空间域图像增强的操作方法
遥感图像增强实验报告
![遥感图像增强实验报告](https://img.taocdn.com/s3/m/49e4fce1a417866fb94a8e5b.png)
遥感图像增强实验报告1. 实验目的和内容实验目的:(1)遥感图像的空间域增强:通过直接改变图像中的单个像元及相邻像元的灰度值来增强图像,是图像增强技术的基本组成部分,包括点运算和邻域运算。
(2)遥感图像的频率域增强:通过对频率域的调整对遥感图像进行平滑和锐化,平滑主要是保留图像的低频部分抑制高频部分,锐化则保留图像的高频部分而削弱低频部分。
(3)遥感图像的彩色增强:将黑白图像转换成彩色图像,使地物的差别易于分辨,突出图像的有用信息,从而提高对图像的解译和分析能力。
实验内容:(1)遥感图像的空间域增强:点运算—直方图均衡化、灰度拉伸、任意拉伸,邻域运算—图像平滑、图像锐化。
(2)遥感图像的频率域增强:定义FFT,反向FFT,再进行对比。
(3)遥感图像的彩色增强:多波段影像—彩色合成、单波段影像—伪彩色增强、色彩空间变换、遥感数据融合。
2. 图像处理方法和流程A.遥感图像的空间域增强1.直方图均衡化(1)在主窗口中打开can_tmr.img文件。
(2)以gray形式显示一个波段。
(3)Display窗口>enhance>equalization2.灰度拉伸(1)Display窗口>enhance>interactive stretching(2)弹出的对话框>stretch_type>linear(3)在STRETCH对应的两个文本框中输入需要拉伸的范围,然后单击对话框上的APPLY按钮,图像显示为线性拉伸后的效果。
3.任意拉伸(1)弹出的对话框>stretch_type>Arbitary,在output histogram中单击绘制直方图,右键结束(2)点击apply,结果如图所示4.图像平滑(1)均值平滑,在主窗口中打开can_tmr.img文件。
主窗口>enhance>filter>smooth[3*3]。
结果如图所示(2)中值平滑,在主窗口中打开can_tmr.img文件。
遥感影像处理知识
![遥感影像处理知识](https://img.taocdn.com/s3/m/3e660b3391c69ec3d5bbfd0a79563c1ec4dad743.png)
1.几何校正:几何校正是利用地面控制点和几何校正数学模型来矫正非系统因素产生的误差,同时也是将图像投影到平面上,使其符合地图投影系统的过程。
2.图像镶嵌:指在一定的数学基础控制下,把多景相邻遥感影像拼接成一个大范围、无缝的图像的过程。
3.图像裁剪:图像裁剪的目的是将研究之外的区域去除。
常用方法是按照行政区划边界或自然区划边界进行图像裁剪。
在基础数据生产中,还经常要进行标准分幅裁剪。
按照ENVI 的图像裁剪过程,可分为规则裁剪和不规则裁剪。
4.图像分类:遥感图像分类也称为遥感图像计算机信息提取技术,是通过模式识别理论,分析图像中反映同类地物的光谱、空间相似性和异类地物的差异,进而将遥感图像自动分成若干地物类别。
5.正射校正:正射校正是对图像空间和几何畸变进行校正生成多中心投影平面正射图像的处理过程。
6.面向对象图像分类技术:是集合邻近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间、纹理和光谱信息来分割和分类,以高精度的分类结果或者矢量输出。
7.DEM:数字高程模型是用一组有序数值阵列形式表示地面高程的一种实体地面模型。
8.立体像对:从两个不同位置对同一地区所摄取的一对相片。
9.遥感动态监测:从不同时间或在不同条件获取同一地区的遥感图像中,识别和量化地表变化的类型、空间分布情况和变化量,这一过程就是遥感动态监测过程。
10.高光谱分辨率遥感:是用很窄而连续的波谱通道对地物持续遥感成像的技术。
在可见光到短波红外波段,其波谱分辨率高达纳米数量级,通常具有波段多的特点,波谱通道多达数十甚至数百个,而且各波谱通道间往往是连续的,因此高光谱遥感又通常被称为"成像波谱遥感"。
