2,1)(3)点Q 的坐标为(3,1)或75(27,)22+-或75(27,)22---6.(1)223y x x =+-;(2)27;(3)存在,点P 的坐标为()0,12或290,2⎛⎫ ⎪⎝⎭.7.(1)223y x x =--+;(2)3,02M ⎛⎫- ⎪⎝⎭; (3)存在, 3,02M ⎛⎫- ⎪⎝⎭或5,03M ⎛⎫- ⎪⎝⎭.8.(1)234y x x =-++(2)35,22P ⎛⎫ ⎪⎝⎭(3)Q 的坐标是35,24⎛⎫ ⎪⎝⎭或3,52⎛⎫ ⎪⎝⎭或3219,22⎛⎫+ ⎪ ⎪⎝⎭9.(1)243y x x =-+(2)点M 的坐标是()2,2或12,3⎛⎫- ⎪⎝⎭.10.(1)223y x x =-++(2)3172- (3)()16,3-P 263,55⎛⎫ ⎪⎝⎭P ()30,9P 4129,55⎛⎫ ⎪⎝⎭P11.(1)223y x x =-++(3)()11,或()16,或()16-,或()10,12.(1)243y x x =-+ ()21-,(2)51351322⎛⎫-- ⎪⎝⎭,或51351322⎛⎫++ ⎪⎝⎭, (3)207,99⎛⎫ ⎪⎝⎭13.(2)①9;①(4,6)D 或25(3,)4D .14.(1)()()2,0,6,0A B - ()0,3C ()2,4D (2)()2,6或()2,6-或82,3⎛⎫ ⎪⎝⎭或82,3⎛⎫- ⎪⎝⎭; (3)()2,0-或()6,12--15.(1)222433y x x =-++(2)22655PN m m =-+(3)存在 74 (4)65或125。

中考数学复习之二次函数背景下的相似三角形的存在性问题,含参考答案

中考数学复习之二次函数背景下的相似三角形的存在性问题,含参考答案

中考数学复习之相似三角形的存在性问题(学案)知识与方法梳理:相似三角形存在性的处理思路1. 分析特征:分析背景图形中的定点、定线及不变特征,结合图形形成因素(判定等)考虑分类.注:相似三角形存在性问题主要结合对应关系及不变特征考虑分类.2. 画图求解:往往先从对应关系入手,再结合背景中的不变特征分析,综合考虑对应关系和不变特征后列方程求解. 注:相似三角形列方程往往借助对应边成比例;3. 结果验证:回归点的运动范围,画图或推理,验证结果.例1:在平面直角坐标系中,二次函数图象的顶点坐标为 C (4,,且与x 轴的两个交点间的距离为6. (1)求二次函数的解析式;(2)在x 轴上方的抛物线上,是否存在点Q ,使得以Q ,A ,B 为顶点的三角形与△ABC 相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.第一问:研究背景图形 【思路分析】△由顶点坐标C (4,)可知对称轴为直线x =4,利用与x 轴两个交点间的距离为6,再结合抛物线的对称性可知A (1,0),B (7,0).△设交点式y =a (x -1)(x -7),再代入坐标C (4,可求解出解析式2y x =-+.【过程示范】△顶点坐标为C (4,), △抛物线对称轴为直线x =4,又△抛物线与x 轴的两个交点间的距离为6, △由抛物线的对称性可知:A (1,0),B (7,0). 设抛物线的解析式为y =a (x -1)(x -7),将C (4,)代入可得,a = △所求解析式为2y x x =. 第二问:相似三角形的存在性 【思路分析】相似三角形存在性问题也是在存在性问题的框架下进行的:△分析特征:先研究定点、动点,其中A 、B 、C 为定点,点Q 为抛物线上的动点;进一步研究此△ABC ,发现其中AC=BC ;构造辅助线:CD 垂直于x 轴,能够计算出△BAC =30°,△ACB =30°;再考虑研究△QAB ,固定线段为AB ,并且由于点Q 在x 轴上方的抛物线上,所以△QAB 为钝角(填“钝角”或“直角”)三角形.△画图求解:先考虑点Q 在抛物线对称轴右侧的情况,此时△ABQ 为钝角,要想使△ABC 与△ABQ 相似,则需要△ABQ =120°,且AB=BQ .求解时,可根据△ABQ =120°,AB =BQ =6来求出Q 点坐标.同理,考虑点Q 在抛物线对称轴左侧时的情况.△结果验证:考虑点Q 还要在抛物线上,将点Q 代入抛物线解析式验证. 【过程示范】存在点Q 使得△QAB 与△ABC 相似.由抛物线对称性可知,AC =BC ,过点C 作CD △x 轴于D , 则AD =3,CD在Rt△ACD 中,tan△DAC,△△BAC =△ABC =30°,△ACB =120°. △当△ACB △△ABQ 1时, △ABQ 1=120°且BQ 1=AB =6. 过点Q 1作Q 1E △x 轴,垂足为E , 则在Rt△BQ 1E 中,BQ 1=6,△Q 1BE =60°, △Q 1E =BQ 1·sin60°=62⨯=BE =3, △E (10,0),Q 1(10,. 当x =10时,y= △点Q 1在抛物线上.△由抛物线的对称性可知,还存在AQ 2=AB , 此时△Q 2AB △△ACB ,点Q 2的坐标为(-2,. 综上,Q 1(10,,Q 2(-2,.练习题1. 如图,抛物线2110833y x x =-+-经过A ,B ,C 三点,BC △OB ,AB =BC ,过点C 作CD ⊥x 轴于点D .点M是直线AB 上方的抛物线上一动点,作MN ⊥x 轴于点N ,若△AMN 与△ACD 相似,则点M 的坐标为_____________________________.OB CDAxy2. 如图,已知抛物线234y x bx c =++与坐标轴交于A ,B ,C 三点,点A 的坐标为(1,0),过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH △OB 于点H .若PB 5t ,且0<t <1.(1)点C 的坐标是____________,b _______,c ______. (2)求线段QH 的长(用含t 的代数式表示).(3)依点P 的变化,是否存在t 的值,使以P ,H ,Q 为顶点的三角形与△COQ 相似?若存在,求出所有符合条件的t 值;若不存在,说明理由.A BCOHP QxyyxO CB A3. 如图,抛物线213222y x x =-++与x 轴交于A ,B 两点,与y 轴交于点C ,点D (1,m )在抛物线上,直线y =-x -1与抛物线交于A ,E 两点,点P 在x 轴上,且位于点B 的左侧,若以P ,B ,D 为顶点的三角形与△ABE 相似,则点P 的坐标为__________________________________.4. 如图,已知抛物线过点A (0,6),B (2,0),C (7,52).(1)求抛物线的解析式.(2)若D 是抛物线的顶点,E 是抛物线的对称轴与直线AC 的交点,F 与E 关于D 对称.求证:△CFE =△AFE . (3)在y 轴上是否存在这样的点P ,使△AFP 与△FDC 相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.5.如图,抛物线y=ax2+bx经过两点A(-1,1),B(2,2).过点B作BC△x轴,交抛物线于点C,交y轴于点D.连接OA,OB,OC,AC,点N在坐标平面内,且△AOC与△OBN相似(边OA与边OB对应),则点N的坐标为_____________________________________.6.如图,抛物线y=-x2+4与x轴交于A,B两点,与y轴交于点C,连接AC.点P是第一象限内抛物线上的一个动点,过点P作x轴的垂线,垂足为D.是否存在以P,O,D为顶点的三角形与△OAC相似?若存在,请求出点P的坐标;若不存在,请说明理由.7.如图,已知抛物线y=x2-1与x轴交于A,B两点,与y轴交于点C,过点A作AP△CB交抛物线于点P.(1)求A,B,C三点的坐标.(2)在x轴上方的抛物线上是否存在一点M,过点M作MG△x轴于点G,使以A,M,G为顶点的三角形与△PCA 相似?若存在,请求出点M的坐标;若不存在,请说明理由.8.如图,抛物线y=ax2+b与x轴交于点A,B,且点A的坐标为(1,0),与y轴交于点C(0,1).(1)求抛物线的解析式,并求出点B的坐标.(2)过点B作BD△CA交抛物线于点D,在x轴上点A的左侧是否存在点P,使以P,A,C为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由.9. 如图,抛物线经过A (4,0),B (1,0),C (0,-2)三点.(1)求抛物线的解析式.(2)P 是抛物线上一动点,过点P 作PM △x 轴,垂足为M ,是否存在点P ,使得以A ,P ,M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.参考答案1. 2. (1)(0,-3),,-3;(2);(3)存在,或. 3. 4. (1);(3). 5. N 1(3,4),N 2(4,3),N 3(-2,-1),N 4(-1,-2)6.存在,1P ,2(12P --+.7.(1)A (-1,0),B (1,0),C (0,-1);(2)存在,M 1(-2,3),M 2(4,15),347()39M ,. 1257111()()2424M M -,,,94-148 0218 4 12t t QH t t ⎧-<<⎪⎪=⎨⎪-<<⎪⎩()()73225321121322(0)(0)75P P -,,,21462y x x =-+1241(0)(02)2P P --,,,8.(1)y =-x 2+1,B (-1,0);(2)存在,11(0)3P ,,P 2(-2,0). 9.(1)215222y x x =-+-;(2)存在,P 1(0,-2),P 2(-3,-14),P 3(2,1),P 4(5,-2).。

中考数学压轴题分析:相似三角形的存在性问题

中考数学压轴题分析:相似三角形的存在性问题

中考数学压轴题分析:相似三角形的存在性问题几何图形的存在性问题是中考常见的问题。

本文内容选自2020年广东省中考数学压轴题,考查相似三角形的存在性问题,难度不小。

一个三角形形状大小确定,另外一个三角形有两个动点。

具体请看下面内容。

【中考真题】(2020·广东)如图,抛物线与轴交于,两点,点,分别位于原点的左、右两侧,,过点的直线与轴正半轴和抛物线的交点分别为,,.(1)求,的值;(2)求直线的函数解析式;(3)点在抛物线的对称轴上且在轴下方,点在射线上.当与相似时,请直接写出所有满足条件的点的坐标.【分析】题(1)利用待定系数法求解析式,根据BO=3AO=3,得出点,点坐标,代入求抛物线解析式。

题(2)求BD的解析式,需要确定点D的坐标。

由于题目已知BC与CD的比例关系,可以考虑过点D作x轴的垂线,得到一个A字型的相似,求出点D的横坐标,代入二次函数的解析式,然后即可得到结论。

当然,如果先设直线BD的解析式为y=kx-3k,联立二次函数的解析式,得到一元二次方程的两根x1与x2的关系即可求出k的值。

题(3)中需要确定与△ABD相似的△BPQ。

由于A、B、D三点的位置的固定的,坐标也是确定的。

那么形状与大小就确定了。

先求出3边长度,且易得∠BAD为钝角。

而∠PBQ不可能为钝角,所以只需要分两种情况讨论即可:①点B与点B对应;②点B与点D对应。

两种情况中边的比例又有两种情况,因此分为4种情况讨论。

设PQ的坐标,然后根据比例关系得出结论。

【答案】解:(1),点,点,抛物线解析式为:,,;(2)如图1,过点作于,,,,,,,点横坐标为,点坐标为,,设直线的函数解析式为:,由题意可得:,解得:,直线的函数解析式为;(3)点,点,点,,,,,对称轴为直线,直线与轴交于点,点,,,,如图2,过点作于,,,,,如图,设对称轴与轴的交点为,即点,若,,,,,当,,,点,;当,,,点,;若,,,当,,,点,;当,,,点,;综上所述:满足条件的点的坐标为,或,或,或,.。

中考专题:二次函数函数的存在性问题(相似三角形)

中考专题:二次函数函数的存在性问题(相似三角形)

二次函数函数的存在性问题(相似三角形)1、)如图,已知抛物线与x 交于A(-1,0)、E(3,0)两点,与y 轴交于点B(0,3)。

(1)求抛物线的解析式; (2)设抛物线顶点为D ,求四边形AEDB 的面积; (3)△AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。

2、)矩形OABC 在平面直角坐标系中位置如图所示,A C 、两点的坐标分别为(60)A ,,(03)C -,, 直线34y x =-与BC 边相交于D 点. (1)求点D 的坐标; (2)若抛物线294y ax x =-经过点A ,试确定此抛物线的表达式; (3)设(2)中的抛物线的对称轴与直线OD 交于点M ,点P 为对称轴上一动点,以P O M 、、为顶点的三角形与OCD △相似,求符合条件的点P 的坐标.3、)如图,已知抛物线y =34x 2+bx +c 与坐标轴交于A 、B 、C 三点, A 点的坐标为(-1,0)过点C 的直线y =34tx -3与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH⊥OB 于点H .若PB =5t , 且0<t <1.(1)填空:点C 的坐标是_ _,b = _,c =_ _;(2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所有t 的值;若不存在,说明理由.4、)已知,如图1,过点()01E -,作平行于x 轴的直线l ,抛物线214y x =上的两点A B 、的横坐标分别为-1和4,直线AB 交y 轴于点F ,过点A B 、分别作直线l 的垂线,垂足分别为点C 、D ,连接CF DF 、. (1)求点A B F 、、的坐标; (2)求证:CF DF ⊥; (3)点P 是抛物线214y x =对称轴右侧图象上的一动点,过点P 作PQ PO ⊥交x 轴于点Q ,是否存在点P 使得OPQ △与CDF △相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.5、如图,抛物线经过(40)(10)(02)A B C -,,,,,三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; (3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.6、)如图,ABCD 在平面直角坐标系中,6AD =,若OA 、OB 的长是关于x 的一元二次方程27120x x -+=的两个根,且OA OB >.(1)求sin ABC ∠的值. (2)若E 为x 轴上的点,且163AOE S =△,求经过D 、E 两点的直线的解析式,并判断AOE △与DAO △是否相似?(3)若点M 在平面直角坐标系内,则在直线AB 上是否存在点F ,使以A 、C 、F 、M 为顶点的四边形为菱形?若存在,请直接写出F 点的坐标;若不存在,请说明理由.答案1、(09贵州安顺)解:(1) ∵抛物线与y 轴交于点(0,3),∴设抛物线解析式为)0(32≠++=a bx ax y (1′) 根据题意,得⎩⎨⎧=++=+-033903b a b a ,解得⎩⎨⎧=-=21b a∴抛物线的解析式为322++-=x x y (5′) (2)由顶点坐标公式得顶点坐标为(1,4) 设对称轴与x 轴的交点为F∴四边形ABDE 的面积=ABO DFE BOFD S S S ∆∆++梯形 =111()222AO BO BO DF OF EF DF ⋅++⋅+⋅=11113(34)124222⨯⨯++⨯+⨯⨯=9(3)相似如图,==∴====∴2220BD BE +=, 220DE = 即: 222BD BE DE +=,所以BDE ∆是直角三角形 ∴90AOB DBE ∠=∠=︒,且AO BO BD BE ==∴AOB ∆∽DBE ∆ 2、(09青海)解:(1)点D 的坐标为(43)-,.(2)抛物线的表达式为23984y x x =-. (3)抛物线的对称轴与x 轴的交点1P 符合条件. ∵OA CB ∥, ∴1POM CDO ∠=∠. ∵190OPM DCO ∠=∠=°, ∴1Rt Rt POM CDO △∽△. ∵抛物线的对称轴3x =, ∴点1P 的坐标为1(30)P ,. 过点O 作OD 的垂线交抛物线的对称轴于点2P . ∵对称轴平行于y 轴, ∴2P MO DOC ∠=∠.∵290POM DCO ∠=∠=°, ∴21Rt Rt P M O DOC △∽△∴点2P 也符合条件,2OP M ODC ∠=∠. ∴121390PO CO P PO DCO ==∠=∠=,°, ∴21Rt Rt P PO DCO △≌△. ∴124PP CD ==.∵点2P 在第一象限,∴点2P 的坐标为2P (34),, ∴符合条件的点P 有两个,分别是1(30)P ,,2P (34),3、(09广西钦州) 解:(1)(0,-3),b =-94,c =-3. (2)由(1),得y =34x 2-94x -3,它与x 轴交于A ,B 两点,得B (4,0). ∴OB =4,又∵OC =3,∴BC =5. 由题意,得△B HP ∽△BOC ,∵OC ∶OB ∶BC =3∶4∶5 , ∴HP ∶HB ∶BP =3∶4∶5 , ∵PB =5t ,∴HB =4t ,HP =3t . ∴OH =OB -HB =4-4t . 由y =34tx -3与x 轴交于点Q ,得Q (4t ,0). ∴OQ =4t . ①当H 在Q 、B 之间时, QH =OH -OQ =(4-4t )-4t =4-8t . ②当H 在O 、Q 之间时,QH =OQ -OH =4t -(4-4t )=8t -4. 综合①,②得QH =|4-8t |;(3)存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似. ①当H 在Q 、B 之间时,QH =4-8t , 若△QHP ∽△COQ ,则QH ∶CO =HP ∶OQ ,得483t -=34tt, ∴t =732. 若△PHQ ∽△COQ ,则PH ∶CO =HQ ∶OQ ,得33t =484t t -,即t 2+2t -1=0.∴t 11,t 21(舍去).②当H 在O 、Q 之间时,QH =8t -4.若△QHP ∽△COQ ,则QH ∶CO =HP ∶OQ , 得843t -=34t t ,∴t =2532.若△PHQ ∽△COQ ,则PH ∶CO =HQ ∶OQ , 得33t =844t t -,即t 2-2t +1=0.∴t 1=t 2=1(舍去).综上所述,存在t 的值,t 11,t 2=732,t 3=2532.4、(09福建莆田)(1)解:方法一,如图1,当1x =-时,14y =;当4x =时,4y = ∴1A ⎛⎫- ⎪⎝⎭1,4 ()44B , 设直线AB 的解析式为y kx b =+则1444k b k b ⎧-+=⎪⎨⎪+=⎩ 解得341k b ⎧=⎪⎨⎪=⎩∴直线AB 的解析式为314y x =+ ,当0x =时,1y = ()01F ∴, 方法二:求A B 、两点坐标同方法一,如图2,作FG BD ⊥,AH BD ⊥,垂足分别为G 、H ,交y 轴于点N ,则四边形FOMG 和四边形NOMH 均为矩形,设FO x =图3BGF BHA △∽△ BG FG BH AH ∴= 441544x -∴=-解得1x = ()0F ∴,1(2)证明:方法一:在Rt CEF △中,1,2CE EF == 22222125CF CE EF ∴=+=+=CF ∴在Rt DEF △中,42DE EF ==, 222224220DF DE EF ∴=+=+= DF ∴=由(1)得()()1141C D ---,,,, 5CD ∴=, 22525CD ∴== 222CF DF CD ∴+=90CFD ∴∠=° ∴CF DF ⊥方法二:由 (1)知5544AF AC ===,AF AC ∴= 同理:BF BD = ACF AFC ∴∠=∠AC EF ∥ ACF CFO ∴∠=∠ AFC CFO ∴∠=∠ 同理:BFD OFD ∠=∠ 90CFD OFC OFD ∴∠=∠+∠=° 即CF DF ⊥(3)存在. 如图3,作PM x ⊥轴,垂足为点M 又PQ OP ⊥ Rt Rt OPM OQP ∴△∽△ PM OMPQ OP∴= PQ PM OP OM ∴= 设()2104P x x x ⎛⎫> ⎪⎝⎭,,则214PM x OM x ==,①当RtRt QPO CFD △∽△时,12PQ CF OP DF === 21142xPM OM x ∴== 解得2x = ()121P ∴, ②当Rt Rt OPQ CFD △∽△时,2PQ DF OP CF === 2142xPM OM x ∴==解得8x = ()2816P ∴, 综上,存在点()121P ,、()2816P ,使得OPQ △与CDF △相似.(图2)5、(09山东临沂)解:(1)该抛物线过点(02)C -,,∴可设该抛物线的解析式为22y ax bx =+-.将(40)A ,,(10)B ,代入,得1642020a b a b .+-=⎧⎨+-=⎩,解得1252a b .⎧=-⎪⎪⎨⎪=⎪⎩,∴此抛物线的解析式为215222y x x =-+-.(2)存在.如图,设P 点的横坐标为m , 则P 点的纵坐标为215222m m -+-, 当14m <<时, 4AM m =-,215222PM m m =-+-. 又90COA PMA ∠=∠=°, ∴①当21AM AO PM OC ==时, APM ACO △∽△, 即21542222m m m ⎛⎫-=-+- ⎪⎝⎭. 解得1224m m ==,(舍去),(21)P ∴,.②当12AM OC PM OA ==时,APM CAO △∽△,即2152(4)222m m m -=-+-. 解得14m =,25m =(均不合题意,舍去) ∴当14m <<时,(21)P ,. 类似地可求出当4m >时,(52)P -,. 当1m <时,(314)P --,. 综上所述,符合条件的点P 为(21),或(52)-,或(314)--,. (3)如图,设D 点的横坐标为(04)t t <<,则D 点的纵坐标为215222t t -+-. 过D 作y 轴的平行线交AC 于E . 由题意可求得直线AC 的解析式为122y x =-.E ∴点的坐标为122t t ⎛⎫- ⎪⎝⎭,. 2215112222222DE t t t t t ⎛⎫∴=-+---=-+ ⎪⎝⎭.22211244(2)422DAC S t t t t t ⎛⎫∴=⨯-+⨯=-+=--+ ⎪⎝⎭△.∴当2t =时,DAC △面积最大.(21)D ∴,. 6、(09牡丹江)(1)解27120x x -+=得1243x x ==,,OA OB >, 43OA OB ∴==,在Rt AOB △中,由勾股定理有5AB = 4sin 5OA ABC AB ∴∠== (2)∵点E 在x 轴上,163AOES =△ 11623AO OE ∴⨯= 83OE ∴= 880033E E ⎛⎫⎛⎫∴- ⎪ ⎪⎝⎭⎝⎭,或, 由已知可知D (6,4) 设DE y kx b =+,当803E ⎛⎫⎪⎝⎭,时有46803k b k b =+⎧⎪⎨=+⎪⎩解得65165k b ⎧=⎪⎪⎨⎪=-⎪⎩∴61655DEy x =- 同理803E ⎛⎫- ⎪⎝⎭,时,6161313DE y x =+ 在AOE △中,89043AOE OA OE ∠===°,, 在AOD △中,9046OAD OA OD ∠===°,, OE OAOA OD= AOE DAO ∴△∽△ (3)满足条件的点有四个123475224244(38)(30)1472525F F F F ⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭,;,;,;,。

