初中数学 27.2.1 相似三角形的判定(1)教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题 27.2.1相似三角形的判定(一)【总第3课时】
教学任务分析
活道镇初级中学 陆炳泉
教学目的:
(1) 会用符号“∽”表示相似三角形如△ABC ∽ △C B A ''';
(2) 知道当△ABC 与△C B A '''的相似比为k 时,△C B A '''与△ABC 的相似比为1/k .
(3) 理解掌握平行线分线段成比例定理
(4) 在平行线分线段成比例定理探究过程中,让学生运用“操作—比较—发现—归纳”分析
问题.
(5) 在探究平行线分线段成比例定理过程中,培养学生与他人交流、合作的意识和品质. 重点、难点
教学重点: 理解掌握平行线分线段成比例定理及应用.
教学难点: 掌握平行线分线段成比例定理应用.
一. 创设情境
谈话复习引入课题
(1)相似多边形的主要特征是什么?
(2)在相似多边形中,最简单的就是相似三角形.
在△ABC 与△A′B′C′中,
如果△A=△A ′, △B=△B ′, △C=△C ′, 且k A C CA C B BC B A AB ='
'=''=''. 我们就说△ABC 与△A ′B ′C ′相似,记作△ABC△△A ′B ′C ′,k 就是它们的相似比.
反之如果△ABC△△A ′B ′C ′,
则有△A=△A ′, △B=△B ′, △C=△C ′, 且A C CA C B BC B A AB '
'=''=''. (3)问题:如果k=1,这两个三角形有怎样的关系?
教师活动:明确 (1)在相似多边形中,最简单的就是相似三角形。
(2)用符号“∽”表示相似三角形如△ABC ∽ △C B A ''';
(3)当△ABC 与△C B A '''的相似比为k 时,△C B A '''与△ABC 的相似比为1/k . 活动1 (教材P 40页 探究1)
如图27.2-1),任意画两条直线l 1 , l 2,再画三条与l 1 , l 2 相交的平行线l 3 , l 4, l 5.分别量度l 3 , l 4, l 5.在l 1 上截得的两条线段AB, BC 和在l 2 上截得的两条线段DE, EF 的长度, AB ︰B C 与DE ︰EF 相等吗?任意平移l 5 , 再量度AB, BC, DE, EF 的长度, AB ︰B C 与DE ︰EF 相等吗?
教师活动:教师出示探究,提出问题.
学生活动:学生操作画图,量度AB, BC, DE, EF的长度并计算比值,小组讨论,共同交流,回答结果.
师生活动:提出问题,AB︰AC=DE︰(),BC︰AC=()︰DF,师生共同交流.强调“对应线段的比是否相等”
师生归纳总结:(板书并朗读)
平行线分线段成比例定理三条平行线截两条直线,所得的对应线段的比相等。
在活动中,师生应重点关注:平行线分线段成比例定理中相比线段同线;
活动2平行线分线段成比例定理推论
思考:1、如果把图27.2-1中l1 , l2两条直线相交,交点A刚落到l3上,如图27.2-2(1),,所得的对应线段的比会相等吗?依据是什么?
2、如果把图27.2-1中l1 , l2两条直线相交,交点A刚落到l4上,如图27.2-2(2),所得的对应线段的比会相等吗?依据是什么?
学生活动:学生观察思考,小组讨论回答;
师生归纳总结:(板书并朗读)
平行线分线段成比例定理推论平行于三角形一边的直线截其他两边(或两边延长线),所得的对应线段的比相等
二.通过练习巩固平行线分线段成比例定理及其推论
活动3
练习问题:如图,在△ABC 中,DE△BC ,AC =4 ,AB =3,EC =1.求AD 和BD .
教师活动:教师提出问题;
学生活动:学生阅题,小组讨论后解答问题.
教师活动:在活动中,教师应重点关注:在练习中检查学生对“平行线分线段成比例定理及推论”理解
三. 小结巩固
活动4
(1) 谈谈本节课你有哪些收获.“三角形相似的预备定理”.这个定理揭示了有三角形一
边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似.
(2) 相似比是带有顺序性和对应性的:
如△ABC ∽△A ′B ′C ′的相似比k A C CA C B BC B A AB ='
'=''='',那么△A ′B ′C ′∽△ABC 的相似比就是k 1CA A C BC C B AB B A =''=''='',它们的关系是互为倒数.这一点在教学中科结合相似比“放大或缩小”的含义来让学生理解;
(3)作业
1.如图,△ABC ∽△AED, 其中DE ∥BC ,找出对应角并写出对应边的比例式.
2.如图,△ABC ∽△AED ,其中∠ADE=∠B ,找出对应角并写出对应边的比例式.