11.端元波谱:端元波谱作为高光谱分类、地物识别和混合像元分解等过程中的参考波谱,与监督分类中的分类样本具有类似的作用,直接影响波谱识别与混合像元分解结果的精度。
12.可视域分析:可视域分析工具利用DEM数据,可以从一个或多个观察源来确定可见的地表范围,观测源可以是一个单点,线或多边形13.三维可视化:ENVI的三维可视化功能可以将DEM数据以网格结构、规则格网或点的形式显示出来或者将一幅图像叠加到DEM数据上。
第8章_图像增强
![第8章_图像增强](https://img.taocdn.com/s3/m/12015f62f11dc281e53a580216fc700aba68525a.png)
32
一、空间域图像增强(29)
对角线方向边缘增强示意图
33
一、空间域图像增强(30)
单方向一阶微分算子图像增强效果
34
一、空间域图像增强(31)
Roberts交叉微分算子
g x, y f x 1, y 1 f x, y f x 1, y f x, y 1
f
G x x
f
f
G
y
y
27
一、空间域图像增强(24)
一阶微分算子
单方向微分算子
(1)水平方向微分算子
Dlevel
1 2 1
0 0 0
1 2 1
g ( x, y ) [ f x 1, y 1 f x 1, y 1] 2[ f x 1, y f x 1, y ]
遥感数字图像处理
第8章
图像增强
背景知识
图像增强是通过一定手段对原图像进行变换或附加一些信息
,有选择地突出图像中感兴趣的特征或者抑制图像中某些不
需要的特征,使图像与视觉响应特性相匹配,从而加强图像
判读和识别效果,以满足某些特殊分析的需要。
目的:改善图像的视觉效果,帮助我们更好地发现或识别图
像中的某些特征。
作用:调整两幅图像的色调差异,使图像重叠区域的色调过渡柔和,改
善图像融合和图像镶嵌效果。
14
一、空间域图像增强(12)
直方图匹配的思想:
原图像中的任意一个灰度值ai 都可
以在参考图像上找到一个与之对应
的灰度值bi ,使得原图的灰度概率
ENVI初步学习和影像增强处理
![ENVI初步学习和影像增强处理](https://img.taocdn.com/s3/m/b1514c17964bcf84b9d57b29.png)
ENVI初步学习和影像增强处理一.实验目的通过对课程的学习,结合ENVI软件中文指导书,学习和掌握ENVI软件的基本操作,学会使用ENVI软件对遥感影像进行分析增强处理,加深对《遥感原理及应用》这门课的学习,为以后的实践工作打好坚实的基础。
二.实验数据介绍该次实验所使用数据为甘肃舟曲灾前遥感影像,图像名称为liubo07082972。
另一幅图像同样为该名称。
三.实验过程Ⅰ.软件的基本操作ENVI主工具条:1.图像的输入与输出.首先启动ENVI, 选择File- Open Image File,出现Enter DataFilename 对话框,选择文件的正确路径,点击文件名,再点击“OK”打开文件。
2.在打开的Available Band List 菜单中,可以显示图像的各个波段的基本信息,其中“Gray Scale”为灰色显示,“RGB Color”为彩色合成,并且可以选择彩色合成的波段,单击“Load”就可显示图像,打开的图像由三部分组成: Scroll (滚动)窗口、主图像窗口、以及缩放(Zoom)窗口, 可以使用多个显示窗口组,组中每个窗口的大小都可以调整。
其中菜单中的“New Diaplay”可以打开一个新的图像。
3.在“Available BandsList”菜单中选择“Available Files List”还可以可以显示出遥感图像的基本信息,具体如图所示:4.若要保存图像,需要在图像所在窗口中选择File-Save Image As-Image File,弹出Output Display to ImageFile 对话框。
