1.3.1二项式定理检测(1)
高中数学人教A版选修2-3练习:1.3.1 二项式定理 Word版含解析
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.设S =(x -1)3+3(x -1)2+3(x -1)+1,则S 等于( ) A .(x -1)3 B .(x -2)3 C .x 3D .(x +1)3【解析】 S =[(x -1)+1]3=x 3. 【答案】 C2.已知⎝ ⎛⎭⎪⎫x -1x 7 的展开式的第4项等于5,则x 等于( )A.17 B .-17 C .7D .-7 【解析】 T 4=C 37x 4⎝ ⎛⎭⎪⎫-1x 3=5,则x =-17. 【答案】 B3.若对于任意实数x ,有x 3=a 0+a 1(x -2)+a 2(x -2)2+a 3(x -2)3,则a 2的值为( )A .3B .6C .9D .12【解析】 x 3=[2+(x -2)]3,a 2=C 23×2=6. 【答案】 B4.使⎝ ⎛⎭⎪⎫3x +1x x n (n ∈N *)的展开式中含有常数项的最小的n 为( ) A .4 B .5 C .6D .7【解析】 T r +1=C r n (3x )n -r ⎝ ⎛⎭⎪⎫1x x r =C r n3n -rxn -52r ,当T r +1是常数项时,n -52r =0,当r =2,n =5时成立.【答案】 B5.(x 2+2)⎝ ⎛⎭⎪⎫1x 2-15的展开式的常数项是( )A .-3B .-2C .2D .3【解析】 二项式⎝ ⎛⎭⎪⎫1x 2-15展开式的通项为:T r +1=C r 5⎝ ⎛⎭⎪⎫1x 25-r ·(-1)r =C r 5·x 2r -10·(-1)r. 当2r -10=-2,即r =4时,有x 2·C 45x -2·(-1)4=C 45×(-1)4=5; 当2r -10=0,即r =5时,有2·C 55x 0·(-1)5=-2. ∴展开式中的常数项为5-2=3,故选D. 【答案】 D 二、填空题6.(2016·安徽淮南模拟)若⎝ ⎛⎭⎪⎫x +1x n 的展开式中第3项与第7项的二项式系数相等,则该展开式中1x 2的系数为________.【解析】 由题意知,C 2n =C 6n ,∴n =8.∴T k +1=C k 8·x 8-k ·⎝ ⎛⎭⎪⎫1x k =C k 8·x 8-2k ,当8-2k =-2时,k =5,∴1x 2的系数为C 58=56.【答案】 567.设二项式⎝ ⎛⎭⎪⎫x -a x 6(a >0)的展开式中x 3的系数为A ,常数项为B .若B =4A ,则a 的值是________.【解析】 对于T r +1=C r 6x 6-r (-ax -12)r =C r 6(-a )r ·x 6-32r ,B =C 46(-a )4,A=C 26(-a )2.∵B =4A ,a >0,∴a =2. 【答案】 28.9192被100除所得的余数为________.【解析】 法一:9192=(100-9)92=C 092·10092-C 192·10091·9+C 292·10090·92-…+C 9292992,展开式中前92项均能被100整除,只需求最后一项除以100的余数.∵992=(10-1)92=C 092·1092-C 192·1091+…+C 9092·102-C 9192·10+1, 前91项均能被100整除,后两项和为-919,因余数为正,可从前面的数中分离出1 000,结果为1 000-919=81,故9192被100除可得余数为81.法二:9192=(90+1)92=C 092·9092+C 192·9091+…+C 9092·902+C 9192·90+C 9292. 前91项均能被100整除,剩下两项和为92×90+1=8 281,显然8 281除以100所得余数为81.【答案】 81 三、解答题9.化简:S =1-2C 1n +4C 2n -8C 3n +…+(-2)n C n n (n ∈N *).【解】 将S 的表达式改写为:S =C 0n +(-2)C 1n +(-2)2C 2n +(-2)3C 3n +…+(-2)n C n n =[1+(-2)]n =(-1)n .∴S =(-1)n=⎩⎪⎨⎪⎧1,n 为偶数时,-1,n 为奇数时.10.(2016·淄博高二检测)在⎝⎛⎭⎪⎫2x -1x 6的展开式中,求: (1)第3项的二项式系数及系数; (2)含x 2的项.【解】 (1)第3项的二项式系数为C 26=15,又T 3=C 26(2x )4⎝⎛⎭⎪⎫-1x 2=24·C 26x ,所以第3项的系数为24C 26=240. (2)T k +1=C k 6(2x )6-k ⎝⎛⎭⎪⎫-1x k=(-1)k 26-k C k 6x 3-k,令3-k =2,得k =1. 所以含x 2的项为第2项,且T 2=-192x 2.[能力提升]1.(2016·吉林长春期末)若C 1n x +C 2n x 2+…+C n n x n能被7整除,则x ,n 的值可能为( )A .x =4,n =3B .x =4,n =4C .x =5,n =4D .x =6,n =5【解析】 C 1n x +C 2n x 2+…+C n n x n =(1+x )n -1,分别将选项A 、B 、C 、D 代入检验知,仅C 适合.【答案】 C2.已知二项式⎝ ⎛⎭⎪⎪⎫x +13x n 的展开式中第4项为常数项,则1+(1-x )2+(1-x )3+…+(1-x )n 中x 2项的系数为( )A .-19B .19C .20D .-20【解析】 ⎝ ⎛⎭⎪⎪⎫x +13x n 的通项公式为T r +1=C r n (x )n -r ·⎝ ⎛⎭⎪⎪⎫13x r =C r n x n 2-5r 6,由题意知n 2-5×36=0,得n =5,则所求式子中的x 2项的系数为C 22+C 23+C 24+C 25=1+3+6+10=20.故选C.【答案】 C3.对于二项式⎝ ⎛⎭⎪⎫1x +x 3n (n ∈N *),有以下四种判断:①存在n ∈N *,展开式中有常数项;②对任意n ∈N *,展开式中没有常数项;③对任意n ∈N *,展开式中没有x 的一次项;④存在n ∈N *,展开式中有x 的一次项.其中正确的是________.【解析】 二项式⎝ ⎛⎭⎪⎫1x +x 3n 的展开式的通项公式为T r +1=C r n x 4r -n,由通项公式可知,当n =4r (r ∈N *)和n =4r -1(r ∈N *)时,展开式中分别存在常数项和一次项.【答案】 ①与④4.求⎝ ⎛⎭⎪⎫x 2+1x +25的展开式的常数项. 【导学号:97270023】【解】 法一:由二项式定理得⎝ ⎛⎭⎪⎫x 2+1x +25=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x 2+1x +25=C 05·⎝ ⎛⎭⎪⎫x 2+1x 5+C 15·⎝ ⎛⎭⎪⎫x 2+1x 4·2+C 25·⎝ ⎛⎭⎪⎫x 2+1x 3·(2)2+C 35·⎝ ⎛⎭⎪⎫x 2+1x 2·(2)3+C 45·⎝ ⎛⎭⎪⎫x 2+1x ·(2)4+C 55·(2)5. 其中为常数项的有: C 15⎝⎛⎭⎪⎫x 2+1x 4·2中的第3项:C 15C 24·⎝ ⎛⎭⎪⎫122·2; C 35·⎝ ⎛⎭⎪⎫x 2+1x 2·(2)3中的第2项:C 35C 12·12·(2)3;展开式的最后一项C 55·(2)5. 综上可知,常数项为C 15C 24·⎝ ⎛⎭⎪⎫122·2+C 35C 12·12·(2)3+C 55·(2)5=6322. 法二:原式=⎝⎛⎭⎪⎫x 2+22x +22x 5 =132x 5·[(x +2)2]5=132x 5·(x +2)10.求原式中展开式的常数项,转化为求(x +2)10的展开式中含x 5的项的系数,即C 510·(2)5,所以所求的常数项为C 510·(2)532=6322.。
高二数学二项式定理1
C
1 4
C42
C43
C
4 4
探索:(a+b)4= (a+b) (a+b) (a+b) (a+b)在左边4个括号中:
每个都不取b,有
C
0 4
种取法,a4的系数
C0 4
恰有1个取b,有
C1 4
种取法,a3b的系数
C1 4
恰有2个取b,有 C42 种取法,a2b2的系数C42
恰有3个取b,有 C43 种取法,ab3的系数 C43 4个都取b, 有 C44 种取法 , b4的系数 C44
猜想:(a+b)4= (a+b) (a+b) (a+b) (a+b)展开后,会是什 么样呢?你能从项数、次数、系数这几个方面谈一谈吗?
