去括号和添括号的法则G

合集下载

去括号顺口溜和法则

去括号顺口溜和法则

去括号顺口溜和法则
去括号是按一定运算法则和顺序对算式进行脱括号的计算。

下面整理了去括号的顺口溜和法则,供参考。

去括号顺口溜
去括号或添括号,关键要看连接号。

括号前面是正号,去添括号不变号。

括号前面是负号,去添括号都变号。

去括号、添括号都存在一个“变号”与“不变号”的问题。

正确的掌握“变号”与“不变号”是较难之处,添括号时这个难点更明显(易错)。

若括号前面是“+”号,就出现“不变”之说,即去括号时,把括号里的各项“不变号”从括号里“解放”出来。

去括号法则
去括号是按一定运算法则和顺序对算式进行脱括号的计算。

数学去括号法则的依据实际是乘法分配律。

注:1、括号前是"+"号,把括号和它前面的"+"号去掉后,原括号里各项的符号都不改变。

2、括号前是"-"号,把括号和它前面的"-"号去掉后,原括号里各项的符号都要改变。

(改成与原来相反的符号,例:-(x-y)=-x+y。

字母公式:1.a+b+c=a+(b+c);2.a-b-c=a-(b+c)。

加括号和去括号的法则

加括号和去括号的法则

加括号和去括号的法则咱们的生活里其实处处都需要这种法则。

比如说,约朋友出门,总得加点儿调料吧?“我们今天去看电影(超级精彩)!”这句就有意思多了。

朋友们一听,嘿,心里痒痒的,迫不及待想要去。

不过咱们也得把括号去掉,像个狠角色,直接说:“走,去看电影!”这样更痛快!生活嘛,既要有情调,也要有干脆,才能让人感觉到美好。

再说了,生活中还有很多场合需要这两种法则。

比方说,咱们跟家里人聊家常,尤其是跟老爸老妈。

常常一句话说得半天,也没说清楚。

比如说,“我今天上班(其实很无聊)”。

这种话,听上去就像在玩文字游戏。

再换成“我今天上班”,也可以,简单明了。

但是不加点儿戏,家里的饭桌上可不热闹。

大家伙儿就爱这种带点儿情感的交流,这样才有趣。

说实话,有时候我也觉得,语言就像调味品,得看场合用。

有些话可以加个括号,添点儿风味;有些话不需要,就直接来。

比方说,跟朋友聊八卦,咱们一定要加上些许的“内幕消息”(这个女的居然这样!),才好玩。

而跟同事开会,就没必要那么多花里胡哨,直接说重点就行。

生活需要节奏,知道什么时候该加油,什么时候该刹车。

再深入一点说,生活中,很多事情也是这样。

比如,追逐梦想,有时候需要给自己加点儿动力,像加上“我相信我能成功(只要努力就行)”。

可这种括号也得去掉,得更加坚定,“我能成功!”这样的话,一出来,自己都觉得有力量,嘿,直接上场就是了。

咱们甚至需要想想,生活里那些“括号”到底是什么。

是那些小秘密,是那些不想让别人知道的心事。

就像跟闺蜜聊天,聊到感情问题,往往有很多无形的括号。

“我觉得他不爱我(虽然他常常约我)”,这种说法,不如直接来一发“我觉得他不爱我!”这样,才能让人更专注于问题本身。

生活就得简单直接,别让那些无谓的包袱拖了后腿。

所以说,加括号和去括号的法则,就像调配人生的各种味道。

有时候咱们要幽默,偶尔也得认真。

得学会看场合,适时地调整自己语言的风格,这样才能让每次交流都充满魅力。

生活不就是一场精彩的表演吗?时而悬念重重,时而直截了当,都是为了一点儿情感的共鸣。

括号法则

括号法则

括号法则1. 去括号的法则是:括号前面是“+”号,去括号时,括号里的各项都不变;括号前面是“-”号,去括号时,括号里的各项都变号.例如;5a+(4b-3a)-(2b+a)=5a+4b-3a-2b-a=a+2b.练习题:5246-(246+694)= 354+(229+46)=(23+56)+47 = 125×(3+8)=2. 添括号的法则是:添括号时,括号前面是“+”号,括到括号里的各项都不变;括号前面是“-”号,括到括号里的各项都变号.例如:4a-3b-2c=4a-(3b+2c);7a+2b-5c=7a+(2b-5c).练习题:582-157-182= 2354-456-544=45627-258-742-1627= 458-45—155括号前面是加号时,去掉括号,括号内的算式不变。