对于单波段图像,选择 8-bit Color,而多波段彩色合成图像则选择24-bit Color图像的保存方式有两种:一是直接保存为文件;二是选“Memory”,记忆在“Available BandsList”菜单中。
Ⅱ.图像增强与变换一.空间域增强1.线性变换线性拉伸:线性拉伸的最小和最大值分别设置为0 和255,两者之间的所有其它值设置为中间的线性输出值,选择Stretch_Type > LinearContrast Stretch。
数字图像增强的几种常见方法
![数字图像增强的几种常见方法](https://img.taocdn.com/s3/m/0d9aa136f56527d3240c844769eae009581ba2eb.png)
数字图像增强的几种常见方法数字图像增强是图像处理领域中的一项重要任务,它旨在改善图像的质量和可视化效果。
在数字图像增强中,有几种常见的方法被广泛应用,包括直方图均衡化、滤波和增强算法、多尺度变换和基于机器学习的方法。
直方图均衡化是一种常见的图像增强方法。
它通过对图像的像素值进行重新分布,以扩展图像的动态范围,从而增强图像的对比度和细节。
直方图均衡化的基本思想是通过将图像像素的累积分布函数映射为均匀分布来调整像素的亮度值。
这种方法特别适用于对比度较低的图像,能够使图像的细节更清晰,并提升图像的质量。
滤波和增强算法也是数字图像增强的常见方法之一。
滤波可以去除图像中的噪声,平滑图像并提高图像的质量。
常见的滤波算法包括均值滤波、中值滤波和高斯滤波等。
这些算法通过对图像进行空间域或频域的滤波处理来改善图像的质量。
增强算法也可以用于提高图像的可视化效果。
例如,锐化算法可以增强图像的边缘和细节,使图像更加清晰。
对比度拉伸算法可以扩展图像的动态范围,增强图像的对比度。
这些算法可以根据不同的图像特征和需求进行选择和组合,以实现更好的图像增强效果。
多尺度变换是另一种常见的图像增强方法。
多尺度变换将图像转换为不同尺度的表示形式,利用图像在不同尺度上的信息来增强图像的质量和对比度。
常见的多尺度变换方法包括小波变换和金字塔变换。
这些方法在图像增强中广泛应用,并在图像去噪、边缘检测等领域取得了良好的效果。
除了传统的增强方法,基于机器学习的方法也在数字图像增强中得到了广泛的应用。
这些方法利用机器学习算法从大量的图像数据中学习图像的增强模型,然后使用该模型对新的图像进行增强。
通过学习大量数据得到的模型可以更准确地理解图像中的内容和结构,并提供更好的增强效果。
综上所述,数字图像增强的几种常见方法包括直方图均衡化、滤波和增强算法、多尺度变换和基于机器学习的方法。
这些方法可以根据图像的特点和需求进行选择和组合,以实现图像的质量和可视化效果的改善。
图像增强的实现方法
![图像增强的实现方法](https://img.taocdn.com/s3/m/604bae4303020740be1e650e52ea551810a6c9fd.png)
图像增强的实现方法图像增强是指通过一系列处理方法,改善或提高原始图像的视觉质量,使其更适合特定应用需求。
图像增强技术在计算机视觉、图像处理、模式识别等领域中具有广泛应用,能够帮助我们从原始图像中提取更多有用信息,强调图像的特定特征,改善人眼对图像的感知效果。
本文将介绍图像增强的实现方法,并详细阐述其中的几种常用技术。
1. 空域增强方法空域增强方法是最常用的图像增强方法之一。
其基本思想是直接对图像的像素值进行处理。
常见的空域增强方法包括直方图均衡化、图像锐化和滤波技术等。
直方图均衡化是一种常用的直方图拉伸方法,通过调整图像像素的灰度分布来增强对比度。
具体操作是先计算图像的直方图,然后根据直方图构建一个累积分布函数(CDF),最后利用CDF对每个像素值进行重新映射,以达到增强图像对比度的目的。
图像锐化是通过增强图像的高频分量来提高图像的细节信息。
常见的图像锐化方法有拉普拉斯锐化和边缘增强等。
拉普拉斯锐化方法一般通过对原始图像进行卷积操作,得到图像的拉普拉斯增强图像,进而将其与原始图像进行加权叠加,以增强图像的细节和边缘信息。
