初二数学 菱形专项训练(附答案)
八年级数学(下)第十八章《菱形》同步练习(含答案)
八年级数学(下)第十八章《菱形》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.菱形的两条对角线的分别为60 cm和80 cm,那么边长是A.60 cm B.50 cm C.40 cm D.80 cm【答案】B【解析】如图,∵菱形的两条对角线的长是60 cm和80 cm,∴OA=12×80=40 cm,OB=12×60=30 cm,又∵菱形的对角线AC⊥BD,∴AB=223040=50 cm,∴这个菱形的边长是50 cm.故选B.2.已知四边形ABCD的对角线互相平分,要使它成为菱形,还需要添加一个条件,这个条件是A.AB=CD B.AB=BC C.AD=BC D.AC=BD【答案】B3.菱形具有而矩形不具有的性质是A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分且相等【答案】C【解析】A.菱形的对角线不一定相等,矩形的对角线一定相等,故本选项错误;B.菱形和矩形的对角线均互相平分,故本选项错误;C.菱形的对角线互相垂直,而矩形的对角线不一定互相垂直(互相垂直时是正方形),故本选项正确;D.菱形和矩形的对角线均互相平分且相等,故本选项错误.故选C.4.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH 的长等于A.3.5 B.4 C.7 D.14【答案】A5.如图,四边形ABCD加上以下条件中的哪个,我们可认为它是菱形A.AC⊥BD B.∠1=∠2,∠3=∠4C.AO=CO,BO=DO D.AB=BC=CD=DA【答案】D【解析】若AB=BC=CD=AD,则四边形ABCD是菱形.故选D.6.如图,菱形ABCD的对角线相交于点O,若AC=12,AB=7,则菱形ABCD的面积是A.13B.36 C.13D.60【答案】A【解析】∵四边形ABCD是平行四边形,∴AC⊥BD,OA=OC=12AC=6,OB=OD=12BD,∴OB=222276AB OA-=-=13,∴BD=213,∴菱形ABCD的面积=12AC×BD=12×12×213=1213.故选A.7.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,则∠EAF等于A.60°B.55°C.45°D.30°【答案】A【解析】如图,连接AC,∵AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,∴AB=AC,AD=AC.又∵在菱形ABCD中,AB=BC=CD=AD,∴AB=BC=CD=AD=AC.∴△ABC和△ADC都是等边三角形,∴∠BAC=∠DAC=60°,∴∠EAC=12∠BAC=30°,∠FAC=12∠DAC=30°,∴∠EAF=∠EAC+∠FAC=60°.故选A.8.如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④△DBF ≌△EFA.其中正确结论的序号是A.②④B.①③C.②③④D.①③④【答案】D【解析】∵△ACE是等边三角形,∴∠EAC=60°,AE=AC.∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC.∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴∠AEF=∠BAC=30°,∴EF⊥AC.故①正确;(含①的只有B和D,它们的区别在于有没有④.它们都是含30°的直角三角形,并且斜边是相等的).∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°.∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF.∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),故④正确.故选D.二、填空题:请将答案填在题中横线上.9.如图,已知平行四边形ABCD,AC,BD相交于点O,添加一个条件使平行四边形为菱形,添加的条件为__________.(只写出符合要求的一个即可)【答案】AB=BC10.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C的坐标是__________.【答案】(-5,4)【解析】由题知A(3,0),B(-2,0),D在y轴上,∴AB=3-(-2)=5,OA=3,BO=2,由菱形邻边相等可得AD=AB=5,在Rt△AOD中,由勾股定理得:OD=2222-=-=4,53AD OA 由菱形对边相等且平行得CD=BA=5,所以C(-5,4).故答案为:(-5,4).11.如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED=__________.【答案】20°12.如图,ABCD 是菱形,AC 是对角线,点E 是AB 的中点,过点E 作对角线AC 的垂线,垂足为点M ,交AD 边于点F ,连接DM .若∠BAD =120°,AE =2,则DM =__________.【答案】13【解析】如图,过M 作MN ⊥AD 于N ,∵四边形ABCD 是菱形,∴111206022DAC BAC BAD ∠=∠=∠=⨯︒=︒, ∵EF ⊥AC ,∴AE =AF =2,∠AFM =30°,∴AM =1,Rt △AMN 中,∠AMN =30°,∴132AN MN ==,, ∵AD =AB =2AE =4,∴17422DN =-=,由勾股定理得: 222273()()1322DM DN MN =+=+=13三、解答题:解答应写出文字说明、证明过程或演算步骤.13.如图,在四边形ABCD 中,AD =BC ,AC 平分∠DAB ,作CE 垂直AC 交AB 的延长线于点E ,若AB =BE ,求证:四边形ABCD 是菱形.∴∠DAC=∠CAB=∠ACB,∴AD∥BC.∵AD=BC,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形.14.已知:如图,在△ABC中,∠ACB=90°,点D是斜边AB的中点,DE∥BC,且CE=CD.(1)求证:∠B=∠DEC;(2)求证:四边形ADCE是菱形.【解析】(1)在△ABC中,∵∠ACB=90°,点D是斜边AB的中点,∴CD=DB,∴∠B=∠DCB,∵DE∥BC,∴∠DCB=∠CDE,∵CD=CE,∴∠CDE=∠CED,∴∠B=∠CED.(2)∵DE∥BC,∴∠ADE=∠B,∵∠B=∠DEC,∴∠ADE=∠DEC,∴AD∥EC,∵EC=CD=AD,∴四边形ADCE是菱形.15.如图,在平行四边形ABCD中,∠BAD的平分线交BC于E,点F在AD上,且AF=AB,连接EF.(1)判断四边形ABEF的形状并证明;(2)若AE、BF相交于点O,且四边形ABEF的周长为20,BF=6,求AE的长度及四边形ABEF的面积.∴BE=AB,又∵AF=AB,∴BE=AF,又∵BE∥AF,∴四边形ABEF是平行四边形,∵AF=AB,∴四边形ABEF是菱形.(2)∵四边形ABEF为菱形,∴AE⊥BF,BO=12FB=3,AE=2AO,在Rt△AOB中,22534AO=-=,∴AE=2AO=8.∴四边形ABEF的面积为:116824 22BF AE⋅=⨯⨯=.综上所述,AE=8,四边形ABEF的面积是24.16.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=23时,求EA的长.(2)∵Rt△AOD中,∠ADO=60°,∴∠OAD=30°,∴OD=12AD3∴AO22AD OD-,∴AC=6,∵四边形ODEC是矩形,∴EC=OD3ACE=90°,∴AE22AC CE+39。
八年级数学下册《菱形的性质与判定》练习题及答案解析
八年级数学下册《菱形的性质与判定》练习题及答案解析1.若菱形的两条对角线长分别是6和8,则它的周长为()A.20B.24C.40D.482.菱形的面积为12cm2,一条对角线是6cm,那么菱形的另一条对角线长为()A.3cm B.4cm C.5cm D.6cm3.如图,在菱形ABCD中,AC=AB,则∠ABC=()A.30°B.45°C.60°D.75°4.在下列条件中,能够判定四边形是菱形的是()A.两条对角线相等B.两条对角线相等且互相垂直C.两条对角线互相垂直D.两条对角线互相垂直平分5.如图,四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是()A.AB=CD B.AD=BC C.AC=BD D.AB=BC6.如图,要使平行四边形ABCD变为菱形,需要添加的条件是()A.AC=BD B.AD=BC C.AB=CD D.AB=BC7.从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD8.菱形的周长为52,一条对角线长为10,则此菱形的面积为.9.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=24,BD=10,DE⊥BC,垂足为点E,则DE=.10.如图,菱形ABCD的对角线AC,BD相交于点O,AC=8,BD=6,过点O作OH⊥AB于点H,则OH 的长为.11.如图,点E,F分别在菱形ABCD的边BC,CD上,且∠BAE=∠DAF.求证:AE=AF.12.如图,在平行四边形ABCD中,添加一个条件使平行四边形ABCD是菱形.13.要使▱ABCD是菱形,你添加的条件是.(写出一种即可)14.如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使四边形ABCD是菱形.(只需添加一个即可)15.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD.(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.16.已知:如图,在▱ABCD中,点E、F分别在AD、BC上,且BE平分∠ABC,EF∥AB.求证:四边形ABFE是菱形.17.如图,在▱ABCD中,E、F分别为边AB、CD的中点,连接DE、BF、BD.(1)求证:四边形DEBF为平行四边形;(2)当∠ADB=90°时,求证:四边形DEBF是菱形.18.如图,已知平行四边形ABCD,点E在AC的延长线上,连接BE、DE,过点D作DF∥EB交CA的延长线于点F,连接FB(1)求证:△DAF≌△BCE;(2)如果四边形ABCD是菱形,求证:四边形BEDF是菱形.19.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∠ABC=60°,∠ACB=45°,CD=6,求菱形BEDF的边长.20.如图,在菱形ABCD中∠ABC=60°,E为对角线AC上一点,F是BC延长线上一点,连接BE,DE,AF,DF,∠EDF=60°.(1)求证:AE=CF;(2)若点G为BE的中点,连接AG,求证:AF=2AG.21.如图,在菱形ABCD中,AC,BD相交于点O.已知BC=2OC,BF=EF,G为CE中点,连接FG,AG(1)若CE=8,∠ACE=∠ACB,求AB;(2)求证:FG=AG.参考答案与解析1.解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB====5,∴此菱形的周长为:5×4=20.故选:A.2.解:设另一条对角线长为xcm,则×6•x=12,解得x=4.故选:B.3.解:在菱形ABCD中,AB=BC,∵AC=AB,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ABC=60°.故选:C.4.解:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,故选D.5.解:需要添加的条件是AB=BC;理由如下:∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AB=BC,∴平行四边形ABCD是菱形(一组邻边相等的平行四边形是菱形);故选:D.6.解:因为一组邻边相等的平行四边形是菱形,对角线互相垂直平分的四边形是菱形,那么可添加的条件是:AB=BC.故选:D.7.解:A、对角线垂直的平行四边形是菱形.不符合题意;B、对角线相等的平行四边形是矩形.符合题意;C、邻边相等的平行四边形是菱形.不符合题意;D、邻边相等的平行四边形是菱形,不符合题意;故选:B.8.解:如图所示∵菱形的周长为52,即4AB=52,∴AB=13,∵AC=10,∴AO=AC=5,∵AC⊥BD,在Rt△AOB中,由勾股定理得BO=12,∴BD=2BO=24,∴菱形的面积=×10×24=120.故答案为:120.9.解:∵四边形ABCD是菱形,∴AD=BC,AC⊥BD,AO=OC,DO=BO,∵AC=24,BD=10,∴AO=12,OD=5,由勾股定理得:AD=13,∴BC=13,∴S菱形ABCD=AC•BD=BC×DE,∴×24×10=13×DE,解得:DE=,故答案为:.10.解:∵四边形ABCD是菱形,AC=8,BD=6,∴BO=3,AO=4,AO⊥BO,∴AB===5.∵OH⊥AB,∴AO•BO=AB•OH,∴OH=,故答案为:.11.证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴AE=AF.12.解:当AB=BC或AC⊥BD时,四边形ABCD是菱形.故答案为AB=BC或AC⊥BD.13.解:∵四边形ABCD是平行四边形,AD=AB,∴平行四边形ABCD是菱形,故答案为:AD=AB(答案不唯一).14.解:OA=OC,∵OB=OD,OA=OC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,故答案为:OA=OC.15.解:(1)∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∵AE∥BF,∴∠DAB+∠CBA,=180°,∴∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,∴∠AOD=90°;(2)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.16.证明:∵四边形ABCD是平行四边形,∴AD∥BC,又∵EF∥AB,∴四边形ABFE是平行四边形,∵BE平分∠ABC,∴∠ABE=∠FBE,∵AD∥BC,∴∠AEB=∠EBF,∴∠ABE=∠AEB,∴AB=AE,∴平行四边形ABFE是菱形.17.(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∵E、F分别为边AB、CD的中点,∴EB=DF,EB∥DF,∴四边形DEBF为平行四边形;(2)证明:∵∠ADB=90°,E为边AB的中点,∴DE=AB=EB,∵四边形DEBF为平行四边形,∴四边形DEBF为菱形.18.(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∴∠DAC=∠BCA,∴∠DAF=∠BCE,∵DF∥EB,∴∠DF A=∠BEC,在△DAF和△BCE中,,∴△DAF≌△BCE(AAS);(2)证明:连接BD,如图所示:由(1)得:△DAF≌△BCE,∴DF=BE,又∵DF∥BE,∴四边形BEDF是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,即EF⊥BD,∴四边形BEDF是菱形.19.证明:(1)∵DE∥BC,DF∥AB,∴四边形DEBF是平行四边形,∵DE∥BC,∴∠EDB=∠DBF,∵BD平分∠ABC,∴∠ABD=∠DBF=∠ABC,∴∠ABD=∠EDB,∴DE=BE,又∵四边形BEDF为平行四边形,∴四边形BEDF是菱形;(2)如图,过点D作DH⊥BC于H,∵DF∥AB,∴∠ABC=∠DFC=60°,∵DH⊥BC,∴∠FDH=30°,∴FH=DF,DH=FH=DF,∵∠C=45°,DH⊥BC,∴∠C=∠HDC=45°,∴DC=DH=DF=6,∴DF=2,∴菱形BEDF的边长为2.20.证明:(1)∵四边形ABCD是菱形,∠ABC=60°,∴AB=BC=AD=CD,∠ADC=∠ABC=60°,∴△ADC是等边三角形,∴AD=AC=AB=BC,∴△ACB是等边三角形,∴∠ACB=∠ACD=60°,∴∠ACF=120°,∵∠ADC=∠EDF=60°,∴∠ADE=∠CDF,∵∠EDF+∠ECF+∠DEC+∠DFC=360°,∴∠DEC+∠DFC=180°,∵∠DEC+∠AED=180°,∴∠AED=∠DFC,在△ADE和△CDF中,∴△ADE≌△CDF(AAS),∴AE=CF;(2)如图,过点B作BH∥AC,交AG的延长线于点H,∵BH∥AC,∴∠H=∠GAE,∠ABH+∠BAC=180°,∴∠ABH=120°=∠ACF,∵点G为BE的中点,∴BG=GE,在△AGE和△HGB中,,∴△AGE≌△HGB(AAS),∴AE=BH=CF,AG=GH=AH,在△ABH和△ACF中,,∴△ABH≌△ACF(SAS),∴AF=AH,∴AF=2AG.21.(1)解:延长EF与BC交于点K∵菱形ABCD,∴AC⊥BD,∵BC=2OC∠OBC=30°,∴∠EBF=30°,∴∠BEF=30°,∠ABC=60°,∠EKB=90°,∠ACB=60°∠ACE=∠ACB=×60°=15°,∠ECK=45°,在Rt△CKE中,EK=CK=CE=,在Rt△EKB中,BK=∴BC=,即AB=;(2)证明:延长FG至点H,使GH=FG,连接CH,AH.∵G为CE中点,∴EG=GC,在△EFG与△CHG中,,△EFG≌△CHG(SAS),∴EF=CH,∠CHG=∠EFG,∴CH=BF,CH∥EF,由(1)可知∠EBC=60°,∠EKB=90°,∠BCD=120°,∴∠HCB=90°,∠ACH=∠BCD﹣∠HCB=120°﹣90°=30°,∴∠ABF=∠ACH,在△AFB与△AHC中,△AFB≌△AHC(SAS),∴AF=AH,∠BAF=∠CAH∵FG=GH,∴AG⊥FG,∴∠F AG=∠HAG∵∠BAC=∠BAF+∠F AC=60°,∴∠CAH+∠F AC=60°,即∠F AH=60°,∴∠F AG=∠HAG=30°,∴。
八年级数学菱形经典题
八年级数学菱形测试题及答案一.选择题(共10小题)1.(2012?长沙)已知:菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A. 6 cm B.4cm C.3cm D.2cm2.(2010?襄阳)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A. 3 :1 B.4:1 C.5:1 D.6:13.(2010?宜昌)如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为().7.5.D C.A. 1 5B4.(2010?陕西)若一个菱形的边长为2,则这个菱形两条对角线的平方和为()A. 1 6 B.8 C. 4 D.1sinA=,,则下列结论正确的个数有⊥AB,垂足为E兰州)如图所示,菱形(2010?ABCD的周长为20cm,DE5.()2BD=2cm.;④②BE=1cm;③菱形的面积为15cm ①DE=3cm;B.24个个3 个C.个D.A.1,、、EFAF的中点,连接分别是,B=60菏泽)如图,菱形.6(2010?ABCD中,∠°,AB=2cmE、FBC、CDAE )△则AEF的周长为(cm3 C B .A ...Dcm4cm3cm2.7.(2010?北京)菱形的两条对角线的长分别是6和8,则这个菱形的周长是()A. 2 4 B.20 C.10 D. 52,则菱形的边长为()2倍,且它的面积是16cm 8.菱形的一条对角线是另一条对角线的DC..B..Acm 22cm 4cm 4cm9.下列性质中,菱形具有而矩形不具有的是()A.轴对称图形B.邻角互补C.对角线平分对角D.对角相等10.如图,在菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为().D C.A.1 B.2二.解答题(共6小题)11.如图,已知△ABC的面积为4,且AB=AC,现将△ABC沿CA方向平移CA的长度,得到△EFA.(1)判断AF与BE的位置关系,并说明理由;(2)若∠BEC=15°,求AC的长.12.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.13.如图,在△ABC中,AB=BC,若将△ABC沿AB方向平移线段AB的长得到△BDE.(1)试判断四边形BDEC的形状,并说明理由;(2)试说明AC与CD垂直.的中点.AC为E,°ABC=90∠中,ABC△.如图,14.操作:过点C作BE的垂线,过点A作BE的平行线,两直线相交于点D,在AD的延长线上截取DF=BE.连接EF、BD.(1)试判断EF与BD之间具有怎样的关系?并证明你所得的结论.(2)如果AF=13,CD=6,求AC的长.DB=AC,连接AD、ED,∥DBAC,且E是AC的中点.,过点中,.如图,15Rt△ABC∠B=90°B作(1)求证:DE∥BC;(2)请问四边形ADBE是特殊四边形吗?试做出判断,并说明理由.16.如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是BD、AC 的中点,猜一猜EF与GH的位置关系,并证明你的结论.参考答案与试题解析一.选择题(共10小题)1.(2012?长沙)已知:菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A. 6 cm B.4cm C.3cm D.2cm考点:菱形的性质;三角形中位线定理.△BCD的中位线,从而求得OE的长.分析:根据题意可得:OE是是菱形,∵四边形ABCD解答:解:,OB=OD,CD=AD=6cm∴,OE∥DC∵,∴BE=CE.OE=∴CD=3cm .故选C此题考查了菱形的性质:菱形的对角线互相平分,菱形的四条边都相等.还考查了三角形中位线的性质:点评:三角形的中位线等于三角形第三边的一半.),高为?襄阳)菱形的周长为8cm1cm,则该菱形两邻角度数比为(2.(20101 D.6:5.:1 B 4:1 C.:1 A.3度角的直角三角形.菱形的性质;含30考点:根据已知可求得菱形的边长,再根据三角函数可求得其一个内角从而得到另一个内角即可得到该菱形两邻分析:角度数比.,则该150°解:如图所示,根据已知可得到菱形的边长为解答:2cm,从而可得到高所对的角为30°,相邻的角为.菱形两邻角度数比为5:1 C故选.点评:此题主要考查的知识点:(1)直角三角形中,30°锐角所对的直角边等于斜边的一半的逆定理;(2)菱形的两个邻角互补.)两点之间的距离为(D、B,则°ADC=120∠,AB=15中,ABCD宜昌)如图,菱形?2010(.3.D..71 5B..5C A.考点:菱形的性质.分析:先求出∠A等于60°,连接BD得到△ABD是等边三角形,所以BD等于菱形边长.解答:解:连接BD,∵∠ADC=120°,∴∠A=180°﹣120°=60°,∵AB=AD,∴△ABD是等边三角形,∴BD=AB=15.故选A.点评:本题考查有一个角是60°的菱形,有一条对角线等于菱形的边长.4.(2010?陕西)若一个菱形的边长为2,则这个菱形两条对角线的平方和为()A. 1 6 B.8 C. 4 D.1考点:菱形的性质.分析:根据菱形的对角线互相垂直平分,即菱形被对角线平分成四个全等的直角三角形,根据勾股定理,即可求解.解答:解:设两对角线长分别是:a,b.22222=16.)b+b=2 则(a).则+a(故选A.点评:本题主要考查了菱形的性质:菱形被两个对角线平分成四个全等的直角三角形.sinA=,,则下列结论正确的个数有⊥AB,垂足为EDE(5.2010?兰州)如图所示,菱形ABCD 的周长为20cm,()2BD=2cm.;③菱形的面积为15cm;④;①DE=3cm②BE=1cm个4 .D 个3 .C个1.A 个2 .B菱形的性质;锐角三角函数的定义.:考点.分析:根据菱形的性质及已知对各个选项进行分析,从而得到答案.解答:解:∵菱形ABCD的周长为20cm∴AD=5cm= sinA=∵∴DE=3cm(①正确)∴AE=4cm∵AB=5cm∴BE=5﹣4=1cm(②正确)23=15cmDE=5×∴菱形的面积=AB×(③正确)∵DE=3cm,BE=1cmBD=cm(∴④不正确)所以正确的有三个,故选C.点评:此题主要考查学生对菱形的性质的运用能力.6.(2010?菏泽)如图,菱形ABCD中,∠B=60°,AB=2cm,E、F分别是BC、CD的中点,连接AE、EF、AF,则△AEF的周长为()D.3 cm C.A.B.cm 32cm 4cm考点:菱形的性质;勾股定理;三角形中位线定理.分析:首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等腰三角形三线合一的定理又可推出△AEF是等边三角形.根据勾股定理可求出AE的长继而求出周长.解答:解:∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF,在△ABE和△ADF中,∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF.连接AC,∵∠B=∠D=60°,∴△ABC与△ACD是等边三角形,∴AE⊥BC,AF⊥CD(等腰三角形底边上的中线与底边上的高线重合),∴∠BAE=∠DAF=30°,∴∠EAF=60°,∴△AEF是等边三角形.AE=cm,∴3cm.∴周长是.B故选.点评:此题考查的知识点:菱形的性质、等边三角形的判定和三角形中位线定理.7.(2010?北京)菱形的两条对角线的长分别是6和8,则这个菱形的周长是()A. 2 4 B.20 C.10 D. 5考点:菱形的性质;勾股定理.分析:菱形的边长和对角线的一半组成直角三角形,根据勾股定理求得其边长,从而求出菱形的周长即可.解答:解:如图,∵AC=8,BD=6,∴OA=4,BO=3,∴AB=5,∴这个菱形的周长是20.故选B.点评:此题主要考查菱形的基本性质及勾股定理的运用.2,则菱形的边长为()8.