括号前面是减号时,去掉括号,括号内加号变减号,减号变加号。

法则的依据实际是乘法分配律注: 要注意括号前面的符号,它是去括号后括号内各项是否变号的依据.去括号时应将括号前的符号连同括号一起去掉.要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.遇到多层括号一般由里到外,逐层去括号,也可由外到里.数"-"的个数.3. 一定要注意,若括号前面是除号,不能直接去除除号.小学数学巧算,移位凑合法法交换律两个数相加,交换加数的位置,和不变。

a+b=b+a加法结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

(a+b)+c=a+(b+c)减法的性质减去一个数,等于加这个数的相反数。

a-b=a+(-b)连续减去两个数,等于减去这两个数的和。

a-b-c=a-(b+c)减去一个数再加上一个数,等于减去这两个数的差。

四则运算添去括号的规则

四则运算添去括号的规则

四则运算添去括号的规则四则运算是数学中最基本的运算之一,它包括加法、减法、乘法和除法四种运算。

在进行四则运算时,我们经常会遇到括号的使用,括号可以对运算的优先级和运算的方向产生影响。

但是,当我们遇到大量的括号时,就会显得很繁琐,影响计算的效率,因此,我们需要添去括号的规则。

一、加减法1.1 添去括号的规则当括号内是加减法时,我们需要将括号内的运算符号和括号外的运算符号进行运算。

例如:(3+2)+(5-1),我们可以将括号内的运算符号和括号外的运算符号进行运算,即:(3+2)+(5-1)=5+4=91.2 括号的优先级在进行加减法时,我们需要注意括号的优先级,即先计算括号内的运算,再计算括号外的运算。

例如:(3+2)-5,我们需要先计算括号内的运算,即3+2=5,然后再计算括号外的运算,即5-5=0。

二、乘除法2.1 添去括号的规则当括号内是乘除法时,我们需要将括号内的运算进行计算后,再将计算结果和括号外的运算符号进行运算。

例如:(3×2)÷(5-1),我们需要先计算括号内的运算,即3×2=6,然后再将计算结果和括号外的运算符号进行运算,即6÷4=1.5。

2.2 括号的优先级在进行乘除法时,我们同样需要注意括号的优先级,即先计算括号内的运算,再计算括号外的运算。

例如:3×(2+5),我们需要先计算括号内的运算,即2+5=7,然后再计算括号外的运算,即3×7=21。

三、混合运算在进行混合运算时,我们需要将括号内的运算进行计算后,再将计算结果和括号外的运算符号进行运算。

需要注意的是,乘除法的优先级高于加减法,因此,我们需要先计算乘除法,再计算加减法。

例如:(3+2)×(5-1)÷4,我们需要先计算括号内的加减法,即3+2=5,5-1=4,然后再计算乘除法,即5×4=20,20÷4=5。

四、总结通过以上规则,我们可以轻松地进行四则运算的计算,提高计算的效率。

去括号法则添括号法则

去括号法则添括号法则

去括号法则添括号法则
去括号法则
括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;
括号前面是“-”,去掉“-”号和括号,括号里的各项都变号.
添括号法则
所添括号前面是“+”号,括到括号里的各项都不改变符号;
所添括号前面是“-”号,括到括号里的各项都改变符号.
★要点提示★
1.去括号法则,实质要连同括号前的“+”号或“-”号同时去掉.
2.去括号法则可简记为:去正不变,去负全变.
3.括号前有数字因数,去括号时应把它与括号内各项相乘,切忌漏乘.
4.去多重括号一般先去小括号,再去中括号比较简单,每去掉一层括号,如果有同类项,应随时合并,这样可使下一步运算简便,减少差错.
5.添括号时,无论括号前是“+”还是“-”,都是根据需要添上的.
6.去括号和添括号都是恒等变形,在数与式的运算、化简、变形、求值中经常用到,务必掌握.解题时要注意观察、比较、归纳和总结.
整式的加减运算
整式的加减运算是求几个整式的和、差的运算,其实质就是去括号,合并同类项.运算的结果仍然是整式.一般步骤为:(1)如果有括号,先去括号;(2)如果有同类项,再合并同类项.。

去括号与添括号

去括号与添括号

去括号与添括号【知识要点】一、去括号法:如果括号前面是加号或乘号,去括号后,原来括号里的符号都不变;如果括号前面是减号或除号,去括号后,原来括号里的加号变为减号。