2022年上海15区中考数学一模考点分类汇编专题03 三角形一边平行线与相似有关概念- (原卷版)

2022年上海15区中考数学一模考点分类汇编专题03  三角形一边平行线与相似有关概念- (原卷版)

2022年上海市15区中考数学一模考点分类汇编专题03 三角形一边平行线与相似有关概念一.选择题(共25小题)1.(青浦区)下列图形,一定相似的是()A.两个直角三角形B.两个等腰三角形C.两个等边三角形D.两个菱形2.(静安区)已知点D、E分别在△ABC的边AB、AC的反向延长线上,且ED∥BC,如果AD:DB=1:4,ED=2,那么边BC的长是()A.8B.10C.6D.43.(崇明区)如果两个相似三角形的周长比为1:4,那么这两个三角形的对应中线的比为()A.1:2B.1:4C.1:8D.1:164.(青浦区)如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F.如果AC:CE=2:3,BD=4,那么BF等于()A.6B.8C.10D.125.(黄浦区)如果两个相似三角形的周长比为1:4,那么它们的对应角平分线的比为()A.1:4B.1:2C.1:16D.6.(嘉定区)如图,已知AB∥CD∥EF,AC:AE=3:5,那么下列结论正确的是()A.BD:DF=2:3B.AB:CD=2:3C.CD:EF=3:5D.DF:BF=2:5 7.(普陀区)如图,已知AD∥BE∥CF,它们依次交直线l1和l2于点A、B、C和点D、E、F,如果AB:BC=2:3,那么下列结论中错误的是()A.B.C.D.8.(松江区)下列四个命题中,真命题的个数是()(1)底边和腰对应成比例的两个等腰三角形相似;(2)底边和底边上的高对应成比例的两个等腰三角形相似;(3)底边和一腰上的高对应成比例的两个等腰三角形相似;(4)腰和腰上的高对应成比例的两个等腰三角形相似.A.1B.2C.3D.49.(静安区)下列说法错误的是()A.任意一个直角三角形都可以被分割成两个等腰三角形B.任意一个等腰三角形都可以被分割成两个等腰三角形C.任意一个直角三角形都可以被分割成两个直角三角形D.任意一个等腰三角形都可以被分割成两个直角三角形10.(徐汇区)如图,已知AB∥CD∥EF,BD:DF=2:3,那么下列结论中,正确的是()A.CD:EF=2:5B.AB:CD=2:5C.AC:AE=2:5D.CE:EA=2:5 11.(宝山区)下列格点三角形中,与已知格点△ABC相似的是()A.B.C.D.12.(杨浦区)如图,点F是△ABC的角平分线AG的中点,点D、E分别在AB、AC边上,线段DE 过点F,且∠ADE=∠C,下列结论中,错误的是()A.B.C.D.13.(虹口区)在△ABC中,点E、D、F分别在边AB、BC、AC上,联结DE、DF,如果DE∥AC,DF∥AB,AE:EB=3:2,那么AF:FC的值是()A.B.C.D.14.(奉贤区)如图,已知D是△ABC边AB上的一点,如果∠BCD=∠A,那么下列结论中正确的是()A.AC2=AD•AB B.BC2=BD•AB C.CD2=AD•BD D.AD2=BD•CD 15.(奉贤区)已知线段AB.按以下步骤作图:(1)作以A为端点的射线AP(不与线段AB所在直线重合);(2)在射线AP上顺次截取AC=CD=DE;(3)联结BE,过点D作DF∥BE,交线段AB于点F.根据上述作图过程,下列结论中正确的是()A.AF:AB=1:2B.AF:AB=1:3C.AF:AB=2:3D.AF:AB=2:1 16.(普陀区)如图,已知点B、D、C、F在同一条直线上,AB∥EF,AB=EF,AC∥DE,如果BF=6,DC=3,那么BD的长等于()A.1B.C.2D.317.(普陀区)已知在△ABC中,∠C=90°,AC=,BC=2,如果△DEF与△ABC相似,且△DEF两条边的长分别为4和2,那么△DEF第三条边的长为()A.2B.C.D.18.(松江区)如图,已知点G是△ABC的重心,那么S△BCG:S△ABC等于()A.1:2B.1:3C.2:3D.2:519.(长宁区)下列命题中,说法正确的是()A.所有菱形都相似B.两边对应成比例且有一组角对应相等的两个三角形相似C.三角形的重心到一个顶点的距离,等于它到这个顶点对边距离的两倍D.斜边和直角边对应成比例,两个直角三角形相似20.(青浦区)如图,点D、E分别在△ABC的边AB、BC上,下列条件中一定能判定DE∥AC的是()A.B.C.D.21.(青浦区)如图,在平行四边形ABCD中,点E在边BA的延长线上,联结EC,交边AD于点F,则下列结论一定正确的是()A.B.C.D.22.(黄浦区)如图,D、E分别是△ABC的边AB、AC上的点,下列各比例式不一定能推得DE∥BC的是()A.B.C.D.23.(杨浦区)如图,在梯形ABCD中,AD∥BC,过对角线交点O的直线与两底分别交于点E、F,下列结论中,错误的是()A.B.C.D.24.(虹口区)下列选项中的两个图形一定相似的是()A.两个等腰三角形B.两个矩形C.两个菱形D.两个正方形25.(长宁区)如图,点E是线段BC的中点,∠B=∠C=∠AED,下列结论中,说法错误的是()A.△ABE与△ECD相似B.△ABE与△AED相似C.D.∠BAE=∠ADE二.填空题(共27小题)26.(青浦区)如果两个相似三角形的周长比为2:3,那么它们的对应高的比为.27.(徐汇区)冬日暖阳,下午4点时分,小明在学恔操场晒太阳,身高1.5米的他,在地面上的影长为2米,则此时高度为9米的旗杆在地面的影长为米.28.(杨浦区)在某一时刻,直立地面的一根竹竿的影长为3米,一根旗杆的影长为25米,已知这根竹竿的长度为1.8米,那么这根旗杆的高度为米.29.(静安区)如图,在△ABC中,AB=AC=6,BC=4,点D在边AC上,BD=BC,那么AD的长是.30.(青浦区)如图,点G为等边三角形ABC的重心,联结GA,如果AG=2,那么BC =.31.(徐汇区)如图,△ABC中,AB=8,BC=7,点D、E分别在边AB、AC上,已知AE=4,∠AED=∠B,则线段DE的长为.32.(黄浦区)如图,在△ABC中,中线AD、BE相交于点O,如果△AOE的面积是4,那么四边形OECD的面积是.33.(嘉定区)如图,在△ABC中,DE∥BC,DF∥AC,AD=3,BD=2,那么BF:DE的值是.34.(杨浦区)如果两个相似三角形对应边之比是4:9,那么它们的周长之比等于.35.(虹口区)已知Rt△ABC的两直角边之比为3:4,若△DEF与△ABC相似,且△DEF最长的边长为20,则△DEF的周长为.36.(奉贤区)如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果5AB=2AC,DE=6,那么线段EF的长是.37.(奉贤区)如图,已知菱形ABCD,E、F分别为△ABD和△BCD的重心.如果边AB=5,对角线BD=6,那么EF的长为.38.(普陀区)如图,在△ABC中,AD平分∠BAC,如果∠B=80°,∠C=40°,那么∠ADC 的度数等于.39.(松江区)已知两个相似三角形面积的比是4:9,那么这两个三角形周长的比是.40.(静安区)在△ABC中,DE∥BC,DE交边AB、AC分别于点D、E,如果△ADE与四边形BCED的面积相等,那么AD:DB的值为.41.(黄浦区)如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A,D,F和点B,C,E.如果,BE=20,那么线段BC的长是.42.(黄浦区)如图,△ABC是边长为3的等边三角形,D、E分别是边BC、AC上的点,∠ADE =60°,如果BD=1,那么CE=.43.(宝山区)如图,已知一张三角形纸片ABC,AB=5,BC=2,AC=4,点M在AC边上.如果过点M剪下一个与△ABC相似的小三角形纸片,可以有四种不同的剪法,设AM=x,那么x 的取值范围是.44.(杨浦区)已知在△ABC中,∠C=90°,AC=8,BC=6,点G是△ABC的重心,那么点G 到斜边AB的距离是.45.(虹口区)如图,过△ABC的重心G作上ED∥AB分别交边AC、BC于点E、D,联结AD,如果AD平分∠BAC,AB=6,那么EC=.46.(浦东新区)如图,平行四边形ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,联结EF交DC于点G,则S△DEG:S△CFG=.47.(奉贤区)顺次联接三角形三边中点,所得到的三角形与原三角形的周长的比是.48.(长宁区)如果两个相似三角形周长之比为3:2,那么这两个三角形的面积之比为.49.(长宁区)点G是△ABC的重心,过点G作BC边的平行线与AB边交于点E,与AC边交于点F,则=.50.(崇明区)如图,直线AD∥BE∥CF,如果=,AD=2,CF=6,那么线段BE的长是.51.(徐汇区)如图,BE是△ABC的角平分线,过点E作ED∥BC交边AB于点D.如果AD=3,DE=2,则BC的长度为.52.(普陀区)如图,在四边形ABCD中,AD∥BC,对角线AC、BD相交于点O,如果S△AOB=2a,S△BOC=4a,那么S△ADC=.(用含有字母a的代数式表示)三.解答题(共2小题)53.(嘉定区)如图,在梯形ABCD中,AD∥BC,点E在线段AD上,CE与BD相交于点H,CE与BA的延长线相交于点G,已知DE:AE=2:3,BC=4DE,CE=10.求EH、GE的长.54.(松江区)如图,已知平行四边形ABCD中,G是AB延长线上一点,联结DG,分别交AC、BC于点E、F,且AE:EC=3:2.(1)如果AB=10,求BG的长;(2)求的值.。

2020年中考专题练习题---相似三角形的存在性问题---教师版

2020年中考专题练习题---相似三角形的存在性问题---教师版

若ABC∆与DEF∆相似,理论上应有六种可能情况,但在中考中,6种情况未免过于复杂,所以题目中一般都还会隐含(或明示)着其中一组对应角关系,于是就只需讨论两种情况是否可能,并解出相关结果.可以将相似三角形的存在问题大致分为两类:以函数为背景的和以几何为背景的。

相比而言,以函数为背景的题目往往计算过程较为复杂,但思维过程相对简单,需要的是仔细认真;而以几何为背景的题目思维过程更为复杂,需要相对高的几何能力.1、知识内容:相似三角形的存在性问题内容分析知识结构模块一:以函数为背景的相似三角形问题知识精讲在纯几何问题中,证明三角形相似主要有三种方法:①两组角对应相等;②一组角相等且其两边对应成比例;③三组边对应成比例.在以函数为背景的压轴题中,基本都属于第二种情况,其他两种出现较少。

若ABC ∆与DEF ∆相似,且A D ∠=∠,则可能有两种情况:①AB DE AC DF =;②AB DFAC DE=. 2、 解题思路:(1) 寻找或证明两个三角形中一定相等的两个角; (2) 计算或表示出夹此两角的四条边中的三条;(3) 解出第四条边,并代回题面进行验证,舍去多余情况.【例1】 如图,在平面直角坐标系中,双曲线ky x=(0k ≠)与直线y = x +2都经过点 A (2,m ).(1)求k 与m 的值;(2)此双曲线又经过点B (n ,2),过点B 的直线BC 与直线y = x +2平行交y 轴于点 C ,联结AB 、AC ,求ABC ∆的面积;(3)在(2)的条件下,设直线y = x +2与y 轴交于点D ,在射线CB 上有一点E ,如 果以点A 、C 、E 所组成的三角形与ACD ∆相似,且相似比不为1,求点E 的坐标. 【答案】(1)k = 8,m = 4;(2)8;(3)(10,8). 【解析】(1)将A (2,m )代入y = x + 2,得m = 4;将A (2,4)代入ky x=,得k = 8; (2)将B (n ,2)代入8y x=,得n = 4; 例题解析xy1 1O设BC 为y x c =+,将B (4,2)代入,得2c =-, ∴直线BC 解析式为2y x =-. ∴C 点为(0,2-).∴ABC ∆的面积为()14662224482⨯-⨯+⨯+⨯=; △ABC 为直角三角形(4) D 点坐标为(2,0),∴E 点坐标为(10,8).【总结】本题一方面考查函数解析式与点的坐标的关系,另一方面考查几何图形的面积的确定以及相似三角形的存在性,注意根据公共角去分类讨论.【例2】 如图,在平面直角坐标系xOy 中,顶点为M 的抛物线y = ax 2+bx (a > 0)经过点A 和x 轴正半轴上的点B ,AO = BO = 2,∠AOB = 120°. (1)求这条抛物线的表达式; (2)连结OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且ABC ∆与AOM ∆相似,求点C 的坐标.AB OMxy【答案】(1)2323y x x =;(2)150︒;(3)(4,0)或(8,0). 【解析】解:(1)∵120AOB ∠=︒,2AO BO ==,∴A 点坐标为(13-,,B 点坐标为()20,.∴代入2y ax bx =+,解得:3a ,23b =∴抛物线解析式为:2323y =. (2)过M 作MF ⊥OB 于F ,∵点M 的坐标为31,⎛ ⎝⎭,∴30FOM ∠=︒. ∴309030150AOM ∠=︒+︒+︒=︒.(3)∵30ABO ∠=︒,150AOM ∠=︒,∴C 点在B 点右侧,ABC ∠与AOM ∠为对应角,分情况讨论:① ABC AOM ∆∆∽时,∴AO MOAB BC=. ∵23MO =2BC =. ∴C 点坐标为(4,0); ② CAB AOM ∆∆∽时,∴BC ABAO MO=. ∴6BC =.∴C 点坐标为(8,0).综上所述,C 点坐标为(4,0)或(8,0).【总结】本题一方面考查二次函数背景下的角度的确定,注意对特殊角的发掘,另一方面考查相似的分类讨论,先找到相等的角,再分类讨论.【例3】 如图,平面直角坐标系xOy 中,已知B (1-,0),一次函数5y x =-+的图像与x轴、y 轴分别交于点A ,C 两点.二次函数2y x bx c =-++的图像经过点A 、点B .(1)求这个二次函数的解析式;(2)点P 是该二次函数图像的顶点,求APC ∆的面积;(3)如果点Q 在线段AC 上,且ABC ∆与AOQ ∆相似,求点Q 的坐标. 【答案】(1)245y x x =-++;(2)15;(3)1Q (56,256)或2Q (2,3). 【解析】(1)∵直线5y x =-+,当0y =时,得5x =;当0x =时,得5y =; ∴A (5,0) C (0,5)∵二次函数2y x bx c =-++的图像经过点A (5,0)、点B (1-,0).∴255010b c b c -++=⎧⎨--+=⎩,解得:45b c =⎧⎨=⎩;∴二次函数的解析式为245y x x =-++.(2)由()224529y x x x =-++=--+,由题意得顶点P (2,9) . 设抛物线对称轴与x 轴交于G 点,∴S 1413.512.515APC AOC APG AOC AOCP OCPG S S S S S ∆∆∆∆=-=+-=+-=四边形梯形.(3)∠CAB =∠OAQ ,AB = 6,AO = 6,AC =52,○1ABC ∆∽AOQ ∆,∴AB AOAC AQ=, ∴2526AQ =,1Q (56,256); ○2ABC ∆∽AQO ∆,∴AB AQAC AO=, yxOCAB∴32AQ =,2Q (2,3),∴当点Q 的坐标为1Q (56,256)或2Q (2,3)时,ABC ∆与AOQ ∆相似. 【总结】本题主要考查二次函数背景下的面积问题及相似三角形的存在性问题,注意求面积的常用方法及相似的分类讨论.【例4】 如图,在平面直角坐标系xOy 中,直线AB 过点A (3,0)、B (0,m )(0>m ),tan 2BAO ∠=.(1)求直线AB 的表达式; (2)反比例函数1k y x=的图像与直线AB 交于第一象限内的C 、D 两点(BD < BC ),当AD = 2DB 时,求1k 的值;(3)设线段AB 的中点为E ,过点E 作x 轴的垂线,垂足为点M ,交反比例函数2k y x=的图像于点F ,分别联结OE 、OF ,当OEF ∆∽OBE ∆时,请直接写出满足条件的所有2k 的值.【答案】(1)26y x =-+;(2)14k =;(3)292k =-或22716k =. 【解析】解:(1)∵tan 2BAO ∠=,()3,0A ,∴()0,6B ,∴:26AB y x =-+;(2)∵2AD BD =,∴3A D x x =,∴()14D ,,∴14k =; xyABO(3)3,32E ⎛⎫⎪⎝⎭,BOE EFO ∠=∠○1当OBE EFO ∠=∠时,OB OEEF EO=, ∴61EF=,6EF =, ∴3,32F ⎛⎫- ⎪⎝⎭,∴292k =-;○2当OBE EOF ∠=∠时,OB OEEO EF=, ∴2158OE EF OB ==,∴39,28F ⎛⎫⎪⎝⎭,∴22716k =;综上:292k =-或22716k =.【总结】本题综合性较强,一方面考查了锐角三角比在函数背景下的运用,另一方面考查了点的坐标与距离间的关系,注意对符号的判定.模块二:以几何为背景的相似三角形问题知识精讲1、知识内容:在以几何为背景的此类压轴题中,几何推导的过程较为复杂,往往需要多次运用边、角关系的代换才能得到最终结果;在计算上也经常需要借助函数、方程的思想,来求得最后的解答。

