2014中考数学二模试卷及答案(最新两套)
2014辽宁丹东中考数学二模试题含详解
2014辽宁丹东中考数学二模试题(含详解)考试时间120分钟 试卷满分150分第一部分 客观题(请用2B 铅笔将正确答案涂在答题卡对应的位置上)一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分) 1.-2的绝对值是2.用科学记数法表示数5230000,结果正确的是 3.如图是一个几何体的三视图,则这个几何体是A.圆柱B.圆锥C.球4.不等式组 的解集是A.-3<x <4B.3<x ≤4C.-3<x ≤4D.x <4 5.如图,菱形ABCD 的周长为24cm ,对角线AC 、BD 相交于O 点,E 是AD 的中点,连接OE ,则线段OE 的长等于A.3cmB.4cmC.2.5cmD.2cm 6.⊙O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是 A .相交 B .相切 C .相离 D .无法确定 7.下列事件为必然事件的是A.任意买一张电影票,座位号是偶数B.打开电视机,正在播放动画片C.3个人分成两组,一定有2个人分在一组D.三根长度为2cm ,2cm ,4cm 的木棒能摆成三角形8.如图,点A 是双曲线 在第二象限分支上的任意一点,点B 、点C 、点D 分别是点A 关于x 轴、坐标原点、y 轴的对称点.若四边形ABCD 的面积是8,则k 的值为A.-1B.1C.2D.-2第二部分 主观题(请用0.5mm 黑色签字笔将答案写在答题卡对应的位置上)二、填空题(每小题3分,共24分)9. 如图,直线a ∥b ,∠1=60°,则∠2= °.10.分解因式: . 11.一组数据-1,-2,x ,1, 2的平均数为0,则这组数据 的方差为 .12.函数y =x 的取值范围是 . 13.如图,一个圆锥形零件,高为8cm ,底面圆的直径为12cm ,则此圆锥的侧面积是 .14.美丽的丹东吸引了许多外商投资,某外商向丹东连续投资3第5题图 A .0.5 B . -0.5 C . -2 D . 2 A.523×104B.5.23×104C.52.3×105D.5.23×106第3题图 主视图⎩⎨⎧<->+0403x x B C A E O x k y =第9题图 =+-x x x 232x 1 2a b c年,2010年初投资2亿元,2012年初投资3亿元.设每年投 资的平均增长率为x ,则列出关于x 的方程为 . 15.如图,在梯形ABCD 中,AD ∥BC ,E 是CD 的中点,连接AE 并延长交BC 的延长线于点F ,且AB ⊥AE .若AB =5,AE =6,则梯形上下底之和为 .16.将一些形状相同的小五角星如下图所示的规律摆放,据此规律,第10个图形有 个五角星.三、解答题(每小题8分,共16分) 17.先化简,再求值: ,其中18.已知:△ABC 在坐标平面内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2).(正方形网格中,每个小正方形的边长是1个单位长度)(1)画出△ABC 向下平移4个单位得到的△A 1B 1C 1, 并直接写出C 1点的坐标;(2)以点B 为位似中心,在网格中...画出△A 2BC 2, 使△A 2BC 2与△ABC 位似,且位似比为2︰1, 并直接写出C 2点的坐标及△A 2BC 2的面积.四、(每小题10分,共20分)19.某小型企业实行工资与业绩挂钩制度,工人工资分为A三月份工人工资进行调查,并根据收集到的数据,绘制了如下尚不完整的统计表与扇形统计图.(1)求该企业共有多少人? (2)请将统计表补充完整;(3)扇形统计图中“C 档次”的扇形所对的圆心角是 度.20.某商场为了吸引顾客,设计了一种促销活动.在一个不透明的箱子里放有4个完全相同的小球,球上分别标有“0元”、“10元”、“30元”和“50元”的字样.规定:顾客在本商场同一日内,消费每满300元,就可以从箱子里先后摸出两个球(每次只摸出一个球,第一次摸出后不放回).商场根据两个小球所标金额之和返还相应价格的购物券,可以重新在本商场消费.某顾客消费刚好满300元,则在本次消费中: (1)该顾客至少可得___元购物券,至多可得___元购物券;xx x x 1)111(2÷-+-第14题图 …第1个图形 第2个图形 第3个图形 第4个图形 12-=x 第19题图 DC A B72° 108° A B F D C E(2)请用画树状图或列表法,求出该顾客所获购物券的金额不低于50元的概率. 五、(每小题10分,共20分)21.如图,在△ABC 中,∠BAC =30°,以AB 为直径的⊙O 经过点C .过点C 作⊙O 的切线交AB 的延长线于点P .点D 为圆上一点,且 BC =CD ,弦AD 的延长线交切线PC 于点E ,连接BC . (1)判断OB 和BP 的数量关系,并说明理由; (2)若⊙O 的半径为2,求AE 的长. 22.暴雨过后,某地遭遇山体滑坡,武警总队派出一队武警战士前往抢险. 半小时后,第二队前去支援,平均速度是第一队的1.5倍,结果两队同时到达.已知抢险队的出发地与灾区的距离为90千米,两队所行路线相同,问两队的平均速度分别是多少? 六、(每小题10分,共20分)23.南中国海是中国固有领海,我渔政船经常在此海域执勤巡察.一天我渔政船停在小岛A 北偏西37°方向的B 处,观察A 岛周边海域.据测算,渔政船距A 岛的距离AB 长为10海里.此时位于A 岛正西方向C 处的我渔船遭到某国军舰的袭扰,船长发现在其北偏东50°的方向上有我方渔政船,便发出紧急求救信号.渔政船接警后,立即沿BC航线以每小时30海里的速度前往救助,问渔政船大约需多少分钟能到达渔船所在的C 处? (参考数据:sin37°≈0.60,cos37°≈0.80,sin50°≈0.77,cos50°≈0.64,sin53°≈0.80,cos53°≈0.60,sin40°≈0.64,cos40°≈0.77)24.甲、乙两工程队同时修筑水渠,且两队所修水渠总长度相等.右图是两队所修水渠长度y (米)与修筑时间x (时)的函数图像的一部分.请根据图中信息,解答下列问题: (1)①直接写出甲队在0≤x ≤5的时间段内,y 与x 之间的函数关系式 ; ②直接写出乙队在2≤x ≤5的时间段内,yx 之间的函数关系式 ; (2)求开修几小时后,乙队修筑的水渠长度开始超过甲队?(3)如果甲队施工速度不变,乙队在修筑5小时后,施工速度因故减少到 5米/时,结果两队同时完成任务, 求乙队从开修到完工所修水渠的长 度为多少米? 七、(本题12分)25. 如图,□ABCD 中,点E 是CD 延长线上一点,BE 交与AD 于点F ,12DE CD . (1)求证:△ABF ∽△CE B ;(2)若△DEF 的面积为2,求□ABCD 的面积;第23题图⌒ ⌒)(3)若G 、H 分别为BF 、AB 的中点,AG 、FH 交于点O ,求OGOA.八、(本题14分)26.已知抛物线 与y 轴交于C 点,与x 轴交于A 、B 两点,点A 的坐标是(-1,0),O 是坐标原点,且OA OC 3=.(1)求抛物线的函数表达式; (2)求直线BC 的函数表达式;(3)如图1,D 为y 轴的负半轴上的一点,且OD =2,以OD 为边作正方形ODEF .将正方形ODEF 以每秒1个单位的速度沿x 轴的正方向移动,在运动过程中,设正方形ODEF 与△OBC 重叠部分的面积为s ,运动的时间为t 秒(0<t ≤2). 求:①s 与t 之间的函数关系式; ②在运动过程中,s 是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.cax ax y +-=22第26题图第25题图OGH A B C DE F(若有其它正确方法,请参照此标准赋分) 一、选择题:(每小题3分,共24分) 题号 1 2 3 4 5 6 7 8 选项 A D B A A C D C二、填空题(每小题3分,共24分)9. 120 10. ()21-x x 11. 2 12. 60πcm 213.()3122=+x 14. 13 15. 120 16. 5三、解答题(每小题8分,共16分)17.解:=112--x x ·x ………………………………………………2′=x x +2…………………………………4′ 当=x 12-时,()()121222-+-=+x x ………………………………5′=121222-++- ………………………………7′ =22- …………………………………8′18. 解:(1)如图,△A 1B 1C 1即为所求,C 1(2,-2)………………………………………3′(2)如图,△A 2BC 2即为所求,C 2(1,0)………6′△A 2BC 2的面积等于10…………………………………8′ 四、(每小题10分,共20分) 19.解:(1)20÷ =100(人)∴该企业共有100人;………………………………3′xx x x 1)111(2÷-+-36072第18题图(2分)……………(3) 144 ………………………………10′ 20.解:(1)10,80. …………………………………2′ (2)方法一:树状图法:…………………………………6′ 方法二:列表法:…… ………………………6′ 从上面的树状图或表格可以看出,两次摸球可能出现的结果共有12种, 每种结果出现的可能性相同,而所获购物券的金额不低于50元的结果 共有6种. ………………………8′(30,50) (0,50) (30,0)50 50 开始 010 30 50 50 10 30 0 30 0 10 0 10 30 (0,30) (0,10) (10,0)(10,30) (10,50)(30,10)(50,0)(50,10) (50,30)第一次 第二次所以该顾客所获购物券的金额不低于50元的概率是21. ……………………………10′ 五、(每小题10分,共20分)21.解:(1)OB=BP ……………………1′ 理由:连接OC, ∵PC 切⊙O 于点C ………………2′∴∠OCP=90o∵OA=OC ,∠OAC=30 o∴∠OAC=∠OCA=30 o………………3′∴∠COP=60 o∴∠P=30 o…………………………………………4′ 在Rt △OCP 中 OC=21OP=OB=BP ……………………………………………5′ (2)由(1)得OB=21OP∵⊙O 的半径是2∴AP=3OB=3×2=6 …………………………6′∵BC=CD∴∠CAD=∠BAC=30 o…………………………………7′∴∠BAD=60 o……………………………………8′∵∠P=30 o∴∠E=90o…………………………………9′ 在Rt △AEP 中 AE=21AP=3621=⨯ ………………………10′22.解:设第一队的平均速度是x 千米/时,则第二队的平均速度是1.5x 千米/时 ……………………1′ 根据题意,得:215.19090=-x x ……………………5′ 解这个方程,得x=60 ……………………7′经检验,x=60是所列方程的根, ……………………8′ 1.5x=1.5×60=90(千米/时) ……………………9′ 答:第一队的平均速度是60千米/时,第二队的平均速度是90千米/时. ………………………10′ 六、(每小题10分,共20分)23.解:过B 点作BD ⊥AC,垂足为D. ……………………………1′根据题意,得:∠ABD=∠BAM=37 o , ∠CBD=∠BCN=50 o在Rt △ABD 中⌒⌒ 第21题图∵cos ∠ABD=AB BDcos37○=80.010≈BD∴BD ≈10×0.8=8(海里) ……………………4′在Rt △CBD 中∵cos ∠CBD=BC BD ∴cos50○=BC8≈0.64 ∴BC ≈8÷0.64=12.5(海里) ………………………………7′ ∴12.5÷30=125(小时) ……………………8′ 125×60=25(分钟) ……………………9′ 答:渔政船约25分钟到达渔船所在的C 处. …………10′24.解:(1)①y=10x ……………………………2′ ②y=20x-30 …………………………4′(2) 方法一:根据题意得:20x-30>10x20x-10x>30 解得: x>3 ………………6′∴开修3小时后,乙队修筑的水渠长度开始超过甲队. …………7′ 方法二:根据题意得:解得:x=3 ………………………6′ ∴开修3小时后,乙队修筑的水渠长度开始超过甲队. …………7′ (3)由图像得,甲队的速度是50÷5=10(米/时)设:乙队从开修到完工所修水渠的长度为m 米.根据题意,得: 解得:90=m ………………9′ 答:乙队从开修到完工所修水渠的长度为90米. ……………10′25. 解:(1)证明:∵AB ∥CE ,∴∠ABF =∠E , 又∵ABCD 是平行四边形,∴∠BAF =∠C , △ABF ∽△CEB ……………3分(2)∵∠ABF =∠E , ∠AFB =∠E FC 故△ABF ∽△DEF同理△CEB ∽△DEF ……………4分12DE CD =,∴11,,32ED ED EC AB ==又已知△DEF 的面积为2, ∴2211(),().49EFD EFD BFAEBCS S ED ED SAB SEC ====……………6分第23题图M第24题图 ⎩⎨⎧-==302010x y xy 5701050-=-m m ) E8,18.BFAEBCS S==进而有18216.FDBC S =-=梯形16824.ABCDS=+=……………7分(3)∵G 、H 为中点,∴GH ∥AF 且12GH AF =,……………8分 ∴有OG :OA =HG :AF =1:2. ……………10分26.解:(1)∵ A (-1,0), OA OC 3= ∴C (0,-3) ………1′ ∵抛物线经过A (-1,0), C (0,-3)∴()()⎩⎨⎧=+-⨯-⨯--=12132c a a c ∴⎩⎨⎧-==31c a ∴y=x 2-2x -3 …………………3′ (2)直线BC 的函数表达式为y=x -3 …………………5′(3)当正方形ODEF 的顶点D 运动到直线BC 上时,设D 点的坐标为(m ,-2), 根据题意得: -2=m-3,∴m=1 …………………6′ ①当0<t ≤1时S 1=2t …………………7′ 当1<t ≤2时S 2=O O D D S 11矩形 -HG D S 1∆ =2t -()2121-⨯t =-213212-+t t …………………9′ ②当t =2秒时,S 有最大值,最大值为 ……………10′27数学答案19.(1)32------------------------------------------------3分(2)树状图法略,列表法如下:小张\小李 A B C A (A ,A ) (A ,B ) (A ,C ) B (B ,A ) (B ,B ) (B ,C ) C (C ,A ) (C ,B ) (C ,C )一共有9种结果,每种结果出现的可能性是相同的,而其中可以拼成轴对称图案的结果有5种,分别是(A ,A ),(B ,B ),(C ,C ),(B ,C ),(C ,B ),所以可以拼成一个轴对称图案的概率是95.---10分20. 在Rt △ADC 中,∠DAC=45°,CD=15 m , ∴AD=CD=15 m ,在Rt △NDC 中,DN=mCD 315331530tan ==︒∴AN=(315-15)m答:所求AN 之间的距离为(315-15)m 。
2014年九年级中考第二次模拟数学试卷及答案
2014年初中毕业、升学统一考试模拟考试数学试题(考试形式:闭卷 满分:150分 考试时间:120分钟)友情提醒:本卷中的所有题目均在答题卡上作答,在本卷中作答无效。
一、选择题(本大题共8小题,每小题3分,共24分.每题的四个选项中,只有一个选项是符合要求的,请将正确选项前的字母代号填写在答题卡...相应位置....上) 1.下列各数中,最小的实数是A.B .12- C .2- D .132.下列函数中,自变量x 的取值范围是3x ≥的是A .13y x =- B.y = C .3y x =- D.y =3.下列成语或词语所反映的事件中,可能性大小最小的是A .瓜熟蒂落B .守株待兔C .旭日东升D .夕阳西下 4.下列水平放置的四个几何体中,主视图与其它三个不相同的是A B C D5.如图,在平面直角坐标系中,菱形OACB 的顶点O 在原点,点C 的坐标为(4,0),点B 的纵坐标是−1,则顶点A 坐标是A .(2,1)B .(1,−2)C .(1,2)D .(2,-1)6.下列四个选项中,数轴上的数a ,一定满足2a >-的是 A . B .C .D .7.已知P 是⊙O 内一点,⊙O 的半径为10,P 点到圆心O 的距离为6,则过P 点且长度是整数的弦的条数是 A .3B .4C .5D .68.在平面直角坐标系中,已知直线334y x =-+与x 轴、y 轴分别交于A 、B 两点,点C 在y 轴上.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是 A .(0,34) B .(0,43) C .(0,3) D .(0,4)(第5题)二、填空题(本大题共10题,每题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 计算:23a a a + ▲ .10.已知某种纸一张的厚度约为0.0089厘米,0.0089用科学计数法表示为 ▲ . 11.某天我国6个城市的平均气温分别是 -3℃、5℃、 -12℃、 16℃、 22℃、 28℃.则这6个城市平均气温的极差是 ▲ ℃.12.若32-=+b a ,21422=-b a ,则12+-b a = ▲ .13. 已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为 ▲ . 14.如图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是 ▲ . 15.已知圆锥的底面半径为9cm ,母线长为30cm ,则此圆锥的侧面展开扇形的圆心角度数为▲ .16. 将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB = ▲ °.17.如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数xy x y 24=-=和 的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为 ▲ .18.在△ABC 中,∠ABC =30°,AB 边长为10,AC 边的长度可以在3、5、7、9、11中取值,满足这些条件的互不全等的三角形的个数是 ▲ 个.三、解答题 (本大题共10题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)(1)212cos30()12--+--(2) 解不等式: 122123x x -+-≥20.(本题满分8分)(第16题)(第14题)(第17题)先化简再求值:232(1)121x x x x x ---÷--+,其中x 是方程022=-x x 的根.21.(本题满分8分)今年“3.15”期间某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:同一日内,顾客在本商场每消费满200元,就可以在箱子里一次摸出两个球,商场根据两小球所标金额之和返还相应数额的购物券.某顾客刚好消费200元. (1)该顾客至少可得到 ▲ 元购物券,至多可得到 ▲ 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得的购物券金额不低于30元的概率.22.(本题满分8分)如图,在平行四边形ABCD 中,E F ,为BC 上两点,且BE CF =,AF DE =. (1)找出图中一对全等的三角形,并证明; (2)求证:四边形ABCD 是矩形.23.(本题满分10分)某市需调查该市九年级男生的体能状况,为此抽取了50名九年级男生进行引体向上个数测试,测试情况绘制成表格如下:(1)求这次抽样测试数据的平均数、众数和中位数;(2)在平均数、众数和中位数中,你认为用哪一个统计量作为该市九年级男生引体向上项目测试的合格标准个数较为合适?简要说明理由;A BCDEF(3)如果该市今年有3万名九年级男生,根据(2)中你认为合格的标准,试估计该市九年级男生引体向上项目测试的合格人数是多少?24.(本题满分10分)小明到某品牌服装专卖店做社会调查.了解到该专卖店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,而“计件奖金=销售每件的奖金×月销售件数”,并获得如下信息:(1)求营业员的月基本工资和销售每件的奖金;(2)营业员丙哥希望本月总收入不低于1800元,则丙哥本月至少要卖服装多少件?25.(本题满分10分)超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到文昌路的距离为100米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为4秒且∠APO=60°,∠BPO=45°.(1)求A、B1.41≈,1.73≈)(2)请判断此车是否超过了文昌路每小时70千米的限制速度?26.(本题满分10分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F 在AC的延长线上,且CBFCAB∠=∠2.(1)试判断直线BF与⊙O的位置关系,并说明理由;(2)若AB=6,BF=8,求CBF∠tan.OPBA万丰文昌路。
2014年辽宁营口中考数学二模试题(有答案)
2014年辽宁营口中考数学二模试题(有答案)学校班级姓名2014年辽宁营口中考数学二模试题(有答案)(考试时间120分钟,试卷满分150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.使用答题卡答题,请将答案正确填写在答题卡上第I卷(选择题部分共24分)一、选择题(每题3分,共24分,请将正确答案填在下面的表格内)题号12345678答案1.某跨海大桥,近日获国家发改委批准建设,该桥估计总投资1460000000。
数据1460000000用科学记数法表示应是(▲)A.146×107B.1.46×109C.1.46×1010D.0.146×10102.如图,小明从正面观察一个圆柱体邮筒和一个正方体箱子,看到的是(▲)。