减号变为加号,乘号变为除号,除号变为乘号。

二、添括号法:如果需要改变运算顺序,就要添加括号;如果括号前面是加号或乘号,括到里面的各个数都不用改变符号;如果括号前面的是减号或除号,括到括号里面的数原来是加号要变成减号,原来是减号要变为加号,乘号变为除号,除号变为乘号。

例1: 78+(329+22) 134+(82-34)例2: 185-(36-15) 127-(27+50)【小试牛刀】1、 55+(45+8) 723+(82-23)2、 716-(116-84) 877-(182+77)3、342+(34-42)-(28+34)+28例3: 125×(8×76) 600×(252÷6)例4: 540÷(18×6) 500÷(125÷2)【小试牛刀】1、 270×(15÷90) 45×(20×38)2、 186÷(3÷2)4200÷(70×12)3、 125×(8÷4)÷(25×2)例5: 756+78+522 368+1859-859例6: 875-29-371 492-193+93【小试牛刀】1、 582+393-293 786+455+5452、 175-57-43 392-145+453、 2756-2478+1478+2244-2244例7: 93×25×4 1300×81÷9例8: 7200÷25÷4 210÷42×6【小试牛刀】1、 23×63÷7 345×8×1252、 1000÷50÷2 3600÷18×63、 875×40×25÷125÷8例9: (125-10) ×8 (99+88)÷11 例10: 195×81+19×195 25÷4+75÷4【小试牛刀】1、(230-46) ÷23 (40+2) ×252、 101×25-25 556÷2+444÷23、计算下面各题。

第四章 代数式 考点7 去括号与添括号(原卷版)

第四章 代数式 考点7 去括号与添括号(原卷版)