菱形的一条对角线是另一条对角线的2倍,且它的面积是16cm.DC.A.B.cm 2cm 4cm 24cm考点:菱形的性质.分析:设较短对角线长x,则较长的为2x,根据已知列方程求得两条对角线的长,再根据勾股定理求得其边长即可.解答:解:设较短对角线长x,则较长的为2x,2=16,依题意得,x可得x=4,2x=8,=2cm则菱形的边长为,故选B.点评:主要考查菱形的面积公式:对角线的积的一半,综合利用了菱形的性质和勾股定理.9.下列性质中,菱形具有而矩形不具有的是()A.轴对称图形B.邻角互补C.对角线平分对角D.对角相等考点:菱形的性质;矩形的性质.分析:根据矩形的对角线互相平分且相等,菱形的对角线互相垂直平分,且每一条对角线平分一组对角的性质进行比较从而得到最后的答案.解答:解:菱形的对角线互相垂直平分,且每一条对角线平分一组对角;矩形的对角线互相平分且相等.故选C点评:此题主要考查矩形、菱形的性质的区别与联系.10.如图,在菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的)最小值为(..DC..1 B.2 A考点:菱形的性质.专题:动点型.分析:找出B点关于AC的对称点D,连接DE,则DE就是PE+PB的最小值,求出即可.解答:解:连接DE、BD,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠BAD=60°,AD=AB,∴△ABD是等边三角形,∵AE=BE∴DE⊥AB(等腰三角形三线合一的性质)DE=.ADE中,在Rt△故选B.点评:此题是有关最短路线问题,熟悉菱形的基本性质是解决本题的关键.二.解答题(共6小题)11.如图,已知△ABC的面积为4,且AB=AC,现将△ABC沿CA方向平移CA的长度,得到△EFA.(1)判断AF与BE的位置关系,并说明理由;(2)若∠BEC=15°,求AC的长.考点:菱形的判定与性质;含30度角的直角三角形;平移的性质.分析:(1)首先连接BF,由△AEF是由△ABC沿CA的方向平移CA长度得到,即可得BF=AC,AB=EF,CA=AE,又由AB=AC,证得AB=BF=EF=AE,根据由四条边都相等的四边形是菱形,即可证得四边形ABFE是菱形,则可得AF⊥BE;AB=AC,,然后利BM=,求得AB=AC=AE,∠BEC=15°∠BAC=30°于点)首先作(2BM⊥ACM,由用△ABC的面积求解方法,即可求得AC的长.解答:解:(1)AF⊥BE.理由如下:连接BF,∵△AEF是由△ABC沿CA的方向平移CA长度得到,∴BF=AC,AB=EF,CA=AE.,AB=AC∵.∴AB=BF=EF=AE.∴四边形ABFE是菱形.∴AF⊥BE.(2)作BM⊥AC于点M.∵AB=AC=AE,∠BEC=15°,∴∠BAC=30°.AB=AC.BM= ∴∵S=4,ABC△AC=4,?AC ∴∴AC=4.点评:此题考查了菱形的判定与性质,三角形面积的求解方法等知识.此题难度不大,注意辅助线的作法与数形结合思想的应用.12.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.考点:菱形的判定与性质;三角形中位线定理.分析:从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;∠BCF是120°,所以∠EBC为60°,所以菱形的边长也为4,求出菱形的高面积就可求.解答:(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,2,4,高为∴菱形的边长为=8.2 ×菱形的面积为∴4点评:本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.13.如图,在△ABC中,AB=BC,若将△ABC沿AB方向平移线段AB的长得到△BDE.(1)试判断四边形BDEC的形状,并说明理由;(2)试说明AC与CD垂直.考点:菱形的判定与性质;平行公理及推论;等腰三角形的性质;平移的性质.专题:证明题.分析:(1)根据平移的性质和已知得到AB=CE=BD,BC=DE,推出BD=DE=CE=BC即可;(2)根据菱形的性质推出BE⊥CD,根据平行公理及推论推出即可.解答:(1)解:四边形BDEC的形状是菱形.理由是:∵△ABC沿AB方向平移AB长得到△BDE,∴AB=CE=BD,BC=DE,∵AB=BC,∴BD=DE=CE=BC,(2)证明:∵四边形BDEC为菱形,∴BE⊥CD,∵△ABC沿AB方向平移AB长得到△BDE,∴AC∥BE,∴AC⊥CD.点评:本题主要考查对菱形的判定和性质,平移的性质,平行公理及推论,等腰三角形的性质等知识点的连接和掌握,能推出四边形BDEC为菱形是解此题的关键.14.如图,△ABC中,∠ABC=90°,E为AC的中点.操作:过点C作BE的垂线,过点A作BE的平行线,两直线相交于点D,在AD的延长线上截取DF=BE.连接EF、BD.(1)试判断EF与BD之间具有怎样的关系?并证明你所得的结论.(2)如果AF=13,CD=6,求AC的长.考点:菱形的判定与性质;一元二次方程的应用;直角三角形斜边上的中线;勾股定理;平行四边形的判定.专题:计算题.分析:(1)证平行四边形BEDF,根据直角三角形斜边上的中线证BE=DF,推出菱形BEDF 即可;(2)设DF=BE=x,则AC=2x,AD=AF﹣DF=13﹣x,在Rt△ACD中根据勾股定理求出x,即可得到答案.解答:解:如图:(1)EF与BD互相垂直平分.证明如下:连接DE、BF,∵BE∥DF,BE=DF,∴四边形BEDF是平行四边形.,BE⊥CD∵.∴CD⊥AD,∵∠ABC=90°,E为AC的中点,BE=DE=,∴∴四边形BEDF是菱形,∴EF与BD互相垂直平分.(2)解:设DF=BE=x,则AC=2x,AD=AF﹣DF=13﹣x,222,+CD =ACRt△ACD中,∵AD在222)﹣x∴(13,(2x+6)=2+26x﹣205=0,3x﹣(舍去),x=5x=,21∴AC=10,答:AC的长是10.点评:本题主要考查对平行四边形的判定,勾股定理,解一元二次方程,直角三角形斜边上的中线,菱形的判定和性质等知识点的理解和掌握,能求出BE=DE和得到关于x的方程是解此题的关键.DB=AC,连接AD、ED,AC,且E是AC的中点.°15.如图,Rt△ABC中,∠B=90,过点B作DB∥(1)求证:DE∥BC;(2)请问四边形ADBE是特殊四边形吗?试做出判断,并说明理由.考点:菱形的判定与性质;直角三角形斜边上的中线.分析:(1)推出CE=BD,CE∥BD,得出平行四边形BDEC,根据平行四边形的性质推出即可;(2)求出BDF=AE,BD∥AE,得出平行四边形ADBE,根据DE∥BC,∠ABC=90°推出DE⊥AB,根据菱形的判定推出即可、解答:(1)证明:∵E是AC的中点,CE=AE=AC,∴DB=AC∵,∵BD=CE,∵BD∥AC,,CE∥BD∴.∴四边形BDEC是平行四边形,∴DE∥BC.(2)解:四边形ADBE是菱形,理由是:∵DE∥BC,∠ABC=90°,∴DE⊥AB,DB=AC,BD∥ACAE=AC,,∵∴BD=AE,BD∥AE,∴四边形ADBE是平行四边形,∴平行四边形ADBE是菱形.点评:本题考查了平行四边形的性质和判定,菱形的判定等知识点,注意:有一组对边平行且相等的四边形是平行四边形,对角线互相垂直的平行四边形是菱形.16.如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是BD、AC 的中点,猜一猜EF与GH的位置关系,并证明你的结论.考点:菱形的判定与性质;三角形中位线定理.专题:证明题.分析:连接EG,GF,FH,EH,利用三角形中位线定理求证EG平行且等于EH,从而判定出四边形EGFH是菱形,再利用菱形的性质即可得出结论.解答:EF⊥GH.证明:连接EG,GF,FH,EH,∵E、F分别是AD、BC的中点,G、H分别是BD、AC的中点EH=CD,EG=AB,∴又∵AB=DC,∴EG=EH,∵EG∥AB,HF∥AB,∴EG∥HF,同理GF∥EH,∴四边形EGFH是菱形,EF,GH分别为对角线,∴EF⊥GH.点评:此题主要考查学生对菱形的判定与性质和三角形中位线定理的理解和掌握,此题的突破点是利用三角形中位线定理求证四边形EGFH是菱形,然后根据菱形的性质即可得出结论.此题稍有难度,属于中档题.。
数学人教版八年级下册期末复习专项练习05菱形答案及解析
加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!数学人教版8年级下册期末复习真题汇编卷菱形一、单选题1.(2022春·河南鹤壁·八年级统考期末)如图,AC 为矩形ABCD 的对角线,点E 、F 分别在边BC AD 、上,将边AB 沿AE 折叠,点B 恰好落在AC 上的点M 处,将边CD 沿CF 折叠、点D 恰好落在AC 上的点N 处,若四边形AECF 是菱形,则BAE Ð的度数为()A .30°B .40°C .45°D .50°2.(2022秋·山东泰安·八年级校考期末)如图,四边形ABCD 是菱形,8AC =,6DB =,DH AB ^于H ,则DH 等于()A .125B .65C .5D .2453.(2023春·江苏·八年级期末)如图,菱形ABCD 的对角线BD 长度为4,边长AB =M 为菱形外一个动点,满足BM DM ^,N 为MD 中点,连接CN .则当M 运动的过程中,CN 长度的最大值为()A.1B.12+C.1D.2 4.(2023秋·云南楚雄·九年级统考期末)如图,菱形ABCD的对角线交于点O,E为AB边的中点,若菱形的周长为24,则OE的长是()A.1B.20C.3D.4 5.(2023秋·重庆·九年级校考期末)如图,四边形ABCD是菱形,连接AC,BD交于点O,过点A作AE BC^,交BC于点E,若4AC=,6BD=,则BE的长度是()A B C.1310D.756.(2022秋·山东淄博·八年级统考期末)菱形和矩形都具有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线平分一组对角7.(2022秋·山东淄博·八年级统考期末)如图,在ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE AC∥,DF AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD BC^,则四边形AEDF是矩形B .若BD CD =,则四边形AEDF 是菱形C .若AD 垂直平分BC ,则四边形AEDF 是矩形D .若AD 平分BAC Ð,则四边形AEDF 是菱形8.(2023秋·河南南阳·九年级统考期末)如图,四边形ABCD 是菱形,对角线AC 和BD 的交点与原点重合,顶点,A C 在x 轴上,,B D 在y 轴上,且()3,0C ,()0,4D ,若一只瓢虫从点A 出发以5个单位长度/秒的速度沿着A B C D A ®®®®循环爬行,则第2023秒瓢虫的位置在()A .()0,4B .()3,0-C .()0,4-D .()3,09.(2022春·广东河源·八年级校考期末)已知菱形的周长等于40cm ,两对角线的比为3:4,则对角线的长分别是()A .12cm ,16cmB .6cm ,8cmC .3cm ,4cmD .24cm ,32cm10.(2023秋·贵州六盘水·九年级统考期末)如图,在ABCD Y 中,对角线AC ,BD 相交于点O ,若添加一个条件,使得ABCD Y 一定为菱形,该条件是()A .90ABC Ð=°B .AC BD =C .AC BD ^D .ABD CDBÐ=Ð11.(2023秋·甘肃白银·九年级校考期末)如图,菱形ABCD 的对角线AC 、BD 相交于点O .若6AC =,8BD =,AE BC ^,垂足为E ,则AE 的长为()A .12B .14C .245D .48512.(2022秋·山东枣庄·九年级校考期末)如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,且68AC DB ==,,AE BC ^于点E ,则AE =()A .6B .8C .245D .48513.(2023秋·福建福州·八年级福建省福州第一中学校考期末)如图,在菱形ABCD中,120ABC Ð=°,E 是AB 边的中点,P 是AC 边上一动点,PB PE +则PE 的最小值为()A .2BC .1D .0.514.(2023秋·四川巴中·九年级统考期末)如图,已知菱形ABCD 的周长为两条对角线AC 、BD 的和为8,则菱形ABCD 的面积为()A .6B .12C .D .15.(2022秋·山东济宁·八年级济宁学院附属中学校考期末)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O .点E 为BC 的中点,连接EO 并延长交AD 于点F ,60ABC Ð=°,2BC AB =.下列结论:①·ABCD S AB AC =;②4AD OE =;③EF AC ^;④14BOE ABC S S =△△.其中正确结论的个数是()A .4B .3C .2D .1二、填空题16.(2022秋·山东泰安·八年级校考期末)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是AD ,CD 边上的中点,连接EF .若2EF =,3BD =,则菱形ABCD 的面积为________.17.(2019春·山东德州·八年级校联考期末)菱形ABCD 中,对角线8AC =,6BD =,则菱形的边长为____________.18.(2021春·北京东城·八年级统考期末)如图,已知菱形ABCD 的边长为4,60ABC Ð=°,E 为AB 的中点,若P 为对角线BD 上一动点,则EP AP +的最小值为___________.19.(2022秋·江苏扬州·九年级统考期末)如图,在菱形ABCD 中,60A Ð=°,6AB =.折叠该菱形,使点A 落在边BC 上的点M 处,折痕分别与边AB AD 、交于点E 、F .当点M 在BC 上时,DF 长的最大值为__________.20.(2021春·湖南长沙·八年级校联考期末)如图,在菱形ABCD 中,点E ,F 分别是边AD BD 、的中点,若2EF =,则BC 长为________.21.(2022秋·黑龙江哈尔滨·九年级统考期末)已知,菱形ABCD 中,60BAD Ð=°,对角线AC 、BD 相交于点O ,点E 在菱形ABCD 的边上,且与顶点不重合,若OE OB =,则EOA Ð的度数为__________.22.(2022秋·辽宁丹东·九年级统考期末)菱形ABCD 的周长为32cm ,一条对角线长为12cm ,则另一条对角线的长为________cm .23.(2022秋·山东济南·九年级统考期末)如图,菱形ABCD 的对角线AC BD ,相交于点O ,2410AC BD ==,,则菱形ABCD 的周长为___________.24.(2023秋·山东烟台·八年级统考期末)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,点P 为AB 边上一动点(不与点A ,B 重合),PE OA ^于点E ,PF OB^于点F ,若2,60AB BAD =Ð=°,则EF 的最小值为_______.25.(2023秋·甘肃酒泉·九年级统考期末)面积为224cm ,一条对角线长为6cm ,则这个菱形的周长是_________cm .26.(2023秋·广东佛山·九年级统考期末)点E 、F 、G 、H 分别是平行四边形ABCD 的边AB 、BC 、CD 、DA 的中点.若要使四边形EFGH 是菱形,则添加的条件可以是__________.现有条件:①90A Ð=°,②AB BC ^,③AC BD =,④AC BD ^.(请填写正确的序号)27.(2022秋·海南省直辖县级单位·九年级统考期末)如图,四边形ABCD 是平行四边形,以点B 为圆心,BC 的长为半径作弧交AD 于点E ,分别以点C 、E 为圆心,大于12CE 的长为半径作弧,两弧交于点P ,作射线BP 交AD 的延长线于点F ,60CBE Ð=°,4BC =,则BF 的长为______.28.(2022秋·辽宁盘锦·九年级统考期末)如图,AOB 与COD △关于公共顶点O 成中心对称,连接AD ,BC ,添加一个条件____,使四边形ABCD 为菱形.29.(2022秋·四川成都·九年级统考期末)如图,菱形的边长ABCD 为10cm ,其中对角线AC 的长为16cm ,则菱形ABCD 的面积为_________2cm .30.(2023秋·贵州六盘水·九年级统考期末)如图,在菱形ABCD中,对角线AC,^于点E,则AE的长为___________.BD的长分别为6,8,过点A作AE CD三、解答题31.(2022春·浙江丽水·八年级统考期末)如图,在菱形ABCD中,E为对角线BD ,.上一点,连接AE CE(1)求证:AE CE=;(2)若AE DE AE AB,,求ABD=^Ð的度数.32.(2023秋·山东青岛·九年级统考期末)如图,平行四边形ABCD的对角线AC、∥交BE的延长线于H,连接CH与BD交于点O,E为OC中点,过点O作OH BCDH.(1)求证:BCE HOE△≌△;(2)当四边形ABCD是怎样的特殊四边形时,四边形OCHD为菱形?请说明理由.33.(2018·浙江金华·八年级校联考期末)我们定义:我们把对角线相等的四边形叫做和美四边形.(1)请举出一种你所学过的特殊四边形中是和美四边形的例子.(2)如图1,B,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,已知四边形EFGH是菱形,求证:四边形ABCD是和美四边形;(3)如图2,四边形ABCD是和美四边形,对角线AC,BD相交于O,60Ð=°,AOBE、F分别是AD、BC的中点,求EF与AC之间的数量关系.34.(2022春·四川泸州·八年级统考期末)如图,在Rt ABCÐ=°,过△中,90ACB点C的直线∥MN AB,D为AB边上一点、过点D作DE BC^,交直线MN于E,垂足为F,连接CD BE、.(1)求证:CE AD=;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;S的面积.(3)在(2)的条件下,已知304ECB AC,,求三角形BECÐ=°=35.(2022秋·辽宁丹东·九年级统考期末)如图,菱形ABCD的对角线AC与BD交于点O,DE AB^于点F.^于点E,交AC于点P,BF DC(1)四边形DEBF 是;(2)若2,4BE BF ==,求DP 的长.36.(2022秋·辽宁丹东·九年级统考期末)如图,在ABC 中,90ACB Ð=°,点D 是边AB 的中点,连接CD ,过点C 作CE ∥AB ,过点B 作BE ∥CD ,CE ,BE 交于点E .(1)判断四边形CDBE 是什么特殊的四边形,并证明;(2)直接写出当ABC 再满足什么条件时,四边形CDBE 是正方形.37.(2022秋·陕西榆林·九年级统考期末)如图,在菱形ABCD 中,过点B 作BE CD ^于点E ,点F 在边AB 上,AF CE =,求证:四边形BFDE 是矩形.38.(2022秋·四川成都·九年级统考期末)如图,平行四边形ABCD 中,AO 平分BAC Ð,OB OC =,延长DC 与AO 交于点P ,连接BP .(1)求证:CD CP =;(2)判断四边形ABPC的形状,并证明你的结论.39.(2023春·山东济南·八年级统考期末)已知:如图,在ABCDY中,对角线BD,AC相交于点O,点E,F分别在BD,DB的延长线上,且DE BF=,连接AE,AF,CF,CE.(1)求证:四边形AFCE为平行四边形;(2)若AC平分EAFOA=,求四边形AFCE的周长.Ð,60AECÐ=°,4参考答案1.A2.D3.A4.C5.B6.A7.D8.A9.A10.C11.C12.C13.D14.A15.A16.617.518.19.6-/-620.421.30°或150°22.23.522425.2026.①②③27.28.AD AB =(答案不唯一)29.9630.24531.(1)证明:∵四边形ABCD 是菱形,∴AB BC ABD CBD =Ð=Ð,,在ABE 和CBE △中,AB BCABD CBD BE BE=ìïÐ=Ðíï=î,∴()@△△SAS ABE CBE ,∴AE CE =.(2)解:∵AB AD =,∴ABD ADB Ð=Ð,∵AE DE =,∴EAD ADB ABD Ð=Ð=Ð,∵AE AB ^,∴90BAE Ð=°,∵180ABD ADB DAE BAE Ð+Ð+Ð+Ð=°,∴390ABD Ð=°,∴30ABD Ð=°.32.(1)证明:∵OH BC ∥,∴BCE HOE Ð=Ð,∵E 是OC 的中点,∴CE OE =,在BCE 和HOE 中,BCE HOECE OE BEC HEOÐ=Ðìï=íïÐ=Ðî,∴()ASA BCE HOE △≌△;(2)解:当四边形ABCD 是矩形时,四边形OCHD 为菱形,理由如下:由(1)可知,BCE HOE △≌△,∴BE HE =,∵CE OE =,∴四边形BCHO 是平行四边形,∴CH OB =,CH OB ∥,∵四边形ABCD 是矩形,∴OA OC =,OB OD =,AC BD =,∴CH OD =,OC OD =,∴四边形OCHD 是平行四边形,又∵OC OD =,∴平行四边形OCHD 是菱形.33.(1)解: 矩形的对角线相等,\矩形是和美四边形;(2)如图1,连接AC 、BD ,E ,F ,G ,H 分别是四边形ABCD 的边AB ,BC ,CD ,DA 的中点,12EH BD FG \==,12EF AC HG ==, 四边形EFGH 是菱形,EH EF FG GH \===,AC BD \=,\四边形ABCD 是和美四边形;(3)12EF AC =,证明:如图2,连接BE 并延长至M ,使BE EM =,连接DM 、AM 、CM ,AE ED = ,\四边形MABD 是平行四边形,BD AM \=,BD AM ∥,60MAC AOB \Ð=Ð=°,∵四边形ABCD 是和美四边形,∴AC BD =,∴AM AC =,AMC \是等边三角形,CM AC \=,BMC △中,BE EM = ,BF FC =,1122EF CM AC \==.34.(1)证明:由题意知90DFB ACB Ð=Ð=°,∴∥DE AC ,∵AD CE ,∴四边形ADEC 是平行四边形,∴CE AD =;(2)解:四边形BECD 是菱形;理由如下:∵在Rt ABC △中,D 在AB 中点,∴CD AD DB ==,∴BCD △是等腰三角形,∵DF BC ^,∴BF CF =,∴F 为BC 中点,∴DF 是ABC 的中位线,∴12DF AC =,∵四边形ADEC 是平行四边形,∴AC DE =,∴12DF DE =,∴DF EF =,∵BF CF =,DF EF =,DE BC ^,∴四边形BECD 是菱形;(3)解:∵30ECB Ð=°,∴30CBA Ð=°,∵4AC =,∴8AB =,4BD =,2EF DF ==,在Rt BDF △中,由勾股定理得BF ==,∴2BC BF ==,∴12BEC SBC EF =´´=∴BEC S 为35.(1)∵,DE AB BF DC ^^,∴90DEB BFD Ð=Ð=°,∵四边形ABCD 是菱形,∴AB CD ,∴180DEB EDF Ð+Ð=°,∴90EDF DEB BFD Ð=Ð=Ð=°,∴四边形DEBF 是矩形,故答案为:矩形;(2)如图,连接PB ,∵四边形ABCD 是菱形,∴AC 垂直平分BD ,∴PB PD =,由(1)知,四边形DEBF 是矩形,∴4DE FB ==,设PD BP x ==,则4PE x =-,在Rt PEB △中,由勾股定理得:222(4)2x x -+=,解得:52x =,∴52DP =.36.(1)解:四边形CDBE 是菱形,证明:BE ∥CD ,CE ∥AB ,\四边形BDCE 是平行四边形.90ACB Ð=° ,CD 是AB 边上的中线,CD BD \=,\平行四边形BDCE 是菱形;(2)当ABC 是等腰直角三角形时,四边形CDBE 是正方形;理由如下:90ACB Ð=° ,当ABC 是等腰直角三角形,D 为AB 的中点,CD AB \^,90CDB \Ð=°,\四边形BECD 是正方形.37.∵四边形ABCD 是菱形,∴AB CD ∥,AB CD =.∵AF CE =,∴AB AF CD CE -=-,∴FB ED =.∴四边形BFDE 是平行四边形.∵BE CD ^,∴90BED Ð=°.∴四边形BFDE 是矩形.38.(1)证明:∵四边形ABCD 是平行四边形,∴AB CD =,AB DC ,∴BAO CPO Ð=Ð,在ABO 和PCO △中,BAO CPO BOA COP OB OC Ð=ÐìïÐ=Ðíï=î∴()AAS ABO PCO ≌△△,∴AB CP =,又∵AB CD =,∴CD CP =;(2)由(1)知()AAS ABO PCO ≌△△∴BAO CPO Ð=Ð,∴AB CP ∥,∵AO 平分BAC Ð,∴BAO CAO Ð=Ð,∴CAO CPO Ð=Ð,∴CA CP =,∵AB CP ∥,AB CP =,∴四边形ABPC 是平行四边形,∵AC CP =,∴四边形ABPC 是菱形.39.(1)证明: 四边形ABCD 为平行四边形,OA OC \=,OB OD =,又DE BF = ,OB BF OD DE \+=+,即:OF OE =,\四边形AFCE 为平行四边形;(2)解: 四边形AFCE 是平行四边形,AF CE \∥,AF CE =,AE CF =,FAC ACE \Ð=Ð,AC 平分EAF Ð,FAC CAE \Ð=Ð,ACE CAE \Ð=Ð,AE CE \=,\四边形AFCE 是菱形,AC EF \^,AF CF EC AE ===,又60AEC Ð=° ,30AEO \Ð=°,28AF CF EC AE OA \=====,\四边形AFCE 的周长为:4832´=.。
部编数学八年级下册菱形的判定专项提升训练(重难点培优)【拔尖特训】2023年培优含答案