3.下列运算正确的是(▲)A.(-2x2)3=-6x6B.x4÷x2=x2C.2x+2y=4xyD.(y+x)(-y+x)=y2-x24.把不等式组的解集表示在数轴上,正确的是(▲)5.布袋中装有大小一样的3个白球、2个黑球,从布袋中任意摸出一个球,则下列事件中是必然事件的是(▲)A.摸出的是白球或黑球;B.摸出的是黑球;C.摸出的是白球;D.摸出的是红球.6.已知⊙O1与⊙O2相切,若⊙O1的半径为1,两圆的圆心距为5,则⊙O2的半径为(▲)A.4B.6C.3或6D.4或67.如图圆P经过点A(0,3),O(0,0),B(1,0),点C在第一象限的弧AB 上运动,则∠BCO的度数为(▲)A.15°B.30°C.45°D.60°8.在同一直角坐标系中,函数和函数(是常数,且)的图象可能是(▲)第II卷(非选择题共126分)二、填空题(每题3分,共24分。
)9.若代数式有意义,则的取值范围为.10.将如图所示的正方体的展开图重新折叠成正方体后,和“应”字相对面上的汉字是_.11.如图1,DE∥BC,AE=EC,延长DE到F,使EF=DE,连结AF、FC、CD,则图中四边形ADCF是_________。
中考二模考试数学试题及答案
2014中考二模考试数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,共24分;第Ⅱ卷为非选择题,96分;全卷共10页,满分120分,考试时间为120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,必须用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅰ卷(选择题共24分)一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.无理数: ()15D. 52.下列各命题正确的是 : ()A.若两弧相等,则两弧所对圆周角相等B. 有一组对边平行的四边形是梯形.C.垂直于弦的直线必过圆心.D. 有一边上的中线等于这边一半的三角形是直角三角形.3.某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是() A.平均数 B.众数 C.中位数 D.方差4.已知反比例函数2kyx-=的图象如图所示,则一元二次方程22(21)10x k x k--+-=根的情况是()A.有两个不等实根 B.有两个相等实根C.没有实根 D.无法确定5.已知四边形ABCD是平行四边形,下列结论中不正确的有()①当AB=BC时,它是菱形②当AC⊥BD时,它是菱形③当∠ABC=90时,它是矩形④当AC=BDA.1个 B.2个 C.3个 D.4个6.二次函数cbxaxy++=2的图象如图所示,则一次函数abxy+=的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限第7题图7.如图所示,在折纸活动中,小明制作了一张ABC ∆纸片,点D E 、 分别在边AB AC 、上,将ABC ∆沿着DE 折叠压平,A 与A '重合, 若70A ∠=︒,则1+2∠∠=( ) A .70︒ B .110︒ C . 130︒ D .140︒8. 在6张完全相同的卡片上分别画有线段、等边三角形、直角梯形、正方形、正五边形和圆各一个图形。
2014年北京市西城区中考数学二模试卷-含详细解析
2014年北京市西城区中考数学二模试卷副标题一、选择题(本大题共8小题,共32.0分)1.在,0,-2,-1这四个数中,最小的数是()A. B. 0 C. 1 D.2.据报道,按常住人口计算,2013年北京市人均GDP(地区生产总值)达到约93210元,将93210用科学记数法表示为()A. B. C. D.3.如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110°,则∠BAD为()A.B.C.D.4.在一个不透明的口袋中装有5张完全相同的卡片,卡片上面分别写有数字-2,-1,0,1,3,从中随机抽出一张卡片,卡片上面的数字是负数的概率为()A. B. C. D.5.如图,为估算学校的旗杆的高度,身高1.6米的小红同学沿着旗杆在地面的影子AB由A向B走去,当她走到点C处时,她的影子的顶端正好与旗杆的影子的顶端重合,此时测得AC=2m,BC=8m,则旗杆的高度是()A. B. 7m C. 8m D. 9m6.如图,菱形ABCD的周长是20,对角线AC,BD相交于点O,若BD=6,则菱形ABCD的面积是()A. 6B. 12C. 24D. 487.如图,在平面直角坐标系xOy中,直线经过点A,作AB⊥x轴于点B,将△ABO绕点B顺时针旋转60°得到△BCD,若点B的坐标为(2,0),则点C的坐标为()A.B.C.D.8.如图表示一个正方体的展开图,下面四个正方体中只有一个符合要求,那么这个正方体是()A. B. C. D.二、填空题(本大题共4小题,共16.0分)9.函数y=-1中,自变量x的取值范围是______.10.若一次函数的图象过点(0,2),且函数y随自变量x的增大而增大,请写出一个符合要求的一次函数表达式:______.11.一组数据:3,2,1,2,2的中位数是______,方差是______.12.如图,在平面直角坐标系xOy中,已知抛物线y=-x(x-3)(0≤x≤3)在x轴上方的部分,记作C1,它与x轴交于点O,A1,将C1绕点A1旋转180°得C2,C2与x轴交于另一点A2.请继续操作并探究:将C2绕点A2旋转180°得C3,与x轴交于另一点A3;将C3绕点A2旋转180°得C4,与x轴交于另一点A4,这样依次得到x轴上的点A1,A2,A3,…,A n,…,及抛物线C1,C2,…,C n,….则点A4的坐标为______;Cn的顶点坐标为______(n为正整数,用含n的代数式表示).三、计算题(本大题共3小题,共17.0分)13.解分式方程:+=1.14.已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.15.在△ABC,∠BAC为锐角,AB>AC,AD平分∠BAC交BC于点D.(1)如图1,若△ABC是等腰直角三角形,直接写出线段AC,CD,AB之间的数量关系;(2)BC的垂直平分线交AD延长线于点E,交BC于点F.①如图2,若∠ABE=60°,判断AC,CE,AB之间有怎样的数量关系并加以证明;②如图3,若AC+AB=AE,求∠BAC的度数.四、解答题(本大题共10小题,共55.0分)16.计算:()-1+|-|-(π-3)0+3tan30°.17.已知:如图,C是AE上一点,∠B=∠DAE,BC∥DE,AC=DE.求证:AB=DA.18.在海南东环高铁上运行的一列“和谐号”动车组有一等车厢和二等车厢共6节,一共设有座位496个.其中每节一等车厢设座位64个,每节二等车厢设座位92个.试求该列车一等车厢和二等车厢各有多少节?19.抛物线y=x2+bx+c(b,c均为常数)与x轴交于A(1,0),B两点,与y轴交于点C(0,3).(1)求该抛物线对应的函数表达式;(2)若P是抛物线上一点,且点P到抛物线的对称轴的距离为3,请直接写出点P 的坐标.20.如图,在四边形ABCD中,AB∥DC,DB平分∠ADC,E是CD的延长线上一点,且∠AEC=∠ADC.(1)求证:四边形ABDE是平行四边形.(2)若DB⊥CB,∠BCD=60°,CD=12,作AH⊥BD于H,求四边形AEDH的周长.21.据报道:2013年底我国微信用户规模已到达6亿.以下是根据相关数据制作的统计图表的一部分:请根据以上信息,回答以下问题:(1)从2012年到2013年微信的人均使用时长增加了______分钟;(2)补全2013年微信用户对“微信公众平台”参与关注度扇形统计图,在我国6亿微信用户中,经常使用户约为______亿(结果精确到0.1);(3)从调查数据看,预计我国微信用户今后每年将以20%的增长率递增,请你估计两年后,我国微信用户的规模将到达______亿.22.如图,AB为⊙O的直径,弦CD⊥AB于点H,过点B作⊙O的切线与AD的延长线交于F.(1)求证:∠ABC=∠F;(2)若,DF=6,求⊙O的半径.23.阅读下面材料:小明遇到这样一个问题:如图1,五个正方形的边长都为1,将这五个正方形分割为四部分,再拼接为一个大正方形.小明研究发现:如图2,拼接的大正方形的边长为,“日”字形的对角线长都为,五个正方形被两条互相垂直的线段AB,CD分割为四部分,将这四部分图形分别标号,以CD为一边画大正方形,把这四部分图形分别移入正方形内,就解决问题.请你参考小明的画法,完成下列问题:(1)如图3,边长分别为a,b的两个正方形被两条互相垂直的线段AB,CD分割为四部分图形,现将这四部分图形拼接成一个大正方形,请画出拼接示意图(2)如图4,一个八角形纸板有个个角都是直角,所有的边都相等,将这个纸板沿虚线分割为八部分,再拼接成一个正方形,如图5所示,画出拼接示意图;若拼接后的正方形的面积为,则八角形纸板的边长为______.24.经过点(1,1)的直线l:y=kx+2(k≠0)与反比例函数G1的图象交于点A(-1,a),B(b,-1),与y轴交于点D.(1)求直线l对应的函数表达式及反比例函数G1的表达式;(2)反比例函数G2:,①若点E在第一象限内,且在反比例函数G2的图象上,若EA=EB,且△AEB的面积为8,求点E的坐标及t值;②反比例函数G2的图象与直线l有两个公共点M,N(点M在点N的左侧),若<,直接写出t的取值范围.25.在平面直角坐标系xOy中,对于⊙A上一点B及⊙A外一点P,给出如下定义:若直线PB与x轴有公共点(记作M),则称直线PB为⊙A的“x关联直线”,记作l PBM.(1)已知⊙O是以原点为圆心,1为半径的圆,点P(0,2),①直线l1:y=2,直线l2:y=x+2,直线l3:,直线l4:y=-2x+2都经过点P,在直线l1,l2,l3,l4中,是⊙O的“x关联直线”的是______;②若直线l PBM是⊙O的“x关联直线”,则点M的横坐标x M的最大值是______;(2)点A(2,0),⊙A的半径为1,①若P(-1,2),⊙A的“x关联直线”l PBM:y=kx+k+2,点M的横坐标为x M,当x M最大时,求k的值;②若P是y轴上一个动点,且点P的纵坐标y p>2,⊙A的两条“x关联直线”l PCM,l PDN是⊙A的两条切线,切点分别为C,D,作直线CD与x轴交于点E,当点P的位置发生变化时,AE的长度是否发生改变?并说明理由.答案和解析1.【答案】D【解析】解:因为-2<-1<0<,所以最小的数是-2.故选:D.利用有理数大小比较的方法:正数都大于零,负数都小于零,正数大于负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小;直接按顺序排列,选择答案即可.此题考查有理数大小比较的方法,注意先分类再比较.2.【答案】B【解析】解:将93210用科学记数法表示为:9.321×104.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】解:∵四边形ABCD为⊙O的内接四边形,∴∠BCD+∠BAD=180°(圆内接四边形的对角互补);又∵∠BCD=110°,∴∠BAD=70°.故选D.根据圆内接四边形的对角互补求∠BAD的度数即可.本题主要考查了圆内接四边形的性质.解答此题时,利用了圆内接四边形的对角互补的性质来求∠BCD的补角即可.4.【答案】C【解析】解:∵在一个不透明的口袋中装有5张完全相同的卡片,卡片上面分别写有数字-2,-1,0,1,3,∴从中随机抽出一张卡片,卡片上面的数字是负数的概率为:.故选C.由在一个不透明的口袋中装有5张完全相同的卡片,卡片上面分别写有数字-2,-1,0,1,3,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.5.【答案】C【解析】解:设旗杆高度为h,由题意得=,h=8米.故选:C.因为人和旗杆均垂直于地面,所以构成相似三角形,利用相似比解题即可.本题考查了考查相似三角形的性质和投影知识,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.6.【答案】C【解析】解:∵菱形ABCD的周长是20,∴AB=20÷4=5,AC⊥BD,OB=BD=3,∴OA==4,∴AC=2OA=8,∴菱形ABCD的面积是:AC•BD=×8×6=24.故选:C.由菱形ABCD的周长是20,即可求得AB=5,然后由股定理即可求得OA的长,继而求得AC的长,则可求得菱形ABCD的面积.此题考查了菱形的性质以及勾股定理.此题难度不大,注意掌握数形结合思想的应用.7.【答案】A【解析】解:∵AB⊥x轴于点B,点B的坐标为(2,0),∴y=2,∴点A的坐标为(2,2),∴AB=2,OB=2,由勾股定理得,OA===4,∴∠A=30°,∠AOB=60°,∵△ABO绕点B顺时针旋转60°得到△BCD,∴∠C=30°,CD∥x轴,设AB与CD相交于点E,则BE=BC=AB=×2=,CE===3,∴点C的横坐标为3+2=5,∴点C的坐标为(5,).故选:A.根据直线解析式求出点A的坐标,然后求出AB、OB,再利用勾股定理列式求出OA,然后判断出∠C=30°,CD∥x轴,再根据直角三角形30°角所对的直角边等于斜边的一半求出BE,利用勾股定理列式求出CE,然后求出点C的横坐标,再写出点C的坐标即可.本题考查了坐标与图形性质,一次函数图象上点的坐标特征,勾股定理的应用,求出△AOB的各角的度数以及CD∥x轴是解题的关键.8.【答案】B【解析】解:空白面的每个邻面是斜线面,故选:B.本题考查了展开图折成几何体,邻面间的相对关系是解题关键,根据相邻面、对面的关系,可得答案.9.【答案】x≥0【解析】解:根据题意,得x≥0.故答案为:x≥0.根据二次根式的意义,被开方数不能为负数,据此求解.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.10.【答案】y=x+2【解析】解:设一次函数的解析式为y=kx+b,把(0,2)代入得b=2,∴y=kx+2,∵函数y随自变量x的增大而增大,∴k>0,∴k可取1,此时一次函数解析式为y=x+2.故答案为y=x+2.设一次函数的解析式为y=kx+b,根据一次函数的图象过点(0,2)得到b=2,根据函数y随自变量x的增大而增大得到k>0,然后取k=1写出一个满足条件的解析式.本题考查了一次函数y=kx+b的性质:当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.11.【答案】2;0.4【解析】解:把这组数据从小到大排列为:1,2,2,2,3,最中间的数是2,则中位数是2;∵这组数据的平均数是(1+2+2+2+3)÷5=2,∴方差是:[(3-2)2+(2-2)2+(1-2)2+(2-2)2+(2-2)2]=0.4.故答案为:2,0.4.先将这组数据从小到大排列,再找出最中间的数,即可得出中位数;先求出这组数据的平均数,再根据方差公式S2=[(x 1-)2+(x2-)2+…+(x n-)2]进行计算即可.本题考查方差和中位数:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1-)2+(x2-)2+…+(x n-)2];中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).12.【答案】(12,0);(3n-,(-1)n+1•)【解析】解:这样依次得到x轴上的点A1,A2,A3,…,A n,…,及抛物线C1,C2,…,C n,….则点A4的坐标为(12,0);Cn的顶点坐标为(3n-,(-1)n+1•),故答案为:(12,0),(3n-,(-1)).根据图形连续旋转,旋转奇数次时,图象在x轴下方,每两个图象全等且相隔三个单位;旋转偶数次时,图象在x轴上方,每两个图象全等且相隔三个单位.本题考查了二次函数图象与几何变换,交点间的距离是3,顶点间的横向距离距离是3,纵向距离是.13.【答案】解:去分母得:2+x(x+2)=x2-4,解得:x=-3,经检验x=-3是分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14.【答案】解:(1)根据题意得:△=4-4(2k-4)=20-8k>0,解得:k<;(2)由k为正整数,得到k=1或2,利用求根公式表示出方程的解为x=-1±,∵方程的解为整数,∴5-2k为完全平方数,则k的值为2.【解析】(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k 的不等式,求出不等式的解集即可得到k的范围;(2)找出k范围中的整数解确定出k的值,经检验即可得到满足题意k的值.此题考查了根的判别式,一元二次方程的解,以及公式法解一元二次方程,弄清题意是解本题的关键.15.【答案】解:(1)AB=AC+CD,理由为:过D作DE⊥AB,如图1所示,∵AD平分∠BAC,DC⊥AC,∴CD=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∵△ABC为等腰直角三角形,∴∠B=45°,即△BDE为等腰直角三角形,∴CD=DE=EB,则AB=AE+EB=AC+CD;(2)①AB=AC+CE;证明:在线段AB上截取AH=AC,连接EH,如图2所示,∵AD平分∠BAC,∴∠CAE=∠BAE,在△ACE和△AHE中,,∴△ACE≌△AHE(SAS),∴CE=HE,∵EF垂直平分BC,∴CE=BE,又∠ABE=60°,∴△EHB是等边三角形,∴BH=HE,∴AB=AH+HB=AC+CE;②在线段AB上截取AH=AC,连接EH,作EM⊥AB于点M.如图3所示,同理可得△ACE≌△AHE,∴CE=HE,∴△EHB是等腰三角形,∴HM=BM,∴AC+AB=AH+AB=AM-HM+AM+MB=2AM,∵AC+AB=AE,∴AM=AE,在Rt△AEM中,cos∠EAM==,∴∠EAB=30°.∴∠CAB=2∠EAB=60°.【解析】(1)AB=AC+CD,理由为:过D作DE垂直于AB,利用角平分线定理得到DC=DE,进而利用HL得到三角形ACD与三角形AED全等,利用全等三角形对应边相等得到AC=AE,再由三角形ABC为等腰直角三角形得到三角形BDE为等腰直角三角形,即DE=EB,由AB=AE+EB,等量代换即可得证;(2)①AB=AC+CE,理由为:在线段AB上截取AH=AC,连接EH,由AD为角平分线得到一对角相等,再由AC=AH,AE=AE,利用SAS得到三角形ACE与三角形AHE全等,得到CE=HE,由EF垂直平分BC,得到CE=BE,根据∠ABE=60°,得到△EHB是等边三角形,进而得到BH=HE,由AB=AH+HB,等量代换即可得证;②在线段AB上截取AH=AC,连接EH,作EM⊥AB于点M.同理可得△ACE≌△AHE,得到CE=HE,进而确定出△EHB是等腰三角形,得到HM=BM,根据AC+AB=AH+AB=AM-HM+AM+MB=2AM,将已知等式AC+AB=AE,代入得:AM=AE,在Rt△AEM中,利用锐角三角函数定义求出cos∠EAM的值,进而确定出∠EAB=30°,即可得到∠CAB的度数.此题考查了全等三角形的判定与性质,线段垂直平分线定理,等腰直角三角形,以及解直角三角形,熟练掌握全等三角形的判定与性质是解本题的关键.16.【答案】解:+|-|-1+3×=4+-1+3×=3+2.【解析】本题涉及负指数幂、绝对值、0指数幂、特殊角的三角函数值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记负指数幂、绝对值、0指数幂、特殊角的三角函数值等考点的运算.17.【答案】证明:∵BC∥DE,∴∠ACB=∠DEA,在△ABC和△DAE中,,∴△ABC≌△DAE(AAS)∴AB=DA.【解析】由BC与DE平行,利用两直线平行同位角相等得到一对角相等,再由已知一对角相等,一对边相等,利用AAS得到三角形ABC与三角形DAE全等,利用全等三角形对应边相等即可得证.此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.18.【答案】解:设该列车一等车厢和二等车厢各有x、y节,根据题意得:,解得:.答:该列车一等车厢和二等车厢各有2,4节.【解析】设该列车一等车厢和二等车厢各有x、y节,则第一个相等关系为:x+Y=6,再根据一共设有座位496个.其中每节一等车厢设座位64个,每节二等车厢设座位92个得第二个相等关系为:64x+92y=496,由此列方程组求解.此题考查的知识点是二元一次方程组的应用,解题的关键是由已知找出两个相等关系,列方程组求解.19.【答案】解:(1)∵抛物线y=x2+bx+c与y轴交于点C(0,3),∴c=3.∴y=x2+bx+3.又∵抛物线y=x2+bx+c与x轴交于点A(1,0),∴b=-4.∴y=x2-4x+3.(2)点P的坐标为(5,8)或(-1,8).【解析】(1)抛物线y=x2+bx+c与y轴交于点C(0,3),代入可得出c=3,又由抛物线y=x2+bx+c与x轴交于点A(1,0),代入又可得出b=-4,从而得出抛物线的解析式y=x2-4x+3;(2)求得对称轴为直线x=2,由点P到抛物线的对称轴的距离为3,可得出点P 的横坐标为-1或5,代入抛物线解析式即可得出点P的坐标为(5,8)或(-1,8).本题考查了抛物线和x轴的交点问题,以及抛物线的表达式的求法--待定系数法.20.【答案】解:(1)∵DB平分∠ADC,∴,又∵,∴∠AEC=∠1,∴AE∥BD,又∵AB∥EC,∴四边形AEDB是平行四边形;(2)∵DB平分∠ADC,∠ADC=60°,AB∥EC,∴∠1=∠2=∠3=30°,∴AD=AB,又∵DB⊥BC,∴∠DBC=90°,在Rt△BDC中,CD=12,∴BC=6,,在等腰△ADB中,AH⊥BD,∴DH=BH=,在Rt△ABH中,∠AHB=90°,∴AH=3,AB=6,∵四边形AEDB是平行四边形,∴,ED=AB=6,∴,∴四边形AEDH的周长为.【解析】(1)求出∠AEC=∠1,得出AE∥BD,再由AB∥EC证出四边形ABDE是平行四边形.(2)在Rt△BDC中,求出BD,再在在等腰△ADB中求出DH,AH,在Rt△ABH 中求出AB,进而求出四边形的四条边求周长.