专题03相似三角形的存在性问题(解析版)

专题03相似三角形的存在性问题(解析版)

专题三 相似三角形的存在性问题【考题研究】相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。

难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快.【解题攻略】相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。

应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).【解题类型及其思路】相似三角形存在性问题需要注意的问题:1、若题目中问题为△ABC ∽△DEF ,则对应线段已经确定。

2、若题目中为△ABC 与 △DEF 相似,则没有确定对应线段,此时有三种情况:①△ABC ∽△DEF , ②△ABC ∽△FDE 、 ③△ABC ∽△EFD 、3、若题目中为△ABC 与 △DEF 并且有 ∠A 、 ∠D (或为90°),则确定了一条对应的线段,此时有二种情况:①、△ABC ∽△DEF ,②、△ABC ∽△DFE 需要分类讨论上述的各种情况。

【典例指引】类型一 【确定符合相似三角形的点的坐标】典例指引1.(2019·贵州中考真题)如图,抛物线212y x bx c =++与直线132y x =+分别相交于A ,B 两点,且此抛物线与x 轴的一个交点为C ,连接AC ,BC .已知(0,3)A ,(3,0)C -.(1)求抛物线的解析式;(2)在抛物线对称轴l 上找一点M ,使MB MC -的值最大,并求出这个最大值;(3)点P 为y 轴右侧抛物线上一动点,连接PA ,过点P 作PQ PA ⊥交y 轴于点Q ,问:是否存在点P 使得以A ,P ,Q 为顶点的三角形与ABC ∆相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由. 【答案】(1)215322y x x =++;(2)点M 的坐标为(52-,12-)时,MB MC -2;(3)存在点(1,6)P . 【解析】 【分析】(1)根据待定系数法求解即可;(2)根据三角形的三边关系可知:当点B 、C 、M 三点共线时,可使MB MC -的值最大,据此求解即可;(3)先求得90ACB ∠=︒,再过点P 作PQ PA ⊥于点P ,过点P 作PG y ⊥轴于点G ,如图,这样就把以A ,P ,Q 为顶点的三角形与ABC ∆相似问题转化为以A ,P ,G 为顶点的三角形与ABC ∆相似的问题,再分当13PG BC AG AC ==时与3PG ACAG BC==时两种情况,分别求解即可. 【详解】解:(1)将(0,3)A ,(3,0)C -代入212y x bx c =++得:39302c b c =⎧⎪⎨-+=⎪⎩,解得:523b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式是215322y x x =++; (2)解方程组:215322132y x x y x ⎧=++⎪⎪⎨⎪=+⎪⎩,得1103x y =⎧⎨=⎩,2241x y =-⎧⎨=⎩,∵(0,3)A ,∴(4,1)B -当点B 、C 、M 三点不共线时,根据三角形三边关系得MB MC BC -<, 当点B 、C 、M 三点共线时,MB MC BC -=,∴当点B 、C 、M 三点共线时,MB MC -取最大值,即为BC 的长, 如图,过点B 作BE ⊥x 轴于点E ,则在Rt BEC ∆中,由勾股定理得:222BC BE CE =+=,∴MB MC -取最大值为2;易求得直线BC 的解析式为:y =-x -3,抛物线的对称轴是直线52x =-,当52x =-时,12y =-,∴点M的坐标为(52-,12-);∴点M 的坐标为(52-,12-)时,MB MC -取最大值为2;(3)存在点P ,使得以A 、P 、Q 为顶点的三角形与ABC ∆相似.设点P 坐标为215,3(0)22x x x x ⎛⎫++> ⎪⎝⎭, 在Rt BEC ∆中,∵1BE CE ==,∴45BCE ∠=︒, 在Rt ACO ∆中,∵3AO CO ==,∴45ACO ∠=︒, ∴180454590ACB ∠=︒-︒-︒=︒,AC =过点P 作PQ PA ⊥于点P ,过点P 作PG y ⊥轴于点G ,如图, ∵90PGA APQ ∠=∠=︒,PAG QAP ∠=∠,∴PGA ∆∽QPA ∆, ∵90PGA ACB ∠=∠=︒,∴①当13PG BC AG AC ==时,PGA ∆∽BCA ∆, ∴211533322x x x =++-,解得11x =,20x =,(舍去)∴点P 的纵坐标为215113622⨯+⨯+=,∴点P 为(1,6);②当3PG AC AG BC==时,PGA ∆∽ACB ∆,∴23153322xx x =++-,解得1133x =-(舍去),20x =(舍去),∴此时无符合条件的点P ; 综上所述,存在点(1,6)P . 【名师点睛】本题考查的是二次函数的综合运用,主要考查待定系数法求二次函数的解析式、相似三角形的判定与性质、一元二次方程的解法、两函数的交点和线段差的最值等问题,其中(1)题是基础题型,(2)题的求解需运用三角形的三边关系,(3)题要注意分类求解,避免遗漏,解题的关键是熟练掌握二次函数图象上点的坐标特征、相似三角形的判定与性质以及一元二次方程的解法. 【举一反三】(2019·海南模拟)抛物线y =ax 2+bx +3经过点A (1,0)和点B (5,0). (1)求该抛物线所对应的函数解析式; (2)该抛物线与直线335y x =+ 相交于C 、D 两点,点P 是抛物线上的动点且位于x 轴下方,直线PM ∥y轴,分别与x 轴和直线CD 交于点M 、N .①连结PC 、PD ,如图1,在点P 运动过程中,△PCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB ,过点C 作CQ ⊥PM ,垂足为点Q ,如图2,是否存在点P ,使得△CNQ 与△PBM 相似?若存在,求出满足条件的点P 的坐标;若不存在,说明理由.【答案】(1)2318355y x x =-+;(2)① 102940;② 存在,((2,95)或(349,5527-).【解析】 【详解】试题分析:(1)由A 、B 两点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P 点坐标,则可表示出M 、N 的坐标,联立直线与抛物线解析式可求得C 、D 的坐标,过C 、D 作PN 的垂线,可用t 表示出△PCD 的面积,利用二次函数的性质可求得其最大值; ②当△CNQ 与△PBM 相似时有PQ PM CQ BM= 或NQ BMCQ PM =两种情况,利用P 点坐标,可分别表示出线段的长,可得到关于P 点坐标的方程,可求得P 点坐标.试题解析:(1)∵抛物线23y ax bx =++经过点A (1,0)和点B (5,0),∴3025530a b a b ++=⎧⎨++=⎩ ,解得35185a b ⎧=⎪⎪⎨⎪=-⎪⎩∴该抛物线对应的函数解析式为2318355y x x =-+ ; (2)①∵点P 是抛物线上的动点且位于x 轴下方,∴可设P (t ,2318355t t -+)(1<t <5), ∵直线PM ∥y 轴,分别与x 轴和直线CD 交于点M 、N , ∴M (t ,0),N (t ,335t +),∴22331837147335555220PN t t t t ⎛⎫⎛⎫=+--+=--+ ⎪ ⎪⎝⎭⎝⎭.联立直线CD 与抛物线解析式可得2335318355y x y x x ⎧=+⎪⎪⎨⎪=-+⎪⎩,解得03x y =⎧⎨=⎩ 或7365x y =⎧⎪⎨=⎪⎩,∴C (0,3),D (7,365), 分别过C 、D 作直线PN 的直线,垂足分别为E 、F ,如图1,则CE =t ,DF =7﹣t , ∴11772222PCD PCN PDN S S S PN CE PN DF PN =+=+==V V V g g 22371472171029522010240t t ⎡⎤⎛⎫⎛⎫--+=--+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦, ∴当72t =时,△PCD 的面积有最大值,最大值为102940; ②存在.∵∠CQN =∠PMB =90°, ∴当△CNQ 与△PBM 相似时,有PQ PM CQ BM= 或NQ BMCQ PM =两种情况, ∵CQ ⊥PM ,垂足为Q ,∴Q (t ,3),且C (0,3),N (t ,335t + ), ∴CQ =t ,333355Q t N t +-==, ∴35CQ NQ = , ∵P (t ,2318355t t -+),M (t ,0),B (5,0), ∴BM =5﹣t ,223183180335555PM t t t t ⎛⎫=--+=-- ⎪⎝+⎭, 当PQ PM CQ BM =时,则35PM BM =,即()2318335555t t t --=+-,解得t =2或t =5(舍去),此时P (2,95 ); 当NQ BM CQ PM =时,则35BM PM =,即2318355355t t t ⎛⎫-=+ ⎪⎝-⎭-,解得349t =或5t =(舍去),此时P (349,5527-); 综上可知存在满足条件的点P ,其坐标为P (2,95)或(349,5527-). 类型二 【确定符合相似三角形的动点的运动时间或路程等】典例指引2.(2019年广东模拟)如图,在矩形OABC 中,AO =10,AB =8,沿直线CD 折叠矩形OABC 的一边BC ,使点B 落在OA 边上的点E 处,分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系,抛物线2y ax bx c =++经过O ,D ,C 三点.(1)求AD 的长及抛物线的解析式;(2)一动点P 从点E 出发,沿EC 以每秒2个单位长的速度向点C 运动,同时动点Q 从点C 出发,沿CO 以每秒1个单位长的速度向点O 运动,当点P 运动到点C 时,两点同时停止运动,设运动时间为t 秒,当t 为何值时,以P ,Q ,C 为顶点的三角形与△ADE 相似?(3)点N 在抛物线对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使以M ,N ,C ,E 为顶点的四边形是平行四边形?若存在,请直接写出点M 与点N 的坐标(不写求解过程);若不存在,请说明理由.【解析】(1)根据折叠图形的轴对称性,△CED 、△CBD 全等,首先在Rt △CEO 中求出OE 的长,进而可得到AE 的长;在Rt △AED 中,AD =AB -BD 、ED =BD ,利用勾股定理可求出AD 的长.进一步能确定D 点坐标,利用待定系数法即可求出抛物线的解析式;(2)由于∠DEC =90°,首先能确定的是∠AED =∠OCE ,若以P 、Q 、C 为顶点的三角形与△ADE 相似,那么∠QPC =90°或∠PQC =90°,然后在这两种情况下,分别利用相似三角形的对应边成比例求出对应的t 的值; (3)由于以M ,N ,C ,E 为顶点的四边形,边和对角线都没明确指出,所以要分情况进行讨论: ①EC 做平行四边形的对角线,那么EC 、MN 必互相平分,由于EC 的中点正好在抛物线对称轴上,所以M 点一定是抛物线的顶点;②EC 做平行四边形的边,那么EC 、MN 平行且相等,首先设出点N 的坐标,然后结合E 、C 的横、纵坐标差表示出M 点坐标,再将点M 代入抛物线的解析式中,即可确定M 、N 的坐标. 试题解析:(1)∵四边形ABCO 为矩形, ∴∠OAB =∠AOC =∠B =90°,AB =CO =8,AO =BC =10, 由题意,得△BDC ≌△EDC ,∴∠B =∠DEC =90°,EC =BC =10,ED =BD ,由勾股定理易得EO =6, ∴AE =10﹣6=4,设AD =x ,则BD =ED =8﹣x ,由勾股定理,得()22248x x +=﹣ , 解得,x =3,∴AD =3,∵抛物线2y ax bx c =++过点D (3, 10),C (8, 0),O (0, 0),∴9310{ 6480a b a b +=+=,解得 23{163a b =-=,∴抛物线的解析式为: 221633y x x =-+;(2)∵∠DEA +∠OEC =90°,∠OCE +∠OEC =90°, ∴∠DEA =∠OCE ,由(1)可得AD =3,AE =4,DE =5, 而CQ =t ,EP =2t ,∴PC =10﹣2t , 当∠PQC =∠DAE =90°,△ADE ∽△QPC ,∴CQ CP AE DE =,即 10245t t-=, 解得4013t =,当∠QPC =∠DAE =90°,△ADE ∽△PQC ,∴PC CQ AE DE =,即 10245t t -=, 解得257t =, ∴当4013t =或257t =时,以P 、Q 、C 为顶点的三角形与△ADE 相似;(3)假设存在符合条件的M 、N 点,分两种情况讨论:①EC 为平行四边形的对角线,由于抛物线的对称轴经过EC 中点,若四边形MENC 是平行四边形,那么M 点必为抛物线顶点; 则: 3243M ⎛⎫ ⎪⎝⎭,;而平行四边形的对角线互相平分,那么线段MN 必被EC 中点(4,3)平分,则1443N ⎛⎫-⎪⎝⎭,; ②EC 为平行四边形的边,则EC //MN ,EC =MN ,设N (4,m ), 则M (4﹣8,m +6)或M (4+8,m ﹣6);将M (﹣4,m +6)代入抛物线的解析式中,得:m =﹣38, 此时 N (4,﹣38)、M (﹣4,﹣32);将M (12,m ﹣6)代入抛物线的解析式中,得:m =﹣26, 此时 N (4,﹣26)、M (12,﹣32);综上,存在符合条件的M 、N 点,且它们的坐标为:①()1432M --,, ()1438N -,; ②()21232M -,, 2(426N -,); ③33243M ⎛⎫⎪⎝⎭,, 31443N ⎛⎫- ⎪⎝⎭,. 【名师点睛】本题考查了二次函数综合题,题目涉及了图形的折叠变换、相似三角形的判定和性质、平行四边形的判定和性质等重点知识.后两问的情况较多,需要进行分类讨论,以免漏解. 【举一反三】(2019·湖南模拟)如图,已知直线y =-x +3与x 轴、y 轴分别交于A ,B 两点,抛物线y =-x 2+bx +c 经过A ,B 两点,点P 在线段OA 上,从点O 出发,向点A 以1个单位/秒的速度匀速运动;同时,点Q 在线段AB 上,从点A 出发,向点B /秒的速度匀速运动,连接PQ ,设运动时间为t 秒.(1)求抛物线的解析式;(2)问:当t为何值时,△APQ为直角三角形;(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标;(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.【答案】(1)y=-x2+2x+3;(2)t=1或t=32;(3)点F的坐标为(2,3).(4)94.【解析】【详解】试题分析:(1)先由直线AB的解析式为y=-x+3,求出它与x轴的交点A、与y轴的交点B的坐标,再将A、B两点的坐标代入y=-x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)由直线与两坐标轴的交点可知:∠QAP=45°,设运动时间为t秒,则QA2t,P A=3-t,然后再图①、图②中利用特殊锐角三角函数值列出关于t的方程求解即可;(3)设点P的坐标为(t,0),则点E的坐标为(t,-t+3),则EP=3-t,点Q的坐标为(3-t,t),点F的坐标为(3-t,-(3-t)2+2(3-t)+3),则FQ=3t-t2,EP∥FQ,EF∥PQ,所以四边形为平行线四边形,由平行四边形的性质可知EP=FQ,从而的到关于t的方程,然后解方程即可求得t的值,然后将t=1代入即可求得点F的坐标;(4)设运动时间为t秒,则OP=t,BQ=(3-t2M的坐标,从而可求得MB的长度,然后根据相似相似三角形的性质建立关于t的方程,然后即可解得t的值.试题解析:(1)∵y=-x+3与x轴交于点A,与y轴交于点B,∴当y=0时,x=3,即A点坐标为(3,0),当x=0时,y=3,即B点坐标为(0,3),将A(3,0),B(0,3)代入y=-x2+bx+c,得930{3b cc-++==,解得2{3bc==∴抛物线的解析式为y=-x2+2x+3;(2)∵OA=OB=3,∠BOA=90°,∴∠QAP=45°.如图①所示:∠PQA=90°时,设运动时间为t秒,则QA2t,P A=3-t.在Rt△PQA中,22QAPA=,即:2232tt=-,解得:t=1;如图②所示:∠QP A=90°时,设运动时间为t秒,则QA2t,P A=3-t.在Rt△PQA中,22PAQA=222t=,解得:t=32.综上所述,当t=1或t=32时,△PQA是直角三角形;(3)如图③所示:设点P的坐标为(t,0),则点E的坐标为(t,-t+3),则EP=3-t,点Q的坐标为(3-t,t),点F的坐标为(3-t,-(3-t)2+2(3-t)+3),则FQ=3t-t2.∵EP∥FQ,EF∥PQ,∴EP=FQ.即:3-t=3t-t2.解得:t1=1,t2=3(舍去).将t=1代入F(3-t,-(3-t)2+2(3-t)+3),得点F的坐标为(2,3).(4)如图④所示:设运动时间为t秒,则OP=t,BQ=(3-t2.∵y=-x2+2x+3=-(x-1)2+4,∴点M的坐标为(1,4).∴MB22112+=当△BOP∽△QBM时,MB BQOP OB=2(3)2t-=,整理得:t2-3t+3=0,△=32-4×1×3<0,无解:当△BOP ∽△MBQ 时,BM BQ OB OP =即:2(3)2t -=,解得t =94. ∴当t =94时,以B ,Q ,M 为顶点的三角形与以O ,B ,P 为顶点的三角形相似. 类型三 【确定符合相似三角形的函数解析式或字母参数的值】典例指引3.(2019·江苏中考真题)如图,二次函数245y x x =-++图象的顶点为D ,对称轴是直线l ,一次函数215y x =+的图象与x 轴交于点A ,且与直线DA 关于l 的对称直线交于点B .(1)点D 的坐标是 ______;(2)直线l 与直线AB 交于点C ,N 是线段DC 上一点(不与点D 、C 重合),点N 的纵坐标为n .过点N 作直线与线段DA 、DB 分别交于点P ,Q ,使得DPQ ∆与DAB ∆相似.①当275n =时,求DP 的长; ②若对于每一个确定的n 的值,有且只有一个DPQ ∆与DAB ∆相似,请直接写出n 的取值范围 ______.【答案】(1)()2,9;(2)①95DP =;②92155n <<. 【解析】 【分析】(1)直接用顶点坐标公式求即可; (2)由对称轴可知点C (2,95),A (-52,0),点A 关于对称轴对称的点(132,0),借助AD 的直线解析式求得B (5,3);①当n =275时,N (2,275),可求DA =952,DN =185,CD =365,当PQ ∥AB 时,△DPQ ∽△DAB ,DP 5PQ 与AB 不平行时,DP 5②当PQ ∥AB ,DB =DP 时,DB 5,DN =245,所以N (2,215),则有且只有一个△DPQ 与△DAB 相似时,95<n <215. 【详解】(1)顶点为()2,9D ; 故答案为()2,9; (2)对称轴2x =,9(2,)5C ∴,由已知可求5(,0)2A -, 点A 关于2x =对称点为13(,0)2, 则AD 关于2x =对称的直线为213y x =-+,(5,3)B ∴,①当275n =时,27(2,)5N ,2DA ∴=,182DN =,365CD =当PQ AB ∥时,PDQ DAB ∆∆:,DAC DPN ∆∆Q :,DP DNDA DC∴=,DP ∴=当PQ 与AB 不平行时,DPQ DBA ∆∆:,DNQ DCA ∴∆∆:,DP DNDB DC∴=,DP ∴=综上所述DP = ②当PQ AB ∥,DB DP =时,DB =DP DNDA DC∴=, 245DN ∴=,21(2,)5N ∴, ∴有且只有一个DPQ ∆与DAB ∆相似时,92155n <<; 故答案为92155n <<; 【点睛】本题考查二次函数的图象及性质,三角形的相似;熟练掌握二次函数的性质,三角形相似的判定与性质是解题的关键. 【举一反三】(2018武汉中考)抛物线L :y =﹣x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B . (1)直接写出抛物线L 的解析式;(2)如图1,过定点的直线y =kx ﹣k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值;(3)如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标.【答案】(1)y =﹣x 2+2x +1;(2)-3;(3)当m =2﹣1时,点P 的坐标为(0,)和(0,);当m =2时,点P 的坐标为(0,1)和(0,2). 【解析】【分析】(1)根据对称轴为直线x =1且抛物线过点A (0,1)利用待定系数法进行求解可即得;(2)根据直线y =kx ﹣k +4=k (x ﹣1)+4知直线所过定点G 坐标为(1,4),从而得出BG =2,由S △BMN =S △BNG ﹣S △BMG =BG •x N ﹣BG •x M =1得出x N ﹣x M =1,联立直线和抛物线解析式求得x =,根据x N ﹣x M =1列出关于k 的方程,解之可得;(3)设抛物线L1的解析式为y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再设P(0,t),分△PCD∽△POF和△PCD∽△POF两种情况,由对应边成比例得出关于t与m的方程,利用符合条件的点P恰有2个,结合方程的解的情况求解可得.【详解】(1)由题意知,解得:,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,设M点的横坐标为x M,N点的横坐标为x N,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴点B(1,2),则BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=BG•(x N﹣1)-BG•(x M-1)=1,∴x N﹣x M=1,由得:x2+(k﹣2)x﹣k+3=0,解得:x==,则x N=、x M=,由x N﹣x M=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如图2,设抛物线L1的解析式为y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),设P(0,t),(a)当△PCD∽△FOP时,,∴,∴t2﹣(1+m)t+2=0①;(b)当△PCD∽△POF时,,∴,∴t=(m+1)②;(Ⅰ)当方程①有两个相等实数根时,△=(1+m)2﹣8=0,解得:m=2﹣1(负值舍去),此时方程①有两个相等实数根t1=t2=,方程②有一个实数根t=,∴m=2﹣1,此时点P的坐标为(0,)和(0,);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:(m +1)2﹣(m +1)+2=0, 解得:m =2(负值舍去),此时,方程①有两个不相等的实数根t 1=1、t 2=2, 方程②有一个实数根t =1,∴m =2,此时点P 的坐标为(0,1)和(0,2); 综上,当m =2﹣1时,点P 的坐标为(0,)和(0,);当m =2时,点P 的坐标为(0,1)和(0,2).【新题训练】1.(2019·长沙市开福区青竹湖湘一外国语学校初三月考)如图1,已知抛物线;C 1:y =﹣1m(x +2)(x ﹣m )(m >0)与x 轴交于点B 、C (点B 在点C 的左侧),与y 轴交于点E .(1)求点B 、点C 的坐标;(2)当△BCE 的面积为6时,若点G 的坐标为(0,b ),在抛物线C 1的对称轴上是否存在点H ,使得△BGH 的周长最小,若存在,则求点H 的坐标(用含b 的式子表示);若不存在,则请说明理由;(3)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.