(a b)4 C40a4 C41a3b C42a2b2 C43ab3 C44b4
特点:项数比次数多1;每项次数为左边指数4,a降b升;
系数为 C40
因此:(a b)4 C40a4 C41a3b C42a2b2 C43ab3 C44b4
按上述规律,我பைடு நூலகம்能将(a+b)n展开吗?
(一)二项式定理:
(a+ b)n
=
C
0 n
an
+
C
1 n
an
-
1b
+
C
2 n
;单机游戏 /?s=down-show-id-2.html ;
为玉碎不为瓦全’之语?说道:“这位便是江湖上人称‘云锦箭’的花可人了吧?愿化作他心坎中的脉脉长流.不会走近前来.当下和儿子相商.二妖的大力金钢柞.想道:“难道年少夫妻.妈妈.好些公主就因长处深宫.手提双箭.”
高二数学 第一章1.3.1 二项式定理
本
解析 依题意 C57a2+C37a4=2C74a3.
课
时 由于 a≠0,整理得 5a2-10a+3=0,
栏
目 开 关
解得
a=1±
10 5.
练一练·当堂检测、目标达成落实处
1.3.1
4.求2
x-
1 6 x
的展开式.
解 先将原式化简,再展开,得
本
2 x- 1x6=2x-x 16=x13(2x-1)6
开 关
(a+b)在相乘时都有两种选择:选 a 或选 b,而且每个(a+b)
中的 a 或 b 都选定后,才能得到展开式的一项.由分步乘法
计数原理,在合并同类项之前,(a+b)2 展开式共有 2×2=
22 项,而且 a2-kbk 相当于从 2 个(a+b)中取 k 个 b 的组合数
Ck2,即 a2-kbk 的系数是 Ck2.
பைடு நூலகம்
当 9-2r=5 时,解得 r=2,所以系数为 36.
所以展开式中,不含 x6 项,含有 x5 项,系数为 36.
研一研·问题探究、课堂更高效
1.3.1
探究点三 综合应用
例3
已知
x- 2
1 4
x
n
的展开式中,前三项系数的绝对值依次
成等差数列.
本
(1)证明:展开式中没有常数项;
课
时
(2)求展开式中所有的有理项.
栏 目 开 关
(即1)证n2-明9n+由8题=意0,得:2Cn1·12=1+Cn2·122,
∴n=8 (n=1 舍去).
∴Tk+1=Ck8(
x)8-k·-241
xk=-12k·Ck8x
8-k 2
·x-4k =
高中数学 第一章 计数原理 1.3 二项式定理 1.3.1 二项
1.3.1 二项式定理1.二项式定理(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *) (1)这个公式叫做二项式定理.(2)展开式:等号右边的多项式叫做(a +b )n的二项式的展开式,展开式中一共有____项.(3)二项式系数:各项的系数__(k ∈{0,1,2,…,n })叫做二项式系数. 2.二项展开式的通项(a +b )n展开式中第k +1项____________(k ∈{0,1,2,…,n })称为二项展开式的通项. 预习交流(1)二项展开式的特点有哪些?(2)(x +1)n的展开式共有11项,则n 等于( ). A .9 B .10 C .11 D .12(3)⎝ ⎛⎭⎪⎫2x -1x 7的展开式中第3项的二项式系数为__________,第6项的系数为__________,x 的次数为5的项为__________.答案:1.(2)n +1 (3)C kn2.T k +1=C k n a n -k b k预习交流:(1)提示:①项数:n +1项;②指数:字母a ,b 的指数和为n ,字母a 的指数由n 递减到0,同时b 的指数由0递增到n ;③通项公式T r +1=C r n a n -r b r指的是第r +1项,不是第r 项;④某项的二项式系数与该项的系数不是一个概念,C rn 叫做二项式系数,而某一项的系数是指此项中除字母外的部分,如(1+2x )3的二项展开式中第3项的二项式系数为C 23=3,而该项的系数为C 23·22=12.(2)提示:B(3)提示:21 -84 -448x 5一、二项式定理的直接应用求⎝⎛⎭⎪⎫3x +1x 4的展开式.思路分析:直接利用二项式定理处理是基本的方法.但考虑到处理起来比较复杂,因此可以考虑将原式变形后再展开.化简:(x -1)5+5(x -1)4+10(x -1)3+10(x -1)2+5(x -1).熟记二项式(a +b )n的展开式,是解决此类问题的关键,我们在解较复杂的二项式问题时,可根据二项式的结构特征进行适当变形,简化展开二项式的过程,使问题的解决更加简便.二、二项展开式中特定项(项的系数)的计算1.(2011山东高考,理14)若⎝⎛⎭⎪⎫x -a x 26展开式的常数项为60,则常数a 的值为__________.思路分析:利用二项式定理的通项公式求出不含x 的项即可.2.(2011天津高考,理5)在⎝ ⎛⎭⎪⎫x 2-2x 6的二项展开式中,x 2的系数为( ).A .-154B .154C .-38D .38思路分析:利用二项展开式的通项公式求.1.(2011陕西高考,理4)(4x -2-x )6(x ∈R )展开式中的常数项是( ). A .-20 B .-15 C .15 D .202.(2011广东高考,理10)x ⎝⎛⎭⎪⎫x -2x 7的展开式中,x 4的系数是________.(用数字作答)求二项展开式的特定项问题,实质是考查通项T k +1=C k n an -k b k的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(k =0,1,2,…,n ).(1)第m 项:此时k +1=m ,直接代入通项;(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程; (3)有理项:令通项中“变元”的幂指数为整数建立方程.特定项的系数问题及相关参数值的求解等都可依据上述方法求解. 三、二项式定理的应用(整除问题)试判断7777-1能否被19整除.思路分析:由于76是19的倍数,可将7777转化为(76+1)77用二项式定理展开.证明:32n +2-8n -9是64的倍数.用二项式定理解决a n+b 整除(或余数)问题时,一般需要将底数a写成除数m 的整数倍加上或减去r (1≤r <m )的形式,利用二项展开式求解.