第四章代数式(原卷板)7、去括号与添括号知识点梳理去括号与添括号(1)去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.(2)去括号规律:①a+(b+c)=a+b+c,括号前是“+”号,去括号时连同它前面的“+”号一起去掉,括号内各项不变号;②a﹣(b﹣c)=a﹣b+c,括号前是“﹣”号,去括号时连同它前面的“﹣”号一起去掉,括号内各项都要变号.说明:①去括号法则是根据乘法分配律推出的;②去括号时改变了式子的形式,但并没有改变式子的值.(3)添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.同步练习一.选择题(共20小题)1.下列去括号正确的是()A.a﹣(b﹣c)=a﹣b﹣c B.x2﹣[﹣(﹣x+y)]=x2﹣x+yC.m﹣2(p﹣q)=m﹣2p+q D.a+(b﹣c﹣2d)=a+b﹣c+2d2.下列各式中去括号正确的是()A.a2﹣(2a﹣b2+b)=a2﹣2a﹣b2+bB.﹣(2x+y)﹣(﹣x2+y2)=﹣2x+y+x2﹣y2C.2x2﹣3(x﹣5)=2x2﹣3x+5D.﹣a3﹣[﹣4a2+(1﹣3a)]=﹣a3+4a2﹣1+3a3.下列变形中,不正确的是()A.a+(b+c﹣d)=a+b+c﹣d B.a﹣(b﹣c+d)=a﹣b+c﹣dC.a﹣b﹣(c﹣d)=a﹣b﹣c﹣d D.a+b﹣(﹣c﹣d)=a+b+c+d4.下列去括号正确的是()A.﹣3(b﹣1)=﹣3b﹣3B.2(2﹣a)=4﹣aC.﹣3(b﹣1)=﹣3b+3D.2(2﹣a)=2a﹣45.将3p﹣(m+5n﹣4)去括号,可得()A.3p﹣m+5n﹣4B.3p+m+5n﹣4C.3p﹣m﹣5n﹣4D.3p﹣m﹣5n+4 6.下列去括号正确的是()A.x2﹣(x﹣3y)=x2﹣x﹣3yB.x2﹣3(y2﹣2xy)=x2﹣3y2+2xyC.m2﹣4(m﹣1)=m2﹣4m+4D.a2﹣2(a﹣3)=a2+2a﹣67.下列各式中,去括号错误的是()A.a+(b﹣c)=a+b﹣c B.a﹣(b﹣c)=a﹣b+cC.a+(﹣b+c)=a﹣b+c D.a﹣(﹣b﹣c)=a+b﹣c8.下列去括号正确的是()A.a+(b﹣c)=a+b+c B.a﹣(b﹣c)=a﹣b﹣cC.a﹣(b﹣c)=a﹣b+c D.a+(b﹣c)=a﹣b+c9.去括号2﹣(x﹣y)=()A.2﹣x﹣y B.2+x+y C.2﹣x+y D.2+x﹣y 10.下列计算正确的是()A.3a2+a=4a3B.﹣2(a﹣b)=﹣2a+bC.5a﹣4a=1D.a2b﹣2a2b=﹣a2b11.﹣[a﹣(b﹣c)]去括号应得()A.﹣a+b﹣c B.﹣a﹣b+c C.﹣a﹣b﹣c D.﹣a+b+c 12.下面的计算正确的是()A.6a﹣5a=1B.﹣(a﹣b)=﹣a+bC.a+2a2=3a3D.2(a+b)=2a+b13.下列计算结果正确的是()A.﹣(2x﹣y)=﹣2x﹣yB.﹣3a+(4a2+2)=﹣3a+4a2﹣2C.﹣(2a﹣3y)=﹣2a+3yD.﹣3(a﹣7)=﹣3a+714.下列各式中,不能由3a﹣2b+c经过变形得到的是()A.3a﹣(2b+c)B.c﹣(2b﹣3a)C.(3a﹣2b)+c D.3a﹣(2b﹣c)15.﹣(a﹣b+c)变形后的结果是()A.﹣a+b+c B.﹣a+b﹣c C.﹣a﹣b+c D.﹣a﹣b﹣c16.下列运算正确的个数()①2a+3b=5ab;②3m2n﹣2nm2=m2n;③a﹣(b﹣c)=a﹣b+c;④y﹣x=﹣(x﹣y)A.1B.2C.3D.417.下列去括号正确的是()A.a+(b+c)=a+b﹣c B.a+(b﹣c)=a+b+cC.a﹣(b+c)=a﹣b+c D.a﹣(b﹣c)=a﹣b+c18.下列式子去括号正确的是()A.﹣(7a+3b﹣5c)=﹣7a﹣3b﹣5cB.7a+2(3b﹣3)=7a+6b﹣3C.5a﹣(b﹣5)=5a﹣b﹣5D.﹣2(3x﹣y+1)=﹣6x+2y﹣219.下列各式中去括号正确的是()A.﹣(﹣a﹣b)=a﹣bB.a2+2(a﹣2b)=a2+2a﹣2bC.5x﹣(x﹣1)=5x﹣x+1D.3x2﹣(x2﹣y2)=3x2﹣x2﹣y220.下列各式从左到右正确的是()A.﹣(3x+2)=﹣3x+2B.﹣(﹣2x﹣7)=﹣2x+7C.﹣(3x﹣2)=3x+2D.﹣(﹣2x﹣7)=2x+7二.填空题(共7小题)21.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=.22.化简﹣3(a﹣2b+1)的结果为.23.如果多项式4x3+2x2﹣(kx2+17x﹣6)中不含x2的项,则k的值为.24.多项式中不含xy项,则常数k的值是.25.在括号内填上恰当的项:1﹣x2+2xy﹣y2=1﹣.26.﹣4m+3n=﹣.27.计算:|﹣3|=;2a﹣(﹣3a)=.。

3.4.3 去括号与添括号

3.4.3 去括号与添括号

3.化简: (1)x-3(1-2x+x2)+2(-2+3x-x2) (2)(3x2-5xy)+{-x2-[-3xy+2(x2-xy)+y2]} 解:(1)原式=x-3+6x-3x2-4+6x-2x2 =(-3x2-2x2)+(x+6x+6x)+(-3-4) =-5x2+13x-7 (2)原式=3x2-5xy+{-x2-[-3xy+2x2-2xy+y2]} =3x2-5xy+{-x2+3xy-2x2+2xy-y2} =3x2-5xy-x2+3xy-2x2+2xy-y2 =(3x2-x2-2x2)+(-5xy+3xy+2xy)-y2=-y2
[典例] 已知A=4x2-4xy+y2,B=x2+xy-5y2,求A-B。
错解:A-B=4x2-4xy+y2-x2+xy-5y2=3x2-3xy-4y2 正解:A-B=(4x2-4xy+y2)-(x2+xy-5y2) =4x2-4xy+y2-x2-xy+5y2 =3x2-5xy+6y2
评析:本题产生错误的原因是把A、B代入所求式子时,丢掉 了括号,导致后两项的符号错误。因为A、B表示两个多项式, 它是一个整体,代入式子时必须用括号表示,尤其是括号前 面是“-”时,如果丢掉了括号就会发生符号错误,今后遇到 这类问题,一定要记住“添括号”。
[典例] 计算2a2b-3ab2+2(a2b-ab2)
错解:原式=2a2b-3ab2+2a2b-ab2 =2a2b+2a2b-3ab2-ab2=4a2b-4ab2 正解:原式=2a2b-3ab2+2a2b-2ab2 =2a2b+2a2b-3ab2-2ab2=4a2b-5ab2 评析:去括号时,要按照乘法分配律把括号前面的 数和符号一同与括号内的每一项相乘,而不是只乘 第一项。