滤波技术是通过对图像进行滤波操作,来提取或增强图像中的某些信息。
常用的滤波方法有平滑滤波和锐化滤波等。
平滑滤波技术主要用于图像去噪,通过将每个像素的值与其周围邻域像素的值进行平均或加权平均,减小噪声对图像的影响。
锐化滤波技术则用于增强图像的边缘和细节信息,常见的锐化滤波器有Sobel算子和Laplacian算子等。
2. 频域增强方法频域增强方法是通过对图像的频谱进行处理来实现的。
它基于傅里叶变换的原理,可以将图像从空域转化到频域,然后对频域数据进行增强处理后,再通过逆傅里叶变换将图像还原回空域。
频域增强方法常见的技术有傅里叶变换、滤波器设计和小波变换等。
傅里叶变换将图像从空域转化到频域,将图像的空间域信息转化为频率域信息,可以方便地观察和处理图像的频谱分布。
通过对图像的傅里叶变换结果进行滤波操作,可以实现图像的频域增强。
ENVI遥感图像增强处理
![ENVI遥感图像增强处理](https://img.taocdn.com/s3/m/bb882d2666ec102de2bd960590c69ec3d5bbdbb6.png)
ENVI遥感图像增强处理任务五图像增强⽬录1.空间域增强处理 (1)1.1卷积滤波 (1)2.辐射增强处理 (2)2.1交互式直⽅图拉伸 (2)3.光谱增强处理 (4)3.1波段⽐的计算 (4)3.2⾊彩空间变换 (5)3.3NDVI计算 (6)4.傅⾥叶变换 (6)4.1快速傅⾥叶变换 (6)4.2定义FFT滤波器 (7)4.3反向FFT变换 (8)5.波段组合 (8)5.1RGB合成显⽰ (8)图像增强的主要⽬的是提⾼图像的⽬视效果,以便处理结果图像⽐原图像更适合于特定的应⽤要求,⽅便⼈⼯⽬视解译、图像分类中的样本选取等。
ENVI图像增强的内容主要包括:●空间域增强处理●辐射增强处理●光谱增强处理●傅⾥叶变换●波段组合1.空间域增强处理空间域增强处理是通过直接改变图像中的单个像元及相邻像元的灰度值来增强图像。
1.1卷积滤波卷积滤波是通过消除特定的空间频率来增强图像。
它们的核⼼部分是卷积核,ENVI提供很多卷积核,包括⾼通滤波、低通滤波、拉普拉斯算⼦、⽅向滤波、⾼斯⾼通滤波、⾼斯低通滤波、中值滤波、Sobel、Roberts,还可以⾃定义卷积核。
使⽤数据:lena.jpg具体操作:通过尝试ENVI提供的各种图像增强算⼦,观察⽐较图像增强的效果。
(1)打开图像⽂件lena.jpg。
(2)在主菜单中,选择Filter→Convolutions and Morphology。
(3)在Convolutions and Morphology Tool中,选择Convolutions→滤波类型。
(4)不同的滤波类型对应不同的参数,主要包括三项参数:●Kernel Size(卷积核的⼤⼩)卷积核的⼤⼩,以奇数来表⽰,如3×3、5×5等,有些卷积核不能改变⼤⼩,包括Sobel和Roberts。
●Image Add Back(输⼊加回值)将原始图像中的⼀部分“加回”到卷积滤波结果图像上,有助于保持图像的空间连续性。
第三章图像增强(邻域运算)
![第三章图像增强(邻域运算)](https://img.taocdn.com/s3/m/86fc0c76aeaad1f346933fc2.png)
• 平滑空间滤波器 • 锐化空间滤波器
去除噪声,平滑不需要的细节 增强细节
图像噪声
噪声: 妨碍人们感觉器官对所接收的信源信息理解的因素。不可 预测,只能用概率统计方法来认识的随机误差。
描述:可以借用随机过程及其概率分布函数和概率密度函数,通常: 数字特征,即均值方差、相关函数等。
图像噪声
一些重要的噪声:
0 -1 0 -1 5 -1 0 -1 0
(a) 在灰度均匀的区域或斜坡中间▽2 f(x, y)为0,增强图像上像元灰度不变;
(b) 在斜坡底或低灰度侧形成“下冲”; 而在斜坡顶或高灰度侧形成“上冲” 。
拉普拉斯增强算子
梯度算子
(x, y) arctan(Gy Gx )