答案:活动与探究1:解法1:⎝ ⎛⎭⎪⎫3x +1x 4=C 04(3x )4⎝ ⎛⎭⎪⎫1x 0+C 14(3x )3·⎝ ⎛⎭⎪⎫1x +C 24(3x )2⎝ ⎛⎭⎪⎫1x 2+C 34(3x )⎝ ⎛⎭⎪⎫1x 3+C 44(3x )0⎝ ⎛⎭⎪⎫1x 4=81x 2+108x +54+12x +1x 2.解法2:⎝⎛⎭⎪⎫3x +1x 4=3x +14x 2=1x 2(81x 4+108x 3+54x 2+12x +1)=81x 2+108x +54+12x +1x2.迁移与应用:解:原式=C 05(x -1)5+C 15(x -1)4+C 25(x -1)3+C 35(x -1)2+C 45(x -1)+C 55-1=[(x -1)+1]5-1=x 5-1.活动与探究2:1.4 解析:由二项式定理可知T r +1=C r 6x 6-r⎝ ⎛⎭⎪⎫-a x 2r =C r 6(-a )r x 6-3r, 令6-3r =0,得r =2,∴T 3=C 26(-a )2=60. ∴15a =60.∴a =4.2.C 解析:设含x 2的项是二项展开式中第r +1项,则T r +1=C r 6⎝ ⎛⎭⎪⎫x 26-r·⎝⎛⎭⎪⎫-2x r=C r 6⎝ ⎛⎭⎪⎫126-r (-2)r x 3-r.令3-r =2,得r =1.∴x 2的系数为C 16⎝ ⎛⎭⎪⎫125(-2)=-38.迁移与应用:1.C 解析:设第r +1项为常数项,T r +1=C r 622x (6-r )(-2-x )r =(-1)r ·C r 6212x -2rx -rx, ∴12x -3rx =0, ∴r =4.∴常数项为T 5=(-1)4C 46=15.2.84 解析:⎝ ⎛⎭⎪⎫x -2x 7的通项T r +1=C r 7x 7-r ⎝ ⎛⎭⎪⎫-2x r =(-2)r C r 7x 7-2r.令7-2r =3得r =2.因而⎝ ⎛⎭⎪⎫x -2x 7展开式中含x 3项的系数为(-2)2·C 27=4×7×62=84.故x ⎝ ⎛⎭⎪⎫x -2x 7的展开式中,x 4的系数为84.活动与探究3:解:7777-1=(76+1)77-1=7677+C 177·7676+C 277·7675+…+C 7677·76+C 7777-1=76(7676+C 1777675+C 2777674+…+C 7677).由于76能被19整除,因此7777-1能被19整除.迁移与应用:证明:∵32n +2-8n -9 =9n +1-8n -9=(8+1)n +1-8n -9 =8n +1+C 1n +1·8n +…+C n -1n +1·82+C nn +1·8+1-8n -9=8n +1+C 1n +1·8n +…+C n -1n +1·82+8(n +1)+1-8n -9=8n +1+C 1n +1·8n +…+C n -1n +1·82=(8n -1+C 1n +1·8n -2+…+C n -1n +1)·64,故32n +2-8n -9是64的倍数.1.⎝⎛⎭⎪⎫x -1x 16的二项展开式中第4项是( ). A .C 216x 12B .C 316x 10 C .-C 316x 10D .C 416x 82.(2012天津高考,理5)在⎝⎛⎭⎪⎫2x 2-1x 5的二项展开式中,x 的系数为( ).A .10B .-10C .40D .-403.(2012山东省实验中学诊断,理6)二项式⎝⎛⎭⎪⎫x 2+2x 10的展开式中的常数项是( ).A .第10项B .第9项C .第8项D .第7项4.(2012湖南高考,理13)⎝ ⎛⎭⎪⎫2x -1x 6的二项展开式中的常数项为________.(用数字作答)5.在(x +43y )20的展开式中,系数为有理数的项共有__________项. 6.(1-x )4·(1-x )3的展开式中x 2的系数是__________.答案:1.C 解析:展开式的通项公式为T r +1=C r 16·(x )16-r·⎝ ⎛⎭⎪⎫-1x r =(-1)r ·C r 16·x 16-2r , ∴第4项为T 4=(-1)3C 316·x 10=-C 316x 10. 2.D 解析:T r +1=C r5(2x 2)5-r ⎝ ⎛⎭⎪⎫-1x r =(-1)r 25-r C r 5x 10-3r ,∴当10-3r =1时,r =3.∴(-1)325-3C 35=-40.3.B 解析:展开式的通项公式为T r +1=C r 10x 20-2r ⎝ ⎛⎭⎪⎫2x r =2r C r 10·x 20-5r 2,令20-5r 2=0,得r =8.∴常数项为第9项.4.-160 ⎝ ⎛⎭⎪⎫2x -1x 6的通项为T r +1=C r 6(2x )6-r⎝⎛⎭⎪⎫-1x r=(-1)r C r 626-r x 3-r .当3-r =0时,r =3.故(-1)3C 3626-3=-C 3623=-160.5.6 解析:∵T r +1=3r4C r 20x20-r y r(r =0,1,2,…,20)的系数为有理数,∴r =0,4,8,12,16,20,共6项.6.-6 解析:展开式中的x 2项为C 14·(-x )1·C 23·(-x )2+C 24(-x )2C 03=-6x 2.。
二项式定理
师生补记
§1.3.1二项式定理(1)
【学习目标】
1.能从特殊到一般理解二项式定理;
2.熟练运用通项公式求二项展开式中指定的项(如常数项、有理项);
3.能正确区分“项”、“项的系数”、“项的二项式系数”等概念
【重点难点】运用通项公式求二项展开式中指定的项
复习1:积 展开后,共有项.
复习2:在n=1,2,3时,写出 的展开式.
试试:写出 ,
⑴展开式共有项,
⑵展开式的通项公式是;
⑶展开式中第4项的二项式系数是,第四项系数是.
反思: 的展开式中,二项式系数与项系数相同吗?
※典型例题
例1用二项式定理展开下列各式:
⑴ ;⑵
变式:写出 的展开式.
例2⑴求 展开式的第4项,并求第4项系数和它的二项式系数;
⑵求 展开式中 的系数.
变式:求 展开式中的常数项和中间项.
=,
=,
=,
① 展开式中项数为,每项的次数为;
② 展开式中项数为,每项的次数为,
的次数规律是, 的次数规律是.
③ 展开式中项数为,每项的次数为,
的次数规律是, 的次数规律是.
【学习过程】
任务一:二项式定理
问题1:猜测 展开式中共有多少项?分别有哪些项?各项系数分别是什么?
新知:
( )
上面公式叫做二项式定理,公式右边的多项式叫做 的展开式,其中 (r=0,1,2,…,n)叫做,叫做二项展开式的通项,用符号表示,即通项为展开式的第项.