【答案】(1)点B 、C 的坐标分别为:(﹣2,0)、(m ,0);(2)存在,点H (1,34b );(3)存在,m =222+ 【详解】 解:(1)()()()120y x x m m m=-+->,令y =0,则x =﹣2或m , 故点B 、C 的坐标分别为:(﹣2,0)、(m ,0); (2)存在,理由:()()12y x x m m=-+-,令x =0,则y =2,故点E (0,2), △BCE 的面积为:()1122622BC OE m ⨯⨯=+⨯= ,解得:m =4,则抛物线的对称轴为: ()12412x =-+= ,点B 关于函数对称轴的对称点为点C (m ,0),连接CE 交对称轴于点H ,则点H 为所求, 将点C 、E 的坐标代入一次函数表达式并解得: 直线CE 的表达式为: 14y bx b =-+ ,当x =1时,34y b = , 故点H (1,34b ); (3)∵OE =OB =2,故∠EBO =45°,过点F 作FT ⊥x 轴于点F ; ①当△BEC ∽△BCF 时,则BC 2=BE •BF ,∠FBO =EBO =45°,则直线BF 的函数表达式为:y =﹣x ﹣2,故点F (x ,﹣x ﹣2); 将点F 的坐标代入抛物线表达式得: ()()122x x x m m--=-+- 解得:x =﹣2(舍去)或2m , 故点F (2m ,﹣2m ﹣2), 则)221,22BF m BE =+= ∵BC 2=BE •BF ,则())2222221m m +=+ 解得: 222m =±(舍去负值), 故2m =②当△BEC ∽△FCB 时,则BC 2=BF •EC ,∠CBF =∠ECO , 则△BFT ∽△COE , 则2TF EO BT CO m == ,则点()2,2F x x m ⎡⎤-+⎢⎥⎣⎦将点F 的坐标代入抛物线表达式得: ()()()2122x x x m m m-+=-+- 解得:x =﹣2(舍去)或m +2; 则点()22,4F m m m ⎡⎤+-+⎢⎥⎣⎦BC 2=BF •EC ,则()()()2222242222m m m m m +⎛⎫+=++++ ⎪⎝⎭化简得:m 3+4m 2+4m =m 3+4m 2+4m +16, 此方程无解; 综上,m =222+.2.(2020·浙江初三期末)边长为2的正方形OABC 在平面直角坐标系中的位置如图所示,点D 是边OA 的中点,连接CD ,点E 在第一象限,且DE DC ⊥,DE DC =.以直线AB 为对称轴的抛物线过C ,E 两点.(1)求抛物线的解析式;(2)点P 从点C 出发,沿射线CB 每秒1个单位长度的速度运动,运动时间为t 秒.过点P 作PF CD ⊥于点F ,当t 为何值时,以点P ,F ,D 为顶点的三角形与COD ∆相似?(3)点M 为直线AB 上一动点,点N 为抛物线上一动点,是否存在点M ,N ,使得以点M ,N ,D ,E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.【答案】(1)212(2)33y x =-+;(2)1t =或52t =时,以点P ,F ,D 为顶点的三角形与COD ∆相似;(3)存在,四边形MDEN 是平行四边形时,1(2,1)M ,1(4,2)N ;四边形MNDE 是平行四边形时,2(2,3)M ,2(0,2)N ;四边形NDME 是平行四边形时,322,3M ⎛⎫ ⎪⎝⎭,312,3N ⎛⎫⎪⎝⎭【详解】解:(1)过点E 作EG x ⊥轴于G 点.∵四边形OABC 是边长为2的正方形,D 是OA 的中点, ∴2OA OC ==,1OD =,90AOC DGE ∠=∠=︒. ∵90CDE ∠=︒,∴90ODC GDE ∠+∠=︒. ∵90ODC OCD ∠+∠=︒,∴OCD GDE ∠=∠.在OCD ∆和GED ∆中COD DGEOCD GDE DC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ODC GED AAS ∆∆≌,1EG OD ==,2DG OC ==. ∴点E 的坐标为(3,1).∵抛物线的对称轴为直线AB 即直线2x =,∴可设抛物线的解析式为2(2)y a x k =-+,将C 、E 点的坐标代入解析式,得421a k a k +=⎧⎨+=⎩,解得1323a k ⎧=⎪⎪⎨⎪=⎪⎩. ∴抛物线的解析式为212(2)33y x =-+; (2)①若DFP COD ∆∆∽,则PDF DCO ∠=∠,//PD OC , ∴90PDO OCP AOC ∠=∠=∠=︒,∴四边形PDOC 是矩形, ∴1PC OD ==,∴1t =;②若PFD COD ∆∆∽,则PDF DCO ∠=∠,∴PD DFCD OD=. ∴9090PCF DCO DPF PDF ∠=︒-∠=-∠=∠. ∴PC PD =,∴12DF CD =. ∵22222215CD OD OC =+=+=,∴5CD =,∴5DF =. ∵PD DFCD OD=, ∴55522PC PD ==⨯=,52t =,综上所述:1t =或52t =时,以点P ,F ,D 为顶点的三角形与COD ∆相似: (3)存在,①若以DE 为平行四边形的对角线,如图2,此时,N 点就是抛物线的顶点(2,23), 由N 、E 两点坐标可求得直线NE 的解析式为:y =13x ; ∵DM ∥EN ,∴设DM 的解析式为:y =13x +b , 将D (1,0)代入可求得b =−13,∴DM 的解析式为:y =13x −13,令x =2,则y =13,∴M (2,13);②过点C 作CM ∥DE 交抛物线对称轴于点M ,连接ME ,如图3,∵CM ∥DE ,DE ⊥CD , ∴CM ⊥CD , ∵OC ⊥CB , ∴∠OCD =∠BCM , 在△OCD 和△BCM 中BCM OCD CBM COD CO CB ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△OCD ≌△BCM (ASA ), ∴CM =CD =DE ,BM =OD =1, ∴CDEM 是平行四边形, 即N 点与C 占重合, ∴N (0,2),M (2,3);③N 点在抛物线对称轴右侧,MN ∥DE ,如图4,作NG ⊥BA 于点G ,延长DM 交BN 于点H , ∵MNED 是平行四边形,∴∠MDE =MNE ,∠ENH =∠DHB , ∵BN ∥DF ,∴∠ADH =∠DHB =∠ENH ,∴∠MNB =∠EDF , 在△BMN 和△FED 中MBN EFD BNM FDE MN DE ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△BMN ≌△FED (AAS ), ∴BM =EF =1, BN =DF =2,∴M (2,1),N (4,2); 综上所述,四边形MDEN 是平行四边形时,1(2,1)M ,1(4,2)N ; 四边形MNDE 是平行四边形时,2(2,3)M ,2(0,2)N ; 四边形NDME 是平行四边形时,322,3M ⎛⎫ ⎪⎝⎭,312,3N ⎛⎫⎪⎝⎭. 3.(2020·长沙市长郡双语实验中学初三开学考试)如图,抛物线y =ax 2﹣2ax +c 的图象经过点C (0,﹣2),顶点D 的坐标为(1,﹣83),与x 轴交于A 、B 两点.(1)求抛物线的解析式.(2)连接AC ,E 为直线AC 上一点,当△AOC ∽△AEB 时,求点E 的坐标和AEAB的值. (3)点C 关于x 轴的对称点为H ,5FC +BF 取最小值时,在抛物线的对称轴上是否存在点Q ,使△QHF 是直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由. 【答案】(1)224233y x x =--;(2)E (﹣15,﹣85)5;(3)(1133+1133-)或Q(1,2)或Q(1,﹣32).【详解】(1)由题可列方程组:2823ca a c=-⎧⎪⎨-+=-⎪⎩,解得:232ac⎧=⎪⎨⎪=-⎩∴抛物线解析式为:y=23x2﹣43x﹣2;(2)由题意和勾股定理得,∠AOC=90°,AC=5,AB=4,设直线AC的解析式为:y=kx+b,则k b0b2-+=⎧⎨=-⎩,解得:22kb=-⎧⎨=-⎩,∴直线AC的解析式为:y=﹣2x﹣2;当△AOC∽△AEB时AOCAEBSS△△=(ACAB)252=516,∵S△AOC=1,∴S△AEB=165,∴12AB×|y E|=165,AB=4,则y E=﹣85,则点E(﹣15,﹣85);由△AOC∽△AEB得:5AO AEAC AB==∴AE5 AB5=;(3)如图2,连接BF,过点F作FG⊥AC于G,则FG=CFsin∠FCG=5 CF,∴5CF+BF=GF+BF≥BE,当折线段BFG与BE重合时,取得最小值,由(2)可知∠ABE=∠ACO|y|=OBtan∠ABE=OBtan∠ACO=3×12=32,∴当y=﹣32时,即点F(0,﹣32),5CF+BF有最小值;①当点Q为直角顶点时(如图3)F(0,﹣32),∵C(0,﹣2)∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.则Rt△QHM∽Rt△FQM∴QM2=HM•FM,∴12=(2﹣m)(m+32),解得:m 133±,则点Q(1133+1133-)当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:同理可得:点Q(1,﹣32);综上,点Q的坐标为:(1,1334+)或(1,1334-)或Q(1,2)或Q(1,﹣32).4.(2019·贵州初三)如图,已知抛物线y=13x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.【答案】(1) 抛物线的解析式为y=13x2-2x+1,(2) 四边形AECP的面积的最大值是814,点P(92,﹣54);(3) Q(4,1)或(-3,1).【详解】解:(1)将A(0,1),B(9,10)代入函数解析式得:13×81+9b+c=10,c=1,解得b=−2,c=1,所以抛物线的解析式y=13x2−2x+1;(2)∵AC∥x轴,A(0,1),∴13x2−2x+1=1,解得x1=6,x2=0(舍),即C点坐标为(6,1),∵点A(0,1),点B(9,10),∴直线AB的解析式为y=x+1,设P(m,13m2−2m+1),∴E(m,m+1),∴PE=m+1−(13m2−2m+1)=−13m2+3m.∵AC⊥PE,AC=6,∴S四边形AECP=S△AEC+S△APC=12AC⋅EF+12AC⋅PF=12AC⋅(EF+PF)=12AC⋅EP=12×6(−13m2+3m)=−m2+9m.∵0<m<6,∴当m=92时,四边形AECP的面积最大值是814,此时P(9524,);(3)∵y=13x2−2x+1=13(x−3)2−2,P(3,−2),PF=y F−y p=3,CF=x F−x C=3,∴PF=CF,∴∠PCF=45∘,同理可得∠EAF=45∘,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的点Q,设Q(t,1)且AB=92,AC=6,CP=32,∵以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,CQ:AC=CP:AB,(6−t):6=32:92,解得t=4,所以Q(4,1);②当△CQP∽△ABC时,CQ:AB=CP:AC,(6−t):9232:=6,解得t=−3,所以Q(−3,1).综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形与△ABC 相似,Q点的坐标为(4,1)或(−3,1).5.(2020·河南初三)如图,在平面直角坐标系中,抛物线243y x bx c =-++与x 轴交于A 、D 两点,与y 轴交于点B ,四边形OBCD 是矩形,点A 的坐标为(1,0),点B 的坐标为(0,4),已知点E (m ,0)是线段DO 上的动点,过点E 作PE ⊥x 轴交抛物线于点P ,交BC 于点G ,交BD 于点H . (1)求该抛物线的解析式;(2)当点P 在直线BC 上方时,请用含m 的代数式表示PG 的长度;(3)在(2)的条件下,是否存在这样的点P ,使得以P 、B 、G 为顶点的三角形与△DEH 相似?若存在,求出此时m 的值;若不存在,请说明理由.【答案】(1)248433y x x =--+;(2)PG =24833m m --;(3)存在点P ,使得以P 、B 、G 为顶点的三角形与△DEH 相似,此时m 的值为﹣1或2316-.【详解】解:(1)∵抛物线243y x bx c =-++与x 轴交于点A (1,0),与y 轴交于点B (0,4), ∴40{34b c c -++==,解得8{34b c =-=. ∴抛物线的解析式为248433y x x =--+. (2)∵E (m ,0),B (0,4),PE ⊥x 轴交抛物线于点P ,交BC 于点G ,∴P (m ,248433m m --+),G (m ,4). ∴PG =224848443333m m m m --+-=--.(3)在(2)的条件下,存在点P ,使得以P 、B 、G 为顶点的三角形与△DEH 相似. ∵248433y x x =--+,∴当y =0时,2484033x x --+=,解得x =1或﹣3.∴D(﹣3,0).当点P在直线BC上方时,﹣3<m<0.设直线BD的解析式为y=kx+4,将D(﹣3,0)代入,得﹣3k+4=0,解得k=4 3 .∴直线BD的解析式为y=43x+4. ∴H(m,43m+4).分两种情况:①如果△BGP∽△DEH,那么BG GPDE EH=,即248334343m mmm m---=++.由﹣3<m<0,解得m=﹣1.②如果△PGB∽△DEH,那么PG BGDE HE=,即248334343m m mm m---=++.由﹣3<m<0,解得m=2316-.综上所述,在(2)的条件下,存在点P,使得以P、B、G为顶点的三角形与△DEH相似,此时m的值为﹣1或2316-.6.(2020·浙江初三期末)如图①,在平面直角坐标系中,抛物线2y x=的对称轴为直线l,将直线l绕着点()0,2P顺时针旋转α∠的度数后与该抛物线交于AB两点(点A在点B的左侧),点Q是该抛物线上一点(1)若45α∠=︒,求直线AB的函数表达式(2)若点p将线段分成2:3的两部分,求点A的坐标(3)如图②,在(1)的条件下,若点Q在y轴左侧,过点p作直线//l x轴,点M是直线l上一点,且位于y 轴左侧,当以P ,B ,Q 为顶点的三角形与PAM ∆相似时,求M 的坐标 【答案】(1)2y x =+;(2)234,3⎛⎫- ⎪ ⎪⎝⎭或()3,3-;(3)(1,2)-,(2,2)-,(13,2)--,(13,2)- 【详解】(1)如图①,设直线AB 与x 轴的交点为M .∵∠OP A =45°,∴OM =OP =2,即M (-2,0).设直线AB 的解析式为y =kx +b (k ≠0),将M (-2,0),P (0,2)两点坐标代入,得0(202)k bk b ⨯+⨯-⎩+⎧⎨==, 解得,12k b ⎧⎨⎩==.故直线AB 的解析式为y =x +2; (2)①:2:3AP PB = 设()22,4A a a-()23,9B a a (a >0)∵点A 、点B 在直线y =x +2上和抛物线y =x 2的图象上, ∴2422a a =-+,2932a a =+∴24212a a -=-,292=13a a -∴22429223a a a a--=-解得,13a =,23a =-(舍去) 234,3A ⎛⎫∴- ⎪ ⎪⎝⎭②:3:2AP PB = 设()23,9A a a-()22,4B a a (a >0)∵点A 、点B 在直线y =x +2上和抛物线y =x 2的图象上, ∴2932a a =-+,2422a a =+∴29213a a -=-,242=12a a -∴22924232a a a a--=- 解得:133a =,233a =-(舍去) (3,3)A ∴-综上234,33⎛⎫- ⎪ ⎪⎝⎭或()3,3-(3)45MPA ∠=︒,45QPB ∠≠︒ (1,1)A -,(2,4)B①45QBP ∠=︒此时B ,Q 关于y 轴对称,PBQ ∆为等腰直角三角形1(1,2)M ∴-2(2,2)M -②45BQP ∠=︒此时()2,4Q -满足,左侧还有Q '也满足BQP BQ P '∠=∠QQ '∴,B ,P ,Q 四点共圆,易得圆心为BQ 中点()0,4D设()2,Q x x',()0x <∵Q D BD '=()2222(0)42x x ∴-+-=()()22430xx --=0x <Q 且不与Q 重合3x ∴=(3,3)Q '∴-,2Q P '=2Q P DQ DP ''===Q DPQ '∴∆为正三角形,160302PBQ '∠=⨯=︒︒过P 作PE BQ '⊥,则2PE Q E '==2BE =26Q B '∴=∵Q PB PMA '∆∆: ∴PQ Q BPA PM''=∴262+=解得,13PM =+ ∴(13,2)M -- ∵Q PB PMA '∆∆: ∴PQ Q B PM PA''=∴2262PM +=解得,31PM =- ∴(13,2)M -综上所述,满足条件的点M 的坐标为:(1,2)-,(2,2)-,(13,2)--,(13,2)-. 7.(2020·上海初三)如图,在平面直角坐标系xOy 中,抛物线y =13x 2+mx +n 经过点B (6,1),C (5,0),且与y 轴交于点A .(1)求抛物线的表达式及点A 的坐标;(2)点P 是y 轴右侧抛物线上的一点,过点P 作PQ ⊥OA ,交线段OA 的延长线于点Q ,如果∠P AB =45°.求证:△PQA ∽△ACB ;(3)若点F 是线段AB (不包含端点)上的一点,且点F 关于AC 的对称点F ′恰好在上述抛物线上,求FF ′的长.【答案】(1)y =13x 2﹣83x +5,点A 坐标为(0,5);(2)详见解析;(372.【详解】解:(1)将B(6,1),C(5,0)代入抛物线解析式y=13x2+mx+n,得1126+n,250=5,3mm n=+⎧⎪⎨++⎪⎩解得,m=﹣83,n=5,则抛物线的解析式为:y=13x2﹣83x+5,点A坐标为(0,5);(2)∵AC=225552+=,BC=22(65)12-+=,AB=22(51)6213-+=,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,当∠P AB=45°时,点P只能在点B右侧,过点P作PQ⊥y轴于点Q,∴∠QAB+∠OAB=180°﹣∠P AB=135°,∴∠QAP+∠CAB=135°﹣∠OAC=90°,∵∠QAP+∠QP A=90°,∴∠QP A=∠CAB,又∵∠AQP=∠ACB=90°,∴△PQA∽△ACB;(3)做点B关于AC的对称点B',则A,F',B'三点共线,由于AC⊥BC,根据对称性知点B'(4,﹣1),将B'(4,﹣1)代入直线y=kx+5,∴k=﹣32,∴y AB'=﹣32x+5,联立235,218533y x y x x ⎧=+⎪⎪⎨⎪=-+⎪⎩解得,x 1=72,x 2=0(舍去),则F '(72,﹣14), 将B (6,1),B '(4,﹣1)代入直线y =mx +n , 得,61,41,k b k b +=⎧⎨+=-⎩解得,1,5.k b =⎧⎨=-⎩∴y BB '=x ﹣5,由题意知,k FF '=K BB ',∴设y FF '=x +b , 将点F '(72,﹣14)代入,得,b =﹣154,∴y FF '=x ﹣154, 联立25,354y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩解得,21,43.2x y ⎧=⎪⎪⎨⎪=⎪⎩ ∴F (214,32), 则FF '=2221731()()4224-++=724.8.(2019·江苏初三期末)如图,抛物线y =ax 2+5ax +c (a <0)与x 轴负半轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C 点,D 是抛物线的顶点,过D 作DH ⊥x 轴于点H ,延长DH 交AC 于点E ,且S △ABD :S △ACB =9:16,(1)求A 、B 两点的坐标;(2)若△DBH 与△BEH 相似,试求抛物线的解析式. 【答案】(1) 4c a =;(2) 见解析. 【解析】 【详解】解:(1)222525525(5)()4424y a x x a c a x a c =++-+=+-+ ∴525,24D a c ⎛⎫--+ ⎪⎝⎭∵C (0,c ) ∴OC =-c ,DH =254a c -+ ∵S △ABD :S △ACB =9∶16 ∴25();()9:164DH a c c OC =-+-= ∴4c a = ∴254(1)(4)y ax ax a a x x =++=++ ∴ (4,0),(1,0)A B --(2)① ∵EH ∥OC ∴△AEH ∽△ACO ∴EH AHOC AO= ∴1.544EH a =- ∴ 1.5EH a =- ∵ 2.25DH a EH =-≠ ∵△DBH 与△BEH 相似 ∴∠BDH =∠EBH , 又∵∠BHD =∠BHE =90°∴△DBH ∽△BEH ∴DH BHBH EH = ∴ 2.25 1.5a BH BH a-=- ∴63a =±(舍去正值) ∴265646y =9.(2019·湖南中考模拟)如图,顶点坐标为(2,﹣1)的抛物线y =ax 2+bx +c (a ≠0)与y 轴交于点C (0,3),与x 轴交于A 、B 两点. (1)求抛物线的表达式;(2)设抛物线的对称轴与直线BC 交于点D ,连接AC 、AD ,求△ACD 的面积;(3)点E 为直线BC 上一动点,过点E 作y 轴的平行线EF ,与抛物线交于点F .问是否存在点E ,使得以D 、E 、F 为顶点的三角形与△BCO 相似?若存在,求点E 的坐标;若不存在,请说明理由.【答案】(1)y ==x 2-4x +3;(2)AS △ACD =2;(3)①∠DFE =90°时,E 1(22); E 2(22);②∠EDF =90°时,E 3(1,2)、E 4(4,-1). 【详解】解:(1)依题意,设抛物线的解析式为 y =a (x -2)2-1,代入C (O ,3)后,得: a (0-2)2-1=3,a =1∴抛物线的解析式:y =(x -2)2-1=x 2-4x +3. (2)由(1)知,A (1,0)、B (3,0);设直线BC 的解析式为:y =kx +3,代入点B 的坐标后,得: 3k +3=0,k =-1 ∴直线BC :y =-x +3;由(1)知:抛物线的对称轴:x =2,则 D (2,1); ∴AD 22AG DG +2,AC 22OC OA +10CD 22(31)2-+2,即:AC 2=AD 2+CD 2,△ACD 是直角三角形,且AD ⊥CD ; ∴S △ACD =12AD •CD =12×2×2=2. (3)由题意知:EF ∥y 轴,则∠FED =∠OCB ,若△OCB 与△FED 相似,则有: ①∠DFE =90°,即 DF ∥x 轴;将点D 纵坐标代入抛物线的解析式中,得: x 2-4x +3=1,解得 x =2±2; 当x 2时,y =-x 2;当x =2-2时,y =-x +3=1+2;∴E 1(2+2,1-2)、E 2(2-2,1+2). ②∠EDF =90°;易知,直线AD :y =x -1,联立抛物线的解析式有: x 2-4x +3=x -1, x 2-5x +4=0, 解得 x 1=1、x 2=4; 当x =1时,y =-x +3=2; 当x =4时,y =-x +3=-1; ∴E 3(1,2)、E 4(4,-1);综上,存在符合条件的点E ,且坐标为:(2+2,1-2)、(2-2,1+2)、(1,2)或(4,-1).10.(2019·西安市铁一中学中考模拟)如图,抛物线2(0)y ax bx c a =++≠的顶点坐标为(2,1)-,并且与y轴交于点(0,3)C ,与x 轴交于A 、B 两点. (1)求抛物线的表达式.(2)如图1,设抛物线的对称轴与直线BC 交于点D ,点E 为直线BC 上一动点,过点E 作y 轴的平行线EF ,与抛物线交于点F ,问是否存在点E ,使得以D 、E 、F 为顶点的三角形与BCO V 相似.若存在,求出点E 的坐标;若不存在,请说明理由.。