梯度的方向:在函数f(x, y)最 大变化率的方向上。
f (x+1,y-1) f (x+1,y) f (x+1,y+1)
邻域
z1 z2 z3 z4 z5 z6 z7 z8 z9
邻域
w1 w2 w3 w4 w5 w6 w7 w8 w9
mask
空间域滤波
基于空间域滤波的图像增强 过程,就是选取合适的模板, 将模板与输入图像进行卷积 的过程。
w1 w2 w3 w4 w5 w6 w7 w8 w9 模板(空间滤波器)
原点o y
f
卷积
模板(mask)
x
输入图像
一维信号卷积
邻域运算(模板运算)
原点o
f (x-1,y-1) f (x-1,y) f (x-1,y+1)
y
f (x,y-1) f (x,y) f (x,y+1)
f (x+1,y-1) f (x+1,y) f (x+1,y+1)
空间域图象增强的方法
![空间域图象增强的方法](https://img.taocdn.com/s3/m/656cd5f2192e45361166f519.png)
空间域图象增强的方法图象增强的方法基本可分为空间域处理及频域处理两类。
空间域处理是直接对原图象的灰度级别进行数据运算,它分为两类,一类是与象素点邻域有关的局部运算,如平滑,中值滤波,锐化等;另一类是对图象做逐点运算,称为点运算如灰度对比度扩展,削波,灰度窗口变换,直方图均衡化等。
现对主要方法作简单介绍:1、平滑图像在生成和传输过程中会受到各种噪声源的干扰和影响,使图像质量变差。
反映在图像上,噪声使原本均匀和连续变化的灰度突然变大或变小,形成一些虚假的物体边缘或轮廓。
抑制或消除这些噪声而改善图像质量的过程称为图像的平滑。
主要有(1)邻域平均法在邻域平均法中,假定图像是由许多灰度恒定的小块组成,相邻像素间有很强的空间相关性,而噪声是统计独立地加到图像上的。
因此,可用像素邻域内个像素灰度值的平均来代表原来的灰度值。
(2)低通滤波法从频谱上看,噪声特别是随机噪声是一种具有较高频率分量的信号。
平滑的目的就是通过一定的手段滤去这类信号。
一个很自然的想法就是使图像经过一个二维的低通数字滤波器,让高频信号得到较大的衰减。
在空间域上进行的这种滤波实际上就是对图像和滤波器的冲击响应函数进行卷积。
(3)中值滤波法中值滤波的思想是对一个窗口内的所有像素的灰度值进行排序,取排序结果的中间值作为原窗口中心点处像素的灰度值。
这种平滑方法对脉冲干扰和椒盐类干扰噪声的效果较好。
中值滤波的关键在于选择合适的窗口大小和形状。
但一般很难事先确定窗口的尺寸,通常是从小到大进行多次尝试。
窗口的形状可选为正方形,也可选为十字形。
2、尖锐化在图像判断和识别中,需要有边缘鲜明的图像。
图像尖锐化技术常用来对图像的边缘进行增强。
主要方法有:(1)微分法在图像的判断和识别中,边缘是由不同灰度级的相邻像素点构成的。
因此,若想增强边缘,就应该突出相邻点间的灰度级变化。
微分运算可用来求信号的变化率,具有加强高频分量的作用。
如果将其应用在图像上,可使图像的轮廓清晰。
数字图像处理 第三章 空间域图像增强
![数字图像处理 第三章 空间域图像增强](https://img.taocdn.com/s3/m/3cf082c2ce2f0066f4332209.png)
图象增强的含义和目的
图象增强的含义和目的
三、目的:
(1)改善图象的视觉效果,提高图像的清晰度; (2)将图象转换成更适合于人眼观察和机器分析识 别的形式,以便从图象中获取更有用的信息。
四、基本方法:
空间域处理:点处理(图象灰度变换、直方图均衡等); 邻域处理(线性、非线性平滑和锐化等); 频域处理 :高、低通滤波、同态滤波等
输出灰度级
对数 s = c log(1 + r )
n次幂
s = cr γ
输入灰度级,r 用于图像增强的某些基本灰度变换函数
3.2 基本灰度变换
①反转变换 s = L − 1 − r (3.2 − 1)
适于处理增强嵌入于图像暗色区域的白色或灰色 细节,特别是当黑色面积占主导地位时.