去括号和添括号的法则

去括号和添括号的法则

去括号和添括号的法则一、去括号法则在代数表达式中,有时候我们需要去除括号来简化表达式。

去括号法则适用于求和、求差和乘法运算。

下面是去括号的三个法则:1.同号相乘法则:当括号外面有一个正号或者一个负号时,我们可以通过将括号里面的每一项与括号外面的符号相乘来去括号。

例如,对于表达式(a+b+c),如果去除括号,则结果为a+b+c。

2.一正一负相乘法则:当括号外面有一个正号,而括号里面的每一项前面有一个负号时,我们可以通过去除括号并反转每一项的正负号来去括号。

例如,对于表达式(a-b-c),如果去除括号,则结果为a-b-c。

3.乘法分配律:当括号外面有一个数与括号里面的每一项相乘时,我们可以通过将括号里面的每一项与括号外面的数相乘来去括号。

例如,对于表达式3(a+b+c),如果去除括号,则结果为3a+3b+3c。

这些去括号法则是非常有用的,因为它们可以使复杂的表达式变得简洁,并且可以更容易地进行计算。

二、添括号法则添括号法则正好与去括号法则相反,它适用于求和、求差和乘法运算。

添加括号可以改变表达式的结构和优先级。

下面是添括号的两个法则:1.加减添括号法则:当一个数和一个和式相加或相减时,我们可以通过在和式的前后添加括号来添括号。

例如,对于表达式a+b-c,我们可以添括号为(a+b)-c,或者a+(b-c),这样可以改变运算的顺序和结果。

2.乘法添括号法则:当一个数与一个乘积相乘时,我们可以通过在乘积的前后添加括号来添括号。

例如,对于表达式a*b+c,我们可以添括号为(a*b)+c,或者a*(b+c),这样可以改变运算的顺序和结果。

添括号法则在对表达式进行化简、分解或重组时非常有用。

它可以帮助我们更好地理解和计算复杂的代数运算。

三、应用场景和示例示例1:简化表达式考虑以下代数表达式:3(a+b)+2(b-c)。

使用乘法分配律和去括号法则,我们可以简化这个表达式为3a+3b+2b-2c。

示例2:重组表达式考虑以下代数表达式:a*b+c*d。

去括号与添括号课件教师用课件PPT

去括号与添括号课件教师用课件PPT

(x - y) / z = x / z - y / z 2 + 3 * 4 = (2 + 3) * 4 = 12
详细描述:这类习题通常包括在给定的 数学表达式中添加括号,以改变表达式 的运算顺序,从而得到不同的结果。
示例
去括号与添括号的综合习题与练习
总结词:去括号与添 括号的综合习题考察 学生对括号规则的全 面理解和应用能力。
详细描述:这类习题 通常包括既有去括号 的操作,也有添括号 的操作,需要学生综 合考虑运算优先级和 括号规则,得出正确 的结果。
示例
(3 + 2) * (4 - 1) = (3 + 2) * 3 = 15
(x + y) / z + (w - p) =x/z+y/z+w/ z-p/z
05
总结与回顾
去括号的总结与回顾
感谢观看
THANKS
添括号的总结与回顾
添括号的定义
添括号是在数学表达式中添加括 号,以改变原有运算的顺序或明
确运算的对象。
添括号的规则
添括号时应遵循数学中的运算顺序 ,同时要注意括号前是“-”号时 ,括号内的各项符号需要改变。
添括号的例子
如a-(b+c)=a-b-c,(a*b)/c=(ab)/c, (a+b)*(c-d)=(a+b)*c-(a+b)*d。
去括பைடு நூலகம்与添括号的综合总结与回顾
去括号与添括号的联系
去括号和添括号是数学中常用的两种操作,它们在运算顺序和符号处理上都有 一定的规则和技巧。在实际应用中,需要根据具体问题选择合适的操作。
去括号与添括号的注意事项
在进行去括号和添括号的操作时,需要注意运算顺序和符号的变化,避免出现 计算错误或逻辑错误。同时,要理解数学表达式的整体结构和意义,以便更好 地应用去括号和添括号的规则。