本题主要考查平行四边形的判定及性质,解题的过程中要灵活运用直角三角形来求边.21.【答案】6.7;1.5;8.64【解析】解:(1)2012年到2013年微信的人均使用时长增加了9.7-3.0=6.7分钟;(2)偶尔使用所占的百分比为1-13%-7.4%-13%-24.2%=42.4%;我国6亿微信用户中,经常使用户约为6×24.2%≈1.5亿(3)两年后,我国微信用户的规模将到达6×(1+20%)2=8.64亿,故答案为:6.7,1.5,8.64.(1)用2013年的微信使用时长减去2012年的微信使用时长即可确定答案;(2)用单位1减去其他所占的百分比即可确定偶尔使用的所占的百分比,用总量乘以经常使用的所占的百分比即可确定经常使用的用户的数量;(3)用总量乘以增长的百分比即可确定两年后的微信用户量.本题考查了扇形统计图及统计表的知识,解题的关键是仔细的读表或统计图并从中整理出进一步解题的有关信息.22.【答案】(1)证明:∵BF为⊙O的切线,∴AB⊥BF于点B.∵CD⊥AB,∴∠ABF=∠AHD=90°.∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F.(2)解:连接BD.∵AB为⊙O的直径,∴∠ADB=90°,由(1)∠ABF=90°,∴∠A=∠DBF.又∵∠A=∠C.∴∠C=∠DBF.在Rt△DBF中,,DF=6,∴BD=8.在Rt△ABD中,,∴.∴⊙O的半径为.【解析】【分析】(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理得∠ABC=∠ADC,于是得证∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,所以∠A=∠DBF,于是得∠C=∠DBF.在Rt△DBF中得BD=8.在Rt△ABD中,,,于是⊙O的半径为.本题主要考查了切线的性质以及解直角三角形,还用到圆周角定理及其推论,运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.【解答】(1)证明:∵BF为⊙O的切线,∴AB⊥BF于点B.∵CD⊥AB,∴∠ABF=∠AHD=90°.∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F.(2)解:连接BD.∵AB为⊙O的直径,∴∠ADB=90°,由(1)∠ABF=90°,∴∠A=∠DBF.又∵∠A=∠C.∴∠C=∠DBF.在Rt△DBF中,,DF=6,∴BD=8.在Rt△ABD中,,∴.∴⊙O的半径为.23.【答案】1【解析】解:(1)拼接示意图如下;(2)拼接示意图如下,设八角形的边长为a,则原正方形的边长为a+a+a=(2+)a,八角形的面积=(2+)2a2+4×a2=8+4,整理得,(8+4)a2=8+4,解得a=1,答:八角形纸板的边长为1.(1)根据图形形状,把①放在最上边,②③放在左边即可;(2)以四个较大的部分为拼成的正方形的四个角,剪开的四个小直角三角形组成一个小正方形在中间拼接即可,设八角形的边长为a,表示出原正方形的边长,再根据八角形的面积等于正方形的面积加上四个小直角三角形的面积,列出方程求解即可.本题考查了图形的拼接,读懂题目信息,仔细观察图形的形状是解题的关键.24.【答案】解:(1)∵直线l:y=kx+2(k≠0)经过(1,1),∴k=-1,∴直线l对应的函数表达式y=-x+2.∵直线l与反比例函数G1:的图象交于点A(-1,a),B(b,-1),∴a=b=3.∴A(-1,3),B(3,-1).∴m=-3.∴反比例函数G1函数表达式为.(2)①∵EA=EB,A(-1,3),B(3,-1),∴点E在直线y=x上.∵△AEB的面积为8,,∴.∴△AEB是等腰直角三角形.∴E(3,3),此时t=3×3=9②分两种情况:(ⅰ)当t>0时,∵y=-x+2,与x轴交于点F(2,0),与y轴交于点D(0,2),∴DF=2,∴DM+DN<3,∴只要y=-x+2与y2=有交点坐标即可,∴-x+2=,整理得:x2-2x+t=0,∴b2-4ac>0,∴4-4t>0,解得:t<1,则0<t<1;(ⅱ)当t<0时,当DM+DN=3,则DM=FN=,∵y=-x+2,与x轴交于点F(2,0),与y轴交于点D(0,2),∴可求出M(-,),则xy=t=-,则<<.综上,当<<或0<t<1时,反比例函数G2的图象与直线l有两个公共点M,N,且<.【解析】(1)利用待定系数法把(1,1)代入y=kx+2可得k的值,进而得到直线l对应的函数表达式;利用一次函数解析式求出a、b的值,然后再利用待定系数法求出反比例函数G1函数表达式即可;(2)由条件EA=EB,A(-1,3),B(3,-1)可得点E在直线y=x上,再根据△AEB的面积为8,,可得,进而得到E点坐标;(3)根据题意得出当t>0时,以及当t<0时,分别利用数形结合得出t的最值.此题主要考查了反比例函数综合以及等腰直角三角形的性质和根的判别式等知识,利用分类讨论以及数形结合得出是解题关键.25.【答案】l3,l4;【解析】解:(1)①l3,l4;分析如下:根据题意,如图1,l1,l2与⊙O没有交点,对l3,过点O作OB⊥AC于B,∵A(0,2),C(,0),∴AO=2,C0=,∴根据勾股定理,AC=.∴根据面积相等,OB==1,∵⊙O半径为1,∴AC切⊙O于B,∴l3是⊙O的“x关联直线”.对l4,显然与⊙O有两个交点,故l4是⊙O的“x关联直线”.综上所述,l3,l4是⊙O的“x关联直线”.②;分析如下:如图2,PM与⊙O相切于B点时,M的横坐标x M最大,连接OB,则OB⊥PM,在Rt△OPB中,∵PO=2,OB=1,∴∠OPB=30°,∴OM=tan∠OPB•OP==,所以点M的横坐标x M最大值为.(2)如图3,直线PM⊙A相切于点B时,此时点M的横坐标x M最大,作PH⊥x轴于点H,连接AB,HM=x M+1,AM=x M-2,在Rt△ABM和Rt△PHM中,∵,AB=1,PH=2∴BM=HM=.在Rt△ABM中,∵AM2=AB2+BM2,∴.解得.∴点M的横坐标x M最大时,,此时M(,0),∴代入直线y=kx+k+2,解得.②当P点的位置发生变化时,AE的长度不发生改变.理由如下:如图4,⊙A的两条“x关联直线”与⊙A相切于点C,D,连接AC,AD,AP交CD于F,此时PC=PD.在△ADP和△ACP中,,∴△ADP≌△ACP∴∠CPF=∠DPF∴AP⊥BC,在Rt△ADF和Rt△ADP中,∵∠ADF=∠APD,∴sin∠ADF=sin∠APD,∴AF•AP=AD2在Rt△AEF和Rt△AOP中,∵,∴AF•AP=AE•AO∴AD2=AE•AO∵AD=1,AO=2,∴,即当P点的位置发生变化时,AE的长度不发生改变.(1)①讨论是否为关联直线最直接的方式就是画图确定圆与直线是否有交点,画图易得l1,l2无交点,非关联直线,而l4有两个交点,为关联直线,对l3近似相切,则需要求证判断,利用求证相切的常规作法,作垂线讨论圆心到直线距离是否与半径相等易得结论.②画图已知,相切时M点横坐标最大,作图利用解直角三角形,易得所求边长,即M横坐标最大值易知.(2)①类似上小问,最大值时相切,利用解三角形得到最大时M点坐标,代入直线y=kx+k+2,即可求得k.②根据题意画出图示,AE不在三角形中,不易表示,所以可以适当作辅助线,因为相切,通常都有圆心与切点的连线,如此可得垂直关系;而同时出现过P 点的两条与圆的切线,通常连接圆心与P点,如此可得全等三角形等相等关系,此时看到PA⊥CD,则AE所属的三角形与PAO相似,则可试着将其转化.本题思考的确有一定难度,利用三角函数关系可以技巧的得出AF•AP=AD2,AF•AP=AE•AO,则有AD2=AE•AO,且AD,AO都为固定值,则易知AE值亦固定.本题重点考查直线与圆相切的相关性质,并结合直角坐标系利用三角函数、解直角三角形等相关技巧计算线段长度.最后一问难度较高,不过思路方面我们要牢记要想计算边长,我们通常需要通过辅助线将此线放在与其他简单三角形全等相似的三角形中,以便可以将此线段长度转化出来,这种思路需要学生在平时的题目中多加实践,总体来说本题前面常规,后面难度偏高,学生重点加强理解.。
(精品)2014年上海市松江区中考二摸数学试卷--解析版
2014年上海市松江区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】. C D .3.(4分)(2014•松江区二模)不等式组的解集在数轴上表示正确的是( ).CD .4.(4分)(2014•松江区二模)已知一组数据x 1,x 2,x 3的平均数和方差分别为6和2,则数据x 1+1,x 2+1,x 3+16.(4分)(2014•松江区二模)已知在△ABC 中,AB=AC=13,BC=10,如果以A 为圆心r 为半径的⊙A 和以BC 为二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.(4分)(2013•济南)分解因式:a 2﹣4= _________ .8.(4分)(2014•松江区二模)方程=1的解为 _________ .9.(4分)(2014•松江区二模)如果一元二次方程x 2+2x+a=0有两个不等实根,则实数a 的取值范围是 _________ .10.(4分)(2014•松江区二模)函数y=中自变量x 的取值范围是 _________ .11.(4分)(2014•松江区二模)将抛物线y=2x 2﹣1向右平移2个单位,再向上平移2个单位所得抛物线的表达式是 _________ .12.(4分)(2014•松江区二模)如果反比例函数y=的图象在每个象限内y 随x 的增大而减小,那么k 的取值范围是 _________ .13.(4分)(2014•松江区二模)在等腰梯形、正五边形、平行四边形、矩形这4种图形中,任取一种图形,这个图形是中心对称图形的概率是_________.14.(4分)(2014•松江区二模)为了解某区初三学生的课余生活情况,调查小组在全区范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图(如图).如果该区有6000名初三学生,请你估计该区最喜欢体育运动的初三学生约有_________名.15.(4分)(2014•松江区二模)已知在△ABC中,=,=,M是边BC上的一点,BM:CM=1:2,用向量、表示=_________.16.(4分)(2014•松江区二模)一公路大桥引桥长100米,已知引桥的坡度i=1:3,那么引桥的铅直高度为_________米(结果保留根号).17.(4分)(2014•松江区二模)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt△ABC中,∠C=90°,较短的一条直角边边长为1,如果Rt△ABC是“有趣三角形”,那么这个三角形“有趣中线”长等于_________.18.(4分)(2014•松江区二模)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为AB的中点,将△ACD 绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,则D′B长为_________.三、解答题:(本大题共7题,满分78分)19.(10分)(2014•松江区二模)计算:﹣()﹣1﹣+|﹣2|20.(10分)(2014•松江区二模)解方程:﹣=2.21.(10分)(2014•松江区二模)如图,已知在△ABC中,AB=AC,BC=8,tan∠ABC=3,AD⊥BC于D,O是AD 上一点,OD=3,以OB为半径的⊙O分别交AB、AC于E、F.求:(1)⊙O的半径;(2)BE的长.22.(10分)(2014•松江区二模)某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.如图,线段OA和OB分别表示某日从上午8点到上午11点,每个普通售票窗口售出的车票数w1(张)和每个无人售票窗口售出的车票数w2(张)关于售票时间t(小时)的函数图象.(1)求w1(张)与t(小时)的函数解析式;(2)若当天开放无人售票窗口个数是普通售票窗口个数的2倍,从上午8点到上午11点,两种窗口共售出的车票数为2400张,求当天开放无人售票窗口的个数?23.(12分)(2014•松江区二模)如图,在正方形ABCD中,E是边CD上一点,AF⊥AE交CB的延长线于点F,联结DF,分别交AE、AB于点G、P.(1)求证:AE=AF;(2)若∠BAF=∠BFD,求证:四边形APED是矩形.24.(12分)(2014•松江区二模)如图,在直角坐标平面内,直线y=﹣x+5与x轴和y轴分别交于A、B两点,二次函数y=x2+bx+c的图象经过点A、B,且顶点为C.(1)求这个二次函数的解析式;(2)求sin∠OCA的值;(3)若P是这个二次函数图象上位于x轴下方的一点,且△ABP的面积为10,求点P的坐标.25.(14分)(2014•松江区二模)在△ABC中,AC=25,AB=35,,点D为边AC上一点,且AD=5,点E、F分别为边AB上的动点(点F在点E的左边),且∠EDF=∠A.设AE=x,AF=y.(1)如图1,当DF⊥AB时,求AE的长;(2)如图2,当点E、F在边AB上时,求y关于x的函数关系式,并写出函数的定义域;(3)联结CE,当△DEC和△ADF相似时,求x的值.2014年上海市松江区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】.C D.与=3不是同类二次根式,故本选项错误;=3与=与3.(4分)(2014•松江区二模)不等式组的解集在数轴上表示正确的是().C D.4.(4分)(2014•松江区二模)已知一组数据x1,x2,x3的平均数和方差分别为6和2,则数据x1+1,x2+1,x3+1EF=BD6.(4分)(2014•松江区二模)已知在△ABC中,AB=AC=13,BC=10,如果以A为圆心r为半径的⊙A和以BC为二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.(4分)(2013•济南)分解因式:a2﹣4=(a+2)(a﹣2).8.(4分)(2014•松江区二模)方程=1的解为x=1.9.(4分)(2014•松江区二模)如果一元二次方程x2+2x+a=0有两个不等实根,则实数a的取值范围是a<1.10.(4分)(2014•松江区二模)函数y=中自变量x的取值范围是x≠3.11.(4分)(2014•松江区二模)将抛物线y=2x2﹣1向右平移2个单位,再向上平移2个单位所得抛物线的表达式是y=2(x﹣2)2+1.12.(4分)(2014•松江区二模)如果反比例函数y=的图象在每个象限内y随x的增大而减小,那么k的取值范围是k>.y=>.y=(13.(4分)(2014•松江区二模)在等腰梯形、正五边形、平行四边形、矩形这4种图形中,任取一种图形,这个图形是中心对称图形的概率是.=.故答案为:14.(4分)(2014•松江区二模)为了解某区初三学生的课余生活情况,调查小组在全区范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图(如图).如果该区有6000名初三学生,请你估计该区最喜欢体育运动的初三学生约有2400名.15.(4分)(2014•松江区二模)已知在△ABC中,=,=,M是边BC上的一点,BM:CM=1:2,用向量、表示=+.,再表示出,然后根据三角形法则表示出解:∵=,=∴﹣=﹣,∴=(﹣∴+=+(﹣=﹣+.故答案为:+.16.(4分)(2014•松江区二模)一公路大桥引桥长100米,已知引桥的坡度i=1:3,那么引桥的铅直高度为10米(结果保留根号).=,x=米..17.(4分)(2014•松江区二模)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt△ABC中,∠C=90°,较短的一条直角边边长为1,如果Rt△ABC是“有趣三角形”,那么这个三角形“有趣中线”长等于.x=长等于故答案为:18.(4分)(2014•松江区二模)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为AB的中点,将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,则D′B长为.CD=AD=BD=AB=2.5E==故答案为:三、解答题:(本大题共7题,满分78分)19.(10分)(2014•松江区二模)计算:﹣()﹣1﹣+|﹣2|﹣+2,然后合并即可.﹣20.(10分)(2014•松江区二模)解方程:﹣=2.=y=2﹣﹣.21.(10分)(2014•松江区二模)如图,已知在△ABC中,AB=AC,BC=8,tan∠ABC=3,AD⊥BC于D,O是AD 上一点,OD=3,以OB为半径的⊙O分别交AB、AC于E、F.求:(1)⊙O的半径;(2)BE的长.中,∴∴∴∴∴22.(10分)(2014•松江区二模)某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.如图,线段OA和OB分别表示某日从上午8点到上午11点,每个普通售票窗口售出的车票数w1(张)和每个无人售票窗口售出的车票数w2(张)关于售票时间t(小时)的函数图象.(1)求w1(张)与t(小时)的函数解析式;(2)若当天开放无人售票窗口个数是普通售票窗口个数的2倍,从上午8点到上午11点,两种窗口共售出的车票数为2400张,求当天开放无人售票窗口的个数?个,普通售票窗口个,普通售票窗口个,由题意得23.(12分)(2014•松江区二模)如图,在正方形ABCD中,E是边CD上一点,AF⊥AE交CB的延长线于点F,联结DF,分别交AE、AB于点G、P.(1)求证:AE=AF;(2)若∠BAF=∠BFD,求证:四边形APED是矩形.24.(12分)(2014•松江区二模)如图,在直角坐标平面内,直线y=﹣x+5与x轴和y轴分别交于A、B两点,二次函数y=x2+bx+c的图象经过点A、B,且顶点为C.(1)求这个二次函数的解析式;(2)求sin∠OCA的值;(3)若P是这个二次函数图象上位于x轴下方的一点,且△ABP的面积为10,求点P的坐标.OCA=,则易,OCA=;∴25.(14分)(2014•松江区二模)在△ABC中,AC=25,AB=35,,点D为边AC上一点,且AD=5,点E、F分别为边AB上的动点(点F在点E的左边),且∠EDF=∠A.设AE=x,AF=y.(1)如图1,当DF⊥AB时,求AE的长;(2)如图2,当点E、F在边AB上时,求y关于x的函数关系式,并写出函数的定义域;(3)联结CE,当△DEC和△ADF相似时,求x的值.tanA=,即可求出时,得出=,=﹣)得出,=,再把代入得出﹣,DE=AE=∴,≤∴,∴,,)∴,∴,,)x=,.。
上海市闵行区2014年中考二模数学试卷-含参考答案及评分标准
闵行区2014年中考二模数 学 试 卷(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分) 1.如果单项式13a x y +-与212bx y 是同类项,那么a 、b 的值分别为 (A )1a =,3b =; (B )1a =,2b =; (C )2a =,3b =; (D )2a =,2b =.2.如果点P (a ,b )在第四象限,那么点Q (-a ,b -4)所在的象限是(A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限.3.2014年3月14日,“玉兔号”月球车成功在距地球约384400公里远的月球上自主唤醒,将384400保留2个有效数字表示为(A )380000; (B )3.8×105; (C )38×104; (D )3.844×105. 4那么这11 (A )25,24.5; (B )24.5,25; (C )26,25; (D )25,25. 5.下列四个命题中真命题是(A )对角线互相垂直平分的四边形是正方形; (B )对角线垂直且相等的四边形是菱形;(C )对角线相等且互相平分的四边形是矩形; (D )四边都相等的四边形是正方形.6.如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m .如果在坡比为41:3i =的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为(A )5m ; (B )6m ; (C )7m ; (D )8m .二、填空题:(本大题共12题,每题4分,满分48分) 7= ▲ .8.在实数范围内分解因式:241x x -+= ▲ .9.关于x 的方程2230x x m +-=有实数根,那么实数m 的取值范围是 ▲ .10.已知函数0(1)()3x f x x -=-,那么(1)f -= ▲ .11.如果反比例函数的图象过点(-1,2),那么它在每个象限内y 随x 的增大而 ▲ .12.把函数22y x =的图象向右平移3个单位,再向下平移2个单位,得到的二次函数解析式是 ▲ . 13.一个骰子六个面上的数字分别为1、2、3、4、5、6,投掷一次,向上的一面是合数的概率是 ▲ .14.已知:233m a b =-,1124n b a =+,则4m n -= ▲ . 15.如图,直线AB ∥CD ∥EF ,那么∠α+∠β-∠γ= ▲ 度.16.如图,已知DE ∥BC ,且EF ︰BF =3︰4,那么AE ︰AC = ▲ . 17.如图,在Rt △ABC 中,∠C = 90°,AC =8,BC =6,两等圆⊙A 、⊙B 外切,那么图中两个扇形(即阴影部分)的面积之和为 ▲ .(保留π) (第6题图)18.如图,已知△ACB 与△DEF 是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图所示的形状,使点B 、C 、F 、D 在同一条直线上,且点C 与点F 重合,将△ACB 绕点C 顺时针方向旋转,使得点E 在AB 边上,AC 交DE 于点G ,那么线段FG 的长为 ▲ cm (保留根号).三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:12322cos 45|81|-----. 20.(本题满分10分)解方程组:113,231 1.2x x y x x y⎧+=⎪-⎪⎨⎪-=⎪-⎩21.