【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【人教版】专题18.3菱形的判定专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•杜尔伯特县期中)菱形的周长为12,一个内角为60°,则较短的对角线长为( )A.2B.3C.1D.【分析】根据已知可得较短的对角线与两邻边组成等边三角形,则菱形较短的对角线长=菱形的边长,根据周长可求得菱形的边长从而较短的对角线也就求得了.【解答】解:由已知得,较短的对角线与两邻边组成等边三角形,则菱形较短的对角线长=菱形的边长=12÷4=3,故选:B.2.(2022春•南岗区校级期中)如图,菱形ABCD的两条对角线长分别为AC=9和BD=6,那么菱形ABCD 的面积为( )A.4B.30C.54D.27【分析】直接根据菱形面积等于两条对角线的长度乘积的一半进行计算即可.【解答】解:∵四边形ABCD是菱形,∴菱形ABCD的面积=BD•AC=×6×9=27,故选:D.3.(2022春•墨玉县期末)如图,菱形ABCD中,AC=8.BD=6.则菱形的面积为( )A.20B.40C.28D.24【分析】根据菱形的面积等于对角线乘积的一半可得答案.【解答】解:菱形的面积为6×8÷2=24,故选:D.4.(2022春•南召县期末)四边形具有不稳定性,小明将一个菱形ABCD转动,使它形状改变,当转动到使∠B=60°时(如图),测得AC=2;当转动到使∠B=120°时,AC的值为( )A.2B.C.D.【分析】根据有一个角是60°的等腰三角形是等边三角形可得菱形的边长为2,再根据菱形的性质以及勾股定理解答即可.【解答】解:因为菱形ABCD,∠B=60°时,测得AC=2,所以△ABC是等边三角形,所以菱形的边长为2,当转动到使∠B=120°时,如图所示:因为AC⊥BD,∠ABC=120°,所以∠ABO=60°,所以∠OAB=30°,所以,所以,所以AC=2AO=.故选:B.5.(2022春•博兴县期末)如图,菱形ABCD的对角线AC、BD相交于点O,DE⊥AB于点E,若AB=5,DE=4,则在下列结论中正确的是( )A.DB=5B.AE=4C.BE=2D.OA=3【分析】根据菱形的性质可知AB=AD,AO=OC,OD=OB,由于DE⊥AB于点E,所以在Rt△AED中,利用勾股定理可以求出AE,进而求出BE、BD,再在Rt△AOB中求出OA即可作出判断.【解答】解:∵四边形ABCD是菱形,∴AB=AD,AO=OC,OD=OB,∵AB=5,∴AD=5,∵DE⊥AB于点E,DE=4在Rt△AED中,根据勾股定理得,AE==3,故B错误;∴BE=AB﹣AE=5﹣3=2,故C正确;在Rt△BDE中,根据勾股定理得,BD=,故A错误;∴OB=BD=,在Rt△AOB中,根据勾股定理得,OA=,故D错误.故选:C.6.(2022春•承德县期末)如图,在平面直角坐标系中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是( )A.(0,﹣8)B.(0,﹣5)C.(﹣5,0)D.(0,﹣6)【分析】在Rt△ODC中,利用勾股定理求出OC即可解决问题.【解答】解:∵A(12,13),∴OD=12,AD=13,∵四边形ABCD是菱形,∴CD=AD=13,在Rt△ODC中,OC=,∴C(0,﹣5).故选:B.7.(2022春•丰泽区校级月考)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,OH=2,若菱形ABCD的面积为12,则AB的长为( )A.10B.4C.D.6【分析】由菱形的性质得OA=OC,OB=OD,AC⊥BD,再求出BD=4,则OB=2,然后由菱形面积求出AC=6,则OA=3,即可解决问题.【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=2,∴BD=4,∴OB=2,∵菱形ABCD的面积=AC•BD=AC×4=12,∴AC=6,∴OA=3,在Rt△AOB中,由勾股定理得:AB===,故选:C.8.(2022秋•合川区校级月考)如图,在菱形ABCD中,M.N分别在AB,CD上,且AM=CN,MN与AC 交于点O,连接BC若∠DAC=28°,则∠OBC的度数为( )A.28°B.52°C.62°D.72°【分析】根据菱形的性质以及AM=CN,再由ASA可得△AMO≌△CNO,得AO=CO,然后证BO⊥AC,继而可求得∠OBC的度数【解答】解:∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故选:C.9.(2022秋•胶州市校级月考)如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④,其中正确的结论有( )A.①②③B.①②④C.①③④D.②③④【分析】根据菱形的性质和∠A=60°,可知△ABD是等边三角形,△BDC是等边三角形,根据等边三角形的性质可得∠BFD=∠DEB=90°,∠GDB=∠GBD=30°,即可判断①选项;根据SSS可证△CDG ≌△CBG,根据全等三角形的性质可得∠DGC=∠BGC=60°,再根据含30°角的直角三角形的性质可判断②选项;根据△GBC为直角三角形,可知CG>BC,进一步可知CG≠BD,即可判断③选项;根据勾股定理可得DE=AB,再根据三角形面积的求法即可判断④选项.【解答】解:在菱形ABCD中,AB=BC=CD=AD,∵∠A=60°,∴∠BCD=∠A=60°,∴△ABD是等边三角形,△BDC是等边三角形,∴∠ADB=∠ABD=60°,∠CDB=∠CBD=60°,∵E,F分别是AB,AD的中点,∴∠BFD=∠DEB=90°,∴∠GDB=∠GBD=30°,∴∠GDC=∠GBC=90°,DG=BG,∴∠BGD=180°﹣30°﹣30°=120°,故①选项正确;在△CDG和△CBG中,,∴△CDG≌△CBG(SSS),∴∠DGC=∠BGC=60°,∴∠GCD=30°,∴CG=2GD,∵DG=BG,∴CG=DG+BG,故②选项正确;∵△GBC为直角三角形,∴CG>BC,∴CG≠BD,∴△BDF与△CGB不全等,故③选项错误;∵BE=AB,BD=AB,∠DEB=90°,根据勾股定理,得DE=AB,==,∴S△ABD故④选项正确,故正确的有①②④,故选:B.10.(2022春•新抚区期末)如图,点P是菱形ABCD的对角线AC延长线上一点,过点P分别作AD,DC延长线的垂线,垂足分别为点E,F.若∠B=120°,AB=,则PE﹣PF的值为( )A.2B.3C.4D.6【分析】连接BD交AC于O,由菱形的性质和勾股定理得OA=3,则AC=6,再由含30°角的直角三角形的性质得PF=CP,则PE﹣PF=(AP﹣CP)=AC,即可得出答案.【解答】解:连接BD交AC于O,如图所示:∵四边形ABCD是菱形,∠ABC=120°,AB=2,∴∠BAD=∠BCD=180°﹣120°=60°,∠DAC=∠DCA=∠BAD=×60°=30°,AD=AB=2,BD⊥AC,在Rt△AOD中,OD=AD=×=,∴OA===3,∴AC=2OA=2×3=6,Rt△APE中,∠DAC=30°,∴PE=AP,在Rt△CPF中,∠PCF=∠DCA=30°,∴PF=CP,∴PE﹣PF=AP﹣CP=(AP﹣CP)=AC=×6=3,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022秋•牡丹区校级月考)如图,菱形ABCD的对角线相交于点O,若AC=24,AB=13,则菱形ABCD 的面积是 120 .【分析】由菱形的性质得AC⊥BD,OA=OC=AC=12,OB=OD=BD,再由勾股定理求出OB,得出BD的长,即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=12,OB=OD=BD,∴∠AOB=90°,∴OB===5,∴BD=2OB=10,∴菱形ABCD的面积=AC•BD=×24×10=120,故答案为:120.12.(2022秋•东明县校级月考)已知菱形的两条对角线长为10cm和24cm,那么这个菱形的周长为 52cm ,面积为 120cm2 .【分析】由菱形的性质得AC⊥BD,OA=OC=AC=12(cm),OB=OD=BD,再由勾股定理求出OB,得出BD的长,即可解决问题.【解答】解:如图,∵四边形ABCD是菱形,AC=24cm,BD=10cm,∴AB=BC=CD=AD,AC⊥BD,OA=OC=AC=12(cm),OB=OD=BD=5(cm),∴S=AC•BD=×24×10=120(cm2),∠AOB=90°,菱形ABCD∴AB===13(cm),∴菱形ABCD的周长=4AB=4×13=52(cm),故答案为:52cm,120cm2.13.(2022春•杭州期中)如图,菱形ABCD中,AC,BD相交于O,DE⊥BC于E,连接OE,若∠BAD=40°,则∠ODE的度数为 20° .【分析】根据菱形的性质得出∠DAO=BAD=20°,AC⊥BD,DO=BO,AD∥BC,求出DE⊥AD,根据垂直的定义求出∠ADE=90°,∠DEB=90°,求出∠ADO,∠ODE的度数,根据直角三角形斜边上的中线的性质得出OD=OE,求出∠ODE=∠OED即可.【解答】解:∵四边形ABCD是菱形,∠BAD=40°,∴∠DAO=BAD=20°,AC⊥BD,DO=BO,AD∥BC,∴∠DOA=90°,∴∠ADO=90°﹣∠DAO=70°,∵AD∥BC,DE⊥BC,∴DE⊥AD,∴∠ADE=90°,∴∠ODE=∠ADE﹣∠ADO=20°,∵DE⊥BC,∴∠DEB=90°,∵DO=BO,∴OE=BD=OD,∴∠OED=∠ODE=20°,故答案为:20°.14.(2022春•吴中区校级期中)如图,在菱形ABCD中,AB=2,∠A=120°,E,F分别是边AB和CD 上的点,EF⊥CD于点F,则线段EF的长度为 .【分析】连接AC,BD,根据菱形的性质和等边三角形的性质得出AC,进而得出BD,利用菱形的面积解答即可.【解答】解:连接AC,BD,相交于O,∵四边形ABCD是菱形,AB=2,∠A=120°,∴AB=BC,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=2,BO=,∴BD=2,∴菱形ABCD的面积=,∴EF=,故答案为:.15.(2022春•集美区校级期中)如图,在菱形ABCD中,∠B=60°,AB=a,点E,F分别是边AB,AD 上的动点,且AE+AF=a,则△CEF面积的最小值为 .【分析】由在边长为a的菱形ABCD中,易得△ABC、△CAD都是边长为a的正三角形,继而证得△ACE ≌△DCF,继而证得△CEF是正三角形,继而可得当动点E运动到点B或点A时,CE的值最大,当CE ⊥AB,即E为AB的中点时,EF的值最小,△CEF面积的最小值最小.【解答】解:连接AC、CE、CF,如图所示:∵四边形ABCD是边长为a的菱形,∠B=60°,∴△ABC、△CAD都是边长为a的正三角形,∴AB=BC=CD=AC=AD,∠CAE=∠ACB=∠ACD=∠CDF=60°,∵AE+AF=a,∴AE=a﹣AF=AD﹣AF=DE,在△ACE和△DCF中,,∴△ACE≌△DCF(SAS),∴∠ACE=∠DCF,∴∠ACE+∠ACF=∠DCF+∠ACF,∴∠ECF=∠ACD=60°,∴△CEF是正三角形,∴EF=CE=CF,当动点E运动到点B或点A时,CE的最大值为a,当CE⊥AB,即E为BD的中点时,CE的最小值为a,∵EF=CE,∴EF的最小值为a,∴△CEF面积的最小值为:,故答案为:.16.(2022•温江区校级自主招生)如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E作EF⊥BD,EG⊥AC,点F,G为垂足,若AC=10,BD=24,则FG的长为 6.5 .【分析】由菱形的性质得出OA=OC=5,OB=OD=12,AC⊥BD,根据勾股定理求出AD=13,由直角三角形斜边上的中线等于斜边的一半求出OE=6.5,证出四边形EFOG是矩形,得到EO=GF即可得出答案.【解答】解:连接OE,∵四边形ABCD是菱形,∴OA=OC=5,OB=OD=12,AC⊥BD,在Rt△AOD中,AD==13,又∵E是边AD的中点,∴OE=AD=6.5,∵EF⊥BD,EG⊥AC,AC⊥BD,∴∠EFO=90°,∠EGO=90°,∠GOF=90°,∴四边形EFOG为矩形,∴FG=OE=6.5.故答案为:6.5.17.(2022春•南岗区校级期中)如图,在边长为5的菱形ABCD中,∠BAD=60°,点E、点F分别在AD、CD上,且∠EBF=60°,连接EF,若AE=2,则EF的长度为 .【分析】连接BD,过E点作EH⊥AB于H点,如图,先根据菱形的性质得到AB=AD=5,AB∥CD,则可判断△ABD为等边三角形,所以BD=AB,∠ABD=60°,再证明∠ABE=∠DBF,∠FDB=∠EAB,则可判断△BDF≌△BAE,所以BF=BE,于是可证明△BEF为等边三角形得到EF=BE,接着利用含30度角的直角三角形三边的关系得到AH=1,EH=,然后利用勾股定理计算出BE,从而得到EF的长.【解答】解:连接BD,过E点作EH⊥AB于H点,如图,∵四边形ABCD为菱形,∴AB=AD=5,AB∥CD,∵∠BAD=60°,∴△ABD为等边三角形,∴BD=AB,∠ABD=60°,∵∠EBF=60°,∴∠ABD﹣∠EBD=∠EBF﹣∠EBD,即∠ABE=∠DBF,∵CD∥AB,∴∠FDB=∠ABD=60°,∴∠FDB=∠EAB,在△BDF和△BAE中,,∴△BDF≌△BAE(ASA),∴BF=BE,而∠EBF=60°,∴△BEF为等边三角形,∴EF=BE,在Rt△AEH中,∵∠A=60°,∴AH=AE=1,∴EH=AH=,在Rt△BEH中,∵EH=,BH=BA﹣AH=5﹣1=4,∴BE==,∴EF=BE=.故答案为:.18.(2022春•鼓楼区校级期中)如图,在菱形ABCD中,AB=6,∠ABC=120°,点E在边BC上(不与端点重合),AE交BD于点F,以EF为边向外作等边△EFG,连接CF,BG,现给出以下结论:①∠EAB=30°;②△ABF≌△CBF;③直线AB与直线DC的距离是9;④BF+BG=BE.其中正确的是 ②③④ (写出所有正确结论的序号).【分析】连接AC,先证明△ABD和△CBD都是等边三角形,再证明△ADC≌△ABC,则∠CAD=∠CAB =30°,假设∠EAB=30°,则∠EAB=∠CAB,所以点E与点C重合,这与已知条件相矛盾,所以∠EAB≠30°,可判断①错误;由AB=CB,∠ABF=∠CBF,BF=BF根据全等三角形的判定定理“SAS”可证明△ABF≌△CBF,可判断②正确;作DI⊥AB于点I,则∠AID=90°,所以∠ADI=30°,则AI=×6=3,可根据勾股定理求得DI=9,可判断③正确;在BC上截取BH=BF,连接FH,则△BFH是等边三角形,而△EFG是等边三角形,可证明△BFG≌△HFE,得BG=HE,所以BF+BG=BH+HE=BE,可判断④正确.【解答】解:如图,连接AC,∵四边形ABCD是菱形,∠ABC=120°,AB=6,∴AD=AB=CD=CB=6,AD∥BC,AB∥CD,∴∠DAB=∠DCB=180°﹣∠ABC=60°,∴△ABD和△CBD都是等边三角形,∴∠ABF=∠CBF=60°,在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠CAD=∠CAB=∠DAB=30°,假设∠EAB=30°,则∠EAB=∠CAB,∴AE与AC重合,点E与点C重合,与已知条件相矛盾,∴假设不成立,即∠EAB≠30°,故①错误;在△ABF和△CBF中,,∴△ABF≌△CBF(SAS),故②正确;作DI⊥AB于点I,则∠AID=90°,∵∠DAI=60°,∴∠ADI=30°,∴AI=AD=×6=3,∴DI===9,∴直线AB与直线DC的距离是9,故③正确;在BC上截取BH=BF,连接FH,则△BFH是等边三角形,∵△EFG是等边三角形,∴FB=FH,FG=FE,∠BFH=∠GFE=60°,∴∠BFG=∠HFE=60°﹣∠GFH,在△BFG和△HFE中,,∴△BFG≌△HFE(SAS),∴BG=HE,∴BF+BG=BH+HE=BE,故④正确,故答案为:②③④.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022秋•薛城区月考)如图,已知A,F,C,D四点在同一条直线上,AF=CD,AB∥ED,且AB=ED.(1)求证:△ABC≌△DEF.(2)如果四边形EFBC是菱形,已知EF=3,DE=4,∠DEF=90°,求AF的长度.【分析】(1)根据SAS即可证明△ABC≌△DEF;(2)解直角三角形求出DF、OE、OF的长,即可解决问题.【解答】(1)证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+FC=CD+FC,即AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).(2)解:如图,连接EB交AD于O.在Rt△EFD中,∠DEF=90°,EF=3,DE=4,∴DF===5,∵四边形EFBC是菱形,∴OF=OC,BE⊥CF,∴EO===,∴OF=OC===,∴CF=2OF=,∴AF=CD=DF﹣FC=5﹣=.20.(2022春•姑苏区校级期中)如图,已知菱形ABCD的对角线AC、BD相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:四边形BECD是平行四边形;(2)若∠E=60°,BD=8,求菱形ABCD的面积.【分析】(1)根据菱形的对边平行且相等可得AB=CD,AB∥CD,然后证明得到BE=CD,BE∥CD,从而证明四边形BECD是平行四边形;(2)欲求菱形ABCD的面积,求得AC、BD的长度即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=CD=BC,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形;(2)解:由(1)知,四边形BECD是平行四边形,则BD∥CE.∵∠E=60°,∴∠ABD=60°.∵四边形ABCD是菱形,∴AD=AB.∴△ABD是等边三角形.∴AB=BD=8.又∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=4.∴OA===4.∴AC=8.∴菱形ABCD的面积=AC•BD=×8×8=32.21.(2022•雨花区校级开学)如图,四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F.(1)求证:△ABE≌△ADF;(2)若AE=4,CF=2,求菱形的面积.【分析】(1)由菱形ABCD的四条边相等、对角相等的性质知AB=AD,∠B=∠D;然后根据已知条件“AE⊥BC,AF⊥CD”知∠AEB=∠AFD;最后由全等三角形的判定定理AAS证明△ABE≌△ADF;(2)由全等三角形△ABE≌△ADF的对应边相等知BE=DF,然后根据菱形的四条边相等求得AB=CD,设AB=CD=x,已知CF=2,则BE=DF=x﹣2,利用勾股定理即可求出菱形的边长,进而可以求菱形的面积.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD,在△ABE和△ADF中,,∴△ABE≌△ADF(AAS);(2)解:设菱形的边长为x,∵AB=CD=x,CF=2,∴DF=x﹣2,∵△ABE≌△ADF,∴BE=DF=x﹣2,在Rt△ABE中,根据勾股定理得,AE2+BE2=AB2,即42+(x﹣2)2=x2,解得x=5,∴菱形的边长是5,∴菱形的面积=BC•AE=5×4=20.22.(2022春•南浔区期末)如图,已知四边形ABCD是菱形,点E、F分别是边AB、BC的中点,连结DE、EF、DF.(1)求证:△DEF是等腰三角形;(2)若AD=10,EF=8,求菱形ABCD的面积.【分析】(1)根据菱形的性质得到∠A=∠C,AD=CD=AB=BC,根据全等三角形的性质即可得到结论;(2)连接AC,BD交于O,根据三角形中位线定理得到AC=16,根据菱形的性质得到AO=AC=8,AC⊥BD,根据勾股定理得到OB==6,根据菱形的面积公式即可得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴∠A=∠C,AD=CD=AB=BC,∵点E、F分别是边AB、BC的中点,∴AE=AB,CF=BC,∴AE=CF,∴△ADE≌△CDF(SAS),∴DE=DF,∴△DEF是等腰三角形;(2)解:连接AC,BD交于O,∵点E、F分别是边AB、BC的中点,∴EF是△ABC的中位线,∵EF=8,∴AC=16,∵四边形ABCD是菱形,∴AO=AC=8,AC⊥BD,∴OB==6,∴BD=12,∴菱形ABCD的面积=AC•BD=×16×12=96.23.(2022春•重庆期末)如图,在菱形ABCD中,∠C=60°,E是对角线BD上一点.(1)如图1,若E是线段BD的中点,且AB=6,求AE的长度;(2)如图2,F是线段AB延长线上一点,且DE=BF,连接AE,EF.求证:AE=EF.【分析】(1)由四边形ABCD是菱形,且∠DAB=60°,证明△ABD是等边三角形,根据E是线段BD 的中点,进而可以解决问题;(2)作EG∥AB交AD于点G,先证明△DGE是等边三角形,得DG=DE=GE,再证明△AGE≌△EBF,得AE=EF.【解答】(1)解:如图1,∵四边形ABCD是菱形,∴∠DAB=∠C=60°,AB=AD,∴△ABD是等边三角形,∴AD=BD=AB=6,∵E是线段BD的中点,∴BE=DE=3,∴AE=BE=3;(2)证明:如图2,作EG∥AB交AD于点G,∵△DAB是等边三角形,∴∠GDE=60°,∠DGE=∠DAB=60°,∠DEG=∠DBA=60°,∴△DGE是等边三角形,∴DG=DE=GE,∵BF=DE,∴GE=BF,∵AD=BD,∴AD﹣DG=BD﹣DE,∴AG=EB,∵∠AGE=180°﹣∠DGE=120°,∠EBF=180°﹣∠DBA=120°,∴∠AGE=∠EBF,在△AGE和△EBF中,,∴△AGE≌△EBF(SAS),∴AE=EF.24.(2022春•抚远市期末)在菱形ABCD中,∠ABC=60°,P是射线BD上一动点,以AP为边向右侧作等边三角形APE,点E的位置随点P位置的变化而变化,连接CE.(1)如图①,当点E在菱形ABCD内部或边上时,求证:BD=CE+PD;(2)如图②、图③,请分别写出线段BD,CE,PD之间的数量关系,不需证明.【分析】(1)先判断出∠BAP=∠CAE,进而判断出△BAP≌△CAE,得出BP=CE,∠ABP=∠ACE=30°,再判断出∠CAH+∠ACH=90°,即可得出结论;(2)同(1)的方法即得出结论;【解答】(1)证明:如图1,连接AC,延长CE交AD于H,∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°,∴AB=AC,∠BAC=60°,∠CAH=60°,∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∵∠BAC=∠PAE,∴∠BAP=∠CAE,∴△BAP≌△CAE(SAS),∴BP=CE,∵BD=BP+PD,∴BD=CE+PD;(2)解:如图2,BD=CE+PD,连接AC,AC与BD交于点O,∴△ABC,△ACD为等边三角形,在△ABP和△ACE中,AB=AC,AP=AE,又∵∠BAP=∠BAC+∠CAP=60°+∠CAP,∠CAE=∠EAP+∠CAP=60°+∠CAP,∴∠BAP=∠CAE,∴△ABP≌△ACE(SAS),∴BP=CE,∵BD=BP+PD,∴BD=CE+PD;如图3,BD=CE﹣PD,连接AC,AC与BD交于点O,∴△ABC,△ACD为等边三角形,在△ABP和△ACE中,AB=AC,AP=AE,又∵∠BAP=∠BAD+∠DAP=120°+∠DAP,∠CAE=∠CAD+∠DAP+∠PAE=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE(SAS),∴BP=CE,∵BD=BP﹣PD,∴BD=CE﹣PD.。
菱形的性质专项练习30题(有答案)ok