师生补记
当堂检测
1. 的展开式中第3项的二项式系数为
第3项系数为;
2. 展开式的第6项系数是()
(A) (B) (C) (D)
1.3.1-2二项式定理
,
2.C 3C 9C 3 C 等于 _______
1 2 3 n-1 n n n n n 5 3.。、已知 (1 2 x) 展开式中第2项大于它的相邻 两项,求x的范围。
2 n 4、已知 ( x 2 ) 的展开式中,第5项的系数与 x
1.3.1 二项式定理(一)
目标:
1、会证明二项式定理. 2、掌握二项式定理及其展开式的通项公式. 3、能解决与二项展开式有关的简单问题.
重点:
利用通项公式求特定项或其系数.
难点:
二项式定理展开式每一项来历的理解
易混点:
二项式系数与二项展开式中某项的系数.
一、课前练习:
1.乘积 a1 a2 a3 b1 b2 b3 c1 c2 c3 c4 c5 有___ 45 项.
00
1、( 2+ 3) 的展开式中,无理项的个数有多少项?
84
2、若对于任意实数x,有x 3 =a 0 +a1 (x-2)+a 2 (x-2) 2 +a 3 (x-2)3 , 则a 2的值为多少?
6
课外作业: 4 2 3 4 1.若(2 x 3) a0 a1 x a2 x a3 x a4 x
r
2、二项式系数:C ( r 0,1, 2,...n)
r n
二项展开式的特点: ①项数:共n+1项 ②指数:a按降幂排列,b按升幂排列,每一项中 a、b的指数和为n r ③系数:第r+1项的二项式系数为 C n (r=0,1,2…n)
④二项展开式定理是恒等式(赋值法)
特殊地: 1.把b用-b代替 0 n r n-r r 1 n n -1 r (a-b) = Cna -Cna b+ … +(-1) Cna b
1.3.1二项式定理
式的常数项是________.
2.(2019·上饶高二检测)已知 (x 2 x )n 的展开式的各项 系数和比二项式系数和大211. 世纪金榜导学号
林老师网络编辑整理
38
(1)求n的值. (2)求展开式中所有有理项.
林老师网络编辑整理
39
【思维·引】1.先根据二项式展开式的通项公式写出
第r+1项,再根据项的次数为零解得r,代入即得结果.
角度1 二项式系数与项的系数
【典例】1.(2018·全国卷Ⅲ) (x2 2)5 的展开式中x4的
x
系数为 ( )
A.10
B.20
C.40
D.80
林老师网络编辑整理
31
2.已知二项式 (3 x 2 )10 . 世纪金榜导学号
3x
(1)求展开式第4项的二项式系数.
(2)求展开式第4项的系数.
林老师网络编辑整理
林老师网络编辑整理
46
(4)求整式项,求二项展开式中的整式项,其通项公式中 同一字母的指数应是非负整数,求解方式与求有理项一 致.
林老师网络编辑整理
47
3.正确区分二项式系数与该项的系数 二项式系数与项的系数是两个不同的概念,前者仅与二 项式的指数及项数有关,与二项式无关,后者与二项式, 二项式的指数及项数均有关.
C×17 36-
林老师网络编辑整理
24
2.(x+2y)4= C04 x4+ C14 x3(2y)+ C24 x2(2y)2+ C34 x(2y)3 + C44 (2y)4=x4+8x3y+24x2y2+32xy3+16y4.
林老师网络编辑整理
高二数学二项式定理1
因此:(a b)4 C40a4 C41a3b C42a2b2 C43ab3 C44b4
按上述规律,我们能将(a+b)n展开吗?
(一)二项式定理:
(a+ b)n
=
C
0 n
an
+
C
1 n
an
-
1b
+
C
2 n
an
-
2
b2
+
+
C
r n
an-
rbr
+
右边多项式叫(a+b)n的二项展开式;
C
0 n
,
C
1 n
,
C
2 n
,C
r n
,C
n n
叫二项式系数;
C
r n
a
nr b
r
叫二项展开式的通项,
用Tr+1表示即:Tr+1= Cnr a nrbr
+
C
n n
b
n
注意:
1、弄清定理结构特征:项数:n+1 次数:n,a降b升,和为n
二项式系数: Cnr
2、二项式系数与项的系数不同 二项式系数是组合数,而项的系数是该项的数字因数
(a+b)3 = a3 + 3a2 b + 3a b2 + b3
= C30 a3 + C13a2 b + C32 a b2 + C33 b3
观察上面公式,从右边的项数、每项的
次数、系数进行研究,你会发现什么规律?
1.项数比左边次数多1; 2.每项次数均为左边指数; 3.a,b指数a降b升; 4.系数 C20,C21,C22;C30,C31,C32,C33
课件6:1.3.1 二项式定理
一点通 (1)(a+b)n的二项展开式有n+1项,是和的形式,各项的 幂指数规律是:①各项的次数等于n;②字母a按降幂排 列,从第一项起,次数由n逐项减1直到0;字母b按升幂 排列,从第一项起,次数由0逐项加1直到n. (2)逆用二项式定理可以化简多项式,体现的是整体思 想.注意分析已知多项式的特点,向二项展开式的形式 靠拢.
方法小结
1.要熟记 Tr+1=Crnan-rbr 是第 r+1 项,而不是第 r 项. 2.通项公式 Tr+1=Crnan-rbr 主要用于求二项展开式 的指定项或项的系数. 3.要注意区分某项的系数与二项式系数.
4.(1+3x)n(其中 n∈N 且 n≥6)的展开式中,若 x5 与
x6 的系数相等,则 n=
()
A.6
B.7
C.8
D.9
【解析】二项式(1+3x)n 的展开式的通项是 Tr+1=Cnr 1n-r·(3x)r=Crn·3r·xr.依题意得 C5n·35=Cn6·36,即nn-1n-52!n-3n-4 =3×nn-1n-2n6-!3n-4n-5(n≥6), 解得 n=7.
2.相关概念 (1)公式右边的多项式叫做(a+b)n 的二项展开式. (2)各项的系数 Crn(r=0,1,2,…,n)叫做展开式的二项 式系数. (3)展开式中的 Crnan-rbr 叫做二项展开式的通项,记作: Tr+1 ,它表示展开式的第 r+1 项.
(4)在二项式定理中,如果设 a=1,b=x,则得到公 式(1+x)n= C0n+C1nx+C2nx2+…+Crnxr+…+Cnnxn .