(本题共2小题,每小题5分,满分10分)已知:如图,在以O 为圆心的两个同心圆中,小圆的半径长为4,大圆的弦AB 与小圆交于C 、D 两点,且AC =CD ,∠COD = 60°.求:(1)求大圆半径的长;(2)如果大圆的弦AE 长为,求∠AEO 的余切. 并直接判断弦AE 与小圆的位置关系.(第16题图) (第15题图) AE C (F )D B (第18题图) EA BC D O22.(本题共2小题,第(1)小题6分,第(2)小题4分,满分10分)某校九年级二班为开展“迎五一劳动最光荣”的主题班会活动,派小明和小丽两位同学去学校附近的超市购买钢笔作为奖品.已知该超市的宝克牌钢笔每支8元,英雄牌钢笔每支4.8元,他们要购买这两种笔共40支. 小明和小丽根据主题班会活动的设奖情况,决定所购买的宝克牌钢笔的数量要少于英雄牌钢笔的数量的12,但又不少于英雄牌钢笔的数量的14,如果他们买了宝克牌钢笔x 支,买这两种笔共花了y 元. (1)请写出y (元)关于x (支)的函数关系式,并求出自变量x 的取值范围;(2)请帮助他们计算一下,这两种笔各购买多少支时,所花的钱最少,此时花了多少元?23.(本题共2小题,每小题6分,满分12分)已知:如图,四边形ABCD 是平行四边形,分别以AB 、AD 为腰作等腰三角形△ABF 和等腰三角形△ADE ,且顶角∠BAF =∠DAE ,联结BD 、EF 相交于点G ,BD 与AF 相交于点H .(1)求证:BD =EF ;(2)当线段FG 、GH 和GB 满足怎样的数量关系时,四边形ABCD 是菱形,并加以证明. ABDEF(第23题图)G H24.(本题共2题,每小题6,满分12分)已知:如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线2=++经过O、A、C三点.y ax bx c (1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.(第24题图)25.(本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题4分,满分14分)已知:如图①,△ABC 中,AI 、BI 分别平分∠BAC 、∠ABC .CE 是△ABC 的外角∠ACD 的平分线,交BI 延长线于E ,联结CI .(1)设∠BAC =2α.如果用α表示∠BIC 和∠E ,那么∠BIC = ,∠E = ;(2)如果AB =1,且△ABC 与△ICE 相似时,求线段AC 的长;(3)如图②,延长AI 交EC 延长线于F ,如果∠α=30°,sin ∠F=35,设BC =m ,试用m 的代数式表示BE .(第25题图②)F AB CDI(第25题图①)ABCDEI参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.A ; 2.C ; 3.B ; 4.D ; 5.C ; 6.A . 二、填空题:(本大题共12题,每题4分,满分48分)7. 8.(22x x --; 9.m ≥98-; 10.14-; 11.增大;12.22(3)2y x =--; 13.13; 14.823a b -; 15.180; 16.3︰4; 17.254π;18三、解答题:(本大题共7题,满分78分)19.解:原式1114=-+…………………………………(2分+2分+2分+2分)14=-.…………………………………………………………………(2分)20.解:设1u x =,12v x y =-,则原方程组可化为331u v u v +=⎧⎨-=⎩.……………………(2分) 解这个方程组,得 12u v =⎧⎨=⎩.………………………………………………(2分)于是,得11122x x y ⎧=⎪⎪⎨⎪=⎪-⎩即1122x x y =⎧⎪⎨-=⎪⎩.……………………………………(2分) 解方程组得 132x y =⎧⎪⎨=⎪⎩. ………………………………………………………(2分)经检验132x y =⎧⎪⎨=⎪⎩是原方程组的解.……………………………………………(1分)所以,原方程组的解是132x y =⎧⎪⎨=⎪⎩ ……………………………………………(1分)21.解:(1)过O 作OF ⊥CD ,垂足为F ,联结OA .∵ OC = OD = 4,∠COD = 60°,∴ OC = OD = CD = 4.又∵ AC =CD ,∴ AC = CD = 4.………………………………………(1分) ∵ OF ⊥CD ,且OF 过圆心,CD = 4 ,∴ CF = FD = 2.∴ AF = 6.…………………………………………(1分) 在Rt △COF 中,222CO OF CF =+,∴ OF= .………………(1分) 在Rt △AOF 中,222AO OF AF =+,∴ AO= .………………(1分)即:大圆半径的长为.……………………………………………(1分) (2)过O 作OG ⊥AE ,垂足为G .∵ OG ⊥AE ,且OG 过圆心,AE=∴ AG = EG= 1分) 在Rt △EOG 中,222EO EG OG =+,∵ OE= ,∴ OG = 4.……………………………………………(1分) 在Rt △EOG中,cot EG AEO OG ∠===答: 弦AE 与小圆相切.………………………………………………(1分)22.解:(1)根据题意,得 84.8(40)3.2y x x x =⋅+-=+.…………………(3分)根据题意,得定义域为1(40)21(40)4x x x x ⎧<-⎪⎪⎨⎪≥-⎪⎩.………………………………(1分)解得,定义域为8≤ x <403的整数.…………………………(1分+1分) (2)由于一次函数 3.2192y x =+的k >0.所以 y 随x 的增大而增大.因此,当x =8时花的钱最少.…………………………………………(2分) 4032x -=, 3.28192217.6y =⨯+=.………………………………(1分)答:当购买英雄牌钢笔32支,宝克牌钢笔8支时,所花的钱最少,此时花了217.6元.………………………………………………(1分)23.(1)证明:∵ ∠BAF =∠DAE ,∴∠BAF+∠FAD =∠DAE +∠FAD ,即∠BAD =∠FAE .………(1分) 在△BAD 和△F AE 中∵ AB =AF ,∠BAD =∠FAE ,AD =AE ,……………………………(3分) ∴△BAD ≌ △F AE (SAS ).……………………………………(1分) ∴ BD = EF .…………………………………………………………(1分)(2)当线段满足2FG GH GB =⋅时,四边形ABCD 是菱形.…………………(1分)证明:∵2FG GH GB =⋅,∴FG GHBG FG=. 又∵∠BGF =∠FGB , ∴△GHF ∽ △GFB .∴ ∠EFA =∠FBD .………………………(1分) ∵△BAD ≌ △F AE , ∴ ∠EFA =∠ABD .∴ ∠FBD =∠ABD .…………………………………………………(1分) ∵ 四边形ABCD 是平行四边形, ∴ AD // BC .∴ ∠ADB =∠FBD .∴ ∠ADB =∠ABD .…………………………………………………(1分) ∴ AB =AD .……………………………………………………………(1分)又∵ 四边形ABCD 是平行四边形,∴ 四边形ABCD 是菱形.…………………………………………(1分)24.解:(1)∵ 抛物线2y ax bx c =++经过点O 、A 、C ,可得c = 0,…………(1分)∴2421a b a b +=⎧⎨+=⎩,解得32a =-,72b =;…………(2分) ∴ 抛物线解析式为23722y x x =-+.………………(1分)对称轴是直线76x =…………………………(1分) 顶点坐标为(76,4924)…………………(1分) (2)设点P 的横坐标为t ,∵PN ∥CD ,∴ △OPN ∽ △OCD , 可得PN =2t ,∴P (t ,2t).……(1分) 237如解答图,过M 点作MG ⊥AB 于G ,过P 点作PH ⊥AB 于H ,AG = y A -y M = 2-(23722t t -+)=237222t t -++,BH = PN =2t.…(1分)当AG =BH 时,四边形ABPM 为等腰梯形,∴2372222tt t -++=,…………………(1分)化简得3t 2-8t + 4=0,解得t 1=2(不合题意,舍去),t 2=23,………(1分) ∴点P 的坐标为(23,13).∴存在点P (23,13),使得四边形ABPM 为等腰梯形.………(1分)25.解:(1)∠BIC = 90°+α,…………………………………………………(2分)∠E = α.…………………………………………………………(2分) (2)由题意易证得△ICE 是直角三角形,且∠E = α.当△ABC ∽△ICE 时,可得△ABC 是直角三角形,有下列三种情况: ①当∠ABC = 90° 时,∵∠BAC = 2α,∠E = α;∴ 只能∠E = ∠BCA ,可得∠BAC =2∠BCA . ∴ ∠BAC = 60°,∠BCA = 30°.∴ AC =2 AB . ∵ AB = 1 ,∴ AC = 2.…………………(2分)②当∠BCA = 90° 时,∵∠BAC = 2α,∠E = α;∴ 只能∠E = ∠ABC ,可得∠BAC =2∠ABC . ∴ ∠BAC = 60°,∠ABC = 30°.∴ AB =2 AC . ∵ AB = 1 ,∴ AC =12.………………(2分) ③当∠BAC = 90° 时,∵∠BAC = 2α,∠E = α;∴∠E = ∠BAI = ∠CAI =45°.∴△ABC 是等腰直角三角形.即 AC = AB . ∵ AB = 1 ,∴ AC = 1.…………………(2分)∴综上所述,当△ABC ∽△ICE 时,线段AC 的长为1或2或12. (3)∵∠E = ∠CAI ,由三角形内角和可得 ∠AIE = ∠ACE .∴ ∠AIB = ∠ACF .又∵∠BAI = ∠CAI , ∴ ∠ABI = ∠F . 又∵BI 平分∠ABC , ∴ ∠ABI = ∠F =∠EBC .又∵∠E 是公共角, ∴ △EBC ∽△EFI .…………………………(2分)在Rt △ICF 中,sin ∠F=35,设IC = 3k ,那么CF = 4k ,IF = 5k .在Rt △ICE 中,∠E =30°,设IC = 3k ,那么CE = ,IE = 6k . ∵△EBC ∽△EFI .∴BC IF BE FE ==.又∵BC =m , ∴ BE =.………………………………(2分)。
2014年山东省济南市天桥区中考二模数学试题及答案
A .B .C .D .正面 2014年九年级学业水平模拟考试数 学 试 题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为45分;第Ⅱ卷共6页,满分为75分.本试题共8页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共45分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.6-的绝对值是A .16B .16-C .6D .6-2.已知∠α=35°,则∠α的余角是A .35°B .55°C .65°D .145° 3.某反比例函数图象经过点(-1,6),则下列各点也在此函数图象上的是A .(-3,2)B .(3,2)C .(2,3)D .(6,1) 4.某红外线遥控器发出的红外线波长为0.000 000 94m ,用科学记数法表示这个数为 A .89.410-⨯mB. 89.410⨯mC. 79.410-⨯mD. 79.410⨯m5.如图所示,该几何体的俯视图是6.不等式组10420x x -≥⎧⎨->⎩的解集在数轴上表示为7.把多项式34x x -分解因式所得的结果是A. 2(4)x x -B. (4)(4)x x x +-C. (2)(2)x x x +-D. (2)(2)x x +-A. B.C. D.8.我市五月份连续五天的最高气温分别为23,20,20,21,26(单位: ℃ ),这组数据的中位数和众数分别是 A .22,26 B .21,20 C .21,269.如图,半径为4cm的定圆O 与直线l相切,半径为2cm 动圆P 在直线l 上滚动,当两圆相切时OP 的值是 A .4cm B .6cm C .2cm D .2cm 或6cm10.袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为 A .91 B. 61 C. 31 D. 2111.如图,直线l :y =x +2与y 轴交于点A ,将直线l 绕点A 逆时针旋转90º后,所得直线的解析式为A .y =-x +2B .y =x -2C .y =-x -2D .y =-2x -112.四边形ABCD 中,对角线AC ,BD 相交于点O ,给出下列四个条件:①AD ∥BC ;②AD =BC ;③OA =OC ;④OB =OD . 从中任选两个条件,能使四边形ABCD 为平行四边形的选法有 A .3种B .4种C .5种D .6种13.如图,正方形ABCD 中,AB =3,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG , CF .下列结论:①点G 是BC 中点;②FG =FC ;③S △FGC =910. 其中正确的是A. ①B. ①③C. ②③D. ①②③14. 已知二次函数y =x 2+x +c 的图象与x 轴的一个交点为(1,0),则它与x 轴的另一个交点坐标是A .(1,0) B.(-1,0) C.(2,0) D.(-2,0)15.如图,△ABC 中,∠ABC =90°,AB =8,BC =6,点F ,D 是直线AC 上的两个动点,且FD =AC .点B 和点E 分别在直线AD 的两侧,AB =DE ,AB //DE ,当四边形BCEF 是菱形时AF 等于A. 75B. 145C. 5D. 4l第9题图第11题图E 第13题图第Ⅱ卷(非选择题 共75分)注意事项:1.第Ⅱ卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答.二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16260cos ︒=_____________. 17.计算:()233a -=____________.18.方程组27325x y x y +=⎧⎨-=⎩的解为______________.19.如图,在等腰直角三角形ABC 中,AB =AC =8,O 为BC 的中点,以O 为圆心作半圆,使它与AB ,AC 都相切,切点分别为D ,E ,则⊙O 的半径为_____________. 20.如图,已知一次函数y =kx +b 的图象经过点P (3,2),与反比例函数2y x=(x >0)的图象交于点Q (m ,n ).当一次函数y 的值随x 值的增大而增大时,m 的取值范围是___________.21.第1次从原点运动到点(1,1)3次接着运动到点(3,2),…,按这样的运动规律,经过第2015次运动后,动点P 的坐标是________________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)(1,1) (5,1) (9,1) (3,2)(7,2)(11,2)(2,0) (4,0) (6,0) (8,0) (10,0) (12,0) x yO … 第21题图22.(本小题满分7分) 完成下列各题:(1)解方程:2430x x -+=.(2)计算:222111a a aa a -+--+.23.(本小题满分7分) 完成下列各题:(1)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .(2)如图,矩形ABCD 中,BC =8,对角线BD=10,求tan ∠ACB .24.(本小题满分8分)某校为了进一步开展“阳光体育”活动,分别用A BCD第23(2)题图 第23(1)题图1200元购买了一批篮球和排球. 已知篮球单价是排球单价的1.5倍,且所购买的排球数比篮球数多10个. 篮球与排球的单价各多少元?25.(本小题满分8分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A ,B ,C ,D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下) (1)九年级(1)班体育测试的人数为_____________; (2)请把条形统计图补充完整;(3)扇形统计图中A 级所在的扇形的圆心角度数是_______________;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A 级和B 级的学生人数约为_______________人.BC 24% DA等级D CB 526.(本小题满分9分)如图1,菱形ABCD中,30A∠=,边长AB=10cm,在对称中心O处有一钉子.动点P,Q同时从点A出发,点P沿A B C→→方向以每秒2cm的速度运动,到点C停止,点Q沿A D→方向以每秒1cm的速度运动,到点D停止.P,Q两点用一条可伸缩的细橡皮筋连接,设t秒后橡皮筋扫过的面积为y cm2.(1)当3t=时,求橡皮筋扫过的面积;(2)如图2,当橡皮筋刚好触及钉子时,求t值;(3)求y与t之间的函数关系式.图2 备用图图127.(本小题满分9分)如图,在平面直角坐标系中,点A 的坐标为(2,0),点P 是y 轴上一动点,以线段AP 为一边,在其一侧作等边三角形APQ ,当点P 运动到点O 时,点Q 记作点B .(1)求点B 的坐标;(2)当点P 在y 轴上运动(P 不与O 重合)时,请说明∠ABQ 的大小是定值;(3)是否存在点P ,使得以A ,O ,Q ,B 为顶点的四边形是梯形?若存在,请写出点P 的坐标;若不存在,请说明理由.备用图28.(本小题满分9分)如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠经过 A (﹣1,0),B (3,0),C (0,3)三点,其顶点为D . 连接BD ,点P是线段BD 上一个动点(不与B ,D 重合),过点P 作y 轴的垂线,垂足为E ,连接BE . (1)求抛物线的解析式,并写出顶点D 的坐标;(2)如果点P 的坐标为(x ,y ),△PBE 的面积为S ,求S 与x 的函数关系式,并求出S 的最大值;(3)在(2)的条件下,当S 取得最大值时,过点P 作x 轴的垂线,垂足为F ,连接EF ,把△PEF 沿直线EF 折叠,点P 的对应点为P ′,请求出点P ′ 的坐标.2014年九年级学业水平模拟考试数学试题参考答案一、选择题: 二、填空题:16. 1 17. 9a 6 18. 32x y =⎧⎨=⎩, . 19. 4 20. 1<m<3 21. (2015,2) 三、解答题:22.(1)解法一:()()130x x --= ……………………………………1分10x -=或30x -= ……………………………………2分∴ 11x =,23x =. ……………………………………3分 解法二:移项,得243x x -=-配方,得24434x x -+=-+ ……………………………………1分()221x -=由此可得21x -=± ……………………………………2分 ∴ 11x =,23x = ……………………………………3分解法三:143a b c ==-=,,. ()224441340b ac -=--⨯⨯=>. ……………………………………1分4212x ==±,……………………………………2分 ∴ 11x =,23x = ……………………………………3分(2)解:原式2(1)(1)(1)1a aa a a -=-+-+ ……………………………………1分111a aa a -=-++ ……………………………………2分等级511a =-+ ……………………………………3分 23.(1)证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE . ……………………………………1分 在△ABF 和△DCE 中,⎪⎩⎪⎨⎧=∠=∠=CE BF C B DC AB∴△ABF ≌△DCE , ……………………………………2分∴∠A =∠D . ……………………………………3分 (2)解:∵四边形ABCD 是矩形∴AC =BD =10, ……………………………………1分在Rt △ABC 中, AB6, ………………………………3分∴t an ∠ACB =6384AB BC ==. ……………………………………4分 24.解:设排球的单价为x 元,则篮球的单价为1.5x 元, ……………………………1分根据题意得12001200101.5x x-=. ……………………………4分 解方程得40x =. ……………………………6分 经检验,40x =是原分式方程的根. ……………………………7分 1.560x =.答:篮球单价为60元,排球单价为40元. …………………………8分 25.解:(1)50; ……………………………………2分 (2)条形图补充正确; ……………………………………4分 (3)72°; 分(4)330. 分26.解:(1)当3t =时,AP =6,AQ =3过P 作PM AD ⊥,则3PM = ……………………………………..2分11933222y PM AQ ∴=⋅⋅=⨯⨯= ……………………………………..3分(2)解法1:当橡皮筋刚好触及钉子时,12ABPQ ABCD S S =梯形菱形,. ………..4分 210BP t =-,AQ t =,()11210510522t t -+⨯=⨯⨯ …………………..5分 203t ∴=. …………………..6分 解法2:连结BD ,则△BOP ≌△DOQ∴BP =DQ ……..4 ∴21010t t -+= ……..5分 203t ∴=…….6分 (3)当05t ≤≤时,作PM ⊥AD 于M ,2AP t =,AQ t =,P M =t ,21122y AQ PM t == ………………….7分当2053t <≤时,10AB =,210PB t =-,AQ t =, 2101552522t t y t +-∴=⨯=- 当20103t <≤时, 如图3,作OE ∥AD .210BP t =-,AQ t =,5OE =,图2 图3BEOP OEAQ y S S =+梯形梯形52105552222t t +-+=⨯+⨯154t =. …………..9分 27.解:(1)如图1,过点B 作BC ⊥OA ,垂足为C∵△OAB 为等边三角形,A 的坐标(2,0) ∴BO =OA =2,OC =1,∠BOC =60° ····················1分 ∴BC·······························2分 ∴B的坐标 ·····························3分 (2)∵△OAB 与△APQ 为等边三角形 ∴∠BAO =∠PAQ =60°∴∠BAQ =∠OAP ·······························4分 在△APO 和△AQB 中,∵AP =AQ ,∠PAO =∠QAB ,AO =AB∴△APO ≌△AQB (SAS ), ·······························5分 ∴∠ABQ =∠AOP =90°,∴当点P 在x 轴上运动(P 不与O 重合)时,∠ABQ 为定值90°; ····6分 (3)存在. ······························7分 P1 (0, ·······························8分 P2 ·······························9分 28. 解:(1)∵抛物线2(0)y ax bx c a =++≠经过A (﹣1,0)、B (3,0)、C (0,3)三点∴抛物线解析式为:223y x x =-++ ····························2分 ∴顶点D 的坐标为:(1,4) ····························3分 (2)设BD 的解析式为:(0)y kx b k =+≠,代入B ,D 的坐标∴BD 的解析式为:26y x =-+ ····························4分 ∴S =2111(26)3222PE OE xy x x x x ==-+=-+ ························5分∴S =239()24x --+ ∴当32x =时,S 取得最大值,最大值为94. ····························6分 (3)如图,当S 取得最大值时32x =,点P 的坐标为(32,3)∵PE ⊥y 轴,PF ⊥x 轴 ∴四边形PEOF 为矩形.作点P 关于EF 的对称点P ′,连接P ′E ,P ′F ;作P ′H ⊥y 轴于H ,P ′F 交y 轴于点M . 设MC =m ,则MF =m ,∴P ′M =3﹣m ,P ′E =32 ∴由勾股定理得:2223()(3)2m m +-=∴解得:m =158··························7分∵CM ·P ′H =P ′M ·P ′E ∴P ′H =910∵△EHP ′∽△HMP∴可得''EH EP EP EM =, EH =65 ········∴OH =69355-= ∴P ′坐标为(910-,95) ···························9分。