菱形的性质专项练习30题(有答案)1.如图,菱形ABCD中,对角线AC、BD交于点O,过点A作AH⊥BC,交BD于E,垂足为H,已知CH=4,AH=8(1)求菱形的周长;(2)求OE的长度.2.如图,菱形ABCD中,两条对角线AC和BD相交于点O,AC=6cm,BD=8cm.(1)求菱形ABCD的面积;(2)求菱形ABCD的周长.3.如图,菱形对角线AC,BD相交于一点O,且AC=12cm,BD=16cm.求这个菱形的周长和面积.4.如图,已知菱形ABCD的边长是2cm,BAD=120°.(1)试说明:△ABC是等边三角形;(2)求菱形两条对角线的长.5.如图,菱形ABCD的两条对角线AC与BD相交于点O,AB=5,OA=3.(1)求菱形ABCD的周长;(2)求菱形ABCD的面积.6.如图,菱形ABCD的周长为200cm,对角AC与BD交于点O,且AC=60cm,试求菱形ABCD的面积.7.已知:菱形ABCD的两条对角线AC与BD相交于点O,且AC=6,BD=8,求菱形的周长和面积.8.如图,菱形ABCD的对角线AC、BD相交于点O,DE∥AC,AE∥BD.试判断四边形AODE的形状,并说明理由.9.如图,O为菱形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AC=6,BD=8,求线段OE的长.10.如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F.(1)证明:AM=DM;(2)若DF=2,求菱形ABCD的周长;(3)在没有辅助线的前提下,图中共有_________对相似三角形.11.菱形ABCD中,∠B=60°,一块三角板的60°角的顶点绕点A转动,两边分别交BC、CD于点E、F.(1)说明△ABC、△ACD都是等边三角形.(2)判断△AEF的形状,说明理由?(3)如果AB=2,写出△CEF的周长的最小值.12.如图,O是菱形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE,CE交于点E.(1)求证:四边形OCED是矩形;(2)若菱形ABCD的周长为20,矩形OCED的周长为14,求菱形ABCD的面积.13.如图,点E、F分别在菱形ABCD的边BC、AD上,且AF=CE,∠BAE=25°,∠BCD=130°,求∠AFC的度数.14.如图,平行四边形ABCD中,AE是BC边上的高,AE是BC沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG:(2)若四边形ABFG是菱形,且AB:BC=2:3,求∠B的度数.15.如图,菱形ABCD中,AE⊥BC,垂足为点E,BE=CE,求∠BAD的度数.16.如图,已知一四边形菜地ABCD为菱形,点E,F分别位于边AB,BC上,AD=6,AE=5BE,BF=5CF,若△DEF 为等边三角形.(1)求∠A的度数;(2)求菱形ABCD的面积.17.如图,已知菱形ABCD,∠B=60°,△ADC内一点M满足∠AMC=120°,若直线BA与CM交于点P,直线BC 与AM交于点Q,求证:P,D,Q三点共线.18.已知:如图,菱形ABCD的对角线交于点O,且AO、BO的长分别是方程x2﹣(2m﹣1)x+4(m﹣1)=0的两根,菱形ABCD的周长为20,求m的值.19.如图所示,在菱形ABCD中,点E,F分别在CD,BC上,且CE=CF,求证:AE=AF.20.已知:菱形ABCD中,对角线AC=16cm,BD=12cm,BE⊥DC于点E,求菱形ABCD的面积和BE的长.21.如图,菱形ABCD中,E是AD中点,EF⊥AC交CB的延长线于点F.(1)DE和BF相等吗?请说明理由.(2)连接AF、BE,四边形AFBE是平行四边形吗?说明理由.22.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.若AE垂直平分BC,AF垂直平分CD.求证:(1)AE=AF;(2)△AEF为等边三角形.23.如图,在菱形ABCD中,过点A作AE⊥BC,垂足E为BC的中点,连接DE,F为DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,求DE和AF的长.24.如图,边长为a的菱形ABCD中,∠A=60°,过C任作直线分别交AB、AD的延长线于E、F,连接DE、BF 交于M,若△BEM和△DFM外接圆的半径分别是R1、R2,求证:R1•R2为定值,并求这个定值.25.如图,四边形ABCD为菱形,已知A(0,6),D(﹣8,0).(1)求点C的坐标;(2)设菱形ABCD对角线AC、BD相交于点E,求经过点E的反比例函数解析式.26.如图,菱形ABCD中,点P是AB的中点,延长DP交CB的延长线于E点.求证:BE=CD.27.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.28.如图,在菱形ABCD中,P是AB上的一个动点(不与A,B重合),连接DP交对角线AC于E,连接EB.求证:∠APD=∠EBC.29.如图,在菱形ABCD中,E是BC延长线上一点,连接AE,使得∠E=∠B,过D作DH⊥AE于H.(1)若AB=10,DH=6,求HE的长;(2)求证:AH=CE+EH.30.如图,已知点O在菱形ABCD内,过点O分别作OE⊥AB于E,OF⊥AD于F,且OE=OF.(1)求证:OB=OD;(2)把菱形换成矩形、平行四边形、等腰三角形,上述结论仍成立吗?(写出结论,不证明)参考答案:1.(1)设AB=x,则BC=x,BH=BC﹣CH=x﹣4,在Rt△ABH中,AH2+BH2=AB2,∴82+(x﹣4)2=x2,解得x=10,∴菱形周长为40.(2)∵AH=8,CH=4,∴AC==4,∴CO=AO=AC=2,∵BC=10,CO=2,∴BO==4∵∠BHE=∠BOC=90°,∠EBH=∠CBO,∴△BHE∽△BOC,∴,∴,∴EH=3,∴AE=AH﹣EH=8﹣3=5,∴OE==2.(1)菱形的对角线为AC=6cm,BD=8cm,则菱形的面积为AC•BD=×6×8=24cm2;(2)菱形对角线互相垂直平分,∴BO=OD=4cm,AO=OC=3cm,∴AB==5cm,故菱形的周长为20cm,答:菱形的周长为20cm,面积为24cm2.3.∵在菱形ABCD中,AC=12cm,BD=16cm,∴S菱形ABCD =×AC×BD=×12×16=96(cm2).∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=6cm,OB=BD=8cm,∴AB==10cm,∴菱形ABCD的周长为:4×10=40(cm).故这个菱形的周长为40cm,面积为96cm24.(1)∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC,∠BAC=∠BAD=60°,∴△ABC是等边三角形;(2)∵四边形ABCD是菱形,∴AC⊥BD,∵∠BAC=60°,AB=2cm,∴∠ABO=30°,∴OA AB=1(cm),∴OD==(cm),∴AC=2OA=2cm,BD=2OD=2cm.5.(1)∵四边形ABCD是菱形,AB=5,∴菱形ABCD的周长等于5×4=20;(2)∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB=,==4,∴AC=2OA=6,BD=2OB=8,∴S菱形ABCD=×AC×BD=×6×8=246.菱形周长为200cm,则AB=50cm,∵AC=60cm,∴AO=30cm,菱形对角线互相垂直,∴△AOB为直角三角形,在Rt△AOB中,BO==40cm,∴BD=2BO=80cm,∴菱形ABCD的面积为S=×60cm×80cm=2400cm2,答:菱形ABCD的面积为2400cm2.7.由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,∴AB=5,∴周长L=4AB=20;∵菱形对角线相互垂直,∴菱形面积是S=AC×BD=24.综上可得菱形的周长为20、面积为24.8.四边形AODE是矩形.∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD∴∠AOD=90°,∴四边形AODE是矩形9.(1)四边形OCED是矩形.理由如下:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴∠COD=90°,∴四边形OCED是矩形;(2)在菱形ABCD中,∵AC=6,BD=8,∴OC=AC=×6=3,OD=BD=×8=4,∴CD===5,在矩形OCED中,OE=CD=510.1)证明:连接BD,∵四边形ABCD是菱形,∴AC⊥BD,∵EM⊥AC,∴EM∥BD,∵E为AB的中点,∴M为AD的中点,∴AM=DM;(2)解:∵EB∥FD,EM∥BD,∴四边形FDBE是平行四边形,∴FD=BD,∵DF=2,∴BE=2,∴AB=2BE=2×2=4,∴菱形ABCD的周长=4AB=4×4=16;(3)设ME与AC的交点为G,相似三角形有:△AGE∽△AGM,△AGE∽△CGF,△AGM∽△CGF,△AEM∽△DFM,△ABC∽△ADC共5对.11.(1)∵菱形ABCD中,AB=BC,AD=CD,∠B=∠D=60°,∴△ABC和△ACD都是等边三角形.(2)∵∠B=∠ACD=60°,AB=AC,∴△ABC是等边三角形,∴∠BAC=∠EAF=60°,∴∠BAE=∠CAF,∴△ABE≌△ACF,∴AE=AF,又∠EAF=60°,∴△AEF是等边三角形;(3)∵EC+CF=BE+EC=BC=2,△AEF是等边三角形,∴EF=AE,∴△CEF的周长=2+AE,由“垂线段最短”,当AE⊥BC时,AE最短,AE=,∴△CEF的周长=2+12.(1)∵DE∥AC,CE∥BD∴四边形OCED为平行四边形,∵AC,BD为菱形的对角线,∴AC⊥BD,即∠COD=90°,∴平行四边形OCED为矩形.(2)菱形ABCD的周长为20,则菱形的边长为5,即=5,矩形OCED的周长为14,则OC+OD=7,解题OC=3,OD=4,∴AC=6,BD=8,∴菱形的面积为×6×8=24.答:菱形ABCD的面积为2413.由菱形ABCD,得∠BAD=∠BCD=130°,∠BAE=25°,∴∠EAF=105°,又∵AF=CE,AD∥BC,∴四边形AECF是平行四边形,则∠AFC=180°﹣∠EAF=180°﹣105°=75°.14.(1)∵∠ABE=∠CDG,∠AEB=∠CGD,AE=CG,∴△ABE≌△CDG,∴BE=DG,(2)四边形ABFG是菱形,则BF=AB,∵AB:BC=2:3∴FC=AB,∵AE是BC沿BC方向平移,使点E与点C重合,得△GFC.∴BE=FC,∴AB=2BE,∴直角△ABE中,∠BAE=30°,∴∠ABE=60°15.∵四边形ABCD是菱形,∴AB=BC,AD∥BC,∵AE⊥BC,BE=CE,∴AB=AC,∴AB=AC=BC,即△ABC是等边三角形,∴∠B=60°,又∵AD∥BC,∴∠BAD=180°﹣∠B=120°16.(1)如图,过E作AD,BC的垂线交AD和CB的延长线于H,G.∵AD∥CB,∴△BGE∽△AHE,∵AB=AD=6,∴AE=BF=5,CF﹣BE=1,令BG=x,GE=y,则EH=5y,AH=5x,在△FGE 中,,在△DEH 中,,根据EF=ED,BE=1,易得EF2=ED2,即有,解得,,∴tan∠A=,∴∠A=60°;(2)由以上求得知,EH=AEsin60°=,,故.17.连接PD,DQ,由已知∠PAC=120°,∠QCA=120°,∴△PAC∽△AMC,△AMC∽△ACQ.∴,.∴AC2=PA•QC,又AC=AD=DC.∴,又∠PAD=∠DCQ=60°,∴△PAD∽△DCQ,∴∠APD=∠CDQ.∴∠PDA+∠ADC+∠CDQ=180°,∴P,D,Q三点共线.18.∵菱形ABCD的周长为20,∴菱形的边长AB=5,由直角三角形的三边关系可得:AO2+BO2=25,又有根与系数的关系可得:AO+BO=2m﹣1,AO•BO=4(m﹣1),∴AO2+BO2=(AO+BO)2﹣2AO•BO=(2m﹣1)2﹣2×4(m﹣1)=25,整理得:4m2﹣12m+9=25,解得:m=4或﹣1(舍去).故m=419.∵四边形ABCD为菱形,∴AD=AB=CD=CB,∠B=∠D.又∵CE=CF,∴CD﹣CE=CB﹣CF,即DE=BF.∴△ADE≌△ABF.∴AE=AF20.菱形ABCD的面积S=×16×12=96,∵AC⊥BD,∴AB=10,∴CD=AB=10,∴×CD×BE=48,∴BE=cm,所以菱形ABCD的面积为96cm2,BE 的长为cm21.(1)DE=BF.理由如下:如图,设AB、EF相交于G,连接BD,在菱形ABCD中,BD⊥AC,∵EF⊥AC,∴EG∥BD,∵E是AD中点,∴EG是△ABD的中位线,∴AG=BG,又∵AD∥BC,∴∠AEG=∠BFG,在△AEG和△BFG 中,,∴△AEG≌△BFG(AAS),∴AE=BF,∵E是AD中点,∴AE=DE,∴DE=BF;(2)四边形AFBE是平行四边形.理由如下:∵四边形ABCD是菱形,∴AD∥BC,∴AE∥BF,又∵AE=BF,∴四边形AFBE是平行四边形22.(1)∵四边形ABCD是菱形,∴AB=CB=CD=AD,∠B=∠D,∵BE=DF∴△ABE≌△ADF(SAS),∴AE=AF;(2)连接AC,∵AE垂直平分BC,AF垂直平分CD.∴AB=AC=AD,∴AB=AD=BC=CD=AC,∴∠B=60°,∴∠BCD=120°,∴∠EAF=60°,∴△AEF为等边三角形.23.(1)证明:∵∠B+∠C=180°,∠AFE+∠AFD=180°,∠AFE=∠B,∴∠C=∠AFD.∵AD∥BC,∴∠ADF=∠DEC.∵AD=DC,∴△ADF∽△DEC.(2)解:∵AB=4,E为BC的中点,∴BE=2,AE=,DE=.∵△ADF∽△DEC,∴.∴AF=.24.△BEC∽△DCF,∴.∴△BED∽△DBF.∴∠BED=∠DBM.∴∠BME=∠BDM+∠DBM=∠BDM+∠BED=∠ABD= 60°.∴由正弦定理得:2R1=,2R2=.∴R1•R2=•==.25.(1)∵A(0,6),D(﹣8,0),∴OA=6,OD=8,∴由勾股定理可得AD=10,∵四边形ABCD为菱形∴CD=AD=10,∴OC=2,∴C(2,0),(2)∵A(0,6)C(2,0),∴E(1,3),设经过点E 的反比例函数解析式为,将E(1,3)代入求得k=3∴反比例函数解析式为:26.∵点P是AB的中点,∴AP=BP,∵四边形ABCD是菱形,∴AD=DC,AD∥BC,∴∠A=∠PBE,∵在△ADP和△BEP中,,∴△ADP≌△BEP(ASA),∴BE=AD,∵AD=CD,∴BE=CD27.(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DF,∴△ABE≌△ADF,∴AE=AF;(2)连接AC,∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD.∵AB=BC=CD=DA,∴△ABC和△ACD都是等边三角形.∴∠CAE=∠BAE=30°,∠CAF=∠DAF=30°.∴∠EAF=∠CAE+∠CAF=60°又∵AE=AF,∴△AEF是等边三角形.28.∵四边形ABCD是菱形,∴BC=CD,AC平分∠BCD,在△BCE和△DCE 中,,∴△BCE≌△DCE(SAS),∴∠EBC=∠EDC,又AB∥DC,∴∠APD=∠EDC,∴∠EBC=∠APD29.(1)∵四边形ABCD是菱形,∴AD=AB=10,∵DH⊥AE,∴∠AHD=90°,在Rt△ADH中,AH===8,∵∠E=∠B,∴AE=AB=10,∴HE=AE﹣AH=10﹣8=2;证明:(2)过点D作DF⊥BC的延长线于点F,连接DE,∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,AD=CD,∴∠1=∠B,∠2=∠3,∵∠B=∠2,∴∠1=∠3,∵DH⊥AE,DF⊥CF,∴∠4=∠F,在△ADH和△CDF中,,∴△ADH≌△CDF(AAS),∴AH=CF,DH=DF,∴在Rt△DEH和Rt△DEF中,,∴Rt△DEH≌Rt△DEF(HL),∴EH=EF,∵CF=CE+EF,∴AH=CE+EH30.(1)证明:连接OA、AC、BD,∵OE⊥AB,OF⊥AD,且OE=OF,∴∠BAO=∠DAO,∵菱形ABCD,∴AC⊥BD,MB=MD,∠BAC=∠DAC,∴O在AC上,∴OB=OD.(2)解:矩形和平行四边形时,结论不成立,等腰三角形时,结论成立,因为:矩形和平行四边形的对角线不一定平分对角,而等腰三角形的三线合一性质,能得出结论成立菱形的性质--11。
人教版八年级下册数学菱形同步练习、含答案
菱形班级:________ 姓名:________一、选择题1.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是菱形B.对角线互相垂直的平行四边形是菱形C.对角线互相平分且相等的四边形是菱形D.对角线相等的四边形是菱形2.菱形的周长为12cm,相邻两角之比为5:1,那么菱形对边间的距离是()A.6cm B.1.5cm C.3cmD.0.75cm3.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图1)则∠EAF等于()A.75°B.60°C.45°D.30°图1 图2 4.已知菱形ABCD中,AE⊥BC于E,若S菱形ABCD=24,且AE=6,则菱形的边长为()A.12 B.8 C.4 D.25.菱形的边长是2 cm,一条对角线的长是23 cm,则另一条对角线的长是()A.4cm B.3cm C.2cmD.23cm二、判断正误:(对的打“√”错的打“×”)1.两组邻边分别相等的四边形是菱形.…………………………………………………()2.一角为60°的平行四边形是菱形.…………………………………………………()3.对角线互相垂直的四边形是菱形.……………………………………………………()4.菱形的对角线互相垂直平分.…………………………………………………………()三、填空题1AD,则四1.如图3,菱形ABCD中,AC、BD相交于O,若OD=2个内角为________.图3 图4 2.若一条对角线平分平行四边形的一组对角,且一边长为a时,如图4,其他三边长为________;周长为________.1∠BAC,则菱3.菱形ABCD中,AC、BD相交于O点,若∠OBC=2形的四个内角的度数为____________.4.若菱形的两条对角线的比为3:4,且周长为20cm,则它的一组对边的距离等于__________cm,它的面积等于________cm2.5.菱形ABCD中,如图5,∠BAD=120°,AB=10cm,则AC=________cm,BD=________ cm.图5 图6四、已知:△ABC中,CD平分∠ACB交AB于D,DE∥AC交BC于E,DF∥BC交AC于F.求证:四边形DECF是菱形.五、已知ABCD中,如图7,BE平分∠ABC交AD于E,若CE平分∠DCB,且AB=2,求:ABCD的其余边长.图7参考答案一、1.B 2.B 3.B 4.C 5.C二、1.×2.×3.×4.√三、1.60°,120°,60°,120°2.分别为a4a2424 5.10 103 3.60°,120°,60°,120°4.5四、证明:∵DE∥AC,DF∥BC∴四边形DECF为平行四边形∠2=∠3又∵∠1=∠2∴∠1=∠3∴DE=EC∴DECF为菱形(有一组邻边相等的平行四边形是菱形)五、解:过E作EF∥AB交BC于F∵ABCD,∴AD∥BC∴ABFE是平行四边形∴EF=AB,∠1=∠3又∵∠2=∠1,∴∠2=∠3∴BF=FE,同理:EF=FC∴F为BC的中点.又BE、CE为∠ABC、∠DCF的平分线AB∥CD,∴∠EBC+∠ECB=90°1BC=AB∴∠BEC=90°,∴EF=2∴AB=CD=2,AD=BC=2AB=4答题方法:试卷检查五法重视答案,要对结果负责不少同学都说,明明题目都会做,然而考试时却不是这里出错就是那里出错,总是拿不了高分。
八年级数学《菱形》练习题含答案
八年级数学《菱形》练习题随堂演练一、填空题1.菱形的对角线长为24和10,则菱形的边长为 ,周长为 .2.菱形的一边与两条对角线构成的二角之比为5:4,则菱形的各内角为 , , , .3.菱形的两条对角线分别为3和7,则菱形的面积为 .4.已知在菱形ABCD 中,E ,F 是BC ,CD 上的点,且AE =EF =AF =AB ,则∠B= .5.已知菱形两邻角的比是1:2,周长为40cm ,则较短对角线的长是 .6.已知菱形的面积等于80cm 2,高等于8cm ,则菱形的周长为 .7.已知菱形ABCD 中AE ⊥BC ,垂足E ,F 分别为BC ,CD 的中点,那么∠EAF 的度数为 .8.顺次连结菱形各边的中点,所得的四边形为 形.二、选择题1.能够判定一个四边形是菱形的条件是( )A .对角线相等且互相平分B .对角线相等且对角相等C .对角线互相垂直D .两组对角分别相等且一条对角线平分一组对角2.菱形ABCD ,若∠A:∠B =2:1,∠CAD 的平分线AE 和边CD 之间的关系是( )A .相等B .互相垂直且不平分C .互相平分且不垂直D .垂直且平分3.已知菱形ABCD 的周长为40cm ,BD=34AC ,则菱形的面积为( ) A .96cm 2 B .94cm 2 C .92cm 2 D .90cm 24.菱形的周长等于高的8倍,则这个菱形较大内角是( )A .60°B .90°C .120°D .150°5.菱形具有而矩形不具有的性质是( )A .对角线互相平分B .对角线互相垂直C .对角线相等D .对边平行且相等6.下列说法正确的是( )A .对角线相等且互相垂直的四边形是菱形B .对角线相等的四边形是矩形C .对角线互相垂直平分的四边形是菱形D .邻边相等的四边形为菱形7.矩形具有而菱形不具有的性质是( )A .对角相等且互补B .对角线互相平分C .一组对边平行,另一组对边相等D .对角线互相垂直8.菱形的对角线把它分成全等的直角三角形的个数是( )A .4个B .3个C .2个D .1个三、解答题1.如图,在菱形ABCD中,延长AD到E,连结BE交CD于H,交AC于F,且BF=DE,求证:DH=HF.2.如图,在菱形ABCD中,E是AD的中点,EF⊥AC交CB的延长于F,交AC于M,求证:AB与EF互相平分.3.已知菱形的面积为24cm2,边长为5cm,求该菱形中一组对边之间的距离.4.已知:如图,在菱形ABCD中,BD是对角线,过D作DE⊥BA交BA延长线于点E,若BD=2DE,AB=4,求菱形的面积。
八年级数学下册《菱形》练习题(附含答案)
八年级数学下册《菱形》练习题(附含答案)一、单选题1.下列属于菱形具有的性质是()A.对角线相等B.邻角相等C.对角线互相垂直D.邻边互相垂直2.菱形的周长为8cm,高为1cm,则菱形两邻角度数比为()A.4:1 B.5:1 C.6:1 D.7:13.已知某菱形的周长为8cm,高为1cm,则该菱形的面积为()A.28cm2cm B.26cm D.24cm C.24.如图,已知四边形ABCD的对角线互相垂直,若适当添加一个条件,就能判定该四边形是菱形.那么这个条件可以是()A.BA=BC B.AC=BDC.AB∥CD D.AC、BD互相平分5.已知:如图,过四边形ABCD的顶点A、C、B、D分别作BD、AC的平行线围成四边形EFGH,如果EFGH成菱形,那么四边形ABCD必定是()A.菱形B.平行四边形C.矩形D.对角线相等的四边形6.如图,菱形ABCD中,对角线AC与BD相交于点O,H为AD边的中点,BC=8cm,则OH的长为()A .8cmB .6cmC .4cmD .2cm7.如图,在菱形ABCD 中,AC 、BD 相交于O ,∠ABC=70°,Ev 是线段AO 上一点,则BEC ∠的度数可能是( )A .100︒B .70︒C .50︒D .20︒8.如图,在菱形ABCD 中,70ABC ∠=︒,对角线AC 、BD 相交于点O ,E 为BC 中点,则COE ∠的度数为( )A .70°B .65°C .55°D .35°9.如图,菱形ABCD 中,对角线AC ,BD 交于点O ,120ADC ∠=︒,过点O 的直线与AD ,BC 分别交于点E ,F ,若四边形BEDF 是矩形,则∠DOE 的度数是( )A .60°B .45°C .30°D .15°10.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为( ).A .48B .24C .12D .6二、填空题11.菱形ABCD 的对角线AC ,BD 相交于点O ,AC=10,BD=24,则菱形ABCD 的周长为_____.12.菱形一条对角线长为12cm ,周长为40cm ,则菱形的面积为_________平方厘米13.如图,在菱形ABCD 中,O 是对角线BD 上一点,O 经过点A ,B ,C ,若O 的半径为2,OD=4,则BC 的长为______.14.如图,菱形ABCD 中,对角线AC 、BD 交于O ,DE AB ⊥于点E ,连接OE ,若2BAD α∠=,则DEO ∠为______(用含α的代数式表示).15.如图,点,,,E F G H 分别是,,,BD BC AC AD 的中点,下列结论:①EH EF =;②当AB=CD ,EG 平分HGF ∠;③当AB CD ⊥时,四边形EFGH 是矩形;其中正确的结论序号是_____________.三、解答题16.如图,在ABC 中,B D ∠=∠.请用尺规作图法,在ABC 外求作一点C ,使得四边形ABCD 是菱形.(保留作图痕迹,不写作法)17.如图,四边形ABCD 的对角线互相平分,请你添加一个条件使之变为菱形,并说明理由.18.图①、图②都是由边长为1的小菱形构成6×6的网格,每个小菱形的顶点称为格点.请仅用无刻度直尺在网格中完成下列画图(1)在图①中,画出一个矩形ABCD,使C、D两点在格点上;(2)在图②中,若∠P=60°,画一个矩形EFGH,使矩形的各顶点不在格点上,且两边长分别为3和2.DE=2.19.如图,矩形ABCD的对角线AC与BD相交于点O,CE//BD,DE//AC,AD=(1)求证:四边形OCED是菱形;(2)求四边形OCED的面积.20.如图,将一张长方形纸片ABCD沿CE折叠,使点B与AD边上的点B′重合.过点B′作B′F//EB交CE于点F,连接EB′与BF.(1)求证:BE=BF;(2)若DC=3,AB′=1,求四边形EBFB′的周长.参考答案1.C2.B3.A4.D5.D6.C7.B8.C9.A10.C11.5212.9613.314.α15.②③16.解:如图所示∵分别以B,D为圆心,AB为半径画弧,两弧相交于点C=∴BC BA=DC DA∵B D∠=∠∴AB AD=∴CB CD AD AB===∴四边形ABCD是菱形,即点C是所求作的点.17.解:添加AB=BC∵四边形ABCD是对角线互相平分的四边形∴四边形ABCD是平行四边形∵AB=BC∴四边形ABCD是菱形.18.解:(1)如图①,矩形ABCD即为所求;(2)如图②,矩形EFGH即为所求.19.(1)证明:∵CE BD∥∥DE AC∴四边形OCED是平行四边形.∵矩形ABCD的对角线AC与BD相交于点O ∴OD=OC∴平行四边形OCED是菱形.(2)连接OE,如图∵DE=2∴AC=2OC=2DE=4∵AD=23∴DC2222--=4(23)2AC AD∵DE AC∥,AO=OC=DE∴四边形AOED是平行四边形.∴OE=AD=23∴菱形OCED 的面积为232DC OE ⨯= 20. (1)证明:由翻折可知:∠B ′EF =∠BEF ,BE =B ′E ∵B ′F //EB∴∠B ′FE =∠BEF∴∠B ′FE =∠B ′EF∴B ′F =B ′E∴BE =B ′F∴四边形BE B ′F 是平行四边形∵B ′F =B ′E∴四边形BE B ′F 是菱形∴BE =BF ;(2)解:∵四边形ABCD 是矩形∴∠A =90°∵AB =DC =3,AB ′=1∴AE =AB ﹣BE =3﹣B ′E在Rt △AEB ′中,根据勾股定理得:AE 2+AB ′2=B ′E 2∴(3﹣B ′E )2+12=B ′E 2解得B ′E =53∵四边形EBFB ′是菱形∴四边形EBFB ′的周长=4B ′E =4×53=203.。
八年级数学《菱形》练习题 (含答案)