考点二 求二项展开式中的特定项或其系数
例 2 (1)( x+2 1 x)8 的展开式中常数项为 (
)
35 A.16
高中数学选修2-3课时作业9:1.3.1二项式定理
1.3.1二项式定理一、选择题 1.(1+1x)4等于( )A .1+3x +6x 2+3x 3+1x 4B .1+4x +6x 2+4x 3+1x 4C .1+4x +5x 2+6x 3+1x 4D .1+6x +5x 2+4x 3+1x42.在⎝⎛⎭⎪⎫x 2-2x 6的二项展开式中,x 2的系数为( )A .-154 B.154C .-38 D.383.(x -2y )10的展开式中x 6y 4项的系数是( )A .840B .-840C .210D .-210 4.(x -13x )10的展开式中含x 的正整数指数幂的项数是( )A .1B .2C .4D .6 5.若(3x -132x)n 的展开式中含有非零常数项,则这样的正整数n 的最小值是( )A .3B .4C .5D .66.若(1+x )n 的展开式中x 2项的系数为a n ,则1a 2+1a 3+…+1a n的值( )A .大于2B .小于2C .等于2D .大于32二、填空题7.在(x -a )10的展开式中,x 7的系数是15,则实数a =________. 8.已知a =⎠⎛0π(sin x +cos x )d x ,则二项式(a x -1x)6展开式中含x 2项的系数是________. 9.设二项式(x -ax)(a >0)的展开式中x 3的系数为A,常数项为B.若B =4A,则a 的值是________. 三、解答题10.已知在(3x -33x)n 的展开式中,第6项为常数项.(1)求n ;(2)求含x 2的项的系数; (3)求展开式中所有的有理项.11.求证:32n +2-8n -9(n ∈N *)能被64整除.12.求(1+x+x2)8的展开式中x5的系数.——★参考答案★——一、选择题1[答案]B[解析]由(1+1x )4=C 04+C 141x +C 24(1x )2+C 34(1x )3+C 44(1x )4=1+4x +6x 2+4x 3+1x 4. 2[答案]C [解析]T r +1=C r 6(x 2)6-r ·(-2x)r =(-1)r 22r -6C r 6x 3-r,令3-r =2,则r =1,所以x 2的系数为(-1)1×2-4×C 16=-38,故选C . 3.[答案]A[解析]方法一:设二项展开式中的第(r +1)项为x 6y 4,则T r +1=C r 10x 10-r ·(-2y )r =(-1)r ·(2)r ·C r 10·x 10-r ·y r ,∴10-r =6.∴r =4.∴该项系数为(-1)4·(2)4·C 410=840.方法二:(x -2y )10可以看作是由10个括号形成的连乘积,而x 6y 4是10项中取6个x 、4个y ,∴系数是C 610x 6·C 44·(-2y )4中的系数.∴系数为C 610·22=840. 4.[答案]A[解析]展开式通项为T r +1=C r 10(x )10-r (-13x)r = C r 10(-13)r x 10-3r 2,若展开式中含x 的正整数指数幂,即5-32r ∈N *,且0≤r ≤10,r ∈N , 所以r =2,即含x 的正整数指数幂的项只有一项. 5.[答案]B[解析]T r +1=C r n (3x )n -r(-132x)r=C r n (3)n -r (-1)r (132)r ·x n -r ·x -r 3=C r n (3)n -r(-132)r xn -4r3,令n -43r =0,得n =43r .∴n 取最小值为4.6.[答案]B[解析]由题意知a n =C 2n =nn -12,∴1a n =2nn -1=2(1n -1-1n),从而1a 2+1a 3+…+1a n =2(1-12+12-13+…+1n -1-1n )=2(1-1n )<2.二、填空题7.[答案]-12[解析]T 4=C 310x 7(-a )3,则C 310(-a )3=15,解得a =-12. 8.[答案]-192[解析]由题意知,a =(-cos x +sin x )|π0=2,则展开式中x 2的系数为C 16·25·(-1)=-192.9.[答案]2[解析]展开式的通项为T k +1=C k 6x 6-k ·(-a )k x -k 2 =(-a )k C k 6x 6-3k2 ,故A =(-a )2C 26,B =(-a )4C 46,由B =4A ,得a 2=4,又a >0,故a =2. 三、解答题10.[解析](1)通项公式为T k +1=C k n x n -k 3(-3)k x ―k 3=C k n (-3)k xn -2k 3.∵第6项为常数项,∴k =5时有n -2k 3=0,即n =10.(2)令n -2k 3=2,得k =12(n -6)=2,∴所求的系数为C 210(-3)2=405. (3)根据通项公式,由题意得⎩⎪⎨⎪⎧10-2k3∈Z0≤k ≤10k ∈Z ,令10-2k3=R (R ∈Z),则10-2k =3R ,即k =5-32R .∵k ∈Z ,∴R 应为偶数.∴R 可取2,0,-2,即k 可取2,5,8. ∴第3项,第6项与第9项为有理项,它们分别为C 210(-3)2x 2,C 510(-3)5,C 810(-3)8x -2.11.证明:32n +2-8n -9=(8+1)n +1-8n -9=C 0n +18n +1+C 1n +18n +…+C n +1n +1-8n -9=C 0n +18n +1+C 1n +18n +…+C n -1n +1·82+8(n +1)+1-8n -9=C 0n +18n +1+C 1n +18n +…+C n -1n +182,该式每一项都含因式82,故能被64整除. 12.解:方法一:(1+x +x 2)8=[1+(x +x 2)]8, 所以T r +1=C r8·(x +x 2)r ,则x 5的系数由(x +x 2)r 来决定,T′k +1=C k r ·x r -k ·x 2k =C k r xr +k , 令r +k =5,由r ≥k ,解得⎩⎪⎨⎪⎧ r =5k =0或⎩⎪⎨⎪⎧ r =4k =1或⎩⎪⎨⎪⎧r =3k =2,∴含x 5的项的系数为C 58·C 05+C 48·C 14+C 38·C 23=504.方法二:(1+x +x 2)8=[(1+x )+x 2]8=C 08(1+x )8+C 18·(1+x )7·x 2+C 28·(1+x )6·(x 2)2+C 38·(1+x )5·(x 2)3+…+C 78(1+x )(x 2)7+C 88(x 2)8,则展开式中含x 5的项的系数为C 08·C 58+C 18·C 37+C 28·C 16=504.方法三:(1+x +x 2)8=(1+x +x 2)(1+x +x 2)…(1+x +x 2)(共8个),这8个因式的乘积的展开式中形成x 5的来源有三种.(1)有2个括号各出1个x 2,其余6个括号恰有1个括号出1个x ,这种方式共有C 28·C 16种; (2)有1个括号出1个x 2,其余7个括号中恰有3个括号出1个x ,共有C 18·C 37种; (3)没有1个括号出x 2,恰有5个括号各给出1个x ,共有C 58种;∴x 5的系数为:C 28·C 16+C 18·C 37+C 58=504.。