九年级数学相似三角形的存在性(四)(含答案)

九年级数学相似三角形的存在性(四)(含答案)

学生做题前请先回答以下问题问题1:相似三角形存在性的处理思路①分析特征:分析背景图形中的_________、_________及_________,结合图形形成因素(判定等)考虑分类.注:相似三角形存在性问题主要结合_________及不变特征考虑分类.②画图求解:往往先从____________入手,再结合背景中的不变特征分析,综合考虑对应关系和不变特征后列方程求解.注:相似三角形列方程往往借助_____________;③结果验证:回归点的运动范围,画图或推理,验证结果.问题2:相似三角形的判定有哪些?相似三角形的存在性(四)一、单选题(共3道,每道33分)1.如图,已知抛物线经过坐标原点O,交x轴于点A,顶点B的坐标为.Q是x轴上方抛物线上的一动点,当△AOQ与△AOB相似时,点Q的坐标为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:相似三角形的存在性2.如图,在平面直角坐标系中,正方形ABCD的顶点A,B均在x轴正半轴上,连接OD,BD,△BOD的外心I在中线BF上,BF与AD交于点E.连接OE,点P在直线BF上,若△BPD 与△OED相似,则满足条件的点P共有( )个.A.1B.2C.3D.4答案:B解题思路:试题难度:三颗星知识点:相似三角形的存在性3.如图,抛物线(k为常数,且)与x轴从左至右依次交于点A,B,与y轴交于点C.若在第一象限内的抛物线上存在点P,使得以A,B,P为顶点的三角形与△ABC相似,则k的值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的存在性。

相似三角形的存在性问题

相似三角形的存在性问题

1. 已知24AB AD ==,,90DAB ∠=,AD BC ∥(如图13).E 是射线BC 上的动点(点E 与点B 不重合),M 是线段DE 的中点.(1)设BE x =,ABM △的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (2)如果以线段AB 为直径的圆与以线段DE 为直径的圆外切,求线段BE 的长; (3)联结BD ,交线段AM 于点N ,如果以A N D ,,为顶点的三角形与BME △相似,求线段BE 的长.2.在平面直角坐标系xOy 中,将抛物线22y x =沿y 轴向上平移1个单位,再沿x 轴向右平移两个单位,平移后抛物线的顶点坐标记作A ,直线3x =与平移后的抛物线相交于B ,与直线OA 相交于C . (1)求△ABC 面积;(2)点P 在平移后抛物线的对称轴上,如果△ABP 与△ABC 相似,求所有满足条件的P 点坐标.B A D M E C图13 B A D C 备用图 B A D M E C图13B A DC 备用图24题图Oy x D C BA OyxDCBA3.如图九,△ABC 中,AB=5,AC=3,cosA=310.D 为射线BA 上的点(点D 不与点B 重合),作DE//BC 交射线CA 于点E..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域; (2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.5、如图,双曲线x y 2-=和x y 8-=在第二象限中的图像,A 点在xy 8-=的图像上,点A 的横坐标为m (m <0),AC ∥y 轴交x y 2-=图像于点C ,AB 、DC 均平行x 轴,分别交xy 2-=、xy 8-=的图像于点B 、D .(1)用m 表示A 、B 、C 、D 的坐标; (2)求证:梯形ABCD 的面积是定值; (3)若△ABC 与△ACD 相似,求m 的值.B (备用图二)B(图九)B (图九)B (备用图一)B (备用图一)B (备用图二)6.已知∠AOB=45°,P 是边OA 上一点,OP=24,以点P 为圆心画圆,圆P 交OA 于点C (点P 在O 、C 之间,如图)。

二次函数与几何综合专题 相似(全等)三角形存在性问题

二次函数与几何综合专题 相似(全等)三角形存在性问题
专题 相似(全等)三角形存在性问题
策略:相似三角形 存在性问题解法的一般步骤,分三步走:
第一步:寻找分类标准(一般通过“角”);
第二步:列方程(一般通过“对应边成比例”);
第三步:解方程并验根(除重、查漏).
母题】
1.如图,在平面直角坐标系 中,抛物线 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C, ,顶点为D,对称轴交x轴于点E.
∴A(-3,0),B(1,0),C(0,-3),
∴AO=OC=3,OB=1,
∵ ,
∴OD=2,
∴点D的坐标为(0,2),
设直线AP的解析式为 ,
∴ ,
∴ ,
∴直线AP的解析式为 ,
联立 ,解得: 或 ,
∴点P的坐标为( , ).
(4)解:∵抛物线的解析式为 ,
∴A(-3,0),B(1,0),C(0,-3),
过点Q作QD⊥OC于点D,则QD=-x,
∴QC= ,
∵PQ∥y轴,
∴∠PQC=∠OCA=45°,
当△QCP △ACB时,
∴ ,即 ,
解得: (舍去)或: ,
此时点P的坐标为( , );
当△QPC △ACB时,
∴ ,即 ,
解得: (舍去)或: ,
此时点P的坐标为( , );
综上,点P的坐标为( , )或( , ).
(2)解:∵抛物线的解析式为 ,
∴A(-3,0),B(1,0),C(0,-3),
∴AO=OC=3,OB=1,
∵△AOP≌△COB,
∴OD=OB=1,
∴点P的坐标为(0,1),
设直线AP的解析式为 ,
∴ ,
∴ ,
∴直线AP的解析式为 ,
联立 ,解得: 或 ,

数学人教版九年级下册相似三角形的存在性问题

数学人教版九年级下册相似三角形的存在性问题

相似三角形的存在性问题
例1、已知,抛物线
342-+-=x x y 与x 轴交于A 、B,与y 轴交于点D ,顶点为C.
在y 轴负半轴上能否找到一点P ,使得以P 、O 、B 为顶点的三角形与△AOD 相似,求符合条件的点P 的坐标。

练习1、已知,抛物线
342
-+-=x x y 与x 轴交于A 、B,与y 轴交于点D ,顶点为C.
在x 轴下方A 点右侧抛物线上能否找到一点M ,过M 作MN ⊥ x 轴于点N ,使得以A 、M 、N 为顶点的三角形与△BCD 相似,求符合条件的点M 的坐标。

例2:抛物线1)2(22
+-=x y 的图像如图所示,直线x=3与抛物线相交于点B ,过原点O 与抛物线的顶点A 的直线与x=3相交于点C ,在抛物线的对称轴上是否存在点P ,使得△ABP 与△ABC 相似。