去括号和添括号的法则G

去括号和添括号的法则G

去括号和添括号的法则G在数学中,括号是一个非常重要的符号,它用于表示运算的顺序以及改变运算的优先级。

在数学中有一个叫做"括号和添括号法则G"的规则,它可以帮助我们去掉或者添加括号以简化数学表达式。

本文将详细介绍括号和添括号法则G。

首先,让我们来考虑如何去掉括号。

在数学中,去掉括号通常是为了简化运算,合并相似的项,或者改变运算的顺序。

下面是几个常见的去括号法则:1.去分配律:当一个括号前面有负号时,可以通过去分配律将负号分配给括号内的每一项。

例如,-(a+b)=-a-b。

2.去结合律:当一个括号前面没有符号时,可以通过去结合律将括号内的项合并。

例如,a+(b+c)=a+b+c。

3.去合并同类项:当括号内有多项并且它们具有相同的指数或者是相同的变量时,可以通过合并同类项的方法将这些项合并。

例如,3x+(2x+4x)=3x+6x=9x。

接下来,让我们来考虑如何添括号。

在数学中,添括号通常是为了明确运算的顺序,提高运算的清晰度以及简化计算。

下面是几个常见的添括号法则:1.添结合律:为了明确运算的顺序,可以通过添结合律将一些项放在一个括号内。

例如,a+b+c可以改写为(a+b)+c。

2.添分配律:为了改变运算的优先级,可以通过添分配律将一些项乘以一个因子后放在一个括号内。

例如,3(a+b)可以改写为3a+3b。

3.添开平方:为了简化计算,可以通过添开平方将一些项开平方后放在一个括号内。

例如,√(a+b)可以添开平方为√a+√b。

通过运用上述的去括号法则和添括号法则,我们可以简化数学表达式,提高计算效率,减少错误的发生。

当我们进行运算时,需要仔细观察表达式中的括号,判断是否需要去掉括号或者添上括号。

同时,根据具体问题的情况,也可以运用其他的去括号和添括号的方法。

总结起来,括号和添括号法则G是数学中一个重要的规则,它可以帮助我们去掉或者添加括号以简化数学表达式。

通过运用这些法则,我们可以提高运算的效率,减少错误的发生。

去(添)括号法则以及混合运算的运算顺序

去(添)括号法则以及混合运算的运算顺序

3000 8 125
1.36 0.25 0.4
第3页共4页
翰林学堂 78 36 78 64
56 103 56 3
30 4 70 4
120 8 20 8
562 397 281 397
1.4 5.5 2 3.24
104 4 2.4 0.3 1.5 0.75 0.25
9.9 9 1.5 1.2 0.8 3.2 0.8 0.15
8-(4-3.5)÷0.25
7.8 32 1 0.625
0.84÷[(2.3+0.5)×0.6]
[8.95-(0.65+0.8)]÷2.5
第4页共4页
a b c a b c 例如: 378 78 39 378 78 39
3. 乘除法同级运算中括号前是乘号 括号前是乘号,去完括号后,原来括号中的运算符号不改变。(与加法类似)
字母表示: a (b c) a b c 例如: 4 25 38 4 25 38
a (b c) a b c 例如: 40 25 4 40 25 4
4. 乘除法同级运算中括号前是除号 括号前是除号,去完括号后,原来括号中的运算符号改变。(与减法类似)
字母表示: a (b c) a b c 例如: 4200 42 25 4200 42 25
a b c a b c 例如: 38 62 48 38 62 48
2. 加减法同级运算中括号前是减号 括号前是减号,去完括号后,原来括号中的运算符号改变。
字母表示: a b c a b c 例如:159 59 26 159 59 26

如何快速理解添括号与去括号

如何快速理解添括号与去括号

如何快速理解添括号与去括号
一、法则
添括号法则:
如果括号前面是加号,加上括号后,括号里面的符号不变。

如果括号前面是减号,加上括号后,括号里面的符号全部改为与其相反的符号。

去括号法则:
括号前面是加号,把括号和它前面的加号去掉,括号里各项都不变号;括号前面是减号,把括号和它前面的减号去掉,括号里各项要改变符号.
二、讲解
因为正负数可以表示相反意义的量,所以我们可以用“好”和“坏”来表示“正”和“负”。