高中数学第一章计数原理1.3.1二项式定理学案含解析
1.3.1 二项式定理问题1:我们在初中学习了(a+b)2=a2+2ab+b2,试用多项式的乘法推导(a+b)3,(a +b)4的展开式.提示:(a+b)3=a3+3a2b+3ab2+b3,(a+b)4=a4+4a3b+6a2b2+4ab3+b4.问题2:上述两个等式的右侧有何特点?提示:(a+b)3的展开式有4项,每项的次数是3;(a+b)4的展开式有5项,每一项的次数为4.问题3:你能用组合的观点说明(a+b)4是如何展开的吗?提示:(a+b)4=(a+b)(a+b)(a+b)(a+b).由多项式的乘法法则知,从每个(a+b)中选a或选b相乘即得展开式中的一项.若都选a,则得C04a4b0;若有一个选b,其余三个选a,则得C14a3b;若有两个选b,其余两个选a,则得C24a2b2;若都选b,则得C44a0b4.问题4:能用类比方法写出(a+b)n(n∈N*)的展开式吗?提示:能,(a+b)n=C0n a n+C1n a n-1b+…+C n n b n.二项式定理及其相关概念1.二项展开式的特点(1)展开式共有n+1项.(2)各项的次数和都等于二项式的幂指数n.(3)字母a的幂指数按降幂排列,从第一项开始,次数由n逐项减1直到为0,字母b 的幂指数按升幂排列,从第一项开始,次数由0逐项加1直到为n.2.二项展开式的通项公式的特点(1)它表示(a +b )n 的展开式的第k +1项,该项的二项式系数为C kn . (2)字母b 的次数与二项式系数的组合数的上标相同. (3)a 和b 的次数之和为n .(1)求(x +(2)化简:C 0n (x +1)n -C 1n (x +1)n -1+C 2n (x +1)n -2-…+(-1)k C k n (x +1)n -k+…+(-1)n C nn .(1)(x +2y )4=C 04x 4+C 14x 3(2y )+C 24x 2(2y )2+C 34x ·(2y )3+C 44(2y )4=x 4+8x 3y +24x 2y 2+32xy 3+16y 4.(2)原式=C 0n (x +1)n +C 1n (x +1)n -1(-1)+C 2n (x +1)n -2(-1)2+…+C k n (x +1)n -k(-1)k+…+C nn (-1)n=n=x n.1.(a +b )n的二项展开式有n +1项,是和的形式,各项的幂指数规律是:①各项的次数等于n ;②字母a 按降幂排列,从第一项起,次数由n 逐项减1直到0;字母b 按升幂排列,从第一项起,次数由0逐项加1直到n .2.逆用二项式定理可以化简多项式,体现的是整体思想.注意分析已知多项式的特点,向二项展开式的形式靠拢.1.求⎝ ⎛⎭⎪⎫2x -32x 24的展开式. 解:法一:⎝⎛⎭⎪⎫2x -32x 24=C 04(2x )4+C 14(2x )3·⎝ ⎛⎭⎪⎫-32x 2+C 24(2x )2⎝ ⎛⎭⎪⎫-32x 22+C 34(2x )⎝ ⎛⎭⎪⎫-32x 23+C 44⎝ ⎛⎭⎪⎫-32x 24=16x 4-48x +54x 2-27x 5+8116x 8.法二:⎝ ⎛⎭⎪⎫2x -32x 24=⎝ ⎛⎭⎪⎫4x 3-32x 24=116x 8(4x 3-3)4=116x 8=16x 4-48x +54x 2-27x 5+8116x 8. 2.化简:(x -1)5+5(x -1)4+10(x -1)3+10(x -1)2+5(x -1).解:原式=C 05(x -1)5+C 15(x -1)4+C 25(x -1)3+C 35(x -1)2+C 45(x -1)+C 55-C 55=5-1=x 5-1.(1)在⎝⎛⎭⎪⎫32x -1220的展开式中,系数是有理数的项共有( )A .4项B .5项C .6项D .7项(2)(浙江高考)设二项式⎝⎛⎭⎪⎪⎫x -13x 5的展开式中常数项为A ,则A =________. (1)T k +1=C k20(32x )20-k⎝⎛⎭⎪⎫-12k=⎝ ⎛⎭⎪⎫-22k ·(32)20-k C k 20·x 20-k. ∵系数为有理数, ∴⎝ ⎛⎭⎪⎫-22k与2203k -均为有理数,∴k 能被2整除,且20-k 能被3整除. 故k 为偶数,20-k 是3的倍数,0≤k ≤20, ∴k =2,8,14,20.(2)T k +1=C k5(x )5-k⎝⎛⎭⎪⎪⎫-13x k=C k 5(-1)kx5526k-,令52-5k 6=0,得k =3,所以A =-C 35=-10. (1)A (2)-101.在通项公式T k +1=C k n an -k b k(n ∈N *,k =0,1,2,3,…,n )中含有a ,b ,n ,k ,T k +1五个量,只要知道其中4个量,便可求出第5个量.在运用二项式定理解决展开式中的项或项的系数的一些问题时,常涉及这5个量的求解问题.这通常是化归为方程的问题来解决.2.对于常数项,隐含条件是字母的指数为0(即0次项);而对于有理项,一般是根据通项公式所得到的项,其所有的未知数的指数恰好是整数的项.已知在⎝⎛⎭⎪⎪⎫3x -33x n 的展开式中,第6项为常数项.(1)求n ;(2)求展开式中所有的有理项.解:通项公式为T k +1=C k n x 3n k - (-3)kx3k -=C k n(-3)kx3n k -.(1)∵第6项为常数项, ∴k =5时,有n -2k3=0,即n =10.(2)根据通项公式,由题意得⎩⎨⎧10-2k3∈Z ,k ≤10,k ∈Z.令10-2k 3=r (r ∈Z),则10-2k =3r ,即k =5-32r .∵k ∈Z ,∴r 应为偶数.于是r 可取2,0,-2,即k 可取2,5,8.故第3项、第6项与第9项为有理项,它们分别为 C 210(-3)2x 2,C 510(-3)5,C 810(-3)8x -2.在⎝⎛⎭⎪⎪⎫2x 2-13x 8的展开式中,求: (1)第5项的二项式系数及第5项的系数; (2)倒数第3项.法一:利用二项式的展开式解决.(1)⎝ ⎛⎭⎪⎪⎫2x 2-13x 8=(2x 2)8-C 18(2x 2)7·13x +C 28(2x 2)6·⎝ ⎛⎭⎪⎪⎫13x 2-C 38(2x 2)5·⎝ ⎛⎭⎪⎪⎫13x 3+C 48(2x 2)4·⎝ ⎛⎭⎪⎪⎫13x 4-C 58(2x 2)3·⎝ ⎛⎭⎪⎪⎫13x 5+C 68(2x 2)2·⎝ ⎛⎭⎪⎪⎫13x 6-C 78(2x 2)·⎝ ⎛⎭⎪⎪⎫13x 7+C 88⎝ ⎛⎭⎪⎪⎫13x 8, 则第5项的二项式系数为C 48=70,第5项的系数为C 48·24=1 120.(2)由(1)中⎝ ⎛⎭⎪⎪⎫2x 2-13x 8的展开式可知倒数第3项为C 68·(2x 2)2·⎝ ⎛⎭⎪⎪⎫13x 6=112x 2. 法二:利用二项展开式的通项公式.(1)T 5=C 48·(2x 2)8-4·⎝⎛⎭⎪⎪⎫-13x 4=C 48·24·x 203,则第5项的二项式系数是C 48=70,第5项的系数是C 48·24=1 120.(2)展开式中的倒数第3项即为第7项,T 7=C 68·(2x 2)8-6·⎝⎛⎭⎪⎪⎫-13x 6=112x 2.1.