存在求出P点坐标。

y O x D
A B C y O x
D
A B
C
练习2 点D 在x 轴的正半轴上,若以点D 、C 、B 组成的三角形与△OAB 相似,试求点D 坐标.
课堂小结:
用“SAS ”解相似三角形存在性问题的解题步骤: 1、 2、
3、 课后思考题:
如图,在平面直角坐标系xOy 中,抛物线
过点A(1,3)、B(0,1),过
点A 作x 轴的平行线交抛物线于另一点C(4,3) ,在y 轴上取一点P ,使△ABP 与△ABC 相似,求满足条件的所有P 点坐标。

y O x
A B
C。

华师大版初中数学九年级上册《23.3.3 相似三角形的性质》同步练习卷(含答案解析

华师大版初中数学九年级上册《23.3.3 相似三角形的性质》同步练习卷(含答案解析

华师大新版九年级上学期《23.3.3 相似三角形的性质》同步练习卷一.解答题(共50小题)1.在△ABC中,点D,E,F分别在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.(1)如图1,当DE=DF时,图1中是否存在与AB相等的线段?若存在,请找出,并加以证明;若不存在,说明理由;(2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90°,AF=m,求BD的长(用含k,m的式子表示).2.如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长交AB于点E,连接BP并延长交AD于点F,交CD延长线于点G.(1)求证:PB=PD.(2)若DF:FA=1:2①请写出线段PF与线段PD之间满足的数量关系,并说明理由;②当△DGP是等腰三角形时,求tan∠DAB的值.3.如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.(1)求证:D是BC的中点;(2)若DE=3,BD﹣AD=2,求⊙O的半径;(3)在(2)的条件下,求弦AE的长.4.如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.5.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.6.如图,在△ABC中,∠ACB=90°,AB=5,AC=4,过点C作直线MC使得∠BCM=∠BAC,求点B到直线MC的距离.7.如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)求证:△CDE∽△CAB;(2)求证:DE=BD;(2)如果BC=6,AB=5,求BE的长.8.如图1,已知矩形ABCD的对角线相交于点O,EF过点O分别交AB、CD于点E、F.(1)求证:△AOE≌△COF;(2)若AB=3,AD=4,点M在线段BC上运动,连接MO.①当MO⊥AC时,求BM的值;②当BM为多少时,△BMO是等腰三角形?(只写出结论,不要求写过程)9.已知两个以O为顶点且不全等的直角三角形△AOB和△COD,其中∠ABO=∠DCO=30°.(1)如图1,设∠BOD=α(0°<α<60°),点E、F、M分别是AC、CD、DB的中点.连接FM、EM.请问:随着α的变化,试判断的值是否发生变化?若不变,请求出的值;若变化,请说明理由;(2)如图2,若BO=3,点N在线段OD上,且NO=1,点P是线段AB上的一个动点,将△COD固定,△AOB绕点O旋转的过程中,线段PN长度的最大值是;最小值是.10.两个全等的Rt△ABC和Rt△ADE中,∠ABC=∠ADE=90°,M、N分别是BD、CE的中点,连接MN,(1)若AB=ED,且B、A、D 三点在一条直线上(如图1),猜想MN与BD的关系,并加以证明;(2)若AB=AD,sin∠BAC=,且B、A、D 三点不在一条直线上(如图2),求的值.11.如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形,其中线段BD交AC于点G,线段AE交CD于点F,求证:(1)△ACE≌△BCD;(2)=.12.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.13.如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.(1)求证:AB•AF=CB•CD;(2)已知AB=15cm,BC=9cm,P是射线DE上的动点.设DP=x cm(x>0),四边形BCDP的面积为y cm2.求y关于x的函数关系式.14.如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE ∥AD,交⊙O于点E,连接ED(1)求证:ED∥AC;(2)若BD=2CD,设△EBD的面积为S1,△ADC的面积为S2,且S12﹣16S2+4=0,求△ABC的面积.15.如图,⊙O的半径为5,点P在⊙O外,PB交⊙O于A、B两点,PC交⊙O 于D、C两点.(1)求证:PA•PB=PD•PC;(2)若PA=,AB=,PD=DC+2,求点O到PC的距离.16.已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD•CE=CD•DE.17.腰长为6的等腰直角△ABC中,D是BC上的一动点(不与BC重合),过点D作AB,AC的垂线,垂足为E,F.(1)证明:△BDE∽△CDF;(2)设BD=x,四边形AEDF的面积为y,请写出y与x之间的函数关系式,并求出当x为何值时y最大?y的最大值是多少?18.已知:Rt△ABC和Rt△DBE,AB=BC,DB=EB,D在AB上,连接AE,AC,如图1,延长CD交AE于K(1)求证:AE=CD,AE⊥CD.(2)类比:如图2所示,将(1)中的Rt△DBE绕点B逆时针旋转一个锐角,问(1)中线段AE,CD之间数量关系和位置关系还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展:在图2中,将“AB=BC,DB=EB”改为“BC=kAB,DB=kEB,k>1”其它条件均不变,如图3所示,问(1)中线段AE,CD间的数量关系和位置关系怎样?请直接写出线段AE,CD间的数量关系和位置关系.19.已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:AP=PD;(2)若⊙O的半径为5,AF=7,求的值.20.如图,点D为线段AB延长线上一点,△ABC和△BDE分别是以AB,BD为斜边的等腰直角三角形.连接CE并延长,交AD的延长线于F,△ABC的外接圆圆O交CF与点M.若AB=6,BD=2.(1)求CE长度;(2)证明:AC2=CM•CF;(3)求CM长度.21.如图,在△ABC中,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.(1)求证:△ABD∽△AHG.(2)若4AB=5AC,且点H是AC的中点,求的值.22.如图,AB是⊙O的直径,C、P是弧AB上两点,AB=13,AC=5,(1)如图(1),若点P是弧AB的中点,求PB的长;(2)如图(2),过点P作PD⊥BC于点E,交AB于点D,若=,求PC的长.23.如图,△ABC为一锐角三角形,BC=12,BC边上的高AD=8.点Q,M在边BC上,P,N分别在边AB,AC上,且PNMQ为矩形.(1)设MN=x,用x表示PN的长度;(2)当MN长度为多少时,矩形PNMQ的面积最大,最大面积是多少?(3)当MN长度为多少时,△APN的面积等于△BPQ与△CMN之和?24.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s 的速度向点C移动,同时动点Q从C出发以1cm/s的速度向点A移动,设它们的运动时间为t.(1)t为何值时,△CPQ的面积等于△ABC面积的?(2)运动几秒时,△CPQ与△CBA相似?(3)在运动过程中,PQ的长度能否为1cm?试说明理由.25.如图,分别延长平行四边形ABCD的边CD、AB到E、F,使DE=BF=CD,连接EF,分别交AD,BC于G,H,连接CG,AH(1)求证:四边形AGCH为平行四边形;(2)求△DEG和△CGH的面积比.26.如图,△ABC中,D,E分别为BC,AB中点,连接EC,AD,且AD与EC交于点F,延长AD至点G使GD=AD,连结CG.(1)请在图中找出一对全等三角形,并证明.(2)若AB=x,EB:DF=3:2,试用含x的代数式表示线段AG的长.27.如图,在△ABC中,AB=AC,AD⊥BC于D点,点E、F是线段AD上的三等分点,连接BE、CE、BF、CF,若,且BC=4a.(1)求四边形ABEC的面积;(2)写出与△CEF相似但不全等的三角形,并证明其中的一对.28.阅读下面材料:小军遇到这样一个问题:如图1,△ABC中,AB=6,AC=4,点D为BC的中点,求AD的取值范围.小军发现老师讲过的“倍长中线法”可以解决这个问题.他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≌△CAD,经过推理和计算使问题得到解决.请回答:AD的取值范围是.参考小军思考问题的方法,解决问题:如图3,△ABC中,E为AB中点,P是CA延长线上一点,连接PE并延长交BC 于点D.求证:PA•CD=PC•BD.29.如图,△ABC中,BC=2AB,点D、E分别是BC、AC的中点,过点A作AF∥BC交线段DE的延长线于点F,取AF的中点G,联结DG,GD与AE交于点H.(1)求证:四边形ABDF是菱形;(2)求证:DH2=HE•HC.30.如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,以B,M,E为顶点的三角形与以C,E,N为顶点的三角形相似?31.如本题图①,在△ABC中,已知∠ABC=∠ACB=α.过点A作BC的平行线与∠ABC的平分线交于点D,连接CD.(1)求∠ACD的大小;(2)在线段CD的延长线上取一点F,以FD为角的一边作∠DFE=α,另一边交BD延长线于点E,若FD﹣kAD(如本题图②所示),试求的值(用含k 的代数式表示).32.如图,四边形ABCD是平行四边形,点E为DC延长线上一点,联结AE,交BC边于点F,联结BE.(1)求证:AB•AD=BF•ED;(2)若CD=CA,且∠DAE=90°,求证:四边形ABEC是菱形.33.如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4.(1)判断△ABE与△ADB是否相似,并说明理由;(2)求∠C的度数.34.如图,AD是△ABC的高,点Q、M在BC边上,点N在AC边上,点P在AB 边上,AD=60cm,BC=40cm,四边形PQMN是矩形.(1)求证:△APN∽△ABC;(2)若PQ:PN=3:2,求矩形PQMN的长和宽.35.如图,在直角三角形ABC中,∠C=90°,矩形DEFG的四个顶点都在△ABC 的边上,已知:AC=8,BC=6.(1)当四边形DEFG为正方形时,求EF的长;(2)△BEF与△FCG能全等吗?若能,请你求出EF的长;若不能,请说明理由;(3)△BEF与△ADG能全等吗?若能,请你求出EF的长;若不能,请说明理由.36.在四边形ABCD中,对角线AC与BD交于点O,E是OC上任意一点,AG⊥BE于点G,交BD于点F.(1)如图1,若四边形ABCD是正方形,判断AF与BE的数量关系;明明发现,AF与BE分别在△AOF和△BOE中,可以通过证明△AOF和△BOE全等,得到AF与BE的数量关系;请回答:AF与BE的数量关系是.(2)如图2,若四边形ABCD是菱形,∠ABC=120°,请参考明明思考问题的方法,求的值.37.如图所示,D是以AB为直径的半圆O上的一点,C是弧AD的中点,点M 在AB上,AD与CM交于点N,CN=AN.(1)求证:CM⊥AB;(2)若AC=;,BD=2,求半圆的直径.38.在△ABC中,BC=2,BC边上的高AD=1,P是BC上任一点,PE∥AB交AC 于E,PF∥AC交AB于F.用x表示;(1)设BP=x,将S△PEF(2)当P在BC边上什么位置时,S值最大.39.如图,已知在梯形ABCD中,AD∥BC,∠A=90°,AB=AD,点E在边AB上,且DE⊥CD,DF平分∠EDC,交BC于点F,联结CE、EF.(1)求证:DE=DC;(2)如果BE2=BF•BC,求证:∠BEF=∠CEF.40.如图,在Rt△ABC中,∠B=90°,AB=9cm,BC=2cm,点M,N分别从A,B 同时出发,M在AB边上沿AB方向以每秒2cm的速度匀速运动,N在BC边上沿BC方向以每秒1cm的速度匀速运动(当点N运动到点C时,两点同时停止运动).设运动时间为x秒,△MBN的面积为ycm2.(1)求y与x之间的函数关系式,并直接写出自变量x的取值范围;(2)求△MBN的面积的最大值.41.如图,在等腰三角形ABC中,AD⊥BC于点D,AD=3,DC=4,点M在线段AC上运动,ME⊥AD于点E,连结BE并延长交AC于点F,连结BM.设=m (0<m<1),△BEM的面积为S.(1)当m=时,求的值.(2)求S关于m(0<m<1)的函数解析式并求出S的最大值.(3)设=k,猜想k与m的数量关系并证明.42.以AB为直径作半圆O,AB=10,点C是该半圆上一动点,连接AC、BC,延长BC至点D,使DC=BC,过点D作DE⊥AB于点E,交AC于点F,在点C运动过程中:(1)如图1,当点E与点O重合时,连接OC,试判断△COB的形状,并证明你的结论;(2)如图2,当DE=8时,求线段EF的长.43.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E分别是AC、AB 的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(s)(0<t<4).根据上面的信息,解答下面的问题:(1)当t为何值时,PQ⊥AB?(2)当点Q在BE之间运动时,设五边形PQBCD的面积为y(cm2),求y与t 之间的函数表达式.44.如图,已知AB是⊙O的直径,点E在线段AB上,CD⊥AB于G,连接DE 交⊙O于F,连接CF交AB延长线于P.求证:OF2=OE•OP.45.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小明发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).(1)请回答:∠ACE的度数为,AC的长为.(2)参考小明思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求AC的长.46.如图,Rt△ABC中,∠C=90°,∠A=30°,BC=2,CD是斜边AB上的高,点E 为边AC上一点(点E不与点A、C重合),连接DE,作CF⊥DE,CF与边AB、线段DE分别交于点F,G;(1)求线段CD、AD的长;(2)设CE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.47.如图,在△ABC中,点D、E分别在边BC、AC上,BE、AD相交于点G,EF ∥AD交BC于点F,且BF2=BD•BC,联结FG.(1)求证:FG∥CE;(2)设∠BAD=∠C,求证:四边形AGFE是菱形.48.在▱ABCD中,点E在BC边上,点F在BC边的延长线上,且BE=CF.(1)求证:MA=MF;(2)连接AF,分别交DE、CD于M、N,若∠B=∠AME,求证:ND•ME=AD•MN.49.如图,在梯形ABCD中,AB∥CD,AD=BC,E是CD的中点,BE交AC于F,过点F作FG∥AB,交AE于点G.(1)求证:AG=BF;(2)当AD2=CA•CF时,求证:AB•AD=AG•AC.50.已知:如图,在四边形ABCD中,AB∥CD,点E是对角线AC上一点,∠DEC=∠ABC,且CD2=CE•CA.(1)求证:四边形ABCD是平行四边形;(2)分别过点E、B作AB和AC的平行线交于点F,联结CF,若∠FCE=∠DCE,求证:四边形EFCD是菱形.华师大新版九年级上学期《23.3.3 相似三角形的性质》同步练习卷参考答案与试题解析一.解答题(共50小题)1.在△ABC中,点D,E,F分别在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.(1)如图1,当DE=DF时,图1中是否存在与AB相等的线段?若存在,请找出,并加以证明;若不存在,说明理由;(2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90°,AF=m,求BD的长(用含k,m的式子表示).(1)如图1,连结AE.先由DE=DF,得出∠DEF=∠DFE,由∠ADF+∠DEC=180°,【分析】得出∠ADF=∠DEB.由∠AFE=∠BDE,得出∠AFE+∠ADE=180°,那么A、D、E、F四点共圆,根据圆周角定理得出∠DAE=∠DFE=∠DEF,∠ADF=∠AEF.再由∠ADF=∠DEB=∠AEF,得出∠AEF+∠AED=∠DEB+∠AED,则∠AEB=∠DEF=∠BAE,根据等角对等边得出AB=BE;(2)如图2,连结AE.由A、D、E、F四点共圆,得出∠ADF=∠AEF,由∠DAF=90°,得出∠DEF=90°,再证明∠DEB=∠AEF.又∠AFE=∠BDE,根据两角对应相等的两三角形相似得出△BDE∽△AFE,利用相似三角形对应边成比例得到=.在直角△DEF中,利用勾股定理求出EF==DF,然后将AF=m,DE=kDF代入,计算即可求解.【解答】解:(1)如图1,连结AE.∵DE=DF,∴∠DEF=∠DFE,∵∠ADF+∠DEC=180°,∴∠ADF=∠DEB.∵∠AFE=∠BDE,∴∠AFE+∠ADE=180°,∴A、D、E、F四点共圆,∴∠DAE=∠DFE=∠DEF,∠ADF=∠AEF.∵∠ADF=∠DEB=∠AEF,∴∠AEF+∠AED=∠DEB+∠AED,∴∠AEB=∠DEF=∠DFE=∠BAE,∴AB=BE;(2)如图2,连结AE.∵∠AFE=∠BDE,∴∠AFE+∠ADE=180°,∴A、D、E、F四点共圆,∴∠ADF=∠AEF,∵∠DAF=90°,∴∠DEF=90°,∵∠ADF+∠DEC=180°,∴∠ADF=∠DEB.∵∠ADF=∠AEF,∴∠DEB=∠AEF.在△BDE与△AFE中,,∴△BDE∽△AFE,∴=.在直角△DEF中,∵∠DEF=90°,DE=kDF,∴EF==DF,∴==,∴BD=.【点评】本题考查了相似三角形的判定与性质,等腰三角形的判定与性质,四点共圆,圆周角定理,勾股定理等知识,有一定难度.连结AE,证明A、D、E、F四点共圆是解题的关键.2.如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长交AB于点E,连接BP并延长交AD于点F,交CD延长线于点G.(1)求证:PB=PD.(2)若DF:FA=1:2①请写出线段PF与线段PD之间满足的数量关系,并说明理由;②当△DGP是等腰三角形时,求tan∠DAB的值.【分析】(1)根据菱形的性质得出∠DAP=∠PAB,AD=AB,再利用全等三角形的判定得出△APB≌△APD;(2)①首先证明△DFP≌△BEP,进而得出,,进而得出即,即可得出答案;②由(1)证得△APB≌△APD,得到∠ABP=∠ADP,根据平行线的性质,得到∠G=∠ABP,(Ⅰ)若DG=PG根据△DGP∽△EBP,得DG=a,由勾股定理得到FH=,于是得到结论;(Ⅱ)若DG=DP,设DG=DP=3m,则PB=3m,PE=BE=PF=2m,AB=AD=2DG=6m,AF=4m,BF=5m,设AH=x,求得FH=,得到tan∠DAB= =.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=AD,AC平分∠DAB,∴∠DAP=∠BAP,在△APB和△APD中,,∴△APB≌△APD,∴PB=PD;(2)解:①∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∴△AFP∽△CBP,∴,∵,∴,∴,由(1)知PB=PD,∴,∴PF=PD.②由(1)证得△APB≌△APD,∴∠ABP=∠ADP,∵GC∥AB,∴∠G=∠ABP,∴∠ADP=∠G,∴∠GDP>∠G,∴PD≠PG.(Ⅰ),若DG=PG,∵DG∥AB,∴△DGP∽△EBP,∴PB=EB,由(2)知,设PF=2a,则PB=BE=PD=3a,PE=PF=2a,BF=5a,由△DGP∽△EBP,得DG=a,∴AB=AD=2DG=9a,∴AF=6a,如图1,作FH⊥AB于H,设AH=x,则(6a)2﹣x2=(5a)2﹣(9a﹣x)2,解得x=a,∴FH=,∴tan∠DAB=;(Ⅱ)若DG=DP,如图2,设DG=DP=3m,则PB=3m,PE=BE=PF=2m,AB=AD=2DG=6m,AF=4m,BF=5m,∴(4m)2﹣x2=(5m)2﹣(6m﹣x)2,解得x=m,∴FH=,∴tan∠DAB==.【点评】此题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,锐角三角函数,平行线的性质,菱形的性质,正确的作出辅助线是解题的关键.3.如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.(1)求证:D是BC的中点;(2)若DE=3,BD﹣AD=2,求⊙O的半径;(3)在(2)的条件下,求弦AE的长.【分析】(1)根据圆周角定理求得AD⊥BC,根据等腰三角形三线合一的性质即可证得结论;(2)先求得∠E=∠C,根据等角对等边求得BD=DC=DE=3,进而求得AD=1,然后根据勾股定理求得AB,即可求得圆的半径;(3)根据题意得到AC=,BC=6,DC=3,然后根据割线定理即可求得EC,进而求得AE.【解答】(1)证明:∵AB是圆O的直径,∴AD⊥BC,∵AB=AC,∴BD=DC;(2)解:∵AB=AC,∵∠B=∠E,∴∠E=∠C,∴BD=DC=DE=3,∵BD﹣AD=2,∴AD=1,在RT△ABD中,AB==,∴⊙O的半径为;(3)解:∵AB=AC=,BD=DC=3,∴BC=6,∵∠B=∠E,∠C=∠C,∴△EDC∽△BAC,∵AC•EC=DC•BC,∴•EC=3×6,∴EC=,∴AE=EC﹣AC=﹣=.【点评】本题考查了圆周角定理,等腰三角形的判定和性质,勾股定理的应用以及割线定理的应用,熟练掌握性质定理是解题的关键.4.如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.【分析】(1)易证DE∥BC,由平行线分线段成比例定理列比例式即可求解;(2)分三种情况讨论:①若∠CFG=∠ECD,此时线段CP是△CFG的FG边上的中线;②若∠CFG=∠EDC,此时线段CP为△CFG的FG边上的高线;③当CD 为∠ACB的平分线时,CP既是△CFG的FG边上的高线又是中线.【解答】解:(1)∵∠ACB=90°,DE⊥AC,∴DE∥BC,∴,∵,AE=2,∴EC=6;(2)①如图1,若∠CFG=∠ECD,此时线段CP是△CFG的FG边上的中线.证明:∵∠CFG+∠CGF=90°,∠ECD+∠PCG=90°,又∵∠CFG=∠ECD,∴∠CGF=∠PCG,∴CP=PG,∵∠CFG=∠ECD,∴CP=FP,∴PF=PG=CP,∴线段CP是△CFG的FG边上的中线;②如图2,若∠CFG=∠EDC,此时线段CP为△CFG的FG边上的高线.证明:∵DE⊥AC,∴∠EDC+∠ECD=90°,∵∠CFG=∠EDC,∴∠CFG+∠ECD=90°,∴∠CPF=90°,∴线段CP为△CFG的FG边上的高线.③如图3,当CD为∠ACB的平分线时,CP既是△CFG的FG边上的高线又是中线.【点评】本题主要考查了平行线分线段成比例定理、等腰三角形的判定、三角形的有关概念,分类讨论,能全面的思考问题是解决问题的关键.5.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,【分析】由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.【解答】(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.【点评】本题考查了旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质;熟练掌握旋转的性质,并能进行推理论证是解决问题的关键.6.如图,在△ABC中,∠ACB=90°,AB=5,AC=4,过点C作直线MC使得∠BCM=∠BAC,求点B到直线MC的距离.【分析】利用勾股定理求出BC,过B向MC作垂线,利用三角形相似求BE.【解答】解:如图:在Rt△ABC中,BC==3,作BE⊥MC,垂足是E,∵∠ACB=∠BEC=90°,∴△ACB∽△BCE,∴,∴,∴BE=,∴点B到直线MC的距离.【点评】本题考查了相似三角形的判定和性质,勾股定理作辅助线构造相似三角形是解题的关键.7.如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)求证:△CDE∽△CAB;(2)求证:DE=BD;(2)如果BC=6,AB=5,求BE的长.【分析】(1)由圆内接四边形的性质得出∠CED=∠CBA,再由公共角相等,即可证出△CDE∽△CAB;(2)由等腰三角形的性质得出∠C=∠CBA,证出∠C=∠CED,得出DE=CD,再由圆周角定理和三线合一性质得出CD=BD,即可得出DE=BD;(3)由割线定理求出CE,由圆周角定理得出∠AEB=∠BEC=90°,根据勾股定理即可求出BE的长.【解答】(1)证明:连接AD,如图所示:∵四边形ABDE是⊙O的内接四边形,∴∠CED=∠CBA,又∵∠C=∠C,∴△CDE∽△CAB;(2)证明:∵AB=AC,∴∠C=∠CBA,∴∠C=∠CED,∴DE=CD,∵AB为⊙O的直径,∴∠ADB=90°,∴CD=BD,∴DE=BD;(3)解:由割线定理得:CE•AC=CD•BC,∵CD=BD=BC=3,AC=AB=5,∴CE===,∵AB为⊙O的直径,∴∠AEB=90°,∴∠BEC=90°,∴BE===.【点评】本题考查了圆内接四边形的性质、相似三角形的判定、等腰三角形的性质、圆周角定理、割线定理、勾股定理;本题有一定难度,特别是(2)(3)中,需要运用圆周角定理、割线定理和勾股定理才能得出结果.8.如图1,已知矩形ABCD的对角线相交于点O,EF过点O分别交AB、CD于点E、F.(1)求证:△AOE≌△COF;(2)若AB=3,AD=4,点M在线段BC上运动,连接MO.①当MO⊥AC时,求BM的值;②当BM为多少时,△BMO是等腰三角形?(只写出结论,不要求写过程)【分析】(1)根据矩形的性质易证,OA=OC,AB∥CD,根据AB∥CD,得到∠EAO=∠FCO,满足ASA可证;(2)①先证△MOC∽△ACB,得MC:AC=OC:BC,计算MC,即可求出BM;②若△BMO是等腰三角形,则可能BM=OM,OB=BM,OB=OM,分类讨论即可.【解答】(1)证明:∵四边形ABCD是矩形,∴OA=OC,AB∥CD,∴∠EAO=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(AAS);(2)①解:如图1,∵MO⊥AC,∴∠MOC=90°,∵∠ABC=90°,∴∠MOC=∠ABC,又∵∠MCO=∠MCO,∴△MOC∽△ACB,∴MC:AC=OC:BC,∵AB=3,BC=4,∴AC=5,∴OC=2.5,∴MC:5=2.5:4,∴MC=,∴BM=;②如图2,△BMO是等腰三角形时,有三种情况:(Ⅰ)OB=OM,此时M与C重合,BM=4;(Ⅱ)OB=BM,BM=OB=BD=2.5;(Ⅲ)BM=OM,作MN⊥BD,∴BN=B0=;∵△BMN∽△BDC∴,∴BM===,∴BM=2.5或4或.【点评】本题主要考查了三角形全等的判定、相似三角形的判定与性质、等腰三角形的判定与性质,第3小题考查学生思维的全面性,恰当分类讨论是解决问题的关键.9.已知两个以O为顶点且不全等的直角三角形△AOB和△COD,其中∠ABO=∠DCO=30°.(1)如图1,设∠BOD=α(0°<α<60°),点E、F、M分别是AC、CD、DB的中点.连接FM、EM.请问:随着α的变化,试判断的值是否发生变化?若不变,请求出的值;若变化,请说明理由;(2)如图2,若BO=3,点N在线段OD上,且NO=1,点P是线段AB上的一个动点,将△COD固定,△AOB绕点O旋转的过程中,线段PN长度的最大值是4;最小值是.【分析】(1)连接AD、BC,由∠AOB=∠COD=90°∠ABO=∠DCO=30°,得到,∠AOD=∠BOC,推出△AOD∽△BOC,求得∠OAD=∠CBO,,证得AD⊥BC由于点E、F、M分别是AC、CD、DB的中点,根据三角形的中位线的性质得到EF∥AD,EF=AD,于是得到MF∥AD,MF=AD,在Rt△EFM中,=;(2)过O作OE⊥AB于E,由已知条件求出当P在点E处时,点P到O点的距离最近为,当旋转到OE与OD重合是,NP取最小值为:OP﹣ON=;当点P在点B处时,且当旋转到OB在DO的延长线时,NP取最大值OB+ON=4.【解答】解:(1)不变;=,如图1,连接AD、BC交于一点Q,AD交BO于P,∵∠AOB=∠COD=90°,∠ABO=∠DCO=30°,∵,∠AOD=∠BOC,∴△AOD∽△BOC,∴∠OAD=∠CBO,,∵∠APO=∠BPQ,∴∠BQP=∠AOB=90°,∴AD⊥BC,∵点E、F、M分别是AC、CD、DB的中点,∴EF∥AD,EF=AD,∴MF∥BC,MF=BC,在Rt△EFM中,=;(2)如图2,过O作OE⊥AB于E,∵BO=3,∠ABO=30°,∴AO=,AB=,∴AB•OE=OA•OB,∴OE=,∴当P在点E处时,点P到O点的距离最近为,这时当旋转到OE与OD重合是,NP取最小值为:OP﹣ON=;如图4,当点P在点B处时,且当旋转到OB在DO的延长线时,NP取最大值OB+ON=3+1=4,∴线段PN长度的最小值为,最大值为4.故答案为:4,.【点评】此题考查了旋转的性质、相似三角形的判定与性质、直角三角形的判定和性质三角形的中位线的判定和性质、三角函数的应用.此题难度较大,注意数形结合思想的应用,注意旋转前后的对应关系.10.两个全等的Rt△ABC和Rt△ADE中,∠ABC=∠ADE=90°,M、N分别是BD、CE的中点,连接MN,(1)若AB=ED,且B、A、D 三点在一条直线上(如图1),猜想MN与BD的关系,并加以证明;(2)若AB=AD,sin∠BAC=,且B、A、D 三点不在一条直线上(如图2),求的值.【分析】(1)如图1,连接BN并延长,与DE的延长线相交于点F,由∠ABC+∠ADE=180°,得到BC∥DE,得到∠CBN=∠EFN,∠BCN=∠FEN,证出△CBN ≌△EFN,得到BN=FN,EF=CB=AD,于是得到DF=DE+EF=AB+BC=AB+AD=BD,根据三角形的中位线的性质即可得到结论;(2)过点E做BC的平行线,与BN的延长线相交于点F,连接DF,由(1)可知,△CBN≌△EFN,MN=DF,证得△DEF∽△DAB,得到.由sin∠BAC=,得到tan∠BAC=,即DF=BD,得到MN=DF=BD即可得到结论.【解答】解:(1)MN⊥BD,MN=BD;如图1,连接BN并延长,与DE的延长线相交于点F,∵∠ABC+∠ADE=180°,∴BC∥DE,∴∠CBN=∠EFN,∠BCN=∠FEN,∵CN=EN,在△CBN与△EFN中,,∴△CBN≌△EFN,∴BN=FN,EF=CB=AD,∴DF=DE+EF=AB+BC=AB+AD=BD,又∵BM=MD,∴MN=DF=BD,MN∥DF,∴∠BMN=∠BDE=90°,∴MN⊥BD;(2)过点E做BC的平行线,与BN的延长线相交于点F,连接DF,由(1)可知,△CBN≌△EFN,MN=DF,∴EF=CB=DE,∠BCE=∠CEF,∵∠ABC+∠ADE=180°,∴∠BAD+∠BCE+∠CED=540°﹣180°=360°,∵∠DEF+∠CEF+∠CED=360°,∴∠BAD=∠DEF,∵,∴△DEF∽△DAB,∴.∵sin∠BAC=,∴tan∠BAC=,即DF=BD,∴MN=DF=BD.即.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,梯形的中位线的性质,正确的作出辅助线是解题的关键.11.如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形,其中线段BD交AC于点G,线段AE交CD于点F,求证:(1)△ACE≌△BCD;(2)=.【分析】(1)由三角形ABC与三角形CDE都为等边三角形,利用等边三角形的性质得到两对边相等,一对角相等,利用等式的性质得到夹角相等,利用SAS 即可得证;(2)由(1)得出的三角形全等得到对应角相等,再由一对角相等,且夹边相等,利用ASA得到三角形GCD与三角形FCE全等,利用全等三角形对应边相等得到CG=CF,进而确定出三角形CFG为等边三角形,确定出一对内错角相等,进而得到GF与CE平行,利用平行线等分线段成比例即可得证.【解答】证明:(1)∵△ABC与△CDE都为等边三角形,∴AC=BC,CE=CD,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),(2)∵△ACE≌△BCD,∴∠BDC=∠AEC,在△GCD和△FCE中,,∴△GCD≌△FCE(ASA),∴CG=CF,∴△CFG为等边三角形,∴∠CGF=∠ACB=60°,∴GF∥CE,∴=.【点评】此题考查了全等三角形的判定与性质,相似三角形的判定与性质,以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.12.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.(1)连结AE,如图,根据圆周角定理,由AC为⊙O的直径得到∠AEC=90°,【分析】然后利用等腰三角形的性质即可得到BE=CE;(2)连结DE,如图,证明△BED∽△BAC,然后利用相似比可计算出AB的长,从而得到AC的长.【解答】(1)证明:连结AE,如图,∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC,而AB=AC,∴BE=CE;(2)连结DE,如图,∵BE=CE=3,∴BC=6,∵∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,∴=,即=,∴BA=9,∴AC=BA=9.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和圆周角定理.13.如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.(1)求证:AB•AF=CB•CD;(2)已知AB=15cm ,BC=9cm ,P 是射线DE 上的动点.设DP=x cm (x >0),四边形BCDP 的面积为y cm 2.求y 关于x 的函数关系式.【分析】(1)先利用等角的余角相等得到∠B=∠DAC ,则可判断Rt △DFA ∽Rt △ACB ,根据相似三角形的性质得AB•AF=BC•AD ,然后利用AD=CD 代换即可得到结论;(2)连结PC ,如图,先在Rt △ACB 中利用勾股定理计算出AC=12,再利用等腰三角形的性质AF=FC=AC=6,接着证明DE ∥BC ,则P 点到BC 的距离等于CF ,然后根据三角形面积公式和y=S △CPD +S △BCP 即可得到y 与x 的函数解析式.【解答】(1)证明:∵∠DAB=∠ACB=90°,∴∠DAC +∠BAC=90°,∠BAC +∠B=90°,∴∠B=∠DAC ,∵DF ⊥AC ,∴∠DFC=90°,∴Rt △DFA ∽Rt △ACB ,∴=,即AB•AF=BC•AD ,而AD=CD ,∴AB•AF=CB•CD ;(2)解:连结PC ,如图,在Rt △ACB 中,∵AB=15,BC=9,∴AC==12,∵DF ⊥AC ,DA=DC ,∴AF=FC=AC=6,∵∠DFC=∠ACB=90°,∴DE ∥BC ,∴P 点到BC 的距离等于CF ,∴y=S △CPD +S △BCP=•x•6+•9•6=3x +27(x >0).【点评】本题考查了相似三角形的判断与性质:在判定两个三角形相似时,合理利用直角的作用.也考查了利用三角形面积公式列函数关系式.把四边形的面积化为两三角形面积的和是求函数关系式的关键.14.如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点.过点B 作BE ∥AD ,交⊙O 于点E ,连接ED(1)求证:ED ∥AC ;(2)若BD=2CD ,设△EBD 的面积为S 1,△ADC 的面积为S 2,且S 12﹣16S 2+4=0,求△ABC 的面积.【分析】(1)由AD 是△ABC 的角平分线,得到∠BAD=∠DAC ,由于∠E=∠BAD ,等量代换得到∠E=∠DAC ,根据平行线的性质和判定即可得到结果;(2)由BE ∥AD ,得到∠EBD=∠ADC ,由于∠E=∠DAC ,得到△EBD ∽△ADC ,根据相似三角形的性质相似三角形面积的比等于相似比的平方即可得到结果.【解答】(1)证明:∵AD 是△ABC 的角平分线,∴∠BAD=∠DAC ,∵∠E=∠BAD ,。