四川省南充市2014年中考二模数学试卷及答案
四川省南充市2014年中考二模数学试卷一、选择题1.计算(﹣2)+5的结果是()A.3B.﹣3 C.7D.﹣72.下列所给图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.下列事件中是必然事件的为()A.有两边及一角对应相等的三角形全等B.方程x2﹣x+1=0有两个不等实根C.面积之比为1:4的两个相似三角形的周长之比也是1:4D.圆的切线垂直于过切点的半径4.如图,平行四边形ABCD中,AB=3,AE平分∠BAD,∠B=60°,则AE=()A.5B.4C.3D.25.已知甲车行驶35千米与乙车行驶45千米所用时间相同,且乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A.B.C.D.6.在同一平面直角坐标系中,若一次函数y=﹣x+3与y=3x﹣5的图象交于点M,则点M 的坐标为()A.(﹣1,4)B.(﹣1,2)C.(2,﹣1)D.(2,1)7.如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2.则S阴影=()A.πB.2πC.D.π8.已知a为实数,则代数式的最小值为()A.0B.3C.3D.99.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC 绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC=DE;④BE2+DC2=DE2.其中一定正确的是()A.②④B.①③C.①④D.②③10.已知关于x的一次函数y=(k﹣)x+,其中实数k满足0<k<1,当自变量x在1≤x≤2的范围内变化时,此函数的最大值为()A.1B.2C.k D.2k﹣二、填空题11.分解因式:x2y﹣4xy+4y= _________.12.二次函数y=﹣2(x﹣5)2+3的顶点坐标是_________.13.九年级(3)班期末考试合格、良好、优秀的比例是1:6:3,小明同学画了一个半径为2cm的圆形的统计图(如图).则表示“良好”的部分的面积是_________.14.如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,点D为⊙O上一点,若∠CAB=55°,则∠ADC的大小为_________(度).15.在△ABC中,点D、E分别在AB、AC上,∠ADE=∠C,如果AE=2,△ADE的面积为4,△ABC的面积为9,那么AB的长为_________.16.关于的方程x2+2(k+1)x+k2=0两实根之和为m,且满足m=﹣2(k+1),关于y的不等式组有实数解,则k的取值范围是_________.三、计算题17.计算:.18.某校为了了解本校八年级学生课外阅读喜欢的书籍,随机抽取了该校八年级部分学生进行问卷调查(每人只选一种书籍),如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列各题:(1)在扇形统计图中,“其它”所在扇形圆心角等于多少度?(2)补全条形统计图;(3)若该年级有600人,请你估计该年级喜欢“科普常识”的学生人数约是多少人?19.如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F.(1)求证:DE=DE;(2)若∠A=90°,图中与DE相等的有哪些线段?(不说明理由)20.已知抛物线y=x2﹣x﹣1.(1)求抛物线y=x2﹣x﹣1的顶点坐标、对称轴;(2)抛物线y=x2﹣x﹣1与x轴的交点为(m,0),求代数式m2+的值.21.已知一次函数y1=kx+b的图象与反比例函数的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积.22.如图,在△ABC中,∠C=90°,BC=5米,AC=12米.M点在线段CA上,从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.运动时间为t秒.(1)当t为何值时,∠AMN=∠ANM?(2)当t为何值时,△AMN的面积最大?并求出这个最大值.23.我市某海域内有一艘渔船发主障,海事救援船接到求救信号后立即从港口出发沿直线匀速前往救援,与故障船会合后立即将其拖回,如图,折线段O﹣A﹣B表示救援船在整个过程中离港口的距离y(海里)随航行时间x(分钟)的变化规律,抛物线y=ax2+k表示故障渔船在漂移过程中离港口的距离y(海里)随漂移时间x(分钟)的变化规律,已知救援船返程速度是前往速度的.根据图象提供的信息,解答下列问题:(1)求救援船的前往速度;(2)若该故障渔船在发出救援信号后40分钟内得不到营救就会有危险,请问救援船的前往速度每小时至少是多少海里,才能保证渔船的安全.24.如图,AB是⊙O的弦,AB=4,过圆心O的直线垂直AB于点D,交⊙O于点C和点E,连接AC、BC、OB,cos∠ACB=,延长OE到点F,使EF=2OE.(1)求证:∠BOE=∠ACB;(2)求⊙O的半径;(3)求证:BF是⊙O的切线.25.如图,在直角坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx﹣2的图象经过C点.(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.参考答案1-10、ADDCD DDBCC11、y(x﹣2)212、(5,3)13、14、35°.15、316、﹣≤k<1.17、解:原式=1+﹣2×+=1+﹣+=118、36°18019、解:(1)如图,连接AD.∵AB=AC,D是BC的中点,∴∠EAD=∠FAD,∵DE⊥AB,DF⊥AC,垂足分别为E、F,∴DE=DF;(2)若∠BAC=90°,图中与DE相等的有线段AE、AF、BE、CF.20、解:A、y=x2﹣x﹣1=x2﹣x+﹣1﹣=(x﹣)2﹣,顶点坐标是(,﹣),对称轴是x=;(2)当y=0时x2﹣x﹣1=0,解得x=,x=,当m=时,m2+=()2+===3,当m=时,m2+=()2===3,m2+=3.21、解:(1)把x=﹣2代入y2=﹣得y=4,把y=﹣2代入y2=﹣得x=4,∴点A的坐标为(﹣2,4),B点坐标为(4,﹣2),把A(﹣2,4),B(4,﹣2)分别代入y1=kx+b得,解得,∴一次函数的解析式为y=﹣x+2;(2)如图,直线AB交y轴于点C,对于y=﹣x+2,令x=0,则y=2,则C点坐标为(0,2),∴S△AOB=S△AOC+S△BOC=×2×2+×2×4=6.22、解:(1)∵从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.运动时间为t秒.∴AM=12﹣t,AN=2t∵∠AMN=∠ANM∴AM=AN,从而12﹣t=2t解得:t=4 秒,∴当t为4时,∠AMN=∠ANM.(2)在Rt△ABC中∵AB2=BC2+AC2∴AB=13米如图,作NH⊥AC于H,∴∠NHA=∠C=90°,∵∠A是公共角,∴△NHA∽△BCA∴=,即:=,∴NH=从而有S△AMN=(12﹣t)•=﹣t2+,∴当t=6时,S最大值=平方米.23、解:(1)从图象可以看出轮船到出发点的距离是16海里,即救援船行驶了16海里与故障船会合,设救援船的前往速度为每分钟v海里,则返程速度为每分钟v海里,由题意得:=﹣16,v=0.5,经检验v=0.5是原方程的解,答:该救援船的前往速度为每分钟0.5海里.(2)由(1)知:t=16÷0.5=32,则A(32,16),将A(32,16),C(0,12)代入y=ax2+k得:,解得,即y=x2+12,把x=40代入得:y=×402+12=,÷=,即救援船的前往速度为每小时至少是海里.24、(1)解:如图,连OA.∵直径CE⊥AB,∴AD=BD=2,弧AE=弧BE,∴∠ACE=∠BCE,∠AOE=∠BOE,又∵∠AOB=2∠ACB,∴∠BOE=∠ACB;(2)解:cos∠ACB=,∴cos∠BOD=,在Rt△BOD中,设OD=x,则OB=3x,∵OD2+BD2=OB2,∴x2+22=(3x)2,解得x=,∴OB=3x=,即⊙O的半径为;(3)证明:∵FE=2OE,∴OF=3OE=,∴=,而=,∴=.而∠BOF=∠DOB,∴△OBF∽△ODB,∴∠OBF=∠ODB=90°,∵OB是半径,∴BF是⊙O的切线.25、解:(1)如答图1所示,过点C作CD⊥x轴于点D,则∠CAD+∠ACD=90°.∵∠OBA+∠OAB=90°,∠OAB+∠CAD=90°,∴∠OAB=∠ACD,∠OBA=∠CAD.∵在△AOB与△CDA中,∴△AOB≌△CDA(ASA).∴CD=OA=1,AD=OB=2,∴OD=OA+AD=3,∴C(3,1).∵点C(3,1)在抛物线y=x2+bx﹣2上,∴1=×9+3b﹣2,解得:b=﹣.∴抛物线的解析式为:y=x2﹣x﹣2,;(2)在Rt△AOB中,OA=1,OB=2,由勾股定理得:AB=.∴S△ABC=AB2=.设直线BC的解析式为y=kx+b,∵B(0,2),C(3,1),∴,解得k=﹣,b=2,∴y=﹣x+2.同理求得直线AC的解析式为:y=x﹣.如答图1所示,设直线l与BC、AC分别交于点E、F,则EF=(﹣x+2)﹣(x﹣)=﹣x.△CEF中,EF边上的高h=OD﹣x=3﹣x.由题意得:S△CEF=S△ABC,即:EF•h=S△ABC,∴×(﹣x)•(3﹣x)=×,整理得:(3﹣x)2=3,解得x=3﹣或x=3+(不合题意,舍去),∴当直线l解析式为x=3﹣时,恰好将△ABC的面积分为相等的两部分.(3)存在.如答图2所示,过点C作CG⊥y轴于点G,则CG=OD=3,OG=1,BG=OB﹣OG=1.过点A作AP∥BC交y轴于点W,∵四边形ACBP是平行四边形,∴AP=BC,连接BP,则四边形PACB为平行四边形.过点P作PH⊥x轴于点H,∵BC∥AP,∴∠CBO=∠AWO,∵PH∥WO,∴∠APH=∠AWO,∴∠CBG=∠APH,在△PAH和△BCG中,∴△PAH≌△BCG(AAS),∴PH=BG=1,AH=CG=3,∴OH=AH﹣OA=2,∴P(﹣2,1).抛物线解析式为:y=x2﹣x﹣2,当x=﹣2时,y=1,即点P在抛物线上.∴存在符合条件的点P,点P的坐标为(﹣2,1).。
安阳市2013-2014学年中招二模数学试题参考答案
数学参考答案及评分意见
一、选择题 1.A 二、填空题 9. x ≤ 2 10. 40 11. 2.B 3.A 4.B 5.C 6. B 7. C 8. D
2 3
12. 240
13. 3
14. 30
4 8 15.(2,–1)或 ( , ) 5 5
三、解答题 16. 原式
3 ,且 C GAO 90 , 5
B C D F G O A E
∴ sin GAO
3 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7分 ,· 5
18. 解: (1)△DEF≌△BCF,△ADC≌△ABE;· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 4分 (2)证明:∵△ABC≌△ADE, ∴∠CAB+∠CAE=∠EAD+∠CAE, 在△BAE 和△DAC 中 AB=AD, ∠BAE=∠DAC, AC=AE, ∴△BAE≌△DAC, ∴BE=DC. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 9分
九年级数学参考答案 第 1 页 共 4 页
∴AB=AD, AC=AE, ∠CAB=∠EAD, 即∠BAE=∠DAC. · · · · · · · · · · · · · · · · · · · · 6分
2014广东河源中考数学二模试题含答案
2014广东河源中考数学二模试题(含答案)一、选择题(本大题共10小题,每题3 分,共 30分) 1 .的绝对值是()A. 3 B .-3 C . D. 2 .在6×6方格中,将图①中的图形 N 平移后地点如图②所示,则下列图形 N 的平移方法中,正确的选项是()A .向下挪动 1 格B .向上挪动 1 格C .向上挪动 2 格 D.向下挪动 2 格 3 .以下计算正确的选项是 ()A . B. C. D. 4.五个数中:, ? 1, 0,,,是无理数的有()A.0个B.1个C.2个D.3个5 .以下计算正确的选项是()A .B . C. D. 6 .不透明的袋子里装有 2 个红球和 1 个白球,这些球除了颜色外其余都同样 .从中随意摸出一个,放回摇匀,再从中摸出一个,则两次摸到球的颜色同样的概率是( ) A . B. C. D. 7 .如图,在 ABCD中,AD= 8 ,点 E , F 分别是 BD, CD的中点,则 EF 等于()A .2B.3C.4D.58 .如图,已知D,E分别是△ABC 的 AB ,AC 边上的点,且S四边形DBCE =1∶8,那么等于 ()A. 1∶9B. 1∶3C.1∶8D.1∶29.如图,在Rt△ABC中,∠A=30°,DE垂直均分斜边AC, E 为垂足,且交AB于点D,连结CD,若BD=1,则AC的长是()A. 2B.2C.4D. 410.如图,点 A的坐标为(-2, 0),点B在直线=上运动. 当线段AB最短时,点B的坐标为()A.B.C.D.二、填空题(本大题共 6小题,每题4分 ,共24分 )11.若∠α=42°,则∠α的余角的度数是.12 .如图,矩形 ABCD的对角线 AC,BD 相交于点 O , CE∥BD , DE∥AC ,若 AC = 4 cm,则四边形CODE的周长为 .13.若直线= 2+ 4 与反比例函数的图象交于点 P(a,2),则反比率函数的分析式为 .14.已知对于的一元二次方程有两个不相等的实数根,则实数 k的取值范围是 .15.不等式 2+9≥3(+2)的正整数解是.16.如图,三个小正方形的边长都为 1,则图中暗影部分面积的和是 __________.(结果保留π )三、解答题(一)(本大题共 3小题,每题6分,共18分)17.先化简,再求值:(+)(-)-( 43- 8 3)÷2,其中=-1,=.18.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一,甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二,乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?19.如图,在△ABC中,AB=AC,∠CAB=30°.(1)用直尺和圆规作AC边上的高线BD交 AC于点D(保存作图印迹,不要求写作法);( 2)在(1)中作出AC边上的高线BD后,求∠DBC的度数.四、解答题(二)(本大题共3小题,每题7分,共21分) 20.一丈量喜好者在海边丈量位于其正东方向的小岛高度AC.如下图,他先在点B测得小岛的极点A的仰角是,而后沿正东方向前行 62 m抵达点D,在点D测得小岛的极点A的仰角为(B,C,D三点在同一水平面上,且测量仪的高度忽略不计).求小岛的高度AC.(结果精确到 1 m,参考数据:,)21.如图,⊙O的直径AB = 6 cm , D 为⊙O上一点,∠BAD =30°,过点D的切线交AB的延伸线于点C.求:(1) ∠ADC 的度数; (2)AC的长 .22.四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动.为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受随机抽样检查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.五.解答题(三)(本大题共3小题,每小题9 分,共27分)23.阅读下面的例题,并回答问题.【例题】解一元二次不等式:.解:对分解因式,得,∴ .由“两实数相乘,同号得正,异号得负”,可得①或②解①得> 4;解②得<-2.故的解集是> 4或< -2.(1)直接写出的解是;( 2)模仿例题的解法解不等式:;( 3)求分式不等式:的解集.24.已知一张矩形纸片OACB ,将该纸片放置在平面直角坐标系中,点A( 11,0),B(0,6),点P为BC边上的动点(点P不与点B,C 重合),经过点 O,P折叠该纸片,得点B′和折痕 OP .设 BP = t.(1)如图①,当∠BOP =30°时,求点P的坐标;(2)如图②,经过点P再次折叠纸片,使点C落在直线 PB′上,得点C′和折痕PQ,若AQ=m,试用含有 t 的式子表示 m ;(3)在(2)的条件下,当点C′恰好落在边OA上时,求点P的坐标.(直接写出结果即可)25.如图,已知抛物线= 2 2-2与轴交于A,B两点(点A在点B的左边),与轴交于点 C.(1)写出以 A , B,C为极点的三角形的面积;( 2)过点E(0, 6)且与轴平行的直线 l1与抛物线订交于M, N两点(点M 在点N的左边),以MN为一边,抛物线上的任一点P为另一极点作平行四边形.当平行四边形的面积为8时,求出点P的坐标;(3)过点D(m,0)(此中m> 1)且与轴垂直的直线 l2上有一点Q(点Q在第一象限),使得以Q,D, B为极点的三角形和以B,C,O为极点的三角形相像,求线段QD的长.(用含m的代数式表示)2014年广东省高中阶段学校招生考试数学展望卷(二)一、选择题(本大题共10小题,每小题3分,共30分)三、解答题(一)(本大题共3小题,每题6分,共18分)17.解:原式= 2- 2- 2 2+ 4 2=- 2+ 3 2,当=- 1,=时,原式=-1+ 1= 0. 18.解:设甲工厂每日能加工件产品,则乙工厂每日加工 1.5件产品.依据题意,得=10,解得=40.经查验,= 40是原方程的解,而且切合题意.则乙工厂每日加工件数为 1.5= 1.5 ×40=60.∴甲、乙两个工厂每日赋别能加工40件、60件新产品.19. (1)(图略)(2) 15°四、解答题(二)(本大题共3小题,每题7分,共21分)22.( 1) 50人 32( 2)解:∵=(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的均匀数为16元.∵10元出现次数最多,为16次,∴这组数据的众数为10元 .而这组数据的中位数为(15+15)=15元.(3)解:∵在50 名学生中,捐钱金额为10元的学生人数比率为32% ,∴由样本数据,估计该校 1 900名学生中捐款金额为10元的学生人数比例也为32%,则有1 900×32%= 608(名). ∴该校本次活动捐钱金额为 10元的学生约有608 名.五、解答题(三)(本大题共3小题,每题9分,共27分)24.解:(1)依据题意,有∠OBP = 90°, OB=6,在 Rt△ OBP中,由∠BOP = 30°,BP =t ,得 OP=2t.∵OP2 = OB2+BP2 ,即( 2t )2= 62+t 2,解得t1 =, t2=-(舍去).∴点P的坐标为(, 6 ).(2)∵△OB′P,△QC′P分别是由△OBP ,△QCP 折叠得到的,∴△OB′P ≌ △OBP ,△QC′P ≌ △QCP. ∴∠ OPB′=∠OPB,∠QPC′ =∠QPC.∵∠ OPB′+∠OPB +∠QPC′+∠QPC =180°,∴∠ OPB +∠QPC=90°.∵∠ BOP +∠OPB=90°,∴∠ BOP=∠CPQ.又∵∠ OBP=∠C =90°,∴△ OBP∽△ PCQ∴. .由题意知,BP =t,AQ =m,BC =11,AC =6,则PC =11-t,CQ =6-m.∴ ∴(0<t<11).(3)点P的坐标为(,6)或(,6).20 ×20。