八年级数学《菱形》练习题一、选择题1.菱形具有而一般平行四边形不具有的性质是()A.对角相等B.对边相等C.对角线互相垂直D.对角线相等2.能够判别一个四边形是菱形的条件是()A.对角线相等且互相平分B.对角线互相垂直且相等C.对角线互相平分D.一组对角相等且一条对角线平分这组对角3.菱形的周长为100 cm,一条对角线长为14 cm,它的面积是()A.168 cm2 B.336 cm2 C.672 cm2 D.84 cm24.菱形的周长为16,两邻角度数的比为1:2,此菱形的面积为()A.43B.83C.103D.1235.下列语句中,错误的是()A.菱形是轴对称图形,它有两条对称轴B.菱形的两组对边可以通过平移而相互得到C.菱形的两组对边可以通过旋转而相互得到D.菱形的相邻两边可以通过旋转而相互得到二、填空题6.菱形的周长是8 cm,则菱形的一边长是______.7.菱形的一个内角为120°,平分这个内角的对角线长为11厘米,菱形的周长为______.8.菱形的对角线的一半的长分别为8 cm和11 cm,则菱形的面积是_______.9.菱形的面积为24 cm2,一对角线长为6 cm,则另一对角线长为______,边长为______.10.菱形的面积为83平方厘米,两条对角线的比为1:3,那么菱形的边长为_______.三、解答题11.如图,AD是△ABC的角平分线.DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由.12.□ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F,四边形AFCE 是否是菱形?为什么?13.菱形ABCD的周长为20 cm,两条对角线的比为3:4,求菱形的面积.14.如图,菱形ABCD的对角线AC、BD交于点O,且AC=16 cm,BD=12 cm,求菱形ABCD的高DH.参考答案一、1.C2.D3.B4.B5.D二、6.2 cm7.44厘米8.176 cm29.8 cm 5 cm10.4 cm三、11.四边形AEDF是菱形,AE=E D.12.□AFCE是菱形,△AOE≌△COF,四边形AFCE是平行四边形,EF⊥AC13.24 cm214.9.6 cm。
菱形的判定专项练习30题
菱形的判定专项练习30题(有答案)1.如图,梯形ABCD中,AD∥BC,BA=AD=DC=BC,点E为BC的中点.(1)求证:四边形ABED是菱形;(2)过A点作AF⊥BC于点F,若BD=4cm,求AF的长.2.如图,四边形ABCD中,对角线AC、BD相交于点O,且AC⊥BD.点M,N分别在BD、AC上,且AO=ON=NC,BM=MO=OD.求证:BC=2DN.3.如图,在△ABC中,AB=AC,D,E,F分别是BC,AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)若AB=12cm,求菱形AEDF的周长.4.如图,在▱ABCD中,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于点E,F.已知BE=BP.求证:(1)∠E=∠F;(2)▱ABCD是菱形.5.如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC,AF与CE的延长线相交于点F,连接BF.(1)求证:AF=DC;(2)若∠BAC=90°,求证:四边形AFBD是菱形.6.已知平行四边形ABCD中,对角线BD平分∠ABC,求证:四边形ABCD是菱形.7.如图,在一个含30°的三角板ABC中,将三角板沿着AB所在直线翻转180°得到△ABF,再将三角板绕点C顺时针方向旋转60°得到△DEC,点F在AC上,连接AE.(1)求证:四边形ADCE是菱形.(2)连接BF并延长交AE于G,连接CG.请问:四边形ABCG是什么特殊平行四边形?为什么?8.如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是为E F,并且DE=DF.求证:四边形ABCD是菱形.9.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E,以AD,AE为边作▱ADFE交BC于点G,H,且EH=EC.求证:(1)∠B=∠C;(2)▱ADFE是菱形.10.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BAC的平分线AE交CD于F,EG⊥AB 于G.(1)求证:△AEG≌△AEC;(2)△CEF是否为等腰三角形,请证明你的结论;(3)四边形GECF是否为菱形,请证明你的结论.11.如图,在△ABC中,AB=AC,点D、E、F分别是△ABC三边的中点.求证:四边形ADEF是菱形.12.如图,在四边形ABCD中,AB=CD,M、N、E、F分别为AD、BC、BD、AC的中点,求证:四边形MENF为菱形.13.已知:如图,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.求证:四边形ABED是菱形.14.如图,在△ABC中,AB=AC,M、O、N分别是AB、BC、CA的中点.求证:四边形AMON是菱形.15.如图:在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC 于F.求证:四边形AEFG是菱形.16.如图,矩形ABCD绕其对角线交点旋转后得矩形AECF,AB交EC于点N,CD交AF于点M.求证:四边形ANCM是菱形.17.如图,四边形ABCD、DEBF都是矩形,AB=BF,AD、BE交于M,BC、DF交于N,那么四边形BMDN是菱形吗?如果是,请写出证明过程;如果不是,说明理由.18.已知如图所示,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,四边形AEDF 是菱形吗?说明理由.19.已知:如图所示,BD是△ABC的角平分线,EF是BD的垂直平分线,且交AB于E,交BC于点F.求证:四边形BFDE是菱形.20.如图,在平行四边形ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.21.如图,在矩形ABCD中,EF垂直平分BD.(1)判断四边形BEDF的形状,并说明理由.(2)已知BD=20,EF=15,求矩形ABCD的周长.22.如图所示,在▱ABCD中,点E在BC上,AE平分∠BAF,过点E作EF∥AB.求证:四边形ABEF 为菱形.23.已知,如图,矩形ABCD中,AB=4cm,AD=8cm,作∠CAE=∠ACE交BC于E,作∠ACF=∠CAF 交AD于F.(1)求证:AECF是菱形;(2)求四边形AECF的面积.24.如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.问四边形AFCE 是菱形吗?请说明理由.25.如图:在平行四边形ABCD中,E、F分别是边AB、CD的延长线上一点,且BE=DF,连接EF 交AC于O.(1)AC与EF互相平分吗?为什么?(2)连接CE、AF,再添加一个什么条件,四边形AECF是菱形?为什么?26.已知:如图,△ABC和△DBC的顶点在BC边的同侧,AB=DC,AC=BD交于E,∠BEC的平分线交BC于O,延长EO到F,使EO=OF.求证:四边形BFCE是菱形.27.如图,在△ABC中,D是BC边的中点,F,E分别是AD及其延长线上的点,CF∥BE.(1)求证:△BDE≌△CDF;(2)请连接BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由;(3)在(2)下要使BECF是菱形,则△ABC应满足何条件?并说明理由.28.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.29.如图,在△ABC中,AD是∠BAC的平分线,EF垂直平分AD交AB于E,交AC于F.求证:四边形AEDF是菱形.30.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.矩形的判定专项练习30题参考答案:1.1)证明:∵点E为BC的中点,∴BE=CE=BC,∵BA=AD=DC=BC,∴AB=BE=ED=AD,∴四边形ABED是菱形;(2)解:过点D作DH⊥BC,垂足为H,∵CD=DE=CE,∴∠DEC=60°,∴∠DBE=30°,在Rt△BDH中,BD=4cm,∴DH=2cm,∵AF=DH,∴AF=2cm.2.∵AO=ON,BM=MO,∴四边形AMND是平行四边形,∵AC⊥BD,∴平行四边形AMND是菱形,∴MN=DN,∵ON=NC,BM=MO,∴MN=BC,∴BC=2DN 3.(1)∵D,E分别是BC,AB的中点,∴DE∥AC且DE=AF=AC.同理DF∥AB且DF=AE=AB.又∵AB=AC,∴DE=DF=AF=AE,∴四边形AEDF是菱形.(2)∵E是AB中点,∴AE=AB=6cm,因此菱形AEDF的周长为4×6=24cm.4.(1)∵BE=BP,∴∠E=∠BPE,∵BC∥AF,∴∠BPE=∠F,∴∠E=∠F.(2)∵EF∥BD,∴∠E=∠ABD,∠F=∠ADB,∴∠ABD=∠ADB,∴AB=AD,∵四边形ABCD是平行四边形,∴□ABCD是菱形.5.1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠1=∠2,在△AEF和△DEC 中,∴△AFE≌△DCE(AAS),∴AF=DC;(2)证明:∵D是BC的中点,∴DB=CD=BC,∵AF=CD,∴AF=DB,∵AF∥BD,∴四边形AFBD是平行四边形,∵∠BAC=90°,D为BC中点,∴AD=CB=DB,∴四边形AFBD是菱形.6.∵对角线BD平分∠ABC,∴∠1=∠2,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠3=∠1,∴∠3=∠2,∴DC=BC,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.7.(1)∵三角板ABC中,将三角板沿着AB所在直线翻转180°得到△ABF,∴△ABC≌△ABF,且∠BAC=∠BAF=30°,∴∠FAC=60°,∴AD=DC=AC,又∵△ABC≌△EFC,∴CA=CE,又∵∠ECF=60°,∴AC=EC=AE,∴AD=DC=CE=AE,∴四边形ADCE是菱形;(2)证明:由(1)可知:△ACD,△AFC是等边三角形,△ACB≌△AFB,∴∠EDC=∠BAC=∠FAC=30°,且△ABC为直角三角形,∴BC=AC,∵EC=CB,∴EC=AC,∴E为AC中点,∴DE⊥AC,∴AE=EC,∵AG∥BC,∴∠EAG=∠ECB,∠AGE=∠EBC,∴△AEG≌△CEB,∴AG=BC,(7分)∴四边形ABCG是平行四边形,∵∠ABC=90°,∴四边形ABCG是矩形8.在△ADE和△CDF中,∵四边形ABCD是平行四边形,∴∠A=∠C,∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°.又∵DE=DF,∴△ADE≌△CDF(AAS)∴DA=DC,∴平行四边形ABCD是菱形9.(1)∵在▱ADFE中,AD∥EF,∴∠EHC=∠B(两直线平行,同位角相等).∵EH=EC(已知),∴∠EHC=∠C(等边对等角),∴∠B=∠C(等量代换);(2)∵DE∥BC(已知),∴∠AED=∠C,∠ADE=∠B.∵∠B=∠C,∴∠AED=∠ADE,∴AD=AE,∴▱ADFE是菱形.10.1)证明:∵∠ACB=90°,∴AC⊥EC.又∵EG⊥AB,AE是∠BAC的平分线,∴GE=CE.在Rt△AEG与Rt△AEC中,,∴Rt△AEG≌Rt△AEC(HL);(2)解:△CEF是等腰三角形.理由如下:∵CD是AB边上的高,∴CD⊥AB.又∵EG⊥AB,∴EG∥CD,∴∠CFE=∠GEA.又由(1)知,Rt△AEG≌Rt△AEC,∴∠GEA=∠CEA,∴∠CEA=∠CFE,即∠CEF=∠CFE,∴CE=CF,即△CEF是等腰三角形;(3)解:四边形GECF是菱形.理由如下:∵由(1)知,Rt△AEG≌Rt△AEC,则GE=EC;由(2)知,CE=CF,∴GE=EC=FC.又∵EG∥CD,即GE∥FC,∴四边形GECFR是菱形.11.∵D、E、F分别是△ABC三边的中点,∴DE AC,EF AB,∴四边形ADEF为平行四边形.又∵AC=AB,∴DE=EF.∴四边形ADEF为菱形.12.∵M、E、分别为AD、BD、的中点,∴ME∥AB,ME=AB,同理:FH∥AB,FH=AB,∴四边形MENF是平行四边形,∵M.F是AD,AC中点,∴MF=DC,∵AB=CD,∴MF=ME,∴四边形MENF为菱形13.∵AE平分∠BAD,∴∠BAE=∠DAE,…(1分)在△BAE和△DAE中,∵,∴△BAE≌△DAE(SAS)…(2分)∴BE=DE,…(3分)∵AD∥BC,∴∠DAE=∠AEB,…(4分)∴∠BAE=∠AEB,∴AB=BE,…(5分)∴AB=BE=DE=AD,…(6分)∴四边形ABED是菱形.14.∵AB=AC,M、O、N分别是AB、BC、CA 的中点,∴AM=AB=AC=AN,M0∥AC,NO∥AB,且MO=AC=AN,NO=AB=AM(三角形中位线定理),∴AM=MO=AN=NO,∴四边形AMON是菱形(四条边都相等的四边形是菱形)15.证法一:∵AD⊥BC,∴∠ADB=90°,∵∠BAC=90°,∴∠B+∠BAD=90°,∠BAD+∠CAD=90°,∴∠B=∠CAD,∵CE平分∠ACB,EF⊥BC,∠BAC=90°(EA⊥CA),∴AE=EF(角平分线上的点到角两边的距离相等),∵CE=CE,∴由勾股定理得:AC=CF,∵△ACG和△FCG中,∴△ACG≌△FCG,∴∠CAD=∠CFG,∵∠B=∠CAD,∴∠B=∠CFG,∴GF∥AB,∵AD⊥BC,EF⊥BC,∴AD∥EF,即AG∥EF,AE∥GF,∴四边形AEFG是平行四边形,∵AE=EF,∴平行四边形AEFG是菱形.证法二:∵AD⊥BC,∠CAB=90°,EF⊥BC,CE 平分∠ACB,∴AD∥EF,∠4=∠5,AE=EF,∵∠1=180°﹣90°﹣∠4,∠2=180°﹣90°﹣∠5,∴∠1=∠2,∵AD∥EF,∴∠2=∠3,∴∠1=∠3,∴AG=AE,∵AE=EF,∴AG=EF,∵AG∥EF,∴四边形AGFE是平行四边形,∵AE=EF,∴平行四边形AGFE是菱形.16.∵CD∥AB,∴∠FMC=∠FAN,∴∠NAE=∠MCF(等角的余角相等),在△CFM和△AEN中,,∴△CFM≌△AEN(ASA),∴CM=AN,∴四边形ANCM为平行四边形,在△ADM和△CFM中,,∴△ADM≌△CFM(AAS),∴AM=CF,∴四边形ANCM是菱形17.四边形BMDN是菱形.∵AM∥BC,∴∠AMB=∠MBN,∵BM∥FN∴∠MBN=∠BNF,∴∠AMB=∠BNF,又∵∠A=∠F=90°,AB=BF,∴△ABM≌△BFN,∴BM=BN,同理,△EMD≌△CND,∴DM=DN,∵ED=BF=AB,∠E=∠A=90°,∠AMB=∠EMD,∴△ABM≌△EDM,∴BM=DM,∴MB=MD=DN=BN,∴四边形BMDN是菱形18.如图,由于DE∥AC,DF∥AB,所以四边形AEDF为平行四边形.∵DE∥AC,∴∠3=∠2,又∠1=∠2,∴∠1=∠3,∴AE=DE,∴平行四边形AEDF为菱形.19.∵EF是BD的垂直平分线,∴EB=ED,∴∠EBD=∠EDB.∵BD是△ABC的角平分线,∴∠EBD=∠FBD.∴∠FBD=∠EDB,∴ED∥BF.同理,DF∥BE,∴四边形BFDE是平行四边形.又∵EB=ED,∴四边形BFDE是菱形.20.方法一:∵AE∥FC.∴∠EAC=∠FCA.(2分)又∵∠AOE=∠COF,AO=CO,∴△AOE≌△COF.(5分)∴EO=FO.又EF⊥AC,∴AC是EF的垂直平分线.(8分)∴AF=AE,CF=CE,又∵EA=EC,∴AF=AE=CE=CF.∴四边形AFCE为菱形.(10分)方法二:同方法一,证得△AOE≌△COF.(5分)∴AE=CF.∴四边形AFCE是平行四边形.(8分)又∵EF是AC的垂直平分线,∴EA=EC,∴四边形AFCE是菱形.(10分)方法三:同方法二,证得四边形AFCE是平行四边形.(8分)又EF⊥AC,(9分)∴四边形AFCE为菱形21.(1)四边形BEDF是菱形.在△DOF和△BOE中,∠FDO=∠EBO,OD=OB,∠DOF=∠BOE=90°,所以△DOF≌△BOE,所以OE=OF.又因为EF⊥BD,OD=OB,所以四边形BEDF为菱形.(5分)(2)如图,在菱形EBFD中,BD=20,EF=15,则DO=10,EO=7.5.由勾股定理得DE=EB=BF=FD=12.5.S菱形EBFD =EF•BD=BE•AD,即所以得AD=12.根据勾股定理可得AE=3.5,有AB=AE+EB=16.由2(AB+AD)=2(16+12)=56,故矩形ABCD的周长为5622.∵四边形ABCD是平行四边形,∴AF∥BE,又∵EF∥AB,∴四边形ABEF为平行四边形,∵AE平分∠BAF,∴∠BAE=∠FAE,∵∠FAE=∠BEA,∴∠BAE=∠BEA,∴BA=BE,∴平行四边形ABEF为菱形23.(1)证明:在矩形ABCD中,∵AB∥CD,∴∠BAC=∠DCA,又∠CAE=∠ACE,∠ACF=∠CAF,∴∠EAC=∠FCA.∴AE∥CF.∴四边形AECF为平行四边形,又∠CAE=∠ACE,∴AE=EC.∴▱AECF为菱形.(2)设BE=x,则EC=AE=8﹣x,在Rt△ABE中,AB2+BE2=AE2,即42+x2=(8﹣x)2.解之得x=3,所以EC=5,即S菱形AECF=EC×AB=5×4=20.24.四边形AFCE是菱形,理由是:∵四边形ABCD是平行四边形,∴AD∥BC,∴=,∵AO=OC,∴OE=OF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴平行四边形AFCE是菱形25.(1)AC与EF互相平分,连接CE,AF,∵平行四边形ABCD,∴AB∥CD,AB=CD,又∵BE=DF,∴AB+BE=CD+DF,∴AE=CF,∴AE∥CF,AE=CF,∴四边形AECF是平行四边形,∴AC与EF互相平分;(2)条件:EF⊥AC,∵EF⊥AC,又∵四边形AECF是平行四边形,∴平行四边形AECF是菱形.26.∵AB=DC AC=BD BC=CB,∴△ABC≌△DCB,∴∠DBC=∠ACB,∴BE=CE,又∵∠BEC的平分线是EF,∴EO是中线(三线合一),∴BO=CO,∴四边形BFCE是平行四边形(对角线互相平分),又∵BE=CE,∴四边形BFCE是菱形.27.(1)证明:∵CF∥BE,∴∠EBD=∠FCD,D是BC边的中点,则BD=CD,∠BDE=∠CDF,∴△BDE≌△CDF.(2)如图所示,由(1)可得CF=BE,又CF∥BE,所以四边形BECF是平行四边形;(3)△ABC是等腰三角形,即AB=AC,理由:当AB=AC时,则有AD⊥BC,又(2)中四边形为平行四边形,所以可判定其为菱形.28.(1)∵DE为BC的垂直平分线,∴∠EDB=90°,BD=DC,又∵∠ACB=90°,∴DE∥AC,∴E为AB的中点,∴在Rt△ABC中,CE=AE=BE,∴∠AEF=∠AFE,且∠BED=∠AEF,∠DEC=∠DFA,∴AF∥CE,又∵AF=CE,∴四边形ACEF为平行四边形;(2)要使得平行四边形ACEF为菱形,则AC=CE 即可,∵DE∥AC,∴∠BED=∠BAC,∠DEC=∠ECA,又∵∠BED=∠DEC,∴∠EAC=∠ECA,∴AE=EC,又EB=EC,∴AE=EC=EB,∵CE=AB,∴AC=AB即可,在Rt△ABC中,∠ACB=90°,∴当∠B=30°时,AB=2AC,故∠B=30°时,四边形ACEF为菱形.29.∵AD平分∠BAC∴∠BAD=∠CAD又∵EF⊥AD,∴∠AOE=∠AOF=90°∵在△AEO和△AFO中,∴△AEO≌△AFO(ASA),∴EO=FO即EF、AD相互平分,∴四边形AEDF是平行四边形又EF⊥AD,∴平行四边形AEDF为菱形30.1)解:OE=OF.理由如下:∵CE是∠ACB的角平分线,∴∠ACE=∠BCE,又∵MN∥BC,∴∠NEC=∠ECB,∴∠NEC=∠ACE,∴OE=OC,∵OF是∠BCA的外角平分线,∴∠OCF=∠FCD,又∵MN∥BC,∴∠OFC=∠ECD,∴∠OFC=∠COF,∴OF=OC,∴OE=OF;(2)解:当∠ACB=90°,点O在AC的中点时,∵OE=OF,∴四边形AECF是正方形;(3)答:不可能.解:如图所示,∵CE平分∠ACB,CF平分∠ACD,∴∠ECF=∠ACB+∠ACD=(∠ACB+∠ACD)=90°,若四边形BCFE是菱形,则BF⊥EC,但在△GFC中,不可能存在两个角为90°,所以不存在其为菱形.。
最新初二数学菱形练习题及答案优秀名师资料
初二数学菱形练习题及答案精品文档初二数学菱形练习题及答案一(选择题1(如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是,则顶点M、N的坐标分别是A(M,N B(M,N C(M,ND(M,N2(菱形的周长为4,一个内角为60?,则较短的对角线长为A(B( C(1 D(3(菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为A(3:1 B(4:1 C(5:1 D(6:14(如图,菱形ABCD中,AB=15,?ADC=120?,则B、D两点之间的距离为A(1B( C(7.D(二(填空题25(已知菱形的两条对角线长分别为2cm,3cm,则它的面积是cm(6(如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH 丄AB,垂足为H,则点0到边AB的距离OH= _________ (1 / 17精品文档27(如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD 的面积为cm(6题图题图题图题图8(如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D 作DE?AC交BC的延长线于点E,则?BDE的周长为9(如图,已知菱形ABCD的一个内角?BAD=80?,对角线AC、BD相交于点O,点E在AB上且BE=BO,则?BEO= _________ 度(10(如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则?1=10题图 12题13题图 14题图11(已知菱形的一个内角为60?,一条对角线的长为,则另一条对角线的长为( 12(如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A,,B,,C,,D,,E,,F,,C,,G,,A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在13(如图,P为菱形ABCD的对角线上一点,PE?AB于点E,PF?AD于点F,PF=3cm,则P点到AB的距离是 _________ cm(14(已知:如图,菱形ABCD中,?B=60?,AB=4,2 / 17精品文档则以AC为边长的正方形ACEF的周长为(15(已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为(216(已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是(17(如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点,且PE?BC交AB于E,PF?CD交AD于F,则阴影部分的面积是 _________ ( 17题图 18题图 19题图18(如图:菱形ABCD中,AB=2,?B=120?,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是 _________ (19(如图:点E、F分别是菱形ABCD的边BC、CD上的点,且?EAF=?D=60?,?FAD=45?,则?CFE= 度(三(解答题20(如图,四边形ABCD为菱形,已知A,B(求点D的坐标;求经过点C的反比例函数解析式(221(如图所示,在菱形ABCD中,?ABC=60?,DE?AC交BC的延长线于点E( 求证:DE=BE(3 / 17精品文档22(如图,在菱形ABCD中,?A=60?,AB=4,O为对角线BD的中点,过O点作OE?AB,垂足为E(求?ABD的度数;求线段BE的长(23(如图,四边形ABCD是菱形,BE?AD、BF?CD,垂足分别为E、F(求证:BE=BF;当菱形ABCD的对角线AC=8,BD=6时,求BE的长(24(如图,在菱形ABCD中,P是AB上的一个动点,连接DP交对角线AC于E连接BE(证明:?APD=?CBE;若?DAB=60?,试问P点运动到什么位置时,?ADP的面积等于菱形ABCD面积的,为什么,25(已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF(请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(连接 _________ ;猜想: _________ = _________ ;证明:26(如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C运4 / 17精品文档动,点P、Q的速度都是1cm/s(在运动过程中,四边形AQCP可能是菱形吗,如果可能,那么经过多少秒后,四边形AQCP是菱形,分别求出菱形AQCP的周长、面积(答案与评分标准一(选择题1(如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是,则顶点M、N的坐标分别是A(M,N B(M,N C(M,N D(M,N 考点:菱形的性质;坐标与图形性质。
2024学年八年级数学经典好题专项(矩形、菱形、正方形)练习(附答案)