相似三角形存在性问题(含解析)

相似三角形存在性问题(含解析)

相像存在性问题1.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c 与 x 轴交于 A、 D 两点,与 y 轴交于点B,四边形OBCD是矩形,点 A 的坐标为( 1,0),点 B 的坐标为( 0,4),已知点 E( m, 0)是线段 DO上的动点,过点 E 作 PE⊥ x 轴交抛物线于点 P,交 BC于点 G,交 BD于点 H.( 1)求该抛物线的分析式;( 2)当点 P 在直线 BC上方时,请用含 m的代数式表示 PG的长度;( 3)在( 2)的条件下,能否存在这样的点 P,使得以 P、B、G为极点的三角形与△ DEH相像?若存在,求出此时 m的值;若不存在,请说明原因.2.如图,在平面直角坐标系xoy中,抛物线25C xy ax x c过点A(,)和(,),(,)是轴正0 48 0 P t0690°得线段 PB.过点 B作x轴的垂线、过点半轴上的一个动点, M是线段 AP 的中点,将线段MP绕点 P 顺时针旋转A 作y轴的垂线,两直线订交于点D.( 1)求此抛物线的对称轴;( 2)当t为什么值时,点 D落在抛物线上?( 3)能否存在t,使得以 A、B、D 为极点的三角形与△PEB相像?若存在,求此时t 的值;若不存在,请说明原因.333.如图,过点 A ( 0, 3)的直线 l 1 与 x 轴交于点 B , tan ∠ ABO=4.过点 A 的另向来线 l 2: y =-4 tx + b (t >0)与 x 轴交于点 Q ,点 P 是射线 AB 上的一个动点, 过 P 作 PH ⊥ x 轴于点 H ,设 PB = 5t .( 1)求直线 l 1 的函数分析式;( 2)当点 P 在线段 AB 上运动时,设△ PHQ 的面积为 S ( S ≠ 0),求 S 与 t 之间的函数关系式(要求写出自变量t 的取值范围);(3)当点 P 在射线 AB上运动时,能否存在这样的 t 值,使以 P, H,Q为极点的三角形与△ AOQ相像?若存在,直接写出全部知足条件的 t 值所对应的 P 点坐标;若不存在,请说明原因.4.如图,点 A 是x 轴正半轴上的动点,点 B 的坐标为(0, 4),将线段AB 的中点绕点 A 按顺时针方向旋转90°得点 C,过点 C 作 x 轴的垂线,垂足为F,过点 B 作 y 点,连结AC、 BC、 CD,设点 A 的横坐标为t .轴的垂线与直线CF 订交于点E,点D是点A 对于直线CF的对称( 1)线段AB与AC的数目关系是,地点关系是.(2)当 t=2 时,求 CF 的长;(3)当 t 为什么值时,点 C 落在线段 BD上?求出此时点 C的坐标;(4)设△ BCE的面积为 S,求 S与 t 之间的函数关系式.5.如图,抛物线y=-1x2+3x- 2 交 x 轴于 A, B 两点(点 A 在点 B 的左边),交 y 轴于点 C,分别过点B, C 作 y 42轴, x轴的平行线,两平行线交于点D,将△BDC绕点C 逆时针旋转,使点D旋转到y 轴上获得△FEC,连结BF.(1)求点 B, C所在直线的函数分析式;( 2)求△ BCF的面积;(3)在线段 BC上能否存在点 P,使得以点 P,A, B 为极点的三角形与△ BOC相像?若存在,求出点 P 的坐标;若不存在,请说明原因.。

专题03 二次函数中的相似三角形存在性问题(学生版)

专题03 二次函数中的相似三角形存在性问题(学生版)