2014届中考二模数学试题含答案
2014年初中毕业班第二次模拟测试数 学 试 卷说明:1.全卷共4页,考试用时为100分钟,满分为120分。
2.考生务必用黑色字迹的签字笔或钢笔在答题卷密封线左边的空格里填写自己的学校、班级、姓名、准考证号,并在答题卷指定的位置里填写座位号。
3.选择题选出答案后,请将所选选项的字母填写在答题卷对应题目的空格内。
4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卷的整洁。
考试结束时,将试卷和答题卷一并交回。
一、选择题(本大题共10小题,每小题3分,共30分。
在各题的四个选项中,只有—项是正确的,请将所选选项的字母填写在答题卷对应题目的空格内) 1、9的算术平方根是A .81B .3±C .3-D .32、据报道,肇庆团市委“情系农村”深化农村青年创业小额贷款工作,共发放贷款13 000 000多元,数字13 000 000用科学记数法表示为A .1.3×106B .1.3×107C .1.3×108D .1.3×1093、如图所示的几何体的主视图是4、下列计算正确的是 A.222)2(aa =- B.632a a a ÷= C.a a 22)1(2-=-- D.22a a a =⋅5、等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为 A . 12 B . 15 C . 12或15 D . 186、如图,线段DE 是△ABC 的中位线,∠B =60°,则∠ADE 的度数为 A .80° B .70° C .60° D .50°7、下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是8、在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的A .众数B .方差C .平均数D .中位数(第6题图)(第3题图)(第16题图)9、把不等式组2151x x -≤⎧⎨>⎩的解集在数轴上表示正确的是10、童童从家出发前往体育中心观看篮球比赛,先匀速步行至公交汽车站,等了一会儿,童童搭乘公交汽车至体育中心观看比赛,比赛结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图中能反映y 与x 的函数关系式的大致图象是二、填空题:(本题共6个小题,每小题4分,共24分) 11、分解因式:24(1)x x --= ▲ .12、如果26a b -=,则42b a -= ▲ .13、已知菱形的两条对角线长分别为6和8,则菱形的边长为 ▲ .14、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为 ▲ . 15x 的取值范围是 ▲ . 16、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠C = 30°,CD =. 则阴影部分的面积S 阴影= ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分)17、计算:2014201(1)()(5)16sin 602π--⨯+---︒18、已知一次函数y x b =+的图象经过点B (0,),且与 反比例函数ky x=(k 为不等于0的常数)的图象有一交点 为点A (m ,1-) .求m 的值和反比例函数的解析式. 19、在图示的方格纸中(1)作出△ABC 关于MN 对称的图形△A 1B 1C 1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?四、解答题(二)(本大题3小题,每小题7分,共21分)20、如图,在小山的东侧A点处有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C点处,此时热气球上的人测得小山西侧B点的俯角为30°,求小山东西两侧A、B两点间的距离.(第20题图)21、为了了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在▲组,中位数在▲组;(2)求样本中,女生身高在E组的人数;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?(第22题图)22、如图,在平行四边形ABCD 中,∠ABC =60°,E 、F 分别 在CD 和BC 的延长线上,AE ∥BD .(1)求证:点D 为CE 的中点; (2)若EF ⊥BC ,EF =,求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)23、现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费。
2014年安徽省安庆市中考数学二模试卷含答案解析(word版)
2014年安徽省安庆市中考数学二模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,共40分)1.(4分)实数0,,π,﹣1中,无理数是()A.0 B.C.πD.﹣1分析:根据无理数是无限不循环小数,可得答案.解答:解:π是无限不循环小数,故选:C.点评:本题考查了无理数,无理数是无限不循环小数.2.(4分)2013年12月2日凌晨1:30,“嫦娥三号”探测器在四川省西昌卫星发射中心发射升空,它携“玉兔号”月球车首次实现月球软着落和月面巡视勘察,并开展月球形貌与地质构造调查等科学探测,地球到月球的平均距离是384400千米,把384400这个数用科学记数法表示为()A.3844×103B.38.44×103C.3.844×104D.3.844×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将384400用科学记数法表示为:3.844×105.故选:D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)如图,该几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:左视图有2列,从左往右依次有2,1个正方形,其左视图为:.故选D.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.(4分)数轴上点A表示的实数可能是()A. B.C.D.考点:估算无理数的大小;实数与数轴.分析:根数轴上点A的位置可得出点A表示的数比3大比4小,从而得出正确答案.解答:解:∵3<<4,∴数轴上点A表示的实数可能是;故选B.点评:本题考查实数与数轴上的点的对应关系,应先看这个点在哪两个相邻的整数之间,进而得出答案.5.(4分)下列运算正确的是()A.a2•a4=a8B.3x+4y=7xy C.(x﹣2)2=x2﹣4 D.2a•3a=6a2考点:完全平方公式;合并同类项;同底数幂的乘法;单项式乘单项式.专题:计算题.分析:A、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式利用单项式乘以单项式法则计算得到结果,即可做出判断.解答:解:A、原式=a6,错误;B、原式不能合并,错误;C、原式=x2﹣4x+4,错误;D、原式=6a2,正确,故选D点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及单项式乘以单项式,熟练掌握公式及法则是解本题的关键.6.(4分)如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠CDB的度数为()A.55° B.50° C.45°D.30°考点:平行线的性质.专题:计算题.分析:先根据平行线的性质由CD∥AB得到∠CBA=180°﹣∠BCD=110°,再根据角平分线定义得∠ABD=∠CBA=55°,然后根据平行线的性质得∠CDB=∠ABD=55°.解答:解:∵CD∥AB,∴∠BCD+CBA=180°,∴∠CBA=180°﹣70°=110°,∵BD平分∠ABC,∴∠ABD=∠CBA=55°,而AB∥CD,∴∠CDB=∠ABD=55°.故选A.点评:本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.7.(4分)如图,AB是⊙O的弦,AB=6,OD⊥AB于点D,且交于点C,若OB=5,则CD的长度是()A.0.5 B. 1 C. 1.5 D. 2考点:垂径定理;勾股定理.分析:首先连接OB,由垂径定理可求得BD的长,然后由勾股定理求得OD的长,继而求得答案.解答:解:连接OB,∵OD⊥AB,∴BD=AB=×6=3,∴OD==4,∴CD=OC﹣OD=5﹣4=1.故选B.点评:此题考查了垂径定理与勾股定理的应用.此题难度不大,注意掌握数形结合思想的应用.8.(4分)已知一次函数y=kx+k﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象不可能是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:因为k的符号不确定,所以应根据k的符号及一次函数与反比例函数图象的性质解答.解答:解:当k<0时,﹣k>0,反比例函数y=的图象在二,四象限,一次函数y=kx+k﹣1的图象过一、二、四象限,选项C符合;当k>0时,﹣k<0,反比例函数y=的图象在一、三象限,一次函数y=kx+k﹣1的图象过一、三、四象限,无符合选项.故选C.点评:本题主要考查了反比例函数和一次函数的图象性质,正确掌握它们的性质才能灵活解题.9.(4分)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1,2]=1,[3]=3,[﹣2,5]=﹣3,若[]=5,则x的取值可以是()A.51 B.45 C.40 D.56考点:解一元一次不等式组.专题:新定义.分析:先根据[x]表示不大于x的最大整数,列出不等式组,再求出不等式组的解集即可.解答:解:根据题意得:5≤<5+1,解得:46≤x<56,故选:A.点评:此题考查了一元一次不等式组的应用,关键是根据[x]表示不大于x的最大整数,列出不等式组,求出不等式组的解集.10.(4分)(已知,如图,边长为2cm的等边△ABC(BC落在直线MN上,且点C与点M 重合),沿MN所在的直线以1cm/s的速度向右作匀速直线运动,MN=4cm,则△ABC和正方形XYNM重叠部分的面积S(cm2)与运动所用时间t(s)之间函数的大致图象是()A.B.C.D.考点:动点问题的函数图象.分析:根据题意,将平移过程分为5个阶段,依次求出这个阶段中得面积,分析选项可得答案.解答:解:根据题意,将平移过程分为4个阶段,①A在正方形之左时,C点在MN的中点以左,即0≤t≤1时,则根据三角形的面积计算方法,易得S=t2;②A和M重合之前,未到达MN中点时,即1≤t<2时,有S=﹣t2+t+;③A在MN的中点与C之间时,即2≤t≤4时,有S=;④N是AC的中点之前,4≤t≤5时,S=﹣(6﹣t)2;⑤A与N重合之前,过MN点右边,5≤t≤6时,有S=(t﹣4)2.故选:A.点评:此题考查动点问题中函数的变化关系,解决本题的关键是读懂图意,明确横轴与纵轴的意义.二、填空题11.(3分)分解因式:a3﹣10a2+25a=a(a﹣5)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再利用完全平方公式继续分解.解答:解:a3﹣10a2+25a,=a(a2﹣10a+25),(提取公因式)=a(a﹣5)2.(完全平方公式)点评:本题考查了提公因式法,公式法分解因式,关键在于提取公因式后可以利用完全平方公式继续进行二次分解,分解因式一定要彻底.12.(3分)在一个不透明的盒子里有3个分别标有数字5,6,7的小球,它们除数字外均相同,充分摇匀后,先摸出1个球不放回,再摸出1个球,那么这2个球上的数字之和为偶数的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这两个球上的数字之和为奇数的情况,再利用概率公式求解即可求得答案.解答:解:画树状图得:∵共有6种等可能的结果,这两个球上的数字之和为偶数的有2种情况,∴这两个球上的数字之和为偶数的概率为:=,故答案为:点评:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.13.(3分)如图所示,△ABC中,E、F、D分别是边AB、AC、BC上的点,且满足,则△EFD与△ABC的面积比为2:9.考点:相似三角形的判定与性质.分析:先设△AEF的高是h,△ABC的高是h′,由于,根据比例性质易得==.而∠A=∠A,易证△AEF∽△ABC,从而易得h′=3h,那么△DEF的高就是2h,再设△AEF的面积是s,EF=a,由于相似三角形的面积比等于相似比的平方,那么S△AEF:S△ABC=1:9,于是S△ABC=9s,根据三角形面积公式易求S△DEF=2s,从而易求S△DEF:S△ABC的值.解答:解:设△AEF的高是h,△ABC的高是h′,∵,∴==.又∵∠A=∠A,∴△AEF∽△ABC,∴=,===,∴h′=3h,∴△DEF的高=2h,设△AEF的面积是s,EF=a,∴S△ABC=9s,∵S△DEF=•EF•2h=ah=2s,∴S△DEF:S△ABC=2:9.故答案是:2:9.点评:本题考查了相似三角形的判定和性质,解题的关键是先证明△AEF∽△ABC,并注意相似三角形高的比等于相似比,相似三角形的面积比等于相似比的平方.14.(3分))如图,在菱形ABCD中,AB=BD,点E、F分别在AB、AD上,且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△ABD是正三角形;②若AF=2DF,则EG=2DG;③△AED≌△DFB;④S四边形BCDG=CG2;其中正确的结论是①③④.考点:菱形的性质;全等三角形的判定与性质.分析:①由ABCD为菱形,得出AB=AD,AB=BD,得出ABD为等边三角形;②过点F作FP∥AE于P点,根据题意有DP:PE=DF:DA=1:2,而点G与点P不重合,否则与与原题矛盾,所以EG=2DG错误;③△ABD为等边三角形,根据“SAS”证明△AED≌△DFB;④证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°,过点C 作CM⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S四边形BCDG=S四边形CMGN,易求后者的面积.解答:解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.故本小题正确;②过点F作FP∥AE于P点,DP:PE=DF:DA=1:2,而点G与点P不重合,否则与与原题矛盾,所以EG=2DG错误;③∵△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB,故本小题正确;④∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.则△CBM≌△CDN,(AAS)∴S四边形BCDG=S四边形CMGN.S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=CG2,故本小题正确;综上所述,正确的结论有①③④.故答案为:①③④.点评:此题综合考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,作出辅助线构造出全等三角形,把不规则图形的面转化为两个全等三角形的面积是解题的关键.三、解答题(共2小题,满分16分)15.(8分)计算:|3﹣|+2sin60°.考点:实数的运算;特殊角的三角函数值.分析:分别根据绝对值的性质、特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=(3﹣)+2×=3﹣+=3.点评:本题考查的是实数的运算,熟知绝对值的性质及特殊角的三角函数值是解答此题的关键.16.(8分)解方程:.考点:解分式方程.专题:计算题.分析:观察可得最简公分母是(x﹣1)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x﹣1)(x+1),得3x+3﹣x﹣3=0,解得x=0.检验:把x=0代入(x﹣1)(x+1)=﹣1≠0.∴原方程的解为:x=0.点评:本题考查了分式方程和不等式组的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)不等式组的解集的四种解法:大大取大,小小取小,大小小大中间找,大大小小找不到.四、(共2小题,每小题8分,满分16分)17.(8分)为了满足铁路交通的快速发展,安庆火车站从去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.求甲、乙两队单独完成这项工程各需几个月?考点:一元二次方程的应用.分析:设甲队单独完成这项工程需要x个月,则乙队单独完成这项工程需要(x﹣5)个月,根据两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍建立方程求出其解即可.解答:解:设甲队单独完成这项工程需要x个月,则乙队单独完成这项工程需要(x﹣5)个月,由题意,得x(x﹣5)=6(x+x﹣5),解得:x1=2(舍去),x2=15.∴乙队单独完成这项工程需要15﹣5=10个月答:甲队单独完成这项工程需要15个月,乙队单独完成这项工程需要10个月.点评:本题考查了工程问题的数量关系的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍建立方程是关键.18.(8分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)先将△ABC向右平移3个单位后得到△A1B1C1,再将△A1B1C1绕点B1按逆时针方向旋转90°后得到△A2B1C2;试在正方形网格中画出上述二次变换所得到的图形;(2)求线段A1C1旋转得到A2C2的过程中,线段A1C1所扫过的面积.考点:作图-旋转变换;作图-平移变换.分析:(1)分别利用图形的平移以及旋转得出对应点坐标位置即可得出答案;(2)根据线段A1C1旋转得到A2C2的过程中,线段A1C1所扫过的面积为S扇形B1C1C2﹣S扇,进而求出即可.形B1A1A2解答:解:(1)如图所示:;(2)A1C1所扫过的面积=.点评:此题主要考查了图形的平移与旋转和扇形面积公式应用,将图形变换后一般图形转化为特殊图形是解题关键.五、(共2小题,每小题10分,共20分)19.(10分)今年植树节,安庆某中学组织师生开展植树造林活动,为了了解全校1200名学生的植树情况,随机抽样调查50名学生的植树情况,制成如下统计表和条形统计图(均不完整).植树数量(棵)频数(人)频率3 5 0.14 20 0.456 10 0.2合计50 1(1)将统计表和条形统计图补充完整;(2)求抽样的50名学生植树数量的众数和中位数,并从描述数据集中趋势的量中选择一个恰当的量来估计该校1200名学生的植树数量.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.专题:计算题.分析:(1)求出植树量为5棵的人数,进而求出对应的频率,补全统计表与条形统计图即可;(2)根据题意得种3棵的有5人,种4棵的有20人,种5棵的有15人,种6棵的有10人,找出植树棵数最多的为4棵,即为众数,找出最中间的两个数,求出平均数得到中位数,求出平均每个学生植树的棵数,乘以1200即可得到结果.解答:解:(1)统计表和条形统计图补充如下:植树量为5棵的人数为:50﹣5﹣20﹣10=15,频率为:15÷50=0.3,植树数量(棵)频数(人)频率3 5 0.14 20 0.45 15 0.36 10 0.2合计50 1(2)根据题意知:种3棵的有5人,种4棵的有20人,种5棵的有15人,种6棵的有10人,∴众数是4棵,中位数是=4.5(棵);∵抽样的50名学生植树的平均数是:==4.6(棵),∴估计该校1200名学生参加这次植树活动的总体平均数是4.6棵,∴4.6×1200=5520(棵),则估计该校1200名学生植树约为5520棵.点评:此题考查了频数(率)分布直方图,频数(率)分布表,以及用样本估计总体,弄清题意是解本题的关键.20.(10分)如图,已知AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线AC于点D.(1)证明:直线PB是⊙O的切线;(2)若BD=2PA,OA=3,PA=4,求BC的长.考点:切线的判定;相似三角形的判定与性质.分析:(1)连接OB.利用SAS证明△POB≌△POA,根据全等三角形对应角相等得出∠PBO=∠PAO=90°,即直线PB是⊙O的切线;(2)根据△POB≌△POA得出PB=PA,由已知条件“BD=2PA”、等量代换可以求得BD=2PB;然后由相似三角形(△DBC∽△DPO)的对应边成比例可以求得BC=PO,然后由勾股定理求出PO即可.解答:(1)证明:连接OB.∵BC∥OP,∴∠BCO=∠POA,∠CBO=∠POB.又OC=OB,∴∠BCO=∠CBO,∴∠POB=∠POA.在△POB与△POA中,,∴△POB≌△POA(SAS),∴∠PBO=∠PAO=90°,∴PB是⊙O的切线;(2)解:∵△POB≌△POA,∴PB=PA.∵BD=2PA,∴BD=2PB.∵BC∥OP,∴△DBC∽△DPO,∴,∴BC=PO=.点评:本题考查了切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了全等三角形、相似三角形的判定与性质及勾股定理.六、共3小题,每小题12分,共24分21.