带正号的括号我们比喻成一个好国家,比如中国。

带负号的括号我们比喻成一个坏国家,比如日本。

在一个国家里有好人(正数)和坏人(负数)。

在我们中国(带正号的括号里),好人(正数)就是好人(正数),坏人(负数)就是坏人(负数)。

在日本(带负正号的括号里)所谓的好人,其实是坏人,所谓坏人反而是好人。

现在我们来理解添括号法则:
带正号的情况好理解,我们重点说添上带负号的括号:好人(正数)到了日本(带负正号的括号里)会被认为是坏人(负数),而坏人(负数)到了日本(带负正号的括号里)反而成了好人(正数)。

现在我们来理解去括号法则:
去掉带正号的括号情况好理解,我们重点说去带负号的括号:日本国里(带负正号的括号里)所谓的好人(正数),去掉括号后,其实是坏人(负数);日本国里(带负正号的括号里)所谓的坏人(负数),去掉括号后,其实是好人(正数)。

去括号添括号法则

去括号添括号法则

去括号添括号法则去括号添括号法则是数学中的一种运算法则,用于计算或化简含有括号的表达式。

它可以帮助我们更好地理解和处理代数表达式,简化计算过程,提高效率。

本文将详细介绍去括号添括号法则的原理和应用,以及一些实际问题的解决方法。

在数学中,括号是一种常用的符号,用于改变运算的优先级或表示一个整体。

然而,当一个表达式中含有多个括号时,我们往往需要先去掉括号,再进行运算。

去括号添括号法则就是一种有效的方法,能够帮助我们处理这类问题。

我们先来了解一下去括号的原理。

对于一个含有括号的表达式,我们可以按照以下步骤进行去括号的操作:1. 去掉内层括号:从最内层的括号开始,将括号内的内容提取出来,并用括号外的数与之相乘或相除。

例如,对于表达式2 × (3 + 4),我们可以先计算括号内的内容,然后再与外部的2 相乘,得到2 × 7。

2. 添上外层括号:在去掉内层括号后,如果外部还有括号,我们需要将结果加上外层括号,以保持表达式的正确性。

例如,对于表达式2 × (3 + 4),我们去掉内层括号后得到2 × 7,然后再添上外层括号,得到最终结果为(2 × 7)。

通过上述步骤,我们可以很方便地去掉括号,得到一个更简化的表达式。

这样不仅减少了计算的复杂度,也使得表达式更易于理解和处理。

除了基本的去括号添括号法则,还有一些特殊情况需要注意。

例如,当括号前面有一个负号时,我们需要将括号内的所有项都取相反数。

另外,当括号前面有一个分数时,我们需要将括号内的所有项都乘以这个分数。

除了代数表达式的化简,去括号添括号法则还可以应用于一些实际问题的解决。

例如,在物理学中,我们经常需要处理含有括号的公式,通过去括号添括号法则,可以简化计算过程,得到更精确的结果。

在经济学中,我们也可以运用这一法则,处理复杂的经济模型,分析经济变量间的关系。

总结起来,去括号添括号法则是一种重要的数学运算法则,能够帮助我们处理含有括号的代数表达式,简化计算过程,提高效率。

去括号和添加括号法则及练习(精排版)

去括号和添加括号法则及练习(精排版)

去括号添括号法则及练习一、去括号法则:1、括号前面有"+"号,把括号和它前面的"+"号去掉,括号里各项的符号不改变;字母表示:a +(b + c)= a + b + c例如:23+(77+56)=23+77+56a +(b - c)= a + b - c例如:38+(62-48)=38+62-482、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变为相反的符号;字母表示:a -(b + c)= a - b - c例如:159-(59+26)=159-59-26a -(b - c)= a - b + c例如:378-(78-39)=378-78+393、去括号时,应将括号前的符号连同括号一起去掉. 要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.x+(y-z)-(-y-z-x) =4、若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.a+3(2b+c-d)=5、遇到多层括号一般由里到外,逐层去括号,也可由外到里,数"-"的个数.24-(176+24)+[276-72-(134-72)+234]例题:4+(5+2) 4-(5+2)= =a+(b+c) a-(b+c)= =去括号练习:(1)a+(-b+c-d)=(2)a-(-b+c-d) =(3)-(p+q)+(m-n)=(4)(r+s)-(p-q) =(5)x+(y-z)-(-y-z-x) =(6)(2x-3y)-3(4x-2y)=下列去括号有没有错误?若有错,请改正:(1)a2-(2a-b+c) (2)-(x-y)+(xy-1)=a2-2a-b+c =-x-y+xy-1二、添括号法则:添上“+”号和括号,括到括号里的各项都不变号;添上“-”号和括号,括到括号里的各项都改变符号。