专题03 二次函数中的相似三角形存在性问题【模型解读】在坐标系中确定点,使得由该点及其他点构成的三角形与其他三角形相似,即为“相似三角形存在性问题”.【相似判定】判定1:三边对应成比例的两个三角形是相似三角形;判定2:两边对应成比例且夹角相等的两个三角形是相似三角形;判定3:有两组角对应相等的三角形是相似三角形.以上也是坐标系中相似三角形存在性问题的方法来源,根据题目给的已知条件选择恰当的判定方法,解决问题.【题型分析】通常相似的两三角形有一个是已知的,而另一三角形中有1或2个动点,即可分为“单动点”类、“双动点”两类问题.【思路总结】根据相似三角形的做题经验,可以发现,判定1基本是不会用的,这里也一样不怎么用,对比判定2、3可以发现,都有角相等!所以,要证相似的两个三角形必然有相等角,关键点也是先找到一组相等角.然后再找:思路1:两相等角的两边对应成比例;思路2:还存在另一组角相等.事实上,坐标系中在已知点的情况下,线段长度比角的大小更容易表示,因此选择方法可优先考虑思路1.一、如何得到相等角?二、如何构造两边成比例或者得到第二组角?搞定这两个问题就可以了.【模型实例】1.如图,直线分别交轴、轴于点,,过点的抛物线与轴的另一交点为,与轴交于点,抛物线的对称轴交于点,连接交于点.(1)求抛物线的解析式;(2)求证:;(3)为抛物线上的一动点,直线交于点,是否存在这样的点,使以,,为顶点的三角形与相似?若存在,求点的横坐标;若不存在,请说明理由.2.如图,在平面直角坐标系中,抛物线经过点和.(1)求抛物线的对称轴.(2)当时,将抛物线向左平移2个单位,再向下平移1个单位,得到抛物线.①求抛物线的解析式.②设抛物线与轴交于,两点(点在点的右侧),与轴交于点,连接.点为第一象限内抛物线上一动点,过点作于点.设点的横坐标为.是否存在点,使得以点,,为顶点的三角形与相似?若存在,求出的值;若不存在,请说明理由.1322y x =-+x y A B A 2y x bx c =-++x C y (0,3)D l AD E OE AB F OE AB ⊥P PO AD M P A O M ACD ∆P 2:(0)C y ax bx c a =++≠(1,1)(4,1)C 1a =-C 1C 1C 1C x A B A B y C BC D 1C D DE OA ⊥E D m D O D E BOC ∆m3.如图,抛物线与轴交于点和点,与轴交于点,连接,与抛物线的对称轴交于点,顶点为点.(1)求抛物线的解析式;(2)点是对称轴左侧抛物线上的一个动点,点在射线上,若以点、、为顶点的三角形与相似,请直接写出点的坐标.4.已知抛物线与轴交于点、(点在点的左侧),与轴交于点.(1)求点、的坐标;(2)设点与点关于该抛物线的对称轴对称.在轴上是否存在点,使与相似,且与是对应边?若存在,求出点的坐标;若不存在,请说明理由.5.如图,已知二次函数的图象与轴交于和两点,与轴交于,对称轴为直线,直线经过点,且与轴交于点,与抛物线交于点,与对称轴交于点.(1)求抛物线的解析式和的值;(2)在轴上是否存在点,使得以、、为顶点的三角形与相似,若存在,求出点的坐标;若不存在,试说明理由;23(0)y ax bx a =++≠x (1,0)A (3,0)B -y C BC E D P Q ED P Q E BOC ∆P 228y x x =-++x A B A B y C B C C 'C y P PCC ∆'POB ∆PC PO P x A (3,0)B -y (0,3)C -1x =-2y x m =-+A y D E F m y P D E P AOD ∆P6.如图,在平面直角坐标系中,抛物线与两坐标轴分别相交于,,三点.(1)求证:;(2)点是第一象限内该抛物线上的动点,过点作轴的垂线交于点,交轴于点,点是的中点,若以点,,为顶点的三角形与相似,求点的坐标.7.如图,抛物线与轴交于、两点,与轴交于点,抛物线的顶点为.(1)求抛物线的解析式;(2)已知点是轴上的动点,过点作的垂线交抛物线于点,是否存在这样的点,使得以点、、为顶点的三角形与相似,若存在,请求出点的坐标;若不存在,请说明理由.xOy 213442y x x =-++A B C 90ACB ∠=︒D D x BC E x F G AC C D E AOG ∆D 22(0)y ax x c a =-+≠x A (3,0)B y (0,3)C -D M x M x G M A M G BCD ∆M8.如图1,一次函数的图象与两坐标轴分别交于,两点,且点坐标为,以点为顶点的抛物线解析式为.(1)求一次函数的解析式;(2)如图2,将抛物线的顶点沿线段平移,此时抛物线顶点记为,与轴交点记为,当点的横坐标为时,求抛物线的解析式及点的坐标;(3)在(2)的条件下,线段上是否存在点,使以点,,为顶点的三角形与相似,若存在,求出所有满足条件的点坐标;若不存在,请说明理由.9.如图,已知二次函数的图象与轴交于,两点,与轴交于点,直线经过,两点.(1)直接写出二次函数的解析式 ;(2)平移直线,当直线与抛物线有唯一公共点时,求此时点的坐标;(3)过(2)中的点作轴,交轴于点.若点是抛物线上一个动点,点是轴上一个动点,是否存在以,,三点为顶点的直角三角形(其中为直角顶点)与相似?如果存在,请直接写出满足条件的点的个数和其中一个符合条件的点的坐标;如果不存在,请说明理由.A B B (0,4)A 2(2)y x =-+AB C y D C 1-D AB P B D P AOB ∆P 2(0)y ax bx c a =++≠x (1,0)A (4,0)B y C 122y x =-+B C BC BC Q Q Q //QE y x E M N x E M N M BOC ∆M M10.如图,抛物线与轴交于,两点,点,分别位于原点的左、右两侧,,过点的直线与轴正半轴和抛物线的交点分别为,,.(1)求,的值;(2)求直线的函数解析式;(3)点在抛物线的对称轴上且在轴下方,点在射线上.当与相似时,请直接写出所有满足条件的点的坐标.11.如图,抛物线与轴交于,两点,且,与轴交于点,连接,抛物线对称轴为直线,为第一象限内抛物线上一动点,过点作于点,与交于点,设点的横坐标为.(1)求抛物线的表达式;(2)抛物线上是否存在点,使得以点,,为顶点的三角形与相似?若存在,求出的值;若不存在,请说明理由.2y bx c =++x A B A B 33BO AO ==B y CD BC =b c BD P x Q BA ABD ∆BPQ ∆Q 22y ax bx =++x A B 2OA OB =y C BC 12x =D D DE OA ⊥E AC F D m D O D E BOC ∆m12.如图,抛物线经过,,三点.(1)求抛物线的函数表达式;(2)如图,为抛物线的顶点,在线段上是否存在点,使得以,,为顶点的三角形与相似?若存在,求点的坐标;若不存在,请说明理由.13.在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点.(1)求抛物线的函数表达式;(2)如图,连接,,过点作直线,点,分别为直线和抛物线上的点.试探究:在第一象限是否存在这样的点,,使?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.2y ax bx c =++(3,0)A -(1,0)B (0,3)C D AD M M A O ABC ∆M xOy 2y ax bx c =++x (1,0)A -(4,0)B y (0,2)C -AC BC O //l BC P Q l P Q PQB CAB ∆∆∽P。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题三 相似三角形的存在性问题【考题研究】相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。

难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快.【解题攻略】相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。

应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).【解题类型及其思路】相似三角形存在性问题需要注意的问题:1、若题目中问题为△ABC ∽△DEF ,则对应线段已经确定。

2、若题目中为△ABC 与 △DEF 相似,则没有确定对应线段,此时有三种情况:①△ABC ∽△DEF , ②△ABC ∽△FDE 、 ③△ABC ∽△EFD 、3、若题目中为△ABC 与 △DEF 并且有 ∠A 、 ∠D (或为90°),则确定了一条对应的线段,此时有二种情况:①、△ABC ∽△DEF ,②、△ABC ∽△DFE 需要分类讨论上述的各种情况。

【典例指引】类型一 【确定符合相似三角形的点的坐标】典例指引1.(2019·贵州中考真题)如图,抛物线212y x bx c =++与直线132y x =+分别相交于A ,B 两点,且此抛物线与x 轴的一个交点为C ,连接AC ,BC .已知(0,3)A ,(3,0)C -.(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使MB MC-的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ PA⊥交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与ABC∆相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【举一反三】(2019·海南模拟)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线335y x=+相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.类型二 【确定符合相似三角形的动点的运动时间或路程等】典例指引2.(2019年广东模拟)如图,在矩形OABC 中,AO =10,AB =8,沿直线CD 折叠矩形OABC 的一边BC ,使点B 落在OA 边上的点E 处,分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系,抛物线2y ax bx c =++经过O ,D ,C 三点.(1)求AD 的长及抛物线的解析式;(2)一动点P 从点E 出发,沿EC 以每秒2个单位长的速度向点C 运动,同时动点Q 从点C 出发,沿CO 以每秒1个单位长的速度向点O 运动,当点P 运动到点C 时,两点同时停止运动,设运动时间为t 秒,当t 为何值时,以P ,Q ,C 为顶点的三角形与△ADE 相似?(3)点N 在抛物线对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使以M ,N ,C ,E 为顶点的四边形是平行四边形?若存在,请直接写出点M 与点N 的坐标(不写求解过程);若不存在,请说明理由.【举一反三】(2019·湖南模拟)如图,已知直线y =-x +3与x 轴、y 轴分别交于A ,B 两点,抛物线y =-x 2+bx +c 经过A ,B 两点,点P 在线段OA 上,从点O 出发,向点A 以1个单位/秒的速度匀速运动;同时,点Q 在线段AB 上,从点A 出发,向点B 以2个单位/秒的速度匀速运动,连接PQ ,设运动时间为t 秒.(1)求抛物线的解析式;(2)问:当t 为何值时,△APQ 为直角三角形;(3)过点P 作PE ∥y 轴,交AB 于点E ,过点Q 作QF ∥y 轴,交抛物线于点F ,连接EF ,当EF ∥PQ 时,求点F 的坐标;(4)设抛物线顶点为M ,连接BP ,BM ,MQ ,问:是否存在t 的值,使以B ,Q ,M 为顶点的三角形与以O ,B ,P 为顶点的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.类型三 【确定符合相似三角形的函数解析式或字母参数的值】典例指引3.(2019·江苏中考真题)如图,二次函数245y x x =-++图象的顶点为D ,对称轴是直线l ,一次函数215y x =+的图象与x 轴交于点A ,且与直线DA 关于l 的对称直线交于点B .(1)点D 的坐标是 ______;(2)直线l 与直线AB 交于点C ,N 是线段DC 上一点(不与点D 、C 重合),点N 的纵坐标为n .过点N 作直线与线段DA 、DB 分别交于点P ,Q ,使得DPQ ∆与DAB ∆相似.①当275n =时,求DP 的长; ②若对于每一个确定的n 的值,有且只有一个DPQ ∆与DAB ∆相似,请直接写出n 的取值范围 ______.【举一反三】(2018武汉中考)抛物线L :y =﹣x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B . (1)直接写出抛物线L 的解析式;(2)如图1,过定点的直线y =kx ﹣k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值;(3)如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标.【新题训练】1.(2019·长沙市开福区青竹湖湘一外国语学校初三月考)如图1,已知抛物线;C 1:y =﹣1m(x +2)(x ﹣m )(m >0)与x 轴交于点B 、C (点B 在点C 的左侧),与y 轴交于点E .(1)求点B 、点C 的坐标;(2)当△BCE 的面积为6时,若点G 的坐标为(0,b ),在抛物线C 1的对称轴上是否存在点H ,使得△BGH 的周长最小,若存在,则求点H 的坐标(用含b 的式子表示);若不存在,则请说明理由;(3)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.2.(2020·浙江初三期末)边长为2的正方形OABC 在平面直角坐标系中的位置如图所示,点D 是边OA 的中点,连接CD ,点E 在第一象限,且DE DC ⊥,DE DC =.以直线AB 为对称轴的抛物线过C ,E 两点.(1)求抛物线的解析式;(2)点P 从点C 出发,沿射线CB 每秒1个单位长度的速度运动,运动时间为t 秒.过点P 作PF CD ⊥于点F ,当t 为何值时,以点P ,F ,D 为顶点的三角形与COD ∆相似?(3)点M 为直线AB 上一动点,点N 为抛物线上一动点,是否存在点M ,N ,使得以点M ,N ,D ,E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.3.(2020·长沙市长郡双语实验中学初三开学考试)如图,抛物线y =ax 2﹣2ax +c 的图象经过点C (0,﹣2),顶点D 的坐标为(1,﹣83),与x 轴交于A 、B 两点.(1)求抛物线的解析式.(2)连接AC ,E 为直线AC 上一点,当△AOC ∽△AEB 时,求点E 的坐标和AEAB的值. (3)点C 关于x 轴的对称点为H ,当5FC +BF 取最小值时,在抛物线的对称轴上是否存在点Q ,使△QHF 是直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由. 4.(2019·贵州初三)如图,已知抛物线y =13x 2+bx +c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点. (1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与△ABC 相似,若存在,求出点Q 的坐标,若不存在,请说明理由.5.(2020·河南初三)如图,在平面直角坐标系中,抛物线243y x bx c =-++与x 轴交于A 、D 两点,与y 轴交于点B ,四边形OBCD 是矩形,点A 的坐标为(1,0),点B 的坐标为(0,4),已知点E (m ,0)是线段DO 上的动点,过点E 作PE ⊥x 轴交抛物线于点P ,交BC 于点G ,交BD 于点H . (1)求该抛物线的解析式;(2)当点P 在直线BC 上方时,请用含m 的代数式表示PG 的长度;(3)在(2)的条件下,是否存在这样的点P ,使得以P 、B 、G 为顶点的三角形与△DEH 相似?若存在,求出此时m 的值;若不存在,请说明理由.6.(2020·浙江初三期末)如图①,在平面直角坐标系中,抛物线2y x =的对称轴为直线l ,将直线l 绕着点()0,2P 顺时针旋转α∠的度数后与该抛物线交于AB 两点(点A 在点B 的左侧),点Q 是该抛物线上一点(1)若45α∠=︒,求直线AB 的函数表达式 (2)若点p 将线段分成2:3的两部分,求点A 的坐标(3)如图②,在(1)的条件下,若点Q 在y 轴左侧,过点p 作直线//l x 轴,点M 是直线l 上一点,且位于y 轴左侧,当以P ,B ,Q 为顶点的三角形与PAM ∆相似时,求M 的坐标 7.(2020·上海初三)如图,在平面直角坐标系xOy 中,抛物线y =13x 2+mx +n 经过点B (6,1),C (5,0),且与y 轴交于点A .(1)求抛物线的表达式及点A 的坐标;(2)点P 是y 轴右侧抛物线上的一点,过点P 作PQ ⊥OA ,交线段OA 的延长线于点Q ,如果∠P AB =45°.求证:△PQA ∽△ACB ;(3)若点F 是线段AB (不包含端点)上的一点,且点F 关于AC 的对称点F ′恰好在上述抛物线上,求FF ′的长.8.(2019·江苏初三期末)如图,抛物线y=ax2+5ax+c(a<0)与x轴负半轴交于A、B两点(点A在点B 的左侧),与y轴交于C点,D是抛物线的顶点,过D作DH⊥x轴于点H,延长DH交AC于点E,且S△ABD:S△ACB=9:16,(1)求A、B两点的坐标;(2)若△DBH与△BEH相似,试求抛物线的解析式.9.(2019·湖南中考模拟)如图,顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的表达式;(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求点E的坐标;若不存在,请说明理由.10.(2019·西安市铁一中学中考模拟)如图,抛物线2(0)y ax bx c a =++≠的顶点坐标为(2,1)-,并且与y轴交于点(0,3)C ,与x 轴交于A 、B 两点. (1)求抛物线的表达式.(2)如图1,设抛物线的对称轴与直线BC 交于点D ,点E 为直线BC 上一动点,过点E 作y 轴的平行线EF ,与抛物线交于点F ,问是否存在点E ,使得以D 、E 、F 为顶点的三角形与BCO V 相似.若存在,求出点E 的坐标;若不存在,请说明理由.11.(2019·广东中考模拟)如图,在平面直角坐标系xoy 中,直线122y x =+与x 轴交于点A ,与y 轴交于点C .抛物线y =ax 2+bx +c 的对称轴是32x =-且经过A 、C 两点,与x 轴的另一交点为点B . (1)①直接写出点B 的坐标;②求抛物线解析式.(2)若点P 为直线AC 上方的抛物线上的一点,连接P A ,PC .求△P AC 的面积的最大值,并求出此时点P 的坐标.(3)抛物线上是否存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似?若存在,直接写出点M 的坐标;若不存在,请说明理由.12.(2019·江苏泗洪姜堰实验学校中考模拟)如图,抛物线2481293y x x =--与x 轴交于A 、C 两点,与y 轴交于B 点.(1)求△AOB 的外接圆的面积;(2)若动点P 从点A 出发,以每秒2个单位沿射线AC 方向运动;同时,点Q 从点B 出发,以每秒1个单位沿射线BA 方向运动,当点P 到达点C 处时,两点同时停止运动.问当t 为何值时,以A 、P 、Q 为顶点的三角形与△OAB 相似?(3)若M 为线段AB 上一个动点,过点M 作MN 平行于y 轴交抛物线于点N .①是否存在这样的点M ,使得四边形OMNB 恰为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.②当点M 运动到何处时,四边形CBNA 的面积最大?求出此时点M 的坐标及四边形CBAN 面积的最大值.13.(2019·陕西中考真题)在平面直角坐标系中,已知抛物线L :()2y ax c a x c =+-+经过点A (-3,0)和点B (0,-6),L 关于原点O 对称的抛物线为L '. (1)求抛物线L 的表达式;(2)点P 在抛物线L '上,且位于第一象限,过点P 作PD ⊥y 轴,垂足为D .若△POD 与△AOB 相似,求符合条件的点P 的坐标.14.(2019·湖南中考真题)如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点. (1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.15.(2018·四川中考真题)如图,抛物线y =12x 2+bx +c 与直线y =12x +3交于A ,B 两点,交x 轴于C 、D 两点,连接AC 、BC ,已知A (0,3),C (﹣3,0). (1)求抛物线的解析式;(2)在抛物线对称轴l 上找一点M ,使|MB ﹣MD |的值最大,并求出这个最大值;(3)点P 为y 轴右侧抛物线上一动点,连接P A ,过点P 作PQ ⊥P A 交y 轴于点Q ,问:是否存在点P 使得以A ,P ,Q 为顶点的三角形与△ABC 相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.16.(2019·湖南中考真题)如图1,△AOB 的三个顶点A 、O 、B 分别落在抛物线F 1:21733y x x =+的图象上,点A 的横坐标为﹣4,点B 的纵坐标为﹣2.(点A 在点B 的左侧) (1)求点A 、B 的坐标;(2)将△AOB 绕点O 逆时针旋转90°得到△A 'OB ',抛物线F 2:24y ax bx =++经过A '、B '两点,已知点M 为抛物线F 2的对称轴上一定点,且点A '恰好在以OM 为直径的圆上,连接OM 、A 'M ,求△OA 'M 的面积; (3)如图2,延长OB '交抛物线F 2于点C ,连接A 'C ,在坐标轴上是否存在点D ,使得以A 、O 、D 为顶点的三角形与△OA 'C 相似.若存在,请求出点D 的坐标;若不存在,请说明理由.。

相关文档
最新文档