(12分)如图,游客从某旅游景区的景点A处下山至C处有两种路径,一中是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客同时从A处下山,甲沿AC匀速步行,速度为45m/min.乙开始从A乘缆车到B,在B处停留5min后,再从B匀速步行到C,两人同时到达.已知缆车匀速直线运动的速度为180m/min,山路AC长为2430m,经测量,∠CAB=45°,∠CBA=105°.(参考数据: 1.4,1.7)(1)求索道AB的长;(2)为乙的步行速度.考点:解直角三角形的应用.分析:(1)如图,过B点作BD垂直于AC,垂足为D点.通过解Rt△BDC得到CD=,则由CD+AD=AC求得x=900,所以AB==900=1260m;(2)分别求得甲沿AC匀速步行到C所用时间、乙从A乘缆车到B所用时间,则易求乙从B匀速步行到C所用的时间为,故乙的步行速度为m/min.解答:解:(1)过B点作BD垂直于AC,垂足为D点,设BD=xm,则AD=xm,在Rt△BDC中,tan∠BCA=,即tan30°=,∴CD=,∵CD+AD=AC,∴+x=2430,解得x=900,所以AB==900=1260m.(2)甲沿AC匀速步行到C所用时间为,乙从A乘缆车到B所用时间为,∴乙从B匀速步行到C所用的时间为54﹣2﹣7﹣5=40min,∴乙的步行速度为m/min.点评:本题给出实际应用问题,求索道的长并研究甲、乙二人到达时间的问题.着重考查了同角三角函数的基本关系、正余弦定理解三角形和解三角形的实际应用等知识,属于中档题.22.(12分)对于任意的实数x,记f(x)=.例如:f(1)==,f(﹣2)==(1)计算f(2),f(﹣3)的值;(2)试猜想f(x)+f(﹣x)的值,并说明理由;(3)计算f(﹣2014)+f(﹣2013)+…+f(﹣1)+f(0)+f(1)+…+f(2013)+f(2014).考点:分式的混合运算.专题:新定义.分析:(1)将x=2,3分别代入求出f(2)与f(3)的值即可;(2)猜想f(x)+f(﹣x)=0,证明即可;(3)利用(2)中的结论,将原式结合后,计算即可得到结果.解答:解:(1)f(2)==,f(﹣3)==;(2)猜想:f(x)+f(﹣x)=1,证明:f(x)+f(﹣x)=+=+==1;(3)f(﹣2014)+f(﹣2013)+…+f(﹣1)+f(0)+f(1)+…+f(2013)+f(2014)=f(﹣2014)+f(2014)+f(﹣2013)+f(2013)…+f(﹣1)+f(1)+f(0)=1+1+…1+=2014.点评:此题考查了分式的混合运算,弄清题中的规律是解本题的关键.23.(14分)如图,在等腰直角△ABC中,∠ABC=90°,AB=BC=4,P为AC中点,E为AB 边上一动点,F为BC边上一动点,且满足条件∠EPF=45°,记四边形PEBF的面积为S1;(1)求证:∠APE=∠CFP;(2)记△CPF的面积为S2,CF=x,y=.①求y关于x的函数解析式和自变量的取值范围,并求y的最大值.②在图中作四边形PEBF关于AC的对称图形,若它们关于点P中心对称,求y的值.考点:几何变换综合题.分析:(1)分别证出∠APE+∠FPC=∠CFP+∠FPC=135°,即可得出∠APE=∠CFP;(2)①先证出=,再根据AP=CP=2,得出AE==,过点P作PH⊥AB于点H,PG⊥BC于点G,求出S△APE=PH•AE=,S2=S△PCF=CF×PG=x,再根据S1=S△ABC﹣S△APE﹣S△PCF求出S1=8﹣﹣x,再代入y=得出y=﹣8(﹣)2+1,最后根据2≤x≤4,得出时,y取得最大值,最后将x=2代入y=即可求出y最大=1.②根据图中两块阴影部分图形关于点P成中心对称,得出阴影部分图形自身关于直线BD对称,AE=FC,从而得出=x,求出x=2,最后把代入y=﹣+﹣1即可.解答:解:(1)∵∠EPF=45°,∴∠APE+∠FPC=180°﹣45°=135°;在等腰直角△ABC中,∠PCF=45°,则∠CFP+∠FPC=180°﹣45°=135°,∴∠APE=∠CFP.(2)①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,∴△APE∽△CFP,则=.在等腰直角△ABC中,AC=AB=4,又∵P为AC的中点,则AP=CP=2,∴AE===.如图1,过点P作PH⊥AB于点H,PG⊥BC于点G,P为AC中点,则PH∥BC,且PH=BC=2,同理PG=2.S△APE=PH•AE=×2×=,S2=S△PCF=CF×PG=×x×2=x,∴S1=S△ABC﹣S△APE﹣S△PCF=×4×4﹣﹣x=8﹣﹣x,∴y===﹣+﹣1=﹣8(﹣)2+1,∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.即时,y取得最大值.而x=2在x的取值范围内,将x=2代入y==﹣8(﹣)2+1,得y最大=1.则y关于x的函数解析式为:y=﹣+﹣1,(2≤x≤4),y的最大值为1.②如图2所示:图中两块阴影部分图形关于点P成中心对称,则阴影部分图形自身关于直线BD对称,此时EB=BF,即AE=FC,则=x,解得x1=2,x2=﹣2(舍去),将代入y=﹣+﹣1,得y=2﹣2.点评:此题考查了几何变换,用到的知识点是二次函数的最值、相似三角形的判定与性质、一元二次方程、三角形的面积,关键是根据题意做出辅助线,注意x的取值范围.。
2014年中考二模数学试卷及答案
xABB.初三数学第二次模拟试题(考试时间120分钟满分150分)第一部分选择题(共24分)一、选择题(下列各题所给答案中,只有一个答案是正确的,每小题3分,共24分)1.2012年元月的某一天,我市的最低气温为-3℃,最高气温为4℃,那么这一天我市的日温差是A.3℃B.4℃C.-7℃D.7℃2.下列运算,结果正确的是A.422aaa=+B.()222baba-=-C.()()aabba222=÷D.()422263baab=3.图中圆与圆之间不同的位置关系有A.2种B.3种C.4种D.5种4.如图,BC∥DE,∠1=105°, ∠AED=65°, 则∠A的大小是A.25°B.35°C.40°D.60°5.四名运动员参加了射击预选赛,他们成绩的平均环数x及其方差s2如表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选A.甲B.乙C.丙D.丁6.如右图是一个机器零件的三视图,根据标注的尺寸,这个零件的侧面积(单位:mm2)是A.π24B.π21C.π20D.π157.反比例函数ky=的图象如左图所示,那么二次函数y = kx2-k2x —1图象大致为8.下列说法正确的个数是①“对顶角相等”的逆命题是真命题②所有的黄金三角形都相似③若数据1、-2、3、x的极差为6,则x=4 ④方程x2-mx-3=0有两个不相等的实数根⑤已知关于x的方程232x mx+=-的解是正数,那么m的取值范围为6m>-A.5 B.4 C.3 D.2第二部分选择题(共126分)二、填空题(每小题3分,共30分)9.在函数xy32-=中,自变量x的取值范围是.10.我市今年初中毕业生为12870人,将12870用科学记数法表示为______(保留两个有效数字).11.如图,人民币旧版壹角硬币内部的正九边形每个内角的度数是______.12.如图,直线1l:11y x=+与直线2l:2y mx n=+相交于点),1(bP.当12y y>时,x的取值范围为.13.六·一儿童节前,苗苗来到大润发超市发现某种玩具原价为100元,经过两次降价,现售价为81元,假设两次降价的百分率相同,则每次降价的百分率为.14.如图所示,在建立平面直角坐标系后,△ABC顶点A的坐标为(1,-4) ,若以原点O为位似中心,在第二象限内画ABC△的位似图形A B C'''△,使ABC△与A B C'''△的位似比等于12,则点A'的坐标为.第11题第12题第14题15.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是.16.定义:如图,若双曲线xky=(0>k)与它的其中一条对称轴y x=相交于两点A,B,则线段AB的长称为双曲线xky=(0>k)的对径.若某双曲线xky=(0>k)的对径是26,则k的值为.17.如图,已知四边形ABCD是菱形,∠A=70°,将它分割成如图所示的四个等腰三角形,那么∠1+∠2+∠3= 度.18.在矩形纸片ABCD中,AB=8,BC=20,F为BC的中点,沿过点F的直线翻折,使点B落在边AD上,折痕交矩形的一边与G,则折痕FG=_____________第4题第5题第3题第15题第16题第17题三、简答题(共96分) 19.(8分)(1)计算:121(2)3-⎛⎫- ⎪⎝⎭-12sin30° (2)解方程:120112x x x x -+=+- 20.(6分)先化简211()111a a a a -÷-+-,再选取一个使原式有意义的a 的值代入求值. 21.(8分)一个不透明的口袋中有n 个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,从袋中随机地取出一个球,它是红球的概率是35.(1)求n 的值;(2)把这n 个球中的两个标号为1,其余分别标号为2,3,…,1n -,随机地取出一个小球后不放回,再随机地取出一个小球,求第二次取出小球标号大于第一次取出小球标号的概率. 22.(10分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄, 将调查数据绘制成如下扇形和条形统计图: 请根据以上不完整的统计图提供的信息, 解答下列问题:(1)扇形统计图中a = ,b = ; 并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少? 23.(10分)如图,自来水公司的主管道从A 小区向北偏东 60° 直线延伸,测绘员在A 处测得要安装自来水的M 小区在A 小区 北偏东30°方向,测绘员沿主管道测量出AC=200米,小区M 位于C 的北偏西60°方向,(1)请你找出支管道连接点N ,使得N 到该小区铺设的管道最短. (在图中标出点N 的位置) (2)求出AN 的长.24.(10分)如图,在△ABC 中,AD 平分∠BAC ,交BC 于D ,将 A 、D 重合折叠,折痕交AB 于E ,交AC 于F ,连接DE 、DF , (1)判断四边形AEDF 的形状并说明理由; (2)若AB=6,AC=8,求DF 的长.25.(10分)已知四边形ABCD 的外接圆⊙O 的半径为5,对角线AC 与BD 的交点为E ,且AB 2=AE ²AC ,BD=8, (1)判断△ABD 的形状并说明理由;(2)求△ABD 的面积.26.(10分)某种商品在30天内每件销售价格P (元)与时间t(天)的函数关系用如图所示的两条线段表示,该商品在30天内日销售量Q (件)与时间t(天) 之间的函数关系是Q=-t+40(0<t≤30,t 是整数).(1)求该商品每件的销售价格P 与时间t 的函数关系式,并写出自变量t 的取值范围; (2)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中 的第几天?(日销售金额=每件的销售价格×日销售量)27.(12分)如图,矩形ABCD 中,AD=8,AB=4,点E 沿A→D 方向在线段AD 上运动,点F 沿D→A 方向在线段DA 上运动,点E 、F 速度都是每秒2个长度单位,E 、F 两点同时出发,且当E 点运动到D 点时两点都停止运动,设运动时间是t(秒). (1)当 0<t<2时,判断四边形BCFE 的形状,并说明理由(2)当0<t<2时,射线BF 、CE 相交于点O ,设S △FEO =y ,求y 与t 之间的函数关系式. (3)问射线BF 与射线CE 所成的锐角是否能等于60°?若有可能,请求出t 的值,若不能,请说明理由.28.(12分)如图(1),分别以两个彼此相邻的正方形OABC 与CDEF 的边OC 、OA 所在直线为x轴、y 轴建立平面直角坐标系(O 、C 、F 三点在x 轴正半轴上).若⊙P 过A 、B 、E 三点(圆心在x 轴上)交y 轴于另一点Q ,抛物线c bx x y ++=241经过A 、C 两点,与x 轴的另一交点为G ,M 是FG 的中点,B 点坐标为(2,2).(1)求抛物线的函数解析式和点E 的坐标;(2)求证:ME 是⊙P 的切线;(3)如图(2),点R 从正方形CDEF 的顶点E 出发以1个单位/秒的速度向点F 运动,同时点S 从点Q 出发沿y 轴以5个单位/秒的速度向上运动,连接RS ,设运动时间为t 秒(0<t<1),在运动过程中,正方形CDEF 在直线RS 下方部分的面积是否变化,若不变,说明理由并求出其值;若变化,请说明理由;初三数学二模试题参考答案1-5 DCACB 6-8 DBD9.x ≤32 10.1.3³104 11.140 12.x >1 13.10% 14.(-21,2) 15.(-2,1) 16.917.95 18.55或45 19.(1)419 (2)5120.a 2+1 (a ≠±1) 21.(1)5 (2)209 22.(1)a=20% b=12% (2)700 (3)66分 23.(1)菱形 理由略 (2)724 24.(1)画MN ⊥AC 即可 (2)503 25.(1)等腰(略) (2)826.(1)P=⎩⎨⎧≤≤+-<<+)3025(100)250(20t t t t(2)W=QP①0<t <25 ②25≤t ≤30W=(-t+40)(t+20) W=(-t+40)(-t+100) =-(t -10)2+900 =t 2-140t+4000 t=10 W 大=900 =(t -70)2-900t=25 W 大=1125 综上所述, 最大值1125 第25天27.(1)等腰梯形 略 (2)y=t t --4)2(82 (3)①t=4-23 ②t =4-33228.(1)y=41x 2-23x+2 E(3,1)(2)证明略(3)不变 21。
2014年上海市闸北区中考数学二模试卷含答案解析(word版)
2014年上海市闸北区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)下列各题的四个选项中,有且只有一个选项是正确的.1.(4分)9的平方根是()A. 3 B.﹣3 C.3和﹣3 D. 9分析:根据平方根的定义解答即可.解答:解:∵(±3)2=9,∴9的平方根是3或﹣3.故选C.点评:本题考查了平方根的定义,是基础题,熟记概念是解题的关键.2.(4分)下列实数中,是无理数的是()A. B.C.D. cos60°考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、是无理数,选项正确;B、=5是整数,是有理数,选项错误;C、是分数,是有理数,选项错误;D、cos60°=,是分数,是有理数,选项错误.故选A.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.(4分)在下列二次根式中,与是同类二次根式的是()A.B.C.D.考点:同类二次根式.分析:先将各选项化简,再找到被开方数为a的选项即可.解答:解:A、a与被开方数不同,故不是同类二次根式;B、=|a|与被开方数不同,故不是同类二次根式;C、=|a|与被开方数相同,故是同类二次根式;D、=a2与被开方数不同,故不是同类二次根式.点评:此题主要考查了同类二次根式的定义,即:化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.4.(4分)下列方程有实数根的是()A.x2﹣x+1=0 B.x4=0 C.=D.=0考点:根的判别式;高次方程;无理方程;分式方程的解.分析:本题是根的判别式的应用试题,不解方程而又准确的判断出方程解的情况,那只有根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.解答:解:A、x2﹣x+1=0,△=b2﹣4ac=1﹣4=﹣3<0,所以没有是实数根,故选项错误;B、x4=0的实数根是x=0,故选项正确;C、去掉分母后x=1有实数根,但是使分式方程无意义,所以舍去,故选项错误;D、=0,两边平方得x2+1=0的△=b2﹣4ac=0﹣4<0,也没有实数根,故选项错误.故选:B.点评:本题是对方程实数根的考查,求解时一要注意是否有实数根,二要注意有实数根时是否有意义.5.(4分)某中学篮球队14名队员的年龄情况如表,则这些队员年龄的众数和中位数分别是()年龄(单位:岁)14 15 16 17 18人数 2 3 4 3 2A.15,16 B.16,16 C.16,16.5 D. 17,16.5考点:众数;中位数.分析:根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据从小(或到大从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),即可得出答案.解答:解:16出现了4次,出现的次数最多,则众数是16;因为共有14个数,把这组数据从小到大排列,最中间两个数的平均数是第7个数和第8个数的平均数,所以中位数是(16+16)÷2=16;点评:此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小(或到大从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.6.(4分)如图,EF是⊙O的直径,CD交⊙O于M、N,H为MN的中点,EC⊥CD于点C,FD⊥CD于点D,则下列结论错误的是()A.CM=DN B.C H=HD C.O H⊥CD D.=考点:垂径定理;梯形中位线定理.分析:根据垂径定理的推论以及梯形的中位线定理,可判断A、B、C正确,再由排除法可知D错误.解答:解:∵H为MN的中点,∴OH⊥CD,故C正确;∵EC⊥CD于点C,FD⊥CD于点D,∴EC∥OH∥FD,又∵EF是⊙O的直径,OE=OF,∴CH=HD,故B正确;∵CH=HD,H为MN的中点,∴CM=DN,故A正确;由排除法可知D错误,故选:D.点评:本题主要考查了垂径定理的推论以及梯形的中位线定理,熟练掌握定理及推论是解题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)我国最长的河流长江全长约为6300千米,用科学记数法表示为 6.3×103千米.考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.此题n>0,n=3.解答:解:6 300=6.3×103.答:用科学记数法表示为6.3×103千米.点评:用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).8.(4分)计算:x4n÷x n=x3n.考点:同底数幂的除法.分析:运用同底数幂的除法法则计算.解答:解:x4n÷x n=x3n.故答案为:x3n.点评:本题主要考查了同底数幂的除法,熟记法则是解题的关键.9.(4分))因式分解:2a2﹣2=2(a+1)(a﹣1).考点:提公因式法与公式法的综合运用.分析:先提取公因式2,再对余下的多项式利用平方差公式继续分解.解答:解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).点评:本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.(4分)化简﹣的结果是.考点:分式的加减法.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:﹣==.故答案为:.点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.11.(4分)方程的根是x=3.考点:无理方程.分析:方程两边同时平方,即可转化成一元一次方程,解得x的值,然后代入原方程进行检验即可.解答:解:方程两边同时平方得:x+1=4,解得:x=3.检验:x=3时,左边==2,则左边=右边.故x=3是方程的解.故答案是:x=3.点评:本题考查了无理方程的解法,解无理方程的基本思路是转化成整式方程,并且解方程时必须要检验.12.(4分)已知反比例函数y=的图象如图所示,则实数m的取值范围是m>1.考点:反比例函数的性质.分析:先根据反比例函数的图象在一、三象限列出关于m的不等式,求出m的取值范围即可.解答:解:∵由图可知反比例函数的图象在一、三象限,∴m﹣1>0,即m>1.故答案为:m>1.点评:本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时函数图象的两个分支分别位于一三象限是解答此题的关键.13.(4分)从等边三角形、平行四边形、矩形、菱形、圆、等腰梯形共6个图形中任选一个图形,选出的图形恰好是中心对称图形的概率为.考点:概率公式;关于原点对称的点的坐标.分析:根据中心对称图形的定义得出所有的中心对称图形,进而利用概率公式求出即可.解答:解:∵等边三角形、平行四边形、矩形、菱形、圆、等腰梯形共6个图形中,中心对称图形有:平行四边形、矩形、菱形、圆共4个,∴6个图形中任选一个图形,选出的图形恰好是中心对称图形的概率为:=.故答案为:.点评:此题主要考查了中心对称图形的定义以及概率公式的应用,正确把握中心对称图形的定义是解题关键.14.(4分)某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图根据图形所提供的样本数据,可得学生参加科技活动的频率是0.2.考点:条形统计图;频数与频率.分析:首先根据统计图,得到总人数和参加科技活动的人数;再根据频率=频数÷总数进行计算即可.解答:解:根据图可得:共有(15+30+20+35)=100人,参加科技活动的频数是20,则参加科技活动的频率0.2.故答案为:0.2.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.15.(4分)已知||=3,||=5,且与反向,则用向量表示向量,即=﹣.考点:*平面向量.分析:先表示出两个向量模的关系,再根据反向解答即可.解答:解:∵||=3,||=5,∴||=||,∵与反向,∴=﹣.故答案为:﹣.点评:本题考查了平面向量,难点在于反向向量的表示方法.16.