2024学年八年级数学经典好题专项(矩形、菱形、正方形)练习一、选择题1、菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形2、如图,菱形ABCD 中,∠D =150°,则∠1=( )A .30°B .25°C .20°D .15°(2题) (3题) (4题)3、如图,在▱ABCD 中,AB =BC ,下列结论错误的是( )A .四边形ABCD 是菱形B .AB =ADC .AO =OC ,BO =OD D .∠BAD =∠ABC4、如图所示,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( )A .2 3B .3 3C .4 3D .35、如图,菱形ABCD 中,AB=15,∠ADC=120°,则B、D 两点之间的距离为( )A.15 B.3215 C.7.5 D.315(5题) (7题) (8题) (9题)6、菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是( )A.8cm 和cm B.4cm 和cm C.8cm 和cm D.4cm 和cm7、如图,菱形ABCD 的对角线AC ,BD 的长分别为6 cm ,8 cm ,则这个菱形的周长为( )A .5 cmB .10 cmC .14 cmD .20 cm8、如图,在菱形ABCD 中,∠BAD =80°,AB 的垂直平分线交对角线AC 于点F ,垂足为点E ,连接DF ,则∠CDF 等于( )A .50°B .60°C .70°D .80°9、如图.剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC C.AB=CD ,AD=BC D.∠DAB+∠BCD=180º10、如图,在平面直角坐标系中,四边形OABC 为菱形,O(0,0),A(4,0),∠AOC =60°,则对角线交点E 的坐标为( )A .(2, 3 )B .( 3 ,2)C .( 3 ,3)D .(3, 3 )(10题) (11题) (12题) (13题)二、填空题11、如图,在△ABC 中,点D ,E ,F 分别在边BC ,AB ,CA 上,且DE ∥CA ,DF ∥BA.小聪认为如果AD平分∠BAC ,那么四边形AEDF 是菱形,小聪的说法 .(填“正确”或“不正确”)12、在菱形ABCD 中,对角线AC 、BD 相交于点O ,若∠ABC =140°,则∠BAD =________°,∠ABD =________°,∠BCA =________°;13、如图,菱形ABCD 的边长为2 cm ,E 是BC 的中点,且AE ⊥BC ,则菱形ABCD 的面积为_____.14、如图,P 是菱形ABCD 的对角线AC 上一点,PE ⊥AD 于点E ,且PE =3 cm ,则点P 到AB 的距离为__ __ cm.(14题) (15题) (17题) (20题)15、如图,在菱形ABCD 中,AB =5,AO =3,点E 在BC 的延长线上,∠E =12∠ABC ,DE =16、菱形ABCD 的周长为48cm,∠BAD:∠ABC=1:2,则BD=_____,菱形的面积是______.17、如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,若AC =8 cm ,BD =6 cm ,则该菱形的面积为________cm 2,周长为________cm.18、已知菱形ABCD 的面积为24 cm 2,若对角线AC =6 cm ,则这个菱形的边长为____ cm.19、四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE =3,则CE 的长为_________20、如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边的中点,则MP +PN 的最小值是______.三、解答题21、已知:如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,DE ∥AC 交BC 于点E ,DF ∥BC 交AC于点F. 四边形DECF 是菱形吗?为什么?22、如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=8 cm,BD=6 cm,DH⊥AB于H.(1)求菱形ABCD的面积;(2)求DH的长.23、如图,在菱形ABCD中,对角线AC与BD相交于点O,BD=12 cm,AC=6 cm.求菱形的周长.24、已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.25、如图,在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.26、已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.参考答案一、选择题1、菱形不具备的性质是( B )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形2、如图,菱形ABCD 中,∠D =150°,则∠1=( D )A .30°B .25°C .20°D .15°3、如图,在▱ABCD 中,AB =BC ,下列结论错误的是( D )A .四边形ABCD 是菱形B .AB =ADC .AO =OC ,BO =OD D .∠BAD =∠ABC4、如图所示,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( B )A .2 3B .3 3C .4 3D .35、如图,菱形ABCD 中,AB=15,∠ADC=120°,则B、D 两点之间的距离为( A )A.15 B.3215 C.7.5 D.3156、菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是(C )A.8cm 和cm B.4cm 和cm C.8cm 和cm D.4cm 和cm7、如图,菱形ABCD 的对角线AC ,BD 的长分别为6 cm ,8 cm ,则这个菱形的周长为(D )A .5 cmB .10 cmC .14 cmD .20 cm8、如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为点E,连接DF,则∠CDF等于( B )A.50° B.60° C.70° D.80°9、如图.剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC C.AB=CD ,AD=BC D.∠DAB+∠BCD=180º解析:∵四边形ABCD是用两张等宽的纸条交叉重叠放在一起而组成的图形,∴AB∥CD,AD∥BC, ∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形).过点A分别作BC,CD边上的高为AE,AF,连接AC,则AE=AF(两纸条相同,纸条宽度相同),∴在平行四边形ABCD中.S△ABC=S△ACD,即BC•AE=CD•AF,∴BC=CD,AB=BC.故B中结论成立;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形),∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A中结论成立;AB=CD,AD=BC(平行四边形的对边相等),故C中结论成立:当四边形ABCD是矩形时,有∠DAB+∠BCD=180º.故D中结论不一定成立,故选D.10、如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为( D )A.(2, 3 ) B.( 3 ,2) C.( 3 ,3) D.(3, 3 )二、填空题11、如图,在△ABC中,点D,E,F分别在边BC,AB,CA上,且DE∥CA,DF∥BA.小聪认为如果AD平分∠BAC,那么四边形AEDF是菱形,小聪的说法正确.(填“正确”或“不正确”)12、在菱形ABCD中,对角线AC、BD相交于点O,若∠ABC=140°,则∠BAD=________°,∠ABD=________°,∠BCA=________°;答案:40,70,2013、如图,菱形ABCD的边长为2 cm,E是BC的中点,且AE⊥BC,则菱形ABCD的面积为__2 3 cm2 ____.14、如图,P是菱形ABCD的对角线AC上一点,PE⊥AD于点E,且PE=3 cm,则点P到AB的距离为__3 __ cm.15、如图,在菱形ABCD中,AB=5,AO=3,点E在BC的延长线上,∠E=12∠ABC,DE=816、菱形ABCD的周长为48cm,∠BAD:∠ABC=1:2,则BD=_____,菱形的面积是______.217、如图,在菱形ABCD中,对角线AC、BD相交于点O,若AC=8 cm,BD=6 cm,则该菱形的面积为________cm2,周长为________cm.答案:24,2018、已知菱形ABCD的面积为24 cm2,若对角线AC=6 cm,则这个菱形的边长为__5 __ cm.19、四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=3,则CE的长为___43或23______20、如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边的中点,则MP+PN的最小值是__1 ____.三、解答题21、已知:如图,在△ABC中,CD平分∠ACB交AB于点D,DE∥AC交BC于点E,DF∥BC交AC于点F. 四边形DECF是菱形吗?为什么?解:四边形DECF是菱形.理由如下:∵DE∥FC,DF∥EC,∴四边形DECF为平行四边形.由AC∥DE,知∠2=∠3. ∵CD平分∠ACB,∴∠1=∠2,∴∠1=∠3,∴DE=EC,∴平行四边形DECF为菱形.22、如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=8 cm,BD=6 cm,DH⊥AB于H.(1)求菱形ABCD的面积;(2)求DH的长.解:(1)∵四边形ABCD 是菱形,AC =8 cm ,BD =6 cm ,∴S 菱形ABCD =12ACꞏBD =12×6×8=24(cm 2).(2)∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC =12=4 cm ,OB =OD =3 cm ,∴在直角三角形AOB 中,AB =OB 2+OA 2=32+42=5 cm ,∴DH =S 菱形ABCD AB =4.8 cm.23、如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,BD =12 cm ,AC =6 cm.求菱形的周长.解:∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =12AC ,BO =12 BD.∵AC =6 cm ,BD =12 cm , ∴AO =3 cm ,BO =6 cm.在Rt △ABO 中,由勾股定理,得AB =AO 2+BO 2=32+62=3 5 cm ,∴菱形的周长=4AB=4×3 5 =12 5 cm.24、已知:如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,DE ∥AC ,AE ∥BD.(1)求证:四边形AODE 是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE 的面积.解答:(1)证明:∵DE ∥AC ,AE ∥BD ,∴四边形AODE 是平行四边形,∵在菱形ABCD 中,AC ⊥BD ,∴ AOD=90 , ∴平行四边形AODE 是是矩形;(2)∵∠BCD=120°,AB ∥CD ,∴∠ABC=180°‐120°=60°,∵AB=BC ,∴△ABC 是等边三角形,∴OA=21×6=3, OD=OB=6×23=33,∴四边形AODE 的面积=OA ∙OD=9325、如图,在菱形ABCD 中,点P 是BC 边上一点,连接AP ,点E ,F 是AP 上的两点,连接DE ,BF ,使得∠AED =∠ABC ,∠ABF =∠BPF .求证:(1)△ABF ≌△DAE ;(2)DE =BF +EF .证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,AD ∥BC . ∴∠BP A =∠DAE .∵∠ABC =∠AED ,∴∠BAF =∠ADE .∵∠ABF =∠BPF ,∠BP A =∠DAE ,∴∠ABF =∠DAE .∵AB =DA ,∴△ABF ≌△DAE (ASA).(2)∵△ABF ≌△DAE , ∴BF =AE ,AF =DE .∵AF =AE +EF =BF +EF ,∴DE =BF +EF .26、已知:如图,在菱形ABCD 中,F 为边BC 的中点,DF 与对角线AC 交于点M ,过M 作ME ⊥CD 于点E ,∠1=∠2.(1)若CE =1,求BC 的长;(2)求证:AM =DF +ME.(1)解:∵四边形ABCD 是菱形,∴AB ∥CD ,∴∠1=∠ACD ,∵∠1=∠2,∴∠ACD =∠2,∴MC =MD ,∵ME ⊥CD ,∴CD =2CE , ∵CE =1,∴CD =2,∴BC =CD =2(2)证明:如图,∵F 为边BC 的中点,∴BF =CF =12BC ,∴CF =CE ,在菱形ABCD 中,AC 平分∠BCD ,∴∠ACB =∠ACD ,在△CEM 和△CFM 中,∵⎩⎪⎨⎪⎧CE =CF ,∠ACB =∠ACD ,CM =CM ,∴△CEM ≌△CFM(SAS),∴ME =MF ,延长AB 交DF 的延长线于点G , ∵AB ∥CD ,∴∠G =∠2, ∵∠1=∠2,∴∠1=∠G ,∴AM =MG ,在△CDF 和△BGF 中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠FC FB DFC GFB G 2,∴△CDF ≌△BGF(AAS),∴GF =DF , 由图形可知,GM =GF +MF ,∴AM =DF +ME。
八年级数学下册《菱形》同步练习题及答案解析
八年级数学下册《菱形》同步练习题及答案解析一.选择题1.已知菱形的两条对角线的长分别为6cm和8cm,则这个菱形的面积是()A.20cm2B.24cm2C.48cm2D.100cm22.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°3.在小正方形组成网格图中,四边形ABCD的顶点都在格点上,如图所示.则下列结论错误的是()A.AD∥BC B.DC=ABC.四边形ABCD是菱形D.将边AD向右平移3格,再向上平移7格就与边BC重合4.从菱形的钝角顶点,向对角的两边条垂线,垂足恰好在该边的中点,则菱形的内角中钝角的度数是()A.150°B.135°C.120°D.100°5.如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为()A.45°B.50°C.60°D.70°6.如图,菱形ABCD的两条对角线相交于点O,若AC=6,菱形的面积等于12,则菱形ABCD的周长等于()A.4B.2C.D.47.已知一个菱形的周长为8,有一个内角为120°,则该菱形较短的对角线长为()A.4B.2C.2D.18.如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED的度数为()A.15°B.20°C.25°D.30°9.菱形的一个内角是60°,边长是3cm,则这个菱形的较短的对角线长是()A.B.C.3cm D.10.平行四边形ABCD的对角线AC与BD相交于点O,添加以下条件,不能判定平行四边形ABCD为菱形的是()A.AC⊥BD B.∠ABD=∠CBD C.AB=BC D.AC=BD11.如图,在菱形ABCD中,AC与BD相交于点O,AB=AC,点E在BC上,且∠CAE=15°,AE与BD 相交于F,下列结论不正确的是()A.∠EBF=30°B.BE=BF C.F A>EF D.OE⊥BC12.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD中,AB=3,AC=2,则四边形ABCD的面积为()A.B.C.D.513.下列说法中,错误的是()A.对顶角相等B.对角线互相垂直的平行四边形是菱形C.两直线平行,同位角相等D.两边及一角对应相等的两个三角形全等14.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以A为圆心,AB 长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()A.16B.15C.14D.1315.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为()A.54°B.64°C.74°D.26°二.填空题(共5小题)16.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是.17.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为cm.18.如图,菱形ABCD和菱形EFGH的面积分别为9cm2和64cm2,CD落在EF上,∠A=∠E,若△BCF 的面积为4cm2,则△BDH的面积是cm2.19.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE⊥AB于E,OF ⊥AD于F.则OE+OF=.20.如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积是.三.解答题(共5小题)21.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形.(2)若BD=30,MN=16,求菱形BNDM的周长.22.如图,平行四边形ABCD中,以A为圆心,DA的长为半径画弧,交BA于点F,作∠DAB的角平分线,交CD于点E,连接EF.(1)求证:四边形AFED是菱形;(2)若AD=4,∠DAB=60°,求四边形AFED的面积.23.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D 作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.24.如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,BD=2AB,AE∥BD,OE∥AB.(1)求证:四边形ABOE是菱形;(2)若AO=2,S四边形ABOE=4,求BD的长.25.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.参考答案与解析一.选择题1.解:∵菱形的两条对角线的长分别为6cm和8cm;∴这个菱形的面积=×6×8=24(cm2);故选:B.2.解:∵四边形ABCD是菱形;∴OD=OB,AB∥CD,BD⊥AC;∵DH⊥AB;∴DH⊥CD,∠DHB=90°;∴OH为Rt△DHB的斜边DB上的中线;∴OH=OD=OB;∴∠1=∠DHO;∵DH⊥CD;∴∠1+∠2=90°;∵BD⊥AC;∴∠2+∠DCO=90°;∴∠1=∠DCO;∴∠DHO=∠DCA;∵四边形ABCD是菱形;∴DA=DC;∴∠CAD=∠DCA=20°;∴∠DHO=20°;故选:A.3.解:A、由图形可知:BC和AD是连接7×2的图形的对角线,即AD∥BC,故本选项错误;B、设小正方形的边长是1,由勾股定理得:DC==,AB=,即AB=CD,故本选项错误;C、由图形可知:AD∥BC,CD∥AB,即四边形ABCD是菱形,但BC==≠AB,故本选项正确;D、将边AD向右平移3格,再向上平移7格就与边BC重合,正确,故本选项错误;故选:C.4.解:过A作AE⊥BC;由题意知AE⊥BC,且E为BC的中点;则△ABC为等腰三角形即AB=AC,即AB=AC=BC;∴∠ABC=60°;∴∠BAD=180°﹣∠ABC=180°﹣60°=120°.故选:C.5.解:∵四边形ABCD是菱形;∴AD=AB;∴∠ABD=∠ADB=(180°﹣∠A)=75°;由作图可知,EA=EB;∴∠ABE=∠A=30°;∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°;故选:A.6.解:∵菱形的面积等于12;∴AC•BD=12;∵AC=6;∴BD=4;∵菱形ABCD对角线互相垂直平分;∴BO=OD=2,AO=OC=3;∴AB===;∴菱形的周长为4.故选:D.7.解:如图,∵四边形ABCD是菱形,周长为8;∴AB=BC=CD=AD=2,AD∥BC;∴∠B+∠BAD=180°;∴∠B=180°﹣120°=60°;∴△ABC为等边三角形;∴AC=AB=2;即该菱形较短的对角线长为2;故选:C.8.解:∵四边形ABCD是菱形,∠ABC=140°;∴∠ABD=∠CBD=∠ABC=70°,BO=DO;∵DE⊥BC;∴OE=OD=OB,∠BDE=20°;∴∠ODE=∠OED=20°;故选:B.9.解:如图,∵菱形的一个内角是60°,边长是3cm;∴AB=BC=3cm,△ABC是等边三角形;∴AC=AB=3cm;即这个菱形的较短的对角线长为3cm;故选:C.10.解:A、∵四边形ABCD是平行四边形,AC⊥BD;∴平行四边形ABCD是菱形,故选项A不符合题意;B、∵四边形ABCD是平行四边形;∴AB∥CD;∴∠ABD=∠CDB;又∵∠ABD=∠CBD;∴∠CDB=∠CBD;∴BC=DC;∴平行四边形ABCD是菱形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,AB=BC;∴平行四边形ABCD是菱形,故选项C不符合题意;D、∵四边形ABCD是平行四边形,AC=BD;∴平行四边形ABCD是矩形,故选项D不符合题意;故选:D.11.解:如图在菱形ABCD中,AB=CB=AD=CD;∵AB=AC;∴AB=CB=AD=CD=AC;∴△ABC和△ADC都是等边三角形;∴∠ABC=∠BAC=∠ACB=60°;∵BD=BD(公共边)∴△ABD≌△CBD(SSS);∴∠ABD=∠CBD=∠ABC=30°;∴∠EBF=30°.∴A正确;∵∠ABC=∠BAC=60°,∠CAE=15°;∴∠BAE=60°﹣15°=45°;∴∠BEF=180°﹣60°﹣45°=75°;∴∠BFE=180°﹣30°﹣75°=75°;∴∠BEF=∠BFE;∴BE=BF.∴B正确;过点F作FG∥BC,交AD于点G;∵AB=BC>BE;∴F A>EF;∴C正确;假设OE⊥BC正确,则∠BEO=90°;∵∠BEF=75°;∴∠OEA=90°﹣75°=15°=∠CAE;∴OE=OA=OC;∴∠OEC=∠OCE=60°;∵∠OEC=60°与OE⊥BC相矛盾;∴假设不成立;∴OE⊥BC错误;∴D不正确.故选:D.12.解:过点A作AE⊥CD于E,AF⊥BC于F,连接AC,BD交于点O;∵两条纸条宽度相同;∴AE=AF.∵AB∥CD,AD∥BC;∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AF=CD•AE.又∵AE=AF.∴BC=CD;∴四边形ABCD是菱形;∴AO=CO=1,BO=DO,AC⊥BD;∴BO===2;∴BD=4;∴四边形ABCD的面积==4;故选:A.13.解:A、对顶角相等,本选项说法正确,不符合题意;B、对角线互相垂直的平行四边形是菱形,本选项说法正确,不符合题意;C、两直线平行,同位角相等,本选项说法正确,不符合题意;D、两边及其夹角对应相等的两个三角形全等,本选项说法错误,符合题意;故选:D.14.解:连接EF,AE与BF交于点O,如图;∵AO平分∠BAD;∴∠1=∠2;∵四边形ABCD为平行四边形;∴AF∥BE;∴∠1=∠3;∴∠2=∠3;∴AB=EB;同理:AF=BE;又∵AF∥BE;∴四边形ABEF是平行四边形;∴四边形ABEF是菱形;∴AE⊥BF,OB=OF=6,OA=OE;在Rt△AOB中,由勾股定理得:OA===8;∴AE=2OA=16.故选:A.15.解:∵四边形ABCD为菱形;∴AB∥CD,AB=BC;∴∠MAO=∠NCO,∠AMO=∠CNO;在△AMO和△CNO中;;∴△AMO≌△CNO(ASA);∴AO=CO;∵AB=BC;∴BO⊥AC;∴∠BOC=90°;∵∠DAC=26°;∴∠BCA=∠DAC=26°;∴∠OBC=90°﹣26°=64°.故选:B.二.填空题16.解:∵四边形ABCD是菱形;∴AC⊥BD,OA=OC=AC=×4=2,∠BAC=∠BAD=×120°=60°;∴AC=4,∠AOB=90°;∴∠ABO=30°;∴AB=2OA=4,OB=2;∴BD=2OB=4;∴该菱形的面积是:AC•BD=×4×4=8.故答案为:8.17.解:根据作图,AC=BC=OA;∵OA=OB;∴OA=OB=BC=AC;∴四边形OACB是菱形;∵AB=2cm,四边形OACB的面积为4cm2;∴AB•OC=×2×OC=4;解得OC=4cm.故答案为:4.18.解:如图,连接FH;∵四边形ABCD是菱形,四边形EFGH是菱形,∠A=∠E;∴∠ADC=∠EFG,∠BDC=∠ADC=∠EFH=∠EFG,△BDC的面积=×S菱形ABCD=4.5(cm2);∴BD∥FH;∴△BDH的面积=△BDF的面积;∴△BDH的面积=S△BDC+S△BCF=8.5(cm2);故答案为8.5.19.解:如图,连接AC交BD于点G,连接AO;∵四边形ABCD是菱形;∴AC⊥BD,AB=AD=10,BG=BD=8;根据勾股定理得:AG===6;∵S△ABD=S△AOB+S△AOD;即BD•AG=AB•OE+AD•OF;∴16×6=10OE+10OF;∴OE+OF=9.6.故答案为:9.6.20.解:如图,设CD与AB1交于点O;∵在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高;∴AE=;由折叠易得△ABB1为等腰直角三角形;∴S△ABB1=BA•AB1=2,S△ABE=1;∴CB1=2BE﹣BC=2﹣2;∵AB∥CD;∴∠OCB1=∠B=45°;又由折叠的性质知,∠B1=∠B=45°;∴CO=OB1=2﹣.∴S△COB1=OC•OB1=3﹣2;∴重叠部分的面积为:2﹣1﹣(3﹣2)=2﹣2.三.解答题21.(1)证明:∵AD∥BC;∴∠DMO=∠BNO;∵MN是对角线BD的垂直平分线;∴OB=OD,MN⊥BD;在△MOD和△NOB中;;∴△MOD≌△NOB(AAS);∴OM=ON;∵OB=OD;∴四边形BNDM是平行四边形;∵MN⊥BD;∴平行四边形BNDM是菱形;(2)解:由(1)可知,OB=BD=15,OM=ON=MN=8,四边形BNDM是菱形;∴BN=DN=DM=BM;∵MN⊥BD;∴∠BON=90°;∴BN===17;∴菱形BNDM的周长=4BN=68.22.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD;∴∠DEA=∠F AE;∵AE平分∠BAD;∴∠DAE=∠F AE;∴∠DEA=∠DAE∴AD=ED;∵AD=AF;∴DE=AF;∴四边形AFED是平行四边形;又∵AD=ED;∴平行四边形AFED是菱形;(2)解:过D作DG⊥AF于G,如图所示:∵∠DAB=60°;∴∠ADG=90°﹣60°=30°;∴AG=AD=2;∴DG===2;由(1)得:四边形AFED是菱形;∵AF=AD=4;∴菱形AFED的面积=AF×DG=4×2=8.23.(1)证明:∵AD∥BC;∴∠ADB=∠CBD;∵BD平分∠ABC;∴∠ABD=∠CBD;∴∠ADB=∠ABD;∴AD=AB;∵AB=BC;∴AD=BC;∵AD∥BC;∴四边形ABCD是平行四边形;又∵AB=BC;∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形;∴AC⊥BD,OB=OD,OA=OC=AC=2;在Rt△OCD中,由勾股定理得:OD==4;∴BD=2OD=8;∵DE⊥BC;∴∠DEB=90°;∵OB=OD;∴OE=BD=4.24.(1)证明:∵四边形ABCD是平行四边形;∴OB=OD=BD;∵BD=2AB;∴AB=OB;∵AE∥BD,OE∥AB;∴四边形ABOE是平行四边形;∵AB=OB;∴四边形ABOE是菱形;(2)解:连接BE,交OA于F,如图所示:∵四边形ABOE是菱形;∴OA⊥BE,AF=OF=OA=1,BF=EF=BE;∵S四边形ABOE=4;S四边形ABOE=OA•BE=×2×BE=BE;∴BE=4;∴BF=2;∴OB===;∴BD=2OB=2.25.(1)证明:∵DE∥BC,EC∥AB;∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线;∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°;∴∠AOD=∠ACB=90°.∴平行四边形ADCE是菱形;(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6;∴AD=DB=CD=6.∴AB=12,由勾股定理得.∵四边形DBCE是平行四边形;∴DE=BC=6.∴.。