灰度反转图像
3.2 基本灰度变换
Im=imread('rice.png'); Jm=imadjust(Im,[0.15,0.9],[0,1]); figure(1);subplot(211);imshow(Im);subplot(212); imhist(Im); figure(2);subplot(211);imshow(Jm);subplot(212); imhist(Jm);
1×1的邻域 T(r)产生两级(二值) 图像, 阈值函数
对比度拉伸 阈值处理
图像中(x,y)点的3×3邻域 对比度增强的灰度级函数
3.1 背景知识
更大的邻域会有更多的灵活性,一般的方法是利 用点(x,y)事先定义的邻域里的一个f值的函数来决 定g在(x,y)的值,主要是利用所谓的模板(也称为 滤波器,核,掩模). 模板是一个小的(3×3)二维阵列,模板的系数值 决定了处理的性质,如图像尖锐化等. 以这种方法 为基础的增强技术通常是指模板处理或空域滤波.
matlab-光电图像处理实验(图像增强)
![matlab-光电图像处理实验(图像增强)](https://img.taocdn.com/s3/m/b4f12522ccbff121dd36835b.png)
光学图像处理实验报告学生姓名:班级:学号:指导教师:日期:一、实验室名称:二、实验项目名称:图像增强三、实验原理:图像增强处理是数字图像处理的一个重要分支。
很多由于场景条件的影响图像拍摄的视觉效果不佳,这就需要图像增强技术来改善人的视觉效果,增强图象中的有用信息,它可以是一个失真的过程,其目的是要改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。
比如突出图像中目标物体的某些特点、从数字图像中提取目标物的特征参数等等,这些都有利于对图像中目标的识别、跟踪和理解。
图像增强处理主要内容是突出图像中感兴趣的部分,减弱或去除不需要的信息。
这样使有用信息得到加强,从而得到一种更加实用的图像或者转换成一种更适合人或机器进行分析处理的图像。
图像增强的应用领域也十分广阔并涉及各种类型的图像。
例如,在军事应用中,增强红外图像提取我方感兴趣的敌军目标;在医学应用中,增强X射线所拍摄的患者脑部、胸部图像确定病症的准确位置;在空间应用中,对用太空照相机传来的月球图片进行增强处理改善图像的质量;在农业应用中,增强遥感图像了解农作物的分布;在交通应用中,对大雾天气图像进行增强,加强车牌、路标等重要信息进行识别;在数码相机中,增强彩色图像可以减少光线不均、颜色失真等造成的图像退化现象。
图像增强可分成两大类:频率域法和空间域法。
前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。
采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。
具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。
图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。
数字图象处理:三 空间域图像增强
![数字图象处理:三 空间域图像增强](https://img.taocdn.com/s3/m/2ad6a4b10b4e767f5bcfce46.png)
●两幅图像 f (x, y) 和 h(x, y) 相减,表示为:
g ( x , y ) f ( x , y ) h ( x , y )
( 3 . 4 . 1 )
3.4.1 图像相减运算实例
●血管造影:
●图b是相减图像
3.4.2 图像平均处理(加法处理)
●利用多幅图像相加,然后取平均的办法,其目的主要是为了降低图像的噪声。
简单平均
加权平均
●平滑线性滤波器 实例1:
n=5
n = 15
n=器实例2
平滑线性滤波器实例3
不连续到连续
3.6.2 统计排序滤波器
中值滤波法
取3X3窗口
212 200 198 206 202 201 208 205 207