去括号与加括号

去括号与加括号

去括号与加括号去括号:(一)、加法(括号外面是加法):1. 括号中是加法时,不变号。

如:240+(420+10) =240+420+10 =6702. 括号中是减法时,不变号。

如:540+(265-5) =540+265-5 =700For personal use only in study and research; not for commercial use3. 括号中是乘法时,不变号。

如:8+(5 x 20) =8+5 x 20 =1084. 括号中是除法时,不变号。

如:40+(30÷5)=40+30÷5=46(二)、减法(括号外面是减法):1. 括号中是加法时,要变号。

如:50-(25+10)=50-25-10=152. 括号中是减法时,要变号。

如:100-(50-25)=100-50+25=753. 括号中是乘法时,不变号。

如:150-(5x8)=1104. 括号中是除法时,不变号。

如:80-(60÷2)=80-60÷2=50(三)、乘法(括号外面是乘法):1. 括号中是加法时,不变号。

也就是乘法的分配律。

如:10x(5+6)=10x5+10x6=50+60=1102. 括号中是减法时,不变号。

也是乘法的分配律。

如:8x(20-6)=8x20-8x6=160-48=1123. 括号中是乘法时,不变号。

这时是乘法的结合律。

如:125x(8x5)=125x8x5=1000x5=50004. 括号中是除法时,不变号。

如:25x(10÷2)=25x10÷2=250÷2=125(四)、除法(括号外面是除法):1. 括号中是加法时,不能去括号。

2. 括号中是减法时,不能去括号。

3. 括号中是乘法时,能去括号且要变号。

如50÷(10x5)50÷(5x10)=50÷10÷5 或=50÷5÷10 =5÷5 =10÷10 =1 =14. 括号中是除法时,能去括号且要变号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②100-(10+20+30)=100-10-20-30=40
③100-(30-10)=100-30+10=80
例2计算下面各题:
①100+10+20+30=100+(10+20+30)=100+
60=160
②100-10-20-30=100-(10+20+30)=100-60=40
③100-30+10=100-(30-10)=100-20=80

如果括号前面是“+”号,则不论去掉括号或添上括号,括号里
面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号
或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,
即:
a+(b+c+d)=a+b+c+d
a-(b+a+d)=a-b-c-d
a-(b-c)=a-b+c
例1
①100+(10+20+30)=100+10+20+30=160
①1320×500÷250=1320×(500÷250)=1320×2=2640
②4000÷125÷8=4000÷(125×8)=4000÷1000=4
③5600÷(28÷6)=5600÷28×6=200×6=1200
④372÷162×54=372÷(162÷54)=372÷3=124
⑤2997×729÷(81×81)=2997×729÷81÷81
注意:
带符号“搬家”
例3计算325+46-125+54=325-125+46+54
=(325-125)+(46+54)=200+100=300
注意:
每个数前面的运算符号是这个数的符号.如+46,
-125,+
54.而325前面虽然没有符号,应看作是+325。
二.在乘除混合运算中
“去括号”或添“括号”的方法:
30600÷25÷4=
6015-(518+699)-2783=
6076-875-(805+3320)=
5898-(2065-102)=
113600÷100÷4=
453×8×125=
4928-(871+1928)=
1526+(938-526)=
803×12×25=
812-700÷(9+31×11)
(136+64)×(65-345÷23)
=(2997÷81)×(729÷81)=37×9=333
注意:
.在乘除混合运算中,乘数和除数都可以带符号“搬家”。
例586ห้องสมุดไป่ตู้×27÷54=864÷54×27=16×27=432
练习
29×125×8
5600÷25÷4
250÷8×4
58+(124-24×3)
2100÷25÷4
58+(124-24×3)
8157-(103+157+597)
如果“括号”前面是乘号,去掉“括
号”后,原“括号”内的符号不变;如果“括号”前面是除号,去掉
“括号”后,原“括号”内的乘号变成除号,原除号就要变成乘号,
添括号的方法与去括号类似。
即a×(b÷c)=a×b÷c从左往右看是去括号,
a÷(b×c)=a÷b÷c从右往左看是添括号。
a÷(b÷c)=a÷b×c
例4
85+14×(14+208÷26)
(284+16)×(512-8208÷18)
120-36×4÷18+35
(58+37)÷(64-9×5)
相关文档
最新文档