本例第(2)问也可转化为求另一二项展开式的某些项,即在⎝ ⎛⎭⎪⎪⎫2x 2-13x 8展开式中的倒数第3项就是⎝ ⎛⎭⎪⎪⎫13x -2x 28展开式中第3项,T 3=C 28·⎝ ⎛⎭⎪⎪⎫13x 8-2·(-2x 2)2=112x 2.2.要注意区分二项式系数与指定某一项的系数的差异,前者只与二项式的指数及项数有关,与二项式无关,它是一个组合数C kn ;后者与二项式、二项式的指数及项的字母和系数均有关.1.(全国乙卷)(2x +x )5的展开式中,x 3的系数是________.(用数字填写答案) 解析:(2x +x )5展开式的通项为T r +1=C r 5(2x )5-r (x )r =25-r ·C r5·x 5-r 2. 令5-r2=3,得r =4.故x 3的系数为25-4·C 45=2C 45=10.答案:102.(山东高考)若⎝⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a =________. 解析:T r +1=C r5·(ax 2)5-r⎝ ⎛⎭⎪⎫1x r =C r 5·a 5-rx 10-52r .令10-52r =5,解得r =2.又展开式中x 5的系数为-80,则有C 25·a 3=-80,解得a =-2.答案:-22.二项式定理破解三项式问题求⎝ ⎛⎭⎪⎫x 2+1x +25的展开式的常数项.法一:由二项式定理得⎝ ⎛⎭⎪⎫x 2+1x +25=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x 2+1x +25 =C 05·⎝ ⎛⎭⎪⎫x 2+1x 5+C 15·⎝ ⎛⎭⎪⎫x 2+1x 4·2+C 25·⎝ ⎛⎭⎪⎫x 2+1x 3·(2)2+C 35·⎝ ⎛⎭⎪⎫x 2+1x 2·(2)3+C 45·⎝ ⎛⎭⎪⎫x 2+1x ·(2)4+C 55·(2)5.其中为常数项的有:C 15⎝ ⎛⎭⎪⎫x 2+1x 4·2中的第3项:C 15C 24·⎝ ⎛⎭⎪⎫122·2; C 35·⎝ ⎛⎭⎪⎫x 2+1x 2·(2)3中的第2项:C 35C 12·12·(2)3;展开式的最后一项C 55·(2)5.综上可知,常数项为C 15C 24·⎝ ⎛⎭⎪⎫122·2+C 35C 12·12·(2)3+C 55·(2)5=6322.法二:原式=⎝ ⎛⎭⎪⎫x 2+22x +22x 5=132x5·5=132x5·(x +2)10. 求原式中展开式的常数项,转化为求(x +2)10的展开式中含x 5的项的系数,即C 510·(2)5.所以所求的常数项为C 5102532=6322.解决三项式问题有两种方法:方法一,反复利用二项式定理,先把三项式中的某两项视为一项,用二项式定理展开,然后再利用二项展开式求解.方法二,转化为二项式.转化为二项式常见的有两种形式:三项式恰好是二项式的平方,则可转化为二项式定理求解,三项式可分解因式,则转化为两个二项式的积的形式.利用二项式定理求特定项,注意下列题型的变化.⎝ ⎛⎭⎪⎫2x +x (1-x )4的展开式中x 的系数是( ) A .1 B .2 C .3D .12解析:选C 根据题意,所给式子的展开式中含x 的项有(1-x )4展开式中的常数项乘⎝ ⎛⎭⎪⎫2x +x 中的x 以及(1-x )4展开式中的含x 2的项乘⎝ ⎛⎭⎪⎫2x +x 中的2x 两部分,所以所求系数为1×2+1=3,故选C.在(x -1)(x -2)(x -3)(x -4)(x -5)的展开式中,含x 4的项的系数是( ) A .-15 B .85 C .-120D .274解析:选A 根据分类加法、分步乘法计数原理,得-5x 4-4x 4-3x 4-2x 4-x 4=-15x 4, 所以原式的展开式中,含x 4的项的系数为-15.在(1+x )+(1+x )2+…+(1+x )6的展开式中,x 2的系数是________.(用数字作答) 解析:法一(转化为二项式定理解决):(1+x )2,(1+x )3,…,(1+x )6中x 2的系数分别为C 22,C 23,…,C 26,所以原式的展开式中,x 2的系数为C 22+C 23+…+C 26=C 33+C 23+…+C 26=C 34+C 24+…+C 26=…=C 37=35.法二(利用数列求和方法解决):由题意知1+x ≠0,原式=+x7-+xx,故只需求(1+x )7中x 3的系数, 即(1+x )7的展开式中第4项的系数, 即C 37=35. 答案:351.在(x -3)10的展开式中,含x 6的项的系数是( ) A .-27C 610 B .27C 410 C .-9C 610D .9C 410解析:选D 含x 6的项是T 5=C 410x 6(-3)4=9C 410x 6. 2.(1+x )8(1+y )4的展开式中x 2y 2的系数是( ) A .56 B .84 C .112D .168解析:选D (1+x )8的展开式中x 2的系数为C 28,(1+y )4的展开式中y 2的系数为C 24,所以x 2y 2的系数为C 28C 24=168.3.在⎝⎛⎭⎪⎫2x 2-1x 6的展开式中,中间项是________.解析:由n =6知中间一项是第4项,因T 4=C 36(2x 2)3·⎝ ⎛⎭⎪⎫-1x 3=C 36·(-1)3·23·x 3,所以T 4=-160x 3.答案:-160x 34.⎝⎛⎭⎪⎫x 2-12x 9的展开式中,第4项的二项式系数是________,第4项的系数是________.解析:T k +1=C k9·(x 2)9-k·⎝ ⎛⎭⎪⎫-12x k =⎝ ⎛⎭⎪⎫-12k ·C k 9·x 18-3k ,当k =3时,T 4=⎝ ⎛⎭⎪⎫-123·C 39·x 9=-212x 9,所以第4项的二项式系数为C 39=84,项的系数为-212.答案:84 -2125.求⎝⎛⎭⎪⎫x 3+23x 25的展开式的第3项的系数和常数项.解:T 3=C 25(x 3)3⎝⎛⎭⎪⎫23x 22=C 25·49x 5,所以第3项的系数为C 25·49=409.通项T k +1=C k 5(x 3)5-k⎝ ⎛⎭⎪⎫23x 2k =⎝ ⎛⎭⎪⎫23k ·C k 5x 15-5k ,令15-5k =0得k =3,所以常数项为T 4=C 35(x 3)2·⎝⎛⎭⎪⎫23x 23=8027.一、选择题1.二项式(a +b )2n的展开式的项数是( ) A .2n B .2n +1 C .2n -1D .2(n +1)解析:选B 根据二项式定理可知,展开式共有2n +1项.2.化简多项式(2x +1)5-5(2x +1)4+10(2x +1)3-10(2x +1)2+5(2x +1)-1的结果是( )A .(2x +2)5B .2x 5C .(2x -1)5D .32x 5解析:选D 原式=5=(2x )5=32x 5.3.在⎝⎛⎭⎪⎪⎫x +13x 24的展开式中,x 的幂指数是整数的项共有( ) A .3项 B .4项 C .5项D .6项解析:选C T k +1=C k24·x 24-k 2·x -k 3=C k 24·x 12-56k ,则k =0,6,12,18,24时,x 的幂指数为整数.4.