212 200 198 206 205 201 208 205 207
s cr ●对于不同的γ,其曲线形式不同。
◆当γ<1时,其曲线形式和对数曲线相似。 ◆当γ>1时,作用相反 ● γ(伽马)校正:
用幂次变换进行对比度增强的效果(γ<1):
核磁共 振图像
用幂次变换进行对比度增强的效果(γ>1)
3.2.4 分段线性变换函数
●对比度拉伸
灰度切割
● 方法有两个:
● 教材中的位平面切割放在图像压缩时讲。
平均 8次
平均 64 次
平均 16 次
平均 128次
平均图像和真实图像的差
●不同平均次数的
的差值图像和直方 图。
平 均8 次
平均 16次
平均 64次
平均 128次
3.5 空间滤波基础
● 空间域滤波是通过模板运算实现的。
ab
g (x ,y ) w (s ,t)f(x s ,y t) (3 .5 .1 ) s a t b
数字图像处理教程(matlab版)
![数字图像处理教程(matlab版)](https://img.taocdn.com/s3/m/bde2137858fb770bf68a550d.png)
FILENAME参数指定文件名。FMT为保存文件采用的格式。 imwrite(I6,'nirdilatedisk2TTC10373.bmp');
/1、图像的读取和显示
三、图像的显示
imshow(I,[low high])
I为要显示的图像矩阵。[low high]为指定显示灰度图像的灰度范围。 高于high的像素被显示成白色;低于low的像素被显示成黑色;介于 High和low之间的像素被按比例拉伸后显示为各种等级的灰色。 figure;imshow(I6);title('The Main Pass Part of TTC10373');
t c logk s
c为尺度比例常数,s为源灰度值,t为变换后的目标灰 度值。k为常数。灰度的对数变换可以增强一幅图像 中较暗部分的细节,可用来扩展被压缩的高值图像中 的较暗像素。广泛应用于频谱图像的显示中。
Warning:log函数会对输入图像矩阵s中的每个元素进行
操作,但仅能处理double类型的矩阵。而从图像文件中得到的 图像矩阵大多是uint8类型的,故需先进行im2double数据类型 转换。
原 图 像
滤 波 后 图
像
/4、空间域图像增强 三、滤波器设计
h=fspecial(type,parameters)
parameters为可选项,是和所选定的滤波器类型type相关的 配置参数,如尺寸和标准差等。
type为滤波器的类型。其合法值如下:
合法取值 ‘average’
‘disk’ ‘gaussian’ ‘laplacian’
DA
DMax A0
DA
Envi图像增强与变换
![Envi图像增强与变换](https://img.taocdn.com/s3/m/4cf9b499ad51f01dc281f1e5.png)
实验二ENVI图像增强与变换实验指导实验目的:通过上机操作,了解图像增强、图像变换几种遥感图象处理的过程和方法,加深对图象增强与变换处理的理解,熟悉ENVI软件中图像增强与变换的一些方法。
基础理论回顾与ENVI图像增强与变换预览:1.图像增强与变换的目的:图像增强的目的在于改善图像的显示质量,提高图像目视效果,突出所需要的信息,为进一步遥感目视判读做预处理工作。
2.图像增强的方法:3.实验内容:●影像融合:HSV变换融合、主成分变换融合●裁剪影像(以下实验的影像数据)●NDVI指数的计算●纹理分析●快速傅立叶滤波实验数据:影像融合:SPOT5全色影像(2_5_SPOT5)和多光谱影像(10_SPOT5):表1 SPOT5 XI卫星有关参数介绍空间分辨率全色:2.5m(星下点)多光谱:10m(星下点)光谱响应范围全色:480-710nm1:790-890nm 近红外2:610-680nm 红波段3:500-590nm 绿波段4:1580-1750nm 短波红外其他实验:实验一几何配准后影像。