初二数学菱形练习题及答案
初二数学菱形练习题及答案题1:在菱形ABCD中,已知AB的对角线交于点O,同时AO=5cm,OC=3cm。
求菱形的周长。
解:首先,我们知道菱形的对角线互相垂直且交于其顶点的角是90度。
因此,我们可以利用勾股定理求得菱形的边长。
设菱形的一条边的长度为x,则另一条边的长度也为x(因为菱形的边长相等)。
由勾股定理可得:x² = 5² - 3²x² = 25 - 9x² = 16x = √16x = 4因此,菱形的边长为4cm。
由于菱形的边长相等,所以菱形的周长为4 x 4 = 16cm。
答:菱形的周长为16cm。
题2:在菱形EFGH中,已知EF的对角线交于点I,EI=8cm,IF=10cm。
求菱形的面积。
解:菱形的面积可以通过对角线的乘积除以2来求得。
因此,我们可以利用已知的对角线长度求得菱形的面积。
设菱形的一个对角线的长度为d1,另一个对角线的长度为d2,则菱形的面积为:面积 = (d1 x d2) / 2在这道题中,已知EI=8cm,IF=10cm,所以菱形的面积为:面积 = (8 x 10) / 2= 80 / 2= 40答:菱形的面积为40平方厘米。
题3:在菱形IJKL中,已知IJ的对角线交于点M,IM=6cm。
若菱形的周长是24cm,求菱形的面积。
解:首先,我们可以利用周长的性质来求得菱形的边长。
设菱形的边长为x,则菱形的周长为4x。
根据题目中的条件,我们可以得到以下等式:4x = 24解方程可得:x = 24 / 4x = 6因此,菱形的边长为6cm。
由于菱形的对角线互相垂直,所以可以将菱形划分为两个直角三角形。
菱形面积等于两个直角三角形的面积之和。
设菱形的对角线的长度依次为d1和d2,菱形面积为S。
则有公式:S = (d1 x d2) / 2在这道题中,已知IM=6cm,所以另一条对角线的长度为6cm。
代入公式可以求得菱形的面积:S = (6 x 6) / 2= 36 / 2= 18答:菱形的面积为18平方厘米。
人教版八年级下册数学《菱形的性质与判定》同步练习(含答案)
菱形的性质与判定一 、填空题(本大题共6小题)1.如图,在菱形ABCD 中,60A ∠=︒,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD 的边长是 .2.如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是 .3.如图2,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离16cm AB BC ==,则1∠= 度.4.已知菱形的一个内角为60︒,一条对角线的长为23,则另一条对角线的长为________.5.菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较短的对角线的长度为6.已知菱形ABCD 的两条对角线AC BD ,的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是二 、解答题(本大题共7小题)DCAB 图21CBAE F DBCA7.如图,ACD ∆、ABE ∆、BCF ∆均为直线BC 同侧的等边三角形.已知AB AC =.⑴ 顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应 的条件.⑵ 当BAC ∠为 度时,四边形ADFE 为正方形.8.如图,在梯形纸片ABCD 中,//AD BC ,AD CD >,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C E '.求证:四边形CDC E '是菱形.9.如图,在四边形ABCD 中,E 为AB 上一点,ADE ∆和BCE ∆都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,证明四边形PQMN 为平行四边形且PQ PN =.10.已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBAC'DCB A EQEP NMDCBA11.如图,四边形ABCD 中,AB CD E F G H =,,,,分别是AD BC BD AC ,,,的中点,求证:EF GH ,相互垂直平分12.已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE ∆沿BC 方向平移,使点E 与点C 重合,得GFC ∆.若60B ∠=︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.13.已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBACDH GFEBAGF E DCBAFEDCBA菱形的性质与判定答案解析一 、填空题 1.42.AB AD AC BD =⊥,3.120︒;由题意可知:构成三角形为等边三角形4.2或65.56.150°;如图,过点A 作AE BC ⊥于E ,则12AC BD BC AE ⋅=⋅,又2AC BD AB ⋅=,得1302AE AB ABC =∠=︒,,150BAD ∠=︒二 、解答题7.⑴ 构成的图形有两类,一类是菱形,一类是线段.当图形为菱形时,∠ BAC ≠60°(或A 与F 不重合、△ABC 不为正三角形)(若写出图形为平行四边形时,不给分)当图形为线段时,∠BAC = 60°(或A 与F 重合、△ABC 为正三角形). ⑵ 150︒.8.根据题意可知则. ∵, ∴. ∴, ∴.∴, ∴四边形为菱形. 9.如图,连结AC 、BD .∵PQ 为ABC ∆的中位线EDCBA'CDE C DE ∆≅∆'''CD C D C DE CDE CE C E =∠=∠=,,//AD BC C DE CDE '∠=∠CDE CED ∠=∠CD CE =CD C D C E CE ''===CDC E 'QNMD C∴PQ AC ∥且12PQ AC = 同理MN AC ∥且12MN AC = ∴MN PQ ∥且MN PQ = ∴四边形PQMN 为平行四边形. 在AEC ∆和DEB ∆中AE DE =,EC EB =,60AED CEB ∠=︒=∠即AEC DEB ∠=∠ ∴AEC DEB ∆∆≌ ∴AC BD =∴1122PQ AC BD PN ===. 10.连接AC ,∵四边形ABCD 为菱形∴AB BC CD AD ===∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=︒, ∵60EAF ∠=︒ ∴BAE CAF ∠=∠ ∴ABE ACF △≌△ ∴AE AF = ∵60EAF ∠=︒ ∴AEF △为等边三角形 ∴60AEF ∠=︒∵AEC B BAE AEF CEF ∠=∠+∠=∠+∠ ∴18CEF ∠=︒在矩形、菱形的定理题中,有时也常连对角线,把四边形问题转化为三角形问题.11.连结EG GF FH HE ,,,,根据题意,EG HF ,分别是DAB CAB ∆∆,的中位线,所以12EG HF AB ==,同理可证:12GF EH CD ==,因为AB CD =,所以ABCDEFEG HF GF EH ===,则四边形EGFH 是菱形,所以EF GH ,相互垂直12.当32BC AB =时,四边形ABFC 是菱形.∵AB GF ∥,AG BF ∥ ∴四边形ABFG 是平行四边形 ∵Rt ABE ∆中,60B ∠=︒ ∴30BAE ∠=︒ ∴12BE AB =∵BE CF =,32BC AB = ∴12EF AB = ∴AB BF =∴四边形ABFG 是菱形.13.连接AC ,∵四边形ABCD 为菱形∴AB BC CD AD ===∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=︒, ∵60EAF ∠=︒ ∴BAE CAF ∠=∠ ∴ABE ACF △≌△ ∴AE AF = ∵60EAF ∠=︒ ∴AEF △为等边三角形 ∴60AEF ∠=︒∵AEC B BAE AEF CEF ∠=∠+∠=∠+∠ABEFGHD CABCDEF∴18∠=︒CEF分析:在矩形、菱形的定理题中,有时也常连对角线,把四边形问题转化为三角形问题.。
初二数学菱形的判定作业练习题(含答案)
初二数学菱形的判定作业练习题一.选择题(共5小题)1.下列说法不正确的是()A.四边都相等的四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直平分的四边形是菱形D.对角线互相平分且相等的四边形是菱形2.已知四边形ABCD是平行四边形,下列结论中正确的有()①当AB BC⊥时,四边形ABCD是菱形;=时,四边形ABCD是菱形;②当AC BD③当90=时,四边形ABCD是菱形;∠=︒时,四边形ABCD是菱形;④当AC BDABCA.3个B.4个C.1个D.2个3.如图,在四边形ABCD中,对角线AC,BD相交于点O,且OA OC=,=.若要使四边形ABCD为菱形,则可以添加的条件是()OB ODA.AC BD∠=︒D.AC BD⊥⊥C.60=B.AB BCAOB4.已知四边形ABCD中,AC BD⊥,再补充一个条件使四边形ABCD为菱形,这个条件可以是() A.AC BD==B.AB BCC.AC与BD互相平分D.90∠=︒ABC5.在平面直角坐标系内,点O是原点,点A的坐标是(3,4),点B的坐标是(3,4)-,要使四边形AOBC 是菱形,则满足条件的点C的坐标是()A.(3,0)-B.(3,0)C.(6,0)D.(5,0)二.填空题(共5小题)6.如果一个四边形的两条对角线互相平分,互相垂直,那么这个四边形是.7.如图,两张等宽的长方形纸条交叉重叠在一起,重叠的部分ABCD是.8.四边形ABCD中,已知//AD BC,添加一个条件,即可判定该四边AB CD,//形是菱形.9.如图,四边形ABCD是对角线互相垂直的四边形,且OB OD=,请你添加一个适当的条件,使四边形ABCD是菱形.(只需添加一个即可)10.四边形ABCD为平行四边形,对角线AC,BD交于点O,请你添加一个合适的条件使其成为菱形.(只需添加一个即可)三.解答题(共4小题)11.如图,在ABCD=.⊥,垂足分别为点E、F,且BE DFY中,AE BC⊥,AF CD求证:ABCDY是菱形.12.已知如图ABCDY中,EF垂直平分对角线BD,交点为O,求证:四边形BFDE是菱形.13.如图,//∠交AE于点D,AC BD⊥于点O,交BF于点C,连接CD.求AE BF,BD平分ABC证:四边形ABCD是菱形.14.如图,在ABCAF BC交BE的延长∠=︒,AD是中线,E是AD的中点,过点A作//∆中,90BAC线于F,连接CF,求证:四边形ADCF是菱形.答案与解析一.选择题(共5小题)1.下列说法不正确的是()A.四边都相等的四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直平分的四边形是菱形D.对角线互相平分且相等的四边形是菱形【分析】由菱形的判定定理和矩形的判定定理分别对各个选项进行判断即可.【解答】解:Q四边都相等的四边形是菱形,∴选项A不符合题意;Q有一组邻边相等的平行四边形是菱形,∴选项B不符合题意;Q对角线互相垂直平分的四边形是菱形,∴选项C不符合题意;Q对角线互相平分且相等的四边形是矩形,∴选项D符合题意;故选:D.2.已知四边形ABCD是平行四边形,下列结论中正确的有()①当AB BC=时,四边形ABCD是菱形;②当AC BD⊥时,四边形ABCD是菱形;③当90∠=︒时,四边形ABCD是菱形:ABC④当AC BD=时,四边形ABCD是菱形;A.3个B.4个C.1个D.2个【分析】根据菱形的判定定理判断即可.【解答】解:Q四边形ABCD是平行四边形,=时,四边形ABCD是菱形;故符合题意;∴①当AB BC②当AC BD⊥时,四边形ABCD是菱形;故符合题意;③当90∠=︒时,四边形ABCD是长方形;故不符合题意;ABC④当AC BD=时,四边形ABCD是长方形;故不符合题意;故选:D.3.如图,在四边形ABCD中,对角线AC,BD相交于点O,且OA OC=.若要使四边形ABCD=,OB OD为菱形,则可以添加的条件是()A.AC BD⊥=B.AB BC∠=︒D.AC BD⊥C.60AOB【分析】由条件OA OC=根据对角线互相平分的四边形是平行四边形可得四边形ABCD为平=,OB OD行四边形,再由矩形和菱形的判定定理即可得出结论.【解答】解:OA OCQ,OB OD=,=∴四边形ABCD为平行四边形,A、AC BDQ,=∴四边形ABCD是矩形,故选项A不符合题意;B、AB BCQ,⊥∴四边形ABCD是矩形,故选项B不符合题意;Q,∠=︒AOBC、60不能得出四边形ABCD是菱形;选项C不符合题意;D、AC BDQ,⊥∴四边形ABCD是菱形,故选项D符合题意;故选:D.4.已知四边形ABCD中,AC BD⊥,再补充一个条件使四边形ABCD为菱形,这个条件可以是() A.AC BD=B.AB BC=C.AC与BD互相平分D.90∠=︒ABC【分析】由在四边形ABCD中,对角线AC,BD互相平分,可得四边形ABCD是平行四边形,又由对角线互相垂直的平行四边形是菱形,即可求得答案.【解答】解:Q在四边形ABCD中,对角线AC,BD互相平分,∴四边形ABCD是平行四边形,⊥Q,AC BD∴四边形ABCD是菱形.故选:C.5.在平面直角坐标系内,点O是原点,点A的坐标是(3,4),点B的坐标是(3,4)-,要使四边形AOBC 是菱形,则满足条件的点C的坐标是()A.(3,0)-B.(3,0)C.(6,0)D.(5,0)【分析】如图,连接AB交OC于D,根据菱形的性质即可得到结论.【解答】解:如图,连接AB交OC于D,Q四边形AOBC是菱形,=,AD OC∴⊥,OD CD-,Q点A的坐标是(3,4),点B的坐标是(3,4)OD∴=,3∴=,OC6∴,(6,0)C故选:C.二.填空题(共5小题)6.如果一个四边形的两条对角线互相平分,互相垂直,那么这个四边形是菱形.【分析】由一个四边形的两条对角线互相平分,互相垂直,根据菱形的判定定理可得这个四边形是菱形.【解答】解:Q一个四边形的两条对角线互相平分,∴此四边形是平行四边形,Q两条对角线互相垂直,∴这个四边形是菱形.故答案为:菱形.7.如图,两张等宽的长方形纸条交叉重叠在一起,重叠的部分ABCD是菱形.【分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.【解答】解:过点A 作AE BC ⊥于E ,AF CD ⊥于F ,如图,Q 两条纸条宽度相同,AE AF ∴=.//AB CD Q ,//AD BC ,∴四边形ABCD 是平行四边形.ABCD S BC AE CD AF =⋅=⋅Y Q .又AE AF =Q .BC CD ∴=,∴四边形ABCD 是菱形;故答案为:菱形.8.四边形ABCD 中,已知//AB CD ,//AD BC ,添加一个条件 AB BC =或AC BD ⊥ ,即可判定该四边形是菱形.【分析】根据平行四边形的判定证出四边形ABCD 是平行四边形,根据菱形的判定证出即可.【解答】解:添加的条件是AB BC =,或AC BD ⊥;理由如下://AB CD Q ,//AD BC ,∴四边形ABCD 是平行四边形,若AB BC =,则平行四边形ABCD 是菱形;若AC BD ⊥,则平行四边形ABCD 是菱形;故答案为:AB BC =或AC BD ⊥.9.如图,四边形ABCD 是对角线互相垂直的四边形,且OB OD =,请你添加一个适当的条件OA OC = ,使四边形ABCD 是菱形.(只需添加一个即可) 【分析】可以添加条件OA OC =,根据对角线互相垂直平分的四边形是菱形可判定出结论.【解答】解:OA OC =,OB OD =Q ,OA OC =,∴四边形ABCD 是平行四边形,AC BD ⊥Q ,∴平行四边形ABCD 是菱形,故答案为:OA OC =.10.如图,四边形ABCD 为平行四边形,请你添加一个合适的条件 ()AB BC AC BD =⊥ 使其成为菱形.(只需添加一个即可)【分析】根据菱形的判定可得.【解答】解:AB BC =Q (一组邻边即可),且四边形ABCD 为平行四边形∴四边形ABCD 是菱形AC BD ⊥Q ,且四边形ABCD 为平行四边形∴四边形ABCD 是菱形.故答案为()AB BC AC BD =⊥三.解答题(共4小题)11.如图,在ABCD Y 中,AE BC ⊥,AF CD ⊥,垂足分别为点E 、F ,且BE DF =. 求证:ABCD Y 是菱形.【分析】由平行四边形的性质可得B D ∠=∠,由“ASA ”可证ABE ADF ∆≅∆,可得AB AD =,即可得结论.【解答】证明:Q 四边形ABCD 是平行四边形B D ∴∠=∠,且BE DF =,90AEB ADF ∠=∠=︒()ABE ADF ASA ∴∆≅∆AB AD ∴=,且四边形ABCD 是平行四边形∴四边形ABCD 是菱形12.已知如图ABCD Y 中,EF 垂直平分对角线BD ,交点为O ,求证:四边形BFDE 是菱形.【分析】根据平行四边形的性质以及全等三角形的判定方法证明出DOE BOF ∆≅∆,得到OE OF =,利用对角线互相平分的四边形是平行四边形得出四边形EBFD 是平行四边形,进而利用对角线互相垂直的平行四边形是菱形得出四边形BFDE 为菱形.【解答】证明:Q 在ABCD Y 中,O 为对角线BD 的中点,BO DO ∴=,EDB FBO ∠=∠,在DOE ∆和BOF ∆中,EDO FBO OD OBEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()DOE BOF ASA ∴∆≅∆;OE OF ∴=,又OB OD =Q ,∴四边形EBFD 是平行四边形,EF BD ⊥Q ,∴四边形BFDE 为菱形.13.如图,//AE BF ,BD 平分ABC ∠交AE 于点D ,AC BD ⊥于点O ,交BF 于点C ,连接CD .求证:四边形ABCD 是菱形.【分析】直接利用平行线的性质结合角平分线的定义得出对应角的关系,进而得出()ADO CBO ASA ∆≅∆,进而证明即可.【解答】证明://AE BF Q ,ADB CBD ∴∠=∠,BD Q 平分ABC ∠交AE 于点D ,ABD DBC ∴∠=∠,ABD ADB ∴∠=∠,AB AD ∴=,AC BD ⊥Q ,BO DO ∴=,在ADO ∆和CBO ∆中ADO CBO DO BOAOD BOC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ADO CBO ASA ∴∆≅∆,AD BC ∴=,又∵AD ∥BC ,∴四边形ABCD 是平行四边形,AB AD =Q ,∴四边形ABCD 是菱形.14.如图,在ABC ∆中,90BAC ∠=︒,AD 是中线,E 是AD 的中点,过点A 作//AF BC 交BE 的延长线于F ,连接CF ,求证:四边形ADCF 是菱形.【分析】根据AAS 证AFE DBE ∆≅∆,推出AF BD =.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF 是菱形.【解答】证明://AF BC Q ,AFE DBE ∴∠=∠,E Q 是AD 的中点,AD 是BC 边上的中线,AE DE ∴=,BD CD =,在AFE ∆和DBE ∆中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AFE DBE AAS ∴∆≅∆;AF DB ∴=.DB DC =Q ,AF CD ∴=.//AF BC Q ,∴四边形ADCF 是平行四边形,90BAC ∠=︒Q ,D 是BC 的中点, 12AD DC BC ∴==, ∴四边形ADCF 是菱形.。
菱形的判定专项练习30题
菱形的判定专项练习30题(有答案)1.如图,梯形ABCD中,AD∥BC,BA=AD=DC=BC,点E为BC的中点.(1)求证:四边形ABED是菱形;(2)过A点作AF⊥BC于点F,若BD=4cm,求AF的长.2.如图,四边形ABCD中,对角线AC、BD相交于点O,且AC⊥BD.点M,N分别在BD、AC上,且AO=ON=NC,BM=MO=OD.求证:BC=2DN.3.如图,在△ABC中,AB=AC,D,E,F分别是BC,AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)若AB=12cm,求菱形AEDF的周长.4.如图,在▱ABCD中,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于点E,F.已知BE=BP.求证:(1)∠E=∠F;(2)▱ABCD是菱形.5.如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC,AF与CE的延长线相交于点F,连接BF.(1)求证:AF=DC;(2)若∠BAC=90°,求证:四边形AFBD是菱形.6.已知平行四边形ABCD中,对角线BD平分∠ABC,求证:四边形ABCD是菱形.7.如图,在一个含30°的三角板ABC中,将三角板沿着AB所在直线翻转180°得到△ABF,再将三角板绕点C顺时针方向旋转60°得到△DEC,点F在AC上,连接AE.(1)求证:四边形ADCE是菱形.(2)连接BF并延长交AE于G,连接CG.请问:四边形ABCG是什么特殊平行四边形?为什么?8.如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是为E F,并且DE=DF.求证:四边形ABCD是菱形.9.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E,以AD,AE为边作▱ADFE交BC于点G,H,且EH=EC.求证:(1)∠B=∠C;(2)▱ADFE是菱形.10.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BAC的平分线AE交CD于F,EG⊥AB于G.(1)求证:△AEG≌△AEC;(2)△CEF是否为等腰三角形,请证明你的结论;(3)四边形GECF是否为菱形,请证明你的结论.11.如图,在△ABC中,AB=AC,点D、E、F分别是△ABC三边的中点.求证:四边形ADEF是菱形.12.如图,在四边形ABCD中,AB=CD,M、N、E、F分别为AD、BC、BD、AC的中点,求证:四边形MENF 为菱形.13.已知:如图,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.求证:四边形ABED是菱形.14.如图,在△ABC中,AB=AC,M、O、N分别是AB、BC、CA的中点.求证:四边形AMON是菱形.15.如图:在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F.求证:四边形AEFG是菱形.16.如图,矩形ABCD绕其对角线交点旋转后得矩形AECF,AB交EC于点N,CD交AF于点M.求证:四边形ANCM是菱形.17.如图,四边形ABCD、DEBF都是矩形,AB=BF,AD、BE交于M,BC、DF交于N,那么四边形BMDN是菱形吗?如果是,请写出证明过程;如果不是,说明理由.18.已知如图所示,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,四边形AEDF是菱形吗?说明理由.19.已知:如图所示,BD是△ABC的角平分线,EF是BD的垂直平分线,且交AB于E,交BC于点F.求证:四边形BFDE是菱形.20.如图,在平行四边形ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.21.如图,在矩形ABCD中,EF垂直平分BD.(1)判断四边形BEDF的形状,并说明理由.(2)已知BD=20,EF=15,求矩形ABCD的周长.22.如图所示,在▱ABCD中,点E在BC上,AE平分∠BAF,过点E作EF∥AB.求证:四边形ABEF为菱形.23.已知,如图,矩形ABCD中,AB=4cm,AD=8cm,作∠CAE=∠ACE交BC于E,作∠ACF=∠CAF交AD于F.(1)求证:AECF是菱形;(2)求四边形AECF的面积.24.