(4分)如图,自动扶梯AB段的长度为20米,倾斜角A为α,高度BC为20sinα米(结果用含α的三角比表示).考点:解直角三角形的应用-坡度坡角问题.分析:利用所给角的正弦函数求解.解答:解:∵sinα=,∴BC=AB•sinα=20sinα.点评:此题主要考查三角函数定义的应用.17.(4分)如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=95°.考点:平行线的性质;三角形内角和定理;翻折变换(折叠问题).专题:压轴题.分析:根据两直线平行,同位角相等求出∠BMF、∠BNF,再根据翻折的性质求出∠BMN 和∠BNM,然后利用三角形的内角和定理列式计算即可得解.解答:解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.故答案为:95.点评:本题考查了两直线平行,同位角相等的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.18.(4分)如图,等腰△ABC的顶角A的度数是36°,点D是腰AB的黄金分割点(AD>BD),将△BCD绕着点C按照顺时针方向旋转一个角度后点D落在点E处,联结AE,当AE∥CD时,这个旋转角是72或108度.考点:旋转的性质;黄金分割.分析:先证出点D是腰AB的黄金分割点时,CD是∠ACB的平分线,当AE∥CD时,分两种情况,利用图形解出旋转角为72°或108°.解答:解:假设CD为∠ACB的平分线,∵∠A=36°,∴∠B=∠ACB=72°,∴∠ACD=∠DCB=36°,∴BC=DC=AD,∴△CDB∽△ABC,∴=,∴AD:AB=DB:AD,点D是腰AB的黄金分割点,∴CD是∠ACB的平分线,①如图1,∵AE∥CD时,∴∠EAC=∠ACD=36°,∴EC∥AD,∵AD=CD∴四边形ADCE是菱形.∴此时这个旋转角72°②如图2,∵AE∥CD时,∴∠EAC=∠ACD=36°,∴EC∥AD,∵AD=CD∴四边形ADCB′是菱形.∴∠B′CD=72°,∴∠EB′C=72°,∠B′EC=72°,∴此时这个旋转角36°+36°+36°=108°,故答案为:72或108.点评:本题主要考查了旋转的性质及黄金分割,解题的关键是求出CD为∠ACB的平分线.三、解答题:(本大题共7题,满分78分)19.(10分)计算:+(π﹣1)0+|﹣|+().考点:二次根式的混合运算;分数指数幂;零指数幂;特殊角的三角函数值.专题:计算题.分析:根据零指数幂、分数指数幂和特殊角的三角函数值得到原式=+1++2,然后分母有理化后合并即可.解答:解:原式=+1++2=﹣1+1++2=2+2.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、分数指数幂和特殊角的三角函数值.20.(10分)解不等式组:,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.解答:解:解不等式①得:x>﹣1,解不等式②得:x≤4,所以不等式组的解集为﹣1<x≤4,在数轴上表示不等式组的解集为:.点评:本题考查了解一元一次不等式,解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.21.(10分)已知:如图,在梯形ABCD中,DF平分∠D,若以点D为圆心,DC长为半径作弧,交边AD于点E,联结EF、BE、EC.(1)求证:四边形EDCF是菱形;(2)若点F是BC的中点,请判断线段BE和EC的位置关系,并证明你的结论.考点:梯形;全等三角形的判定与性质;菱形的判定与性质.分析:(1)根据圆的性质可得ED=DC,根据SAS证明△EDF≌△CDF,可得EF=CF,根据梯形的性质和平行线的性质,由等角对等边可得CF=CD,再根据菱形的判定即可求解;(2)先根据平行四边形的判定可证四边形BEDF是平行四边形,再根据菱形的性质即可求解.解答:解:(1)∵DF平分∠D,∴∠EDF=∠CDF,∵DC长为半径作弧,∴ED=DC,在△EDF与△CDF中,,∴△EDF≌△CDF(SAS)∴EF=CF,∵四边形ABCD是梯形,∴AD∥BC,∴∠EDF=∠DFC,∴∠DFC=∠CDF,∴CF=CD,∴ED=DC=CF=EF,∴四边形EDCF是菱形.(2)线段BE和EC的位置关系是垂直.∵点F是BC的中点,∴BF=CF,∴BF=ED,∵ED∥BF,∴四边形BEDF是平行四边形,∴BE∥DF∵四边形EDCF是菱形,∴EC⊥DF∴BE⊥EC.点评:考查了梯形,解决此问题,要弄清梯形的性质、全等三角形的判定与性质、平行四边形的判定和性质及菱形的判定.22.(10分)全面实现低碳生活已逐渐成为人们的共识.某企业为了发展低碳经济,采用技术革新,减少二氧化碳的排放.随着排放量的减少,企业相应获得的利润也有所提高,且相应获得的利润y(万元)与月份x(月)(1≤x≤6)的函数关系如图所示:(1)根据图象,请判断:y与x(1≤x≤6)的变化规律应该符合②函数关系式;(填写序号:①反比例函数、②一次函数、③二次函数);(2)求出y与x(1≤x≤6)的函数关系式(不写取值范围);(3)经统计发现,从6月到8月每月利润的增长率相同,且8月份的利润为151.2万元,求这个增长率.考点:一次函数的应用;一元二次方程的应用.分析:(1)根据图象是一条直线,可得函数的类型;(2)根据待定系数法,可得函数解析式;(3)根据自变量的值,可得相应的函数值,根据等量关系,可得方程,根据解方程,可得答案.解答:解:(1)②;(2)设函数解析式为y=kx+b (a≠0),将(1,80)、(4,95)代入得:,∴∴一次函数的解析式是y=5x+75;(3)把x=6代入y=5x+75得y=105,6月份的收入是105万元,设这个增长率是a,根据题意得105(1+a)2=151.2,解得∴,(不合题意,舍去)答:这个增长率是20%.点评:本题考查了一次函数的应用,利用待定系数法求解析式,(3)找出等量关系列方程是解题关键,不符合题意的要舍去.23.(12分)已知:如图,点D是线段BC上的任意一点,△ABD和△DCE都是等边三角形,AD与BE交于点F.(1)求证:△BDE≌△ADC;(2)求证:AB2=BC•AF;(3)若BD=12,CD=6,求∠ABF的正弦值.考点:相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质;勾股定理.分析:(1)由△ABD和△DCE都是等边三角形,得出BD=AD,DE=DC,∠FAB=∠ABC=∠ADB=∠EDC,进而得出∠BDE=∠ADC,即可求证△BDE≌△ADC;(2)由△FAB∽△ABC,得出=,即可得出AB2=BC•AF,(3)由△FAB∽△ABC,得出∠ABF=∠ACB,可求sin∠ACB,即可得出∠ABF的正弦值.解答:证明:(1)∵△ABD和△DCE都是等边三角形∴BD=AD,DE=DC,∠FAB=∠ABC=∠ADB=∠EDC=60°,∴∠BDE=∠ADC.在△BDE和△ADC中,,∴△BDE≌△ADC(SAS);(2)∵△BDE≌△ADC∴∠DBE=∠DAC∵∠ABC=∠ADB=60°∴∠ABF=∠BCA∵∠FAB=∠ABC,∠ABF=∠BCA,∴△FAB∽△ABC,∴=,即AB2=BC•AF,(3)如图,∵△FAB∽△ABC∴∠ABF=∠ACB,过A作AM⊥BC于点M∵△ABD是等边三角形,BD=12∴MD=6,AM=6,在Rt△AMC中,AC===12,∴sin∠ACB===,即sin∠ABF=.点评:本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,等边三角形的性质及勾股定理,解题的关键是证出△FAB∽△ABC.24.(12分)已知:如图,二次函数y=ax2+4的图象与x轴交于点A和点B(点A在点B 的左侧),与y轴交于点C,且cos∠CAO=.(1)求二次函数的解析式;(2)若以点O为圆心的圆与直线AC相切于点D,求点D的坐标;(3)在(2)的条件下,抛物线上是否存在点P使得以P、A、D、O为顶点的四边形是直角梯形?若存在,请求出点P坐标;若不存在,请说明理由.考点:二次函数综合题.专题:综合题.分析:(1)对于二次函数解析式,令x=0求出y的值确定出C坐标,根据题意得到三角形AOC为等腰直角三角形,确定出A坐标,代入二次函数解析式求出a的值,即可确定出解析式;(2)连接OD,作DE∥y轴,交x轴于点E,DF∥x轴,交y轴于点F,如图1所示,由圆O与直线AC相切于点D,得到OD垂直于AC,由OA=OC,利用三线合一得到D为AC 中点,进而求出DE与DF的长,确定出D坐标即可;(3)分两种情况考虑:经过点A且与直线OD平行的直线的解析式为y=﹣x﹣4,与抛物线解析式联立求出P坐标;经过点O且与直线AC平行的直线的解析式为y=x,与抛物线解析式联立求出P坐标即可.解答:解:(1)∵二次函数y=ax2+4的图象与y轴交于点C,∴点C的坐标为(0,4),∵二次函数y=ax2+4的图象与x轴交于点A,cos∠CAO=,∴∠CAO=45°,∴OA=OC=4,∴点A的坐标为(﹣4,0),∴0=a(﹣4)2+4,∴a=﹣,∴这二次函数的解析式为y=﹣x2+4;(2)连接OD,作DE∥y轴,交x轴于点E,DF∥x轴,交y轴于点F,如图1所示,∵⊙O与直线AC相切于点D,∴OD⊥AC,∵OA=OC=4,∴点D是AC的中点,∴DE=OC=2,DF=OA=2,∴点D的坐标为(﹣2,2);(3)直线OD的解析式为y=﹣x,如图2所示,则经过点A且与直线OD平行的直线的解析式为y=﹣x﹣4,解方程组,消去y,得x2﹣4x﹣32=0,即(x﹣8)(x+4)=0,∴x1=8,x2=﹣4(舍去),∴y=﹣12,∴点P1的坐标为(8,﹣12);直线AC的解析式为y=x+4,则经过点O且与直线AC平行的直线的解析式为y=x,解方程组,消去y,得x2+4x﹣16=0,即x=﹣2+2,∴x1=﹣2﹣2,x2=﹣2+2(舍去),∴y=﹣2﹣2,∴点P2的坐标为(﹣2﹣2,﹣2﹣2).点评:此题属于二次函数综合题,涉及的知识有:待定系数法确定二次函数解析式,坐标与图形性质,直线与抛物线的交点,直线与圆相切的性质,锐角三角函数定义,以及等腰直角三角形的性质,熟练掌握二次函数的性质是解本题的关键.25.(14分)已知:如图①,△ABC中,AB=AC=6,BC=4,点D在BC的延长线上,联结AD,以AD为一边作△ADE,使点E与点B位于直线AD的两侧,且AD=AE,∠DAE=∠BAC.(1)如果AE∥BC,请判断四边形ABDE的形状并证明;(2)如图②,设M是BC中点,N是DE中点,联结AM、AN、MN,求证:△ABD∽△AMN;(3)设BD=x,在(2)的前提下,以BC为直径的⊙M与以DE为直径的⊙N存在着哪些位置关系?并求出相应的x的取值范围(直接写出结论).考点:相似形综合题;等腰三角形的性质;勾股定理;平行四边形的判定;圆与圆的位置关系;相似三角形的判定与性质.专题:综合题.分析:(1)已知AE∥BC,则有∠EAB+∠B=180°,要证四边形ABDE是平行四边形,只需证AB∥ED,只需证到∠EAB+∠E=180°,只需得到∠B=∠E,只需证到△ABC∽△ADE 即可.(2)易证∠MAN=∠BAD,根据相似三角形对应中线的比等于相似比可得=,就可得到△AMN∽△ABD.(3)利用相似三角形的性质可以用x的代数式表示出MN及r N的长,只需求出两圆外切时的x的值,就可解决问题.解答:(1)答:四边形ABDE是平行四边形.证明:如图(1),∵AB=AC,AD=AE,∴=.∵∠BAC=∠DAE,∴△ABC∽△ADE.∴∠E=∠ACB.∵AB=AC,∴∠ACB=∠B.∴∠E=∠B.∵AE∥BC,∴∠EAB+∠B=180°.∴∠EAB+∠E=∠EAB+∠B=180°.∴AB∥ED.∴四边形ABDE是平行四边形.(2)证明:如图(2),∵AB=AC,M是BC中点,∴AM⊥BC,∠BAM=∠CAM=∠BAC.同理:AN⊥DE,∠DAN=∠EAN=∠DAE.∵∠BAC=∠DAE,∴∠BAM=∠DAN.∵∠MAN=∠MAC+∠CAD+∠DAN,∠BAD=∠BAM+∠MAC+∠CAD,∴∠MAN=∠BAD.∵△ABC∽△ADE(已证),M是BC中点,N是DE中点,∴=.∴△AMN∽△ABD.(3)解:∵AM⊥BC,∴AM2=AB2﹣BM2=AD2﹣MD2.∵AB=6,BM=2,MD=x﹣2,∴AM2=62﹣22=AD2﹣(x﹣2)2.∴AM=4,AD=.∵△ABC∽△ADE,∴=.∴AB•DE=AD•BC.∴6×DE=×4.∴DE=.∴r N=.∵△AMN∽△ABD,∴=.∴AB•MN=AM•BD.∴6MN=4x.∴MN=x.当⊙M与⊙N外切时,MN=r M+r N.∴x=2+.∴x﹣2=.∴2x﹣6=.∴8x2﹣24x+36=x2﹣4x+36.∴7x2=(24﹣4)x.∵点D在BC的延长线上,∴x>4.∴x=.∴当x=时,两圆外切;当4≤x<时,两圆相交;当x>时,两圆外离.点评:本题重点考查了相似三角形的判定与性质,另外还考查了平行四边形的判定、两圆的位置关系、等腰三角形的性质、勾股定理、平行线的判定与性质等知识,综合性比较强,而考虑两圆外切这个临界位置是解决第(3)小题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.已知一次函数 的图象过点 、 .若 ,则
▲.
14.如图,四边形ABCD内接于⊙O,AD∥BC,∠ACB=50°,则∠CBD=▲°.
15.如图,在函数 (x>0)的图象上有点P1、P2、P3…、Pn、Pn+1,点P1的横坐标为1,且后面每个点的横坐标与它前面相邻点的横坐标的差都是1,过点P1、P2、P3…、Pn、Pn+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、Sn,则Sn=▲.(用含n的代数式表示)
∴△ABD的外接圆⊙O的圆心O在AC上.…………………………2分
∵OD=OB,OC=OC,CB=CD,∴△OBC≌△ODC.
∴∠OBC=∠ODC=90°.………………………………………………3分
又∵OB为半径,∴⊙O与BC相切.……………………………………4分
(没有说明圆心在AC上,扣1分.)
(2)∵AD=CD,∴∠ACD=∠CAD.∠COD=2∠CAD.
一、选择题(本大题共6小题,每小题2分,共12分)
题号
1
2
3
4
5
6
答案
C
D
D
B
D
B
二、填空题(本大题共10小题,每小题2分,共20分)
7. 8.39.x1=2,x2=4 10.乙11.2
12. 13.-2 14.50°15. 16.0.5或1.5
三、解答题(本大题共11小题,共88分)
17.(本题6分)
=.…………………………………………6分
19.(本题8分)
(1)∵△ABC≌△CAD,
∴AB=AC,AC=CD,BC=AD.……………………1分
∴AB= CD.……………………………………………2分
∴四边形ABCD为平行四边形.……………………3分
(2)∵AB=AC,∴∠ACB=∠B.
又∵∠CFB=∠B,∴∠ACB=∠CFB.
解:①+②,得3x=9.………………………………………1分
解得x=3.………………………………………………3分
把x=3代入①,得y=1.……………………………5分
∴原方程组的解是……………………………6分
18.(本题6分)
解:原式=·-……………………………2分
=·-………………4分
=-……………………………………5分
正确画出树状图,…………………………………………6分;
回答每人抓到五星的概率均为.…………………………8分
22.(本题8分)
解:设每次降价百分率为x,……………………………………1分
根据题意,得 =32.……………………………4分
解得x1=0.2,x2=0.8…………………………………………6分
当x1=0.2时,最后价格为 ,
3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选的指定位置,在其他位置答题一律无效.
4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
∴∠BCF=∠CAB,
又∵∠ACF=∠BCF,
∴∠ACF=∠CAF.
∴AF=CF.……………………………………………………5分
∵∠CFB=∠B,∴CF=CB.
∴AF=CF=CB.………………………………………………6分
同理,AE=CE=AD.
又∵CB=AD,∴AF=CF= AE=CE.……………………………7分
22.(8分)某市为了解决市民看病难的问题,决定下调药品的价格.现将某种原价为200元的药品,经过连续两次降价后,价格控制在100~140元范围内.若两次降价相同的百分率,且已知第二次下降了32元,试求第一次降了多少元.
23.(8分)某数学兴趣小组,利用树影测量树高.如图(1),已测出树AB的影长AC为12m,并测出此时太阳光线与地面成30°夹角.
(1)通过配方,确定点C坐标;
(2)二次函数 的图像与x轴交于点D、E(点D在点E的左侧),顶点为F.
若存在以六点A、B、C、D、E、F中的四点为顶点的四边形为菱形,则m=▲;
是否存在以六点A、B、C、D、E、F中的四点为顶点的四边形为矩形?若存在,求出m的值;若不存在,请说明理由.
初三二模数学试题参考答案及评分标准
6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为x轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为(▲)
A.1B.2C.3D.4
二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)
7.分解因式: =▲.
8.计算:+=__ __▲____.
1.计算-1+2的值是(▲)
A.-3 B.-1C.1 D.3
2.不等式组的解集是(▲)
A.x>-B.x<-C.x≤1 D.-<x≤1
3.计算 的结果是(▲)
A. B. C. D.
4.地球绕太阳每小时转动通过的路程约是1.1×105千米,用科学记数法表示地球一天(以24小时计)转动通过的路程约是(▲)
根据统计表中的相关数据,你还能从其它角度分析得出什么结论吗?(写出一个即可)
从扇形统计图中,你得出什么结论?(写出一个即可)
21.(8分)甲、乙、丙三个球迷决定通过抓阄来决定谁得到仅有的一张球票.他们准备了三张纸片,其中一张上画了个五星,另两张空白,团成外观一致的三个纸团.抓中画有五星纸片的人才能得到球票.刚要抓阄,甲问:“谁先抓?先抓的人会不会抓中的机会比别人大?”你认为他的怀疑有没有道理?谈谈你的想法和原因.
第一次降价为 ,…………………………7分
当x2=0.8时,最后价格为:
,不合题意,舍去.
答:第一次降价40元.………………………………8分
23.(本题8分)
(1)∵在Rt△ABC中,AC=12,∠ACB=30°,
∴ .…………………………2分
= .………………………3分
(2)以点A为圆心、AB长为半径画圆,
2013-2014学年初三数学第二次调研测试
注意事项:
1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.
2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.
9.方程 的解为▲.
10.甲、乙、丙三位选手各10次射击成绩的平均数和方差.统计如下表:
选手
甲
乙
丙
平均数
9.3
9.3
9.3
方差
0.026
0.015
0.032
则射击成绩最稳定的选手是▲(填“甲”、“乙”、“丙”中的一个).
11.如图(1),两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得到图(2),则阴影部分的周长为▲.
A.0.264×107千米B.2.64×106千米C.26.4×105千米D.264×104千米
5.如图,△ABC中,D、E两点分别在AB、AC上,且AD=31,BD=29,
AE=30,CE=32.若∠A=50°,则图中∠1、∠2、∠3、∠4的大小关系,
下列正确的为(▲)
A.∠1>∠3 B.∠2=∠4 C.∠1>∠4 D.∠2=∠3
请将上述资料中的数据按下列步骤进行统计分析.
(1)整理数据:请设计一个统计表,将以上数据填入表格中;
(2)描述数据:下图是描述全省各级各类学校所数的扇形统计图,请将它补充完整;
(3)分析数据:
分析统计表中的相关数据,小学、初中、高中三个学段的师生比,最小的是哪个学段?请直接写出;(师生比=在职教师数∶在校学生数)
∴∠COD=2∠ACD
又∵∠COD+∠ACD=90°,∴∠ACD=30°.……………6分
∴OD= OC,即r= (r+2).
∴r=2.……………………………………………………8分
26.(本题9分)
解:(1)证得S1+S2= S,…………………………………3分
只有关系,没证明,给1分.
(2)连接EF、FG、GH、HE,
16.如图,相距2cm的两个点A,B在直线l上,它们分别以2 cm/s和1 cm/s的速度在l上同时向右平移,当点A,B分别平移到点A1,B1的位置时,半径为1 cm的⊙A1与半径为BB1的⊙B1相切,则点A平移到点A1的所用时间为▲s.
三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
(1)求y与t之间的函数关系式;
(2)请简单概括y随t的变化而变化的情况.
25.(8分)已知:如图,四边形ABCD为菱形,△ABD的外接圆⊙O与CD相切于点D,交AC于点E.
(1)判断⊙O与BC的位置关系,并说明理由;
(2)若CE=2,求⊙O的半径r.
26.(9分)
(1)探究规律:
已知:如图(1),点P为□ABCD内一点,△PAB、△PCD的面积分别记为S1、S2,□ABCD的面积记为S,试探究S1+S2与S之间的关系.
(1)求出树高AB;
(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变,试求树影的最大长度.
24.(8分)如图,正方形ABCD的边长为4,点M,N,P分别为AD,BC,CD的中点.现从点P观察线段AB,当长度为1的线段l(图中的黑粗线)以每秒1个单位长的速度沿线段MN从左向右运动时,l将阻挡部分观察视线,在△PAB区域内形成盲区.设l的左端点从M点开始,运动时间为t秒(0≤t≤3).设△PAB区域内的盲区面积为y(平方单位).