ETM+多波段数据:图 1实验方法与步骤:一、影像融合1.HSV融合ENVI中的融合方法:图2使用HSV融合可以进行RGB图像到HSV色度空间的变换,用高分辨率的图像代替颜色亮度值波段,并自动将色度和饱和度重采样到高分辨率像元尺寸,然后再将图像变换回RGB色度空间。
输出的RGB图像的像元将与高分辨率数据的像元大小相同。
1.从ENVI主菜单中,选择File →Open Image File 把SPOT5全色影像(2_5_SPOT5)和多光谱影像(10_SPOT5)都加载到可用波段列表中:图 32.从ENVI主菜单中,选择Transform → Image Sharpening → HSV,开始进行多光谱影像和全色影像的HSV 变换融合。
3.在Select Input RGB Input Bands对话框中,分别选择多光谱影像(10_SPOT5)影像的波段1、波段2和波段3,然后点击OK:图 44.打开High Resolution Input File(输入高分辨率数据)对话框,在Select Input Band列表中选择SPOT5全色影像(2_5_SPOT5),点击OK:图 5至此,完成了HSV变换融合的数据输入工作。
数字图像处理 第四章图像增强
![数字图像处理 第四章图像增强](https://img.taocdn.com/s3/m/f6a1698e81c758f5f61f67dd.png)
Pr(rk) 0.19 0.25 0.21 0.16 0.08 0.06
0.03
0.02
计算每个sk对应的像素数目 计算均衡化后的直方图
Tr
Sk并
sk
nsk Ps(sk)
0.19
1/7
0.44
3/7
S0=1/7 S1=3/7 S2=5/7
790 0.19 1023 0.25 850 0.21
0.65
✓ 校正后的原始图像 f (i, j) C g(i, j) gc(i, j)
9
灰度级校正注意问题:
对降质图像进行逐点灰度级校正所获得的图像, 其中某些像素的灰度级值有可能要超出记录器 件或显示器输入灰度级的动态范围,在输出时 还要采用其他方法来修正才能保证不失真地输 出。
降质图像在数字化时,各像素灰度级都被量化 在离散集合中的离散值上,但经校正后的图像 各像素灰度极值并不一定都在这些离散值上, 因此必须对校正后的图像进行量化。
),使得结果图像s的直方图Ps(s)为一个常数
Pr(r)
Ps(s)
直方图均衡化 T(r)
r
s
26
直方图均衡化理论基础
-1 由概率论可知,若Pr(r)和变换函数s=T(r)已知,r=T (s)是单 调增长函数,则变换后的概率密度函数Ps(s)可由Pr(r)得到:
分 布 函 数 Fs(s)sp( s s) ds=rp( r r) dr
✓ 计算均衡后的直方图
s k 计
T( rk)
k
=
i 0
P(r
r
)
i
k i 0
ni n
s k并
round( sk计 * (L L 1
1))
j
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间域图像增强的操作方法
空间域图像增强操作方法包括以下几种:
1. 线性变换:线性变换常用于图像亮度和对比度的调整。
常见的线性变换操作包括图像的亮度调整、对比度调整、伽马校正等。
2. 直方图均衡化:直方图均衡化是一种用于增强图像对比度的方法。
它通过调整图像的灰度级分布,使得图像在整个灰度范围内的灰度级分布均匀,从而显著改善了图像的视觉效果。
3. 滤波操作:滤波操作可以用于对图像进行平滑处理、边缘增强、噪声去除等。
常见的滤波方法包括均值滤波、中值滤波、高斯滤波等。
4. 锐化操作:锐化操作可以增强图像的边缘和细节信息。
常见的锐化方法包括拉普拉斯锐化、Sobel算子、Prewitt算子等。
5. 图像增强算法:除了上述基本操作外,还有一些图像增强算法可以进一步提高图像质量,如小波变换、Retinex算法、非局部均值去噪方法等。
需要根据具体图像的特点和需求选择合适的增强方法,并通过实验和调整参数来得到最佳的增强效果。