如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.问四边形AFCE是菱形吗?请说明理由.25.如图:在平行四边形ABCD中,E、F分别是边AB、CD的延长线上一点,且BE=DF,连接EF交AC于O.(1)AC与EF互相平分吗?为什么?(2)连接CE、AF,再添加一个什么条件,四边形AECF是菱形?为什么?26.已知:如图,△ABC和△DBC的顶点在BC边的同侧,AB=DC,AC=BD交于E,∠BEC的平分线交BC于O,延长EO到F,使EO=OF.求证:四边形BFCE是菱形.27.如图,在△ABC中,D是BC边的中点,F,E分别是AD及其延长线上的点,CF∥BE.(1)求证:△BDE≌△CDF;(2)请连接BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由;(3)在(2)下要使BECF是菱形,则△ABC应满足何条件?并说明理由.28.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.29.如图,在△ABC中,AD是∠BAC的平分线,EF垂直平分AD交AB于E,交AC于F.求证:四边形AEDF是菱形.30.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA 的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.矩形的判定专项练习30题参考答案:1.1)证明:∵点E为BC的中点,∴BE=CE=BC,∵BA=AD=DC=BC,∴AB=BE=ED=AD,∴四边形ABED是菱形;(2)解:过点D作DH⊥BC,垂足为H,∵CD=DE=CE,∴∠DEC=60°,∴∠DBE=30°,在Rt△BDH中,BD=4cm,∴DH=2cm,∵AF=DH,∴AF=2cm.2.∵AO=ON,BM=MO,∴四边形AMND是平行四边形,∵AC⊥BD,∴平行四边形AMND是菱形,∴MN=DN,∵ON=NC,BM=MO,∴MN=BC,∴BC=2DN 3.(1)∵D,E分别是BC,AB的中点,∴DE∥AC且DE=AF=AC.同理DF∥AB且DF=AE=AB.又∵AB=AC,∴DE=DF=AF=AE,∴四边形AEDF是菱形.(2)∵E是AB中点,∴AE=AB=6cm,因此菱形AEDF的周长为4×6=24cm.4.(1)∵BE=BP,∴∠E=∠BPE,∵BC∥AF,∴∠BPE=∠F,∴∠E=∠F.(2)∵EF∥BD,∴∠E=∠ABD,∠F=∠ADB,∴∠ABD=∠ADB,∴AB=AD,∵四边形ABCD是平行四边形,∴□ABCD是菱形.5.1)证明:∵E是AD的中点,∴∠1=∠2,在△AEF和△DEC 中,∴△AFE≌△DCE(AAS),∴AF=DC;(2)证明:∵D是BC的中点,∴DB=CD=BC,∵AF=CD,∴AF=DB,∵AF∥BD,∴四边形AFBD是平行四边形,∵∠BAC=90°,D为BC中点,∴AD=CB=DB,∴四边形AFBD是菱形.6.∵对角线BD平分∠ABC,∴∠1=∠2,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠3=∠1,∴∠3=∠2,∴DC=BC,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.7.(1)∵三角板ABC中,将三角板沿着AB所在直线翻转180°得到△ABF,∴△ABC≌△ABF,且∠BAC=∠BAF=30°,∴∠FAC=60°,∴AD=DC=AC,又∵△ABC≌△EFC,∴CA=CE,又∵∠ECF=60°,∴AC=EC=AE,∴AD=DC=CE=AE,(2)证明:由(1)可知:△ACD,△AFC是等边三角形,△ACB≌△AFB,∴∠EDC=∠BAC=∠FAC=30°,且△ABC为直角三角形,∴BC=AC,∵EC=CB,∴EC=AC,∴E为AC中点,∴DE⊥AC,∴AE=EC,∵AG∥BC,∴∠EAG=∠ECB,∠AGE=∠EBC,∴△AEG≌△CEB,∴AG=BC,(7分)∴四边形ABCG是平行四边形,∵∠ABC=90°,∴四边形ABCG是矩形8.在△ADE和△CDF中,∵四边形ABCD是平行四边形,∴∠A=∠C,∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°.又∵DE=DF,∴△ADE≌△CDF(AAS)∴DA=DC,∴平行四边形ABCD是菱形9.(1)∵在▱ADFE中,AD∥EF,∴∠EHC=∠B(两直线平行,同位角相等).∵EH=EC(已知),∴∠EHC=∠C(等边对等角),∴∠B=∠C(等量代换);(2)∵DE∥BC(已知),∴∠AED=∠C,∠ADE=∠B.∵∠B=∠C,∴∠AED=∠ADE,∴AD=AE,∴▱ADFE是菱形.10.1)证明:∵∠ACB=90°,∴AC⊥EC.在Rt△AEG与Rt△AEC中,,∴Rt△AEG≌Rt△AEC(HL);(2)解:△CEF是等腰三角形.理由如下:∵CD是AB边上的高,∴CD⊥AB.又∵EG⊥AB,∴EG∥CD,∴∠CFE=∠GEA.又由(1)知,Rt△AEG≌Rt△AEC,∴∠GEA=∠CEA,∴∠CEA=∠CFE,即∠CEF=∠CFE,∴CE=CF,即△CEF是等腰三角形;(3)解:四边形GECF是菱形.理由如下:∵由(1)知,Rt△AEG≌Rt△AEC,则GE=EC;由(2)知,CE=CF,∴GE=EC=FC.又∵EG∥CD,即GE∥FC,∴四边形GECFR是菱形.11.∵D、E、F分别是△ABC三边的中点,∴DE AC,EF AB,∴四边形ADEF为平行四边形.又∵AC=AB,∴DE=EF.∴四边形ADEF为菱形.12.∵M、E、分别为AD、BD、的中点,∴ME∥AB,ME=AB,同理:FH∥AB,FH=AB,∴四边形MENF是平行四边形,∵M.F是AD,AC中点,∴MF=DC,∵AB=CD,∴MF=ME,∴四边形MENF为菱形13.∵AE平分∠BAD,∵,∴△BAE≌△DAE(SAS)…(2分)∴BE=DE,…(3分)∵AD∥BC,∴∠DAE=∠AEB,…(4分)∴∠BAE=∠AEB,∴AB=BE,…(5分)∴AB=BE=DE=AD,…(6分)∴四边形ABED是菱形.14.∵AB=AC,M、O、N分别是AB、BC、CA的中点,∴AM=AB=AC=AN,M0∥AC,NO∥AB,且MO=AC=AN,NO=AB=AM(三角形中位线定理),∴AM=MO=AN=NO,∴四边形AMON是菱形(四条边都相等的四边形是菱形)15.证法一:∵AD⊥BC,∴∠ADB=90°,∵∠BAC=90°,∴∠B+∠BAD=90°,∠BAD+∠CAD=90°,∴∠B=∠CAD,∵CE平分∠ACB,EF⊥BC,∠BAC=90°(EA⊥CA),∴AE=EF(角平分线上的点到角两边的距离相等),∵CE=CE,∴由勾股定理得:AC=CF,∵△ACG和△FCG中,∴△ACG≌△FCG,∴∠CAD=∠CFG,∵∠B=∠CAD,∴∠B=∠CFG,∴GF∥AB,∵AD⊥BC,EF⊥BC,∴AD∥EF,即AG∥EF,AE∥GF,∴平行四边形AEFG是菱形.证法二:∵AD⊥BC,∠CAB=90°,EF⊥BC,CE平分∠ACB,∴AD∥EF,∠4=∠5,AE=EF,∵∠1=180°﹣90°﹣∠4,∠2=180°﹣90°﹣∠5,∴∠1=∠2,∵AD∥EF,∴∠2=∠3,∴∠1=∠3,∴AG=AE,∵AE=EF,∴AG=EF,∵AG∥EF,∴四边形AGFE是平行四边形,∵AE=EF,∴平行四边形AGFE是菱形.16.∵CD∥AB,∴∠FMC=∠FAN,∴∠NAE=∠MCF(等角的余角相等),在△CFM和△AEN中,,∴△CFM≌△AEN(ASA),∴CM=AN,∴四边形ANCM为平行四边形,在△ADM和△CFM中,,∴△ADM≌△CFM(AAS),∴AM=CF,∴四边形ANCM是菱形17.四边形BMDN是菱形.∵AM∥BC,∴∠AMB=∠MBN,∵BM∥FN∴∠MBN=∠BNF,∴∠AMB=∠BNF,又∵∠A=∠F=90°,AB=BF,∴△ABM≌△BFN,∴DM=DN,∵ED=BF=AB,∠E=∠A=90°,∠AMB=∠EMD,∴△ABM≌△EDM,∴BM=DM,∴MB=MD=DN=BN,∴四边形BMDN是菱形18.如图,由于DE∥AC,DF∥AB,所以四边形AEDF 为平行四边形.∵DE∥AC,∴∠3=∠2,又∠1=∠2,∴∠1=∠3,∴AE=DE,∴平行四边形AEDF为菱形.19.∵EF是BD的垂直平分线,∴EB=ED,∴∠EBD=∠EDB.∵BD是△ABC的角平分线,∴∠EBD=∠FBD.∴∠FBD=∠EDB,∴ED∥BF.同理,DF∥BE,∴四边形BFDE是平行四边形.又∵EB=ED,∴四边形BFDE是菱形.20.方法一:∵AE∥FC.∴∠EAC=∠FCA.(2分)又∵∠AOE=∠COF,AO=CO,∴△AOE≌△COF.(5分)∴EO=FO.又EF⊥AC,∴AC是EF的垂直平分线.(8分)∴AF=AE,CF=CE,又∵EA=EC,∴AF=AE=CE=CF.∴四边形AFCE为菱形.(10分)方法二:同方法一,证得△AOE≌△COF.(5分)∴AE=CF.∴四边形AFCE是平行四边形.(8分)又∵EF是AC的垂直平分线,方法三:同方法二,证得四边形AFCE是平行四边形.(8分)又EF⊥AC,(9分)∴四边形AFCE为菱形21.(1)四边形BEDF是菱形.在△DOF和△BOE中,∠FDO=∠EBO,OD=OB,∠DOF=∠BOE=90°,所以△DOF≌△BOE,所以OE=OF.又因为EF⊥BD,OD=OB,所以四边形BEDF为菱形.(5分)(2)如图,在菱形EBFD中,BD=20,EF=15,则DO=10,EO=7.5.由勾股定理得DE=EB=BF=FD=12.5.S菱形EBFD =EF•BD=BE•AD,即所以得AD=12.根据勾股定理可得AE=3.5,有AB=AE+EB=16.由2(AB+AD)=2(16+12)=56,故矩形ABCD的周长为5622.∵四边形ABCD是平行四边形,∴AF∥BE,又∵EF∥AB,∴四边形ABEF为平行四边形,∵AE平分∠BAF,∴∠BAE=∠FAE,∵∠FAE=∠BEA,∴∠BAE=∠BEA,∴BA=BE,∴平行四边形ABEF为菱形23.(1)证明:在矩形ABCD中,∵AB∥CD,∴∠BAC=∠DCA,又∠CAE=∠ACE,∠ACF=∠CAF,∴∠EAC=∠FCA.∴AE∥CF.∴四边形AECF为平行四边形,又∠CAE=∠ACE,∴AE=EC.∴▱AECF为菱形.(2)设BE=x,则EC=AE=8﹣x,在Rt△ABE中,AB2+BE2=AE2,所以EC=5,即S菱形AECF=EC×AB=5×4=20.24.四边形AFCE是菱形,理由是:∵四边形ABCD是平行四边形,∴AD∥BC,∴=,∵AO=OC,∴OE=OF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴平行四边形AFCE是菱形25.(1)AC与EF互相平分,连接CE,AF,∵平行四边形ABCD,∴AB∥CD,AB=CD,又∵BE=DF,∴AB+BE=CD+DF,∴AE=CF,∴AE∥CF,AE=CF,∴四边形AECF是平行四边形,∴AC与EF互相平分;(2)条件:EF⊥AC,∵EF⊥AC,又∵四边形AECF是平行四边形,∴平行四边形AECF是菱形.26.∵AB=DC AC=BD BC=CB,∴△ABC≌△DCB,∴∠DBC=∠ACB,∴BE=CE,又∵∠BEC的平分线是EF,∴EO是中线(三线合一),∴BO=CO,∴四边形BFCE是平行四边形(对角线互相平分),又∵BE=CE,∴四边形BFCE是菱形.27.(1)证明:∵CF∥BE,∴∠EBD=∠FCD,D是BC边的中点,则BD=CD,∠BDE=∠CDF,∴△BDE≌△CDF.(2)如图所示,由(1)可得CF=BE,又CF∥BE,所以四边形BECF是平行四边形;(3)△ABC是等腰三角形,即AB=AC,理由:当AB=AC 时,则有AD⊥BC,又(2)中四边形为平行四边形,所以可判定其为菱形.28.(1)∵DE为BC的垂直平分线,∴∠EDB=90°,BD=DC,又∵∠ACB=90°,∴DE∥AC,∴E为AB的中点,∴在Rt△ABC中,CE=AE=BE,∴∠AEF=∠AFE,且∠BED=∠AEF,∠DEC=∠DFA,∴AF∥CE,又∵AF=CE,∴四边形ACEF为平行四边形;(2)要使得平行四边形ACEF为菱形,则AC=CE即可,∵DE∥AC,∴∠BED=∠BAC,∠DEC=∠ECA,又∵∠BED=∠DEC,∴∠EAC=∠ECA,∴AE=EC,又EB=EC,∴AE=EC=EB,∵CE=AB,∴AC=AB即可,在Rt△ABC中,∠ACB=90°,∴当∠B=30°时,AB=2AC,故∠B=30°时,四边形ACEF为菱形.29.∵AD平分∠BAC∴∠BAD=∠CAD又∵EF⊥AD,∴∠AOE=∠AOF=90°∵在△AEO和△AFO中,∴△AEO≌△AFO(ASA),∴EO=FO即EF、AD相互平分,∴四边形AEDF是平行四边形又EF⊥AD,∴平行四边形AEDF为菱形30.1)解:OE=OF.理由如下:∵CE是∠ACB的角平分线,∴∠ACE=∠BCE,又∵MN∥BC,∴∠NEC=∠ECB,∴∠NEC=∠ACE,∴OE=OC,∵OF是∠BCA的外角平分线,∴∠OCF=∠FCD,又∵MN∥BC,∴∠OFC=∠ECD,∴∠OFC=∠COF,∴OF=OC,∴OE=OF;(2)解:当∠ACB=90°,点O在AC的中点时,∵OE=OF,∴四边形AECF是正方形;(3)答:不可能.解:如图所示,∵CE平分∠ACB,CF平分∠ACD,∴∠ECF=∠ACB+∠ACD=(∠ACB+∠ACD)=90°,若四边形BCFE是菱形,则BF⊥EC,但在△GFC中,不可能存在两个角为90°,所以不存在其为菱形.。
人教版八年级下册数学 18.2.2菱形 测试题(含答案)
18.2.2菱形 测试题一、填空题1.菱形的邻角比为1:5,它的高为1.5cm ,则它的周长为_______. 2.两条对角线_________的四边形是菱形. 3.已知菱形的两对角线的比为2:3,两对角线和为20,•则这对角线长分别为_____,_______.4.菱形ABCD 的AC 交BD 于O ,AB=13,BO=12,AO=5,求菱形的周长=_____, 面积=•____.5.O 为菱形ABCD 的对角线交点,E 、F 、G 、H 分别是菱形各边的中点,若OE=3cm ,•则OF=_____,OG=_______,OH=______. 二、选择题6.从菱形的钝角的顶点向对边引垂线,并且这条垂线平分对边,•则该菱形的钝角为( ).A .110°B .120°C .135°D .150°7.菱形的两邻角之比为1:2,如果它的较短对角线为3cm ,则它的周长为( ). A .8cm B .9cm C .12cm D .15cm 8.菱形具有而矩形不一定具有的性质是( ). A .对边相等 B .对角相等 C .对角线互相相等 D .对有线相等9.能够找到一点使该点到各边距离相等的图形为( ).A .平行四边形B .菱形C .矩形D .不存在 10.下列说法不正确的是( ).A .菱形的对角线互相垂直B .菱形的对角线平分各内角C .菱形的对角线相等D .菱形的对角线交点到各边等距离 三、解答题11.如图所示,已知E 为菱形ABCD 的边AD 的中点,EF ⊥AC 于F 交AB 于M .试说明M 为AB 的中点.21M FE DCBA12.如图所示,已知菱形ABCD 中E 在BC 上,且AB=AE ,∠BAE=12∠EAD ,AE 交BD 于M ,试说明BE=AM .3421MEDCBA 13.如图所示,已知在菱形ABCD中,AE⊥CD于E,∠ABC=60°,求∠CAE的度数.14.如图所示,菱形的周长为20cm,两邻角的比为1:2.求:(1)较短对角线长是多少?(2)一组对边的距离是多少?15.如图所示,已知菱形ABCD中,E、F分别在BC和CD上,且∠B=∠EAF=•60°,∠BAE=15°,求∠CEF的度数.16.已知在菱形ABCD中,AE⊥BC于E,且BE=EC,若AC=6,求菱形ABCD的各边长.17.菱形一边与两条对角线所构成的两个角的差为10°,求菱形的各内角.18.如图所示,已知菱形ABCD中,E、F是BC、CD上的点,且AE=EF=AF=AB,• 求∠C的度数.19.如图所示,O为矩形ABCD的对角线交点,DE∥AC,CE⊥BD,OE与CD•互相垂直平分吗?请说明理由.20.如图所示,已知在菱形ABCD中,E在BC上,若∠B=∠EAD=70°,ED•平分∠AEC 吗?请说明理由.21.试说明:菱形的对角线的交点到各边的中点距离相等.参考答案一、1.12cm 2.互相垂直平分 3.8 12 4.52 120 5.3cm 3cm 3cm二、6.B 7.C 8.C 9.B 10.C三、11.由于△AME是以AC为轴的轴对称图形(其中∠1=∠2,ME⊥AC)所以AM=AE=12AD,故AM=12AB,所以M是AB的中点.12.设∠BAE=x°,则∠EAD=2x°,•所以∠AEB=∠ABC=2x°,那么5x°=180°,x=36°,由于∠1=∠2,故∠2=36°,∠BEM=•72•°,• 那么∠BME=72°,所以∠BEM=∠BME即BE=BM,又∠1=∠5=36°,所以BM=AM,那么BE=AM •13.30° 14.(1)20cm (2)15.连AC,可得△ABC为等边三角形,则∠ACF=120°-60°=60°,由已知得∠2=∠1=15°,把△ABE绕着A按逆时针方向旋转60•°可与△ACF 重合,这样AF=AE,由于∠EAF=60°,故△AEF为等边三角形,那么∠AEF=60°,由于∠AEB=180°-60°-15°=105°,故∠CEF=180°-60°-105°=15°16.略 17.6 •6 6 6 18.80° 100° 80° 100° 19.100°四边形ODEC是菱形 •20.由∠B=∠EAD=70°,AD∥BC,即∠AEB=70°,那么∠1=40°,由AB=AE,AB=AD,得AE=•AD,即∠2=55°,而∠AEC=180°-70°=110°,故∠DEC=110°-55°=55°,所以ED平分∠AEC21.通过斜边中线等于斜边的一半和菱形各边都相等的道理而推得.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初二数学 菱形 专项训练(附答案)1.把菱形ABCD 沿对角线AC 的方向移动到菱形A ′B ′C ′D ′的位置,它们重叠部分的四边形A ′FCE 是( )AB CD E A ′ B ′ C ′D ′ FA .正方形B .矩形C .菱形D .不确定2.如图,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是B C .CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( )A . 32B . 33C . 34D . 3AD F CEB3.已知菱形的周长为96㎝,两个邻角的比是1︰2,这个菱形的较短对角线的长是( ) A .21㎝ B .22㎝ C .23㎝ D .24㎝ 4.若菱形周长为52cm ,一条对角线长为10cm ,则其面积为( ) A .240 cm 2B .120 cm 2C .60 cm 2D .30 cm 25.如图,下列条件之一能使平行四边形ABCD 是菱形的为( ) ①AC BD ⊥ ②90BAD ∠= ③AB BC = ④AC BD = A .①③B .②③C .③④D .①②③6.如图,在三角形ABC 中,AB >AC ,D 、E 分别是AB 、AC 上的点,△ADE 沿线段DE 翻折,使点A 落在边BC 上,记为A '.若四边形ADA E '是菱形,则下列说法正确的是( )A .DE 是△ABC 的中位线B .AA '是BC 边上的中线C .AA '是BC 边上的高D .AA '是△ABC 的角平分线ABCDEA '7.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )A .210cmB .220cmC .240cmD .280cmABD8.若菱形的边长为1cm ,其中一内角为60°,则它的面积为 ( )A .22B2 C .22cm D .2 9.一个菱形两条对角线之比为1︰2,一条较短的对角线长为4cm ,那么菱形的边长为( ) A .2cm B .4cm C.(2+ D .ABCD10.如图,在菱形ABCD 中,∠A =110°,E ,F 分别是边AB 和BC 的中点,EP ⊥CD 于点P ,则∠FPC =( )A .35°B .45°C .50°D .55 A DE P C BF二、填空题11.如图,菱形111AB C D 的边长为1,160B ∠=;作211AD B C ⊥于点2D ,以2AD 为一边,做第二个菱形222AB C D ,使260B ∠=;作322AD B C ⊥于点3D ,以3AD 为一边做第三个菱形333AB C D ,使360B ∠=;依此类推,这样做的第n 个菱形n n n AB C D 的边n AD 的长是 .12.如图,菱形ABCD 的边长为2,45ABC ∠=,则点D 的坐标为 .13.如图所示,菱形ABCD 中,对角线AC BD 、相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 .BAHCCO14.菱形ABCD 中,AE 垂直平分BC ,垂足为E ,AB =4cm .那么,菱形ABCD 的面积是 ,对角线BD 的长是 .15.如图,菱形ABCD 的对角线相交于点O ,请你添加一个条件: ,使得该菱形为正方形.AB CDD C BAO O16.如图,菱形ABCD 中,O 是对角线AC BD ,的交点,5cm AB =,4cm AO =,则BD =____________cm .OA BCD17.菱形的对角线长分别为6和8,则菱形的边为 ,菱形的面积为 。
18.己知菱形ABCD 的边长是6,点E 在直线AD 上,DE =3,连接BE 与对角线AC 相交于点M ,则MCAMCB1D B 3A C 2B 2C 3D 3 B 1D 2C 1v1.0 可编辑可修改的值是 .19.如图,□ABCD 中,AE 、CF 分别是∠BAD 和∠BCD 的角平分线,根据现有的图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个条件可以是 (只需写出一个即可,图中不能再添加别的“点”和“线”).ABCDFE20.如图,在菱形ABCD 中,60A ∠=°,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD 的边长是_____________.三、证明题21.矩形ABCD 的对角线相交于点O ,DE //AC ,CE //DB ,CE 、DE 交于点E ,请问:四边形DOCE 是什么四边形请说明理由.EOABCD22.在矩形ABCD 中,AB =6cm , BC =8cm ,若将矩形对角线BD 对折,使B 点与D 点重合,四边形EBFD 是菱形吗请说明理由,并求这个菱形的边长.EFDAC B四、解答题23.在矩形ABCD 中,AB =6cm , BC =8cm , 若将矩形对角线BD 对折,使B 点与D 点重合,四边形EBFD 是菱形吗请说明理由,并求这个菱形的边长.BDEF24.如图,ABC △中,点O 是边AC 上一个动点,过O 作直线MN BC ∥,设MN 交BCA ∠的平分线于点E ,交BCA ∠的外角平分线于点F . (1)探究:线段OE 与OF 的数量关系并加以证明;(3分)(2)当点O 在边AC 上运动时,四边形BCFE 会是菱形吗若是,请证明,若不是,则说明理由;(3分)(3)当点O 运动到何处,且ABC △满足什么条件时,四边形AECF 是正方形(3分)AFN DCBM EO25.如图,点E,F分别是菱形ABCD中BC,CD边上的点(E,F不与B,C,D重合)在不连辅助线的情况下请添加一个条件,说明AE=AF.CB26.两个完全相同的矩形纸片ABCD、BFDE如图放置,AB=BF.求证:四边形BNDM为菱形.F EBCD27.如图,四边形ABCD是菱形,DE⊥AB交BA的延长线于E,DF⊥BC,交BC的延长线于F。
请你猜想DE与DF的大小有什么关系并证明你的猜想.A BECDF八年级数学菱形练习题组答案一、选择题1.(922)C.;2.(3635)B.;3.(10433)D.;4.(10444)D.;5.(3631)A.;6.(3639)D.;7.(814)B.;8.(7592)A.;9.(10436)D.;10.(6148)D.;A DE P CBF二、填空题11.(3608)12n -⎛⎫⎪ ⎪⎝⎭;12.(3602)(2+;13.(7625)3;14.(6916)2,;15.(6169);16.(3616)6;17.(5905)5,24;18.(3610)2或23;19.(7606)AC ⊥EF 或AF =CF等;20.(4349)4; 三、证明题21.(7624)答:四边形DOCE 为菱形 证明:∵DE ∥AC ,CE ∥BD ∴四边形DOCE 为平行四边形 ∴DE =OC又∵四边形ABCD 为矩形 ∴OC =OD ∴DE =OD∴四边形DOCE 为菱形.22.(7586)四边形EBFD 是菱形。
菱形的边长为425;四、解答题 23.(2511)解 证明C A' F EDC BA∵△ABD ≌△BCD ≌BC ′D ∴AB =C ′D∵ABCD 为矩形 ∴∠A =∠C ′=90° 在△ABE 与△C ′DE 中''AB C DA C AEB BCD =⎧⎪∠=∠⎨⎪∠=∠⎩∴△ABE ≌△C ′DE (AAS) ∴BE =DE ∴∠EBD =∠EDB 同理可得 ∠CBD =∠DBCBD 平分∠CBE 与∠ADF设BF =DF =xCF =8-x BF =254∴四边形EBFD 是菱形; 24.(10192);25.(5024)(1)添加条件:BE =DF 或∠BAE =∠DAF 或∠BAF =∠DAE 等 (2)证明:∵四边形ABCD 是菱形∴AB =AD ∠B =∠D 在△ABE 和ADF 中AB =AD∠B =∠DBE =DF∴△ABE ≌ADF ∴AE =AF ; 26.(2478);27.(5042)解:猜想:DE =DF 证明如下:ABE CDF连结BD∵四边形ABCD 是菱形∴∠CBD =∠ABD (菱形的对角线平分一组对角) ∵DF ⊥BC ,DE ⊥AB∴DF =DE (角平分线上的点到角两边的距离相等);。