在⎝⎛⎭⎪⎫2x 3+1x 2n (n ∈N *)的展开式中,若存在常数项,则n 的最小值是( )A .3B .5C .8D .10解析:选B T k +1=C kn (2x 3)n -k⎝ ⎛⎭⎪⎫1x 2k =2n -k ·C k n x 3n -5k .令3n -5k =0,∵0≤k ≤n , ∴n 的最小值为5.5.对于二项式⎝ ⎛⎭⎪⎫1x+x 3n (n ∈N *),有以下四种判断:①存在n ∈N *,展开式中有常数项; ②对任意n ∈N *,展开式中没有常数项; ③对任意n ∈N *,展开式中没有x 的一次项; ④存在n ∈N *,展开式中有x 的一次项. 其中正确的是( ) A .①与③ B .②与③ C .②与④D .①与④解析:选D 二项式⎝ ⎛⎭⎪⎫1x+x 3n 的展开式的通项公式为T k +1=C k n x 4k -n,由通项公式可知,当n =4k (k ∈N *)和n =4k -1(k ∈N *)时,展开式中分别存在常数项和一次项.二、填空题6.若(1+2x )6的展开式中的第2项大于它的相邻两项,则x 的取值范围是________. 解析:由{ T 2>T 1,T 2>T 3,得{ C 162x >1,162x >C 26x2.解得112<x <15.答案:⎝⎛⎭⎪⎫112,157.(1+x +x 2)(1-x )10的展开式中含x 4的项的系数为________.解析:因为(1+x +x 2)(1-x )10=(1+x +x 2)(1-x )·(1-x )9=(1-x 3)(1-x )9, 所以展开式中含x 4的项的系数为1×C 49(-1)4+(-1)×C 19(-1)=135.答案:1358.230+3除以7的余数是________.解析:230+3=(23)10+3=810+3=(7+1)10+3=C 010·710+C 110·79+…+C 910·7+C 1010+3=7×(C 010·79+C 110·78+…+C 910)+4,所以230+3除以7的余数为4.答案:4 三、解答题9.已知在⎝ ⎛⎭⎪⎫x +2x 2n 的展开式中,第5项的系数与第3项的系数之比为56∶3,求展开式中的常数项.解:T 5=C 4n (x )n -424x -8=16C 4n xn -202,T 3=C 2n (x )n -222x -4=4C 2n x n -102.由题意知,16C 4n 4C 2n =563,解得n =10.T k +1=C k 10(x )10-k 2k x -2k =2k C k10x 10-5k2, 令5-5k2=0,解得k =2.∴展开式中的常数项为C 21022=180.10.在⎝⎛⎭⎪⎫2x -1x 6的展开式中,求:(1)第3项的二项式系数及系数; (2)含x 2的项.解:(1)第3项的二项式系数为C 26=15,又T 3=C 26(2x )4⎝⎛⎭⎪⎫-1x 2=24·C 26x ,所以第3项的系数为24C 26=240. (2)T k +1=C k6(2x )6-k⎝⎛⎭⎪⎫-1x k =(-1)k 26-k C k 6x 3-k.令3-k =2,得k =1. 所以含x 2的项为第2项, 且T 2=-192x 2.11.已知在⎝⎛⎭⎪⎫12x 2-1x n 的展开式中,第9项为常数项.求: (1)n 的值;(2)展开式中x 5的系数;(3)含x 的整数次幂的项的个数.解:二项展开式的通项为T k +1=C kn ⎝ ⎛⎭⎪⎫12x 2n -k ·⎝ ⎛⎭⎪⎫-1x k =(-1)k ⎝ ⎛⎭⎪⎫12n -k C k n x 522n k -. (1)因为第9项为常数项,即当k =8时,2n -52k =0,解得n =10. (2)令2n -52k =5,得k =25(2n -5)=6, 所以x 5的系数为(-1)6⎝ ⎛⎭⎪⎫124C 610=1058. (3)要使2n -52k ,即40-5k 2为整数,只需k 为偶数,由于k =0,1,2,3,…,9,10,故符合要求的有6项,分别为展开式的第1,3,5,7,9,11项.。
1.3.1二项式定理(学、教案)
§1.3.1 二项式定理【教学目标】1.理解二项式定理及推导方法,识记二项展开式的有关特征,能对二项式定理进行简单应用;2.通过对二项式定理内容的研究,体验特殊到一般的发现规律,一般到特殊指导实践的认识事物过程。
【教学重难点】教学重点:二项式定理的内容及归纳过程;教学难点:在二项式展开的过程中,发现各项及各项系数的规律。
【教学过程】一、设置情景,引入课题引入:二项式定理研究的是(a+b)n的展开式。
如(a+b)2=a2+2ab+b2, (a+b)3=?,(a+b)4=?,那么(a+b)n的展开式是什么呢?二、引导探究,发现规律1、多项式乘法的再认识问题1:(a1+ b1)(a2+b2) (a3+ b3)展开式中每一项是怎样构成的?展开式有几项?2、(a+b)3展开式的再认识问题2:将上式中,若令a1=a2=a3=a, b1=b2= b3=b,则展开式又是什么?合作探究1:合并同类项后,为什么a2b的系数是3?教师引导:可以发现a2b是从(a+b)(a+b)(a+b)这三个括号中的任意两个中选a,剩下的一个括号中选b;利用组合知识可以得到a2b应该出现了C23· C11=3次,所以a2b的系数是3。
问题3:(a+b)4的展开式又是什么呢?可以对(a+b)4按a或按b进行分类:(1)四个括号中全都取a,得:C44a4(2)四个括号中有3个取a,剩下的1个取b,得:C34a3· C11b(3)四个括号中有2个取a,剩下的2个取b,得:C24a2· C22b2(4)四个括号中有1个取a,剩下的3个取b,得:C14a· C33b3(5)四个括号中全都取b,得:C44b4小结:对于展开式,只要按一个字母分类就可以了,可以按a分类,也可以按b分类,再如:(1)不取b:C04a4;(2)取1个b:C14a3b;(3)取2个b:C24a2b2;(4)取3个b:C34a b3;(5)取4个b:C44b4,然后将上面各式相加得到展开式。
新课标高中数学人教版选修2-3精品课件-【数学】1.3.1《二项式定理习题课》课件(新人教A版选修2-3)
(3)Cn1 2Cn2 3Cn3 ... nCnn
(4)Cn0
1 2
Cn1
1 3
Cn2
...
1 n
1
Cnn
6、(1-2x)6 a0 a1x a2 x2 a3x3 ... a6x6, 则 a0 a1 a2 ... a6 的值为( ) A.1 B.64 C.243 D.729
⑷“第一盒中恰有三球”的概率。
P A
24 34
16 81
PB
C41 23 34
32 81
PC
C42 22 34
24 81
P
D
C43 34
2
8 81
如何产生[a,b]区间上均匀随机数呢?
利用计算器或计算机产生[0,1]上的均匀随机数
x=RAND,然后利用伸缩和变换,x x1 *(b a) a
7、若(2x 3)4 a0 a1x a2x2 a3x3 a4x4 , 则(a0 +a2 +a4 )2 (a1 a3 )2的值为( ) A.1 B.-1 C.0 D.2
8、(2x3
+
1 x2
)n
(n
N
* )的展开式中,若存在
常数项,则n的最小值是( )
A.3 B.5 C.8 D.10
i=1
s=0
s=0
i<=100? 否 输出s
结束
i=i+1
是
s=s+i
WHILE i<=100 s=s+i i=i+1