初一数学应用题分类汇总 分类全

合集下载

初一数学应用题归类(十到十七类)

初一数学应用题归类(十到十七类)

第十类分段计算的问题分段型一元一次方程的应用是指同一个未知量在不同的范围内的限制条件不同的一类应用题。

解决这类问题的时候,我们先要确定所给的数据所处的分段,然后要根据它的分段合理地解决。

应用最广泛的问题是,网费,电费、水费、打的费、上税费等。

例题1、某地上网有两种收费方式,用户可以任意选择其一:A.计时制:1.5元/时;B.包月制:45元/月;此外,每种上网方式都要加收通信费1元/时。

(1)某用户平均每月的上网时间为20小时,若选择方案A,应缴元上网费;若选择方案B,应缴元上网费;(2)某用户平均每月的上网时间为30小时,若选择方案A,应缴元上网费;若选择方案B,应缴元上网费;(3)某用户平均每月的上网时间为40小时,若选择方案A,应缴元上网费;若选择方案B,应缴元上网费;(4)某用户发现他家10月份的上网费,按方案A与方案B的缴费一样;求他家10月份的上网时间?(5)根据用户上网时间的不同,请你为用户选择省钱收费方式(选择方案A或选择方案B)?练习:昆明市出租车计价规则如下:行程不超过3千米,收起步价8元;超过3公里的部分每公里加收1.8元。

(1)、若乘坐出租车2.5公里,则应缴元车费;(2)、若乘坐出租车8公里,则应缴元车费;(3)、小明从学校坐出租车到家,共付出租车车费为26 元,求学校到小明家的路程?例2、电话计费问题下表有两种移动电话计费方式:月使用费固定收,主叫不超限定时间不再收费,主叫超时部分加收超时费,被叫免费(1)一个月内用移动电话主叫为t min(t是正整数).根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费.(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.例3:某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付出264元,请问张强第一次、第二次分别购买香蕉多少千克?例4. 依法纳税是每个公民的义务,《中华人民共和国个人所得税法》规定,有收入的公民依照下表中的规定的税率交纳个人所得税。

初一数学应用题归类(十到十七类)

初一数学应用题归类(十到十七类)

第十类分段计算的问题分段型一元一次方程的应用是指同一个未知量在不同的范围内的限制条件不同的一类应用题。

解决这类问题的时候,我们先要确定所给的数据所处的分段,然后要根据它的分段合理地解决。

应用最广泛的问题是,网费,电费、水费、打的费、上税费等。

例题1、某地上网有两种收费方式,用户可以任意选择其一:A.计时制:1.5元/时;B.包月制:45元/月;此外,每种上网方式都要加收通信费1元/时。

(1)某用户平均每月的上网时间为20小时,若选择方案A,应缴元上网费;若选择方案B,应缴元上网费;(2)某用户平均每月的上网时间为30小时,若选择方案A,应缴元上网费;若选择方案B,应缴元上网费;(3)某用户平均每月的上网时间为40小时,若选择方案A,应缴元上网费;若选择方案B,应缴元上网费;(4)某用户发现他家10月份的上网费,按方案A与方案B的缴费一样;求他家10月份的上网时间?(5)根据用户上网时间的不同,请你为用户选择省钱收费方式(选择方案A或选择方案B)?练习:昆明市出租车计价规则如下:行程不超过3千米,收起步价8元;超过3公里的部分每公里加收1.8元。

(1)、若乘坐出租车2.5公里,则应缴元车费;(2)、若乘坐出租车8公里,则应缴元车费;(3)、小明从学校坐出租车到家,共付出租车车费为26 元,求学校到小明家的路程?例2、电话计费问题下表有两种移动电话计费方式:月使用费固定收,主叫不超限定时间不再收费,主叫超时部分加收超时费,被叫免费(1)一个月内用移动电话主叫为t min(t是正整数).根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费.(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.例3:某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付出264元,请问张强第一次、第二次分别购买香蕉多少千克?例4. 依法纳税是每个公民的义务,《中华人民共和国个人所得税法》规定,有收入的公民依照下表中的规定的税率交纳个人所得税。

初一数学应用题归类

初一数学应用题归类

初一数学应用题归类一.连续等差式应用题关键:如何设未知数1)有中间项,设中间项为x,其他依次递增或递减。

2)没有中间项,设第一个为x,其他依次增减。

3)未知数有对称关系的,通常设中间项为x。

例. 如果三个连续整数之和为33,那么这三个整数各为多少?相关联接:如果三个连续奇数之和为21,那么其中最小的奇数时多少?二.日历中的应用题关键:1。

认识日历2.数列相邻三个数之间差73.横列相邻三个数之间差14.日历中的得数为整数5.日历中几乘几方框是什么意思例:日历上,爷爷的生日那天的上下左右4个日期的和为80,你能说出爷爷的生日是几号吗?相关联接:1.从日历中取一个3乘3的方框,已知它的一条对角线经过的3个方格内的日期之和为33,你知道正中间一个方格内的日期吗?2.你能在日历中圈出一个数列上相邻的3个数,使得它们的和为54吗?为什么三.蕴藏等量关系式应用题关键:利用体积或周长相等建立等量关系例:1.要锻造一个直径为10厘米,高为8厘米的圆柱形毛坯,应截取直径为8厘米的圆钢多长?2.一个长方形的周长为36cm,若长减少4cm,宽增加2cm,长方形就变成了正方形,原长方形的长为多少?相关联接:1.把一段铁丝围成长方形,可以使他的长比宽多2厘米,如果围成正方形,边长刚好为5厘米,求所围成的长方形的长和宽各为多少厘米?2.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成。

现有长为3 5米的竹篱笆,小王打算用它围成一个养鸡场,其中长比宽多5米,小赵也打算用它围成一个养鸡场,其中长比宽多2米。

你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?四.销售问题应用关键:1。

题目中有利润,利润率,亏损率等量关系式为利润=售价- 进价利润率=售价- 进价/进价—亏损率=售价- 进价/进价2.其他情况看情况来定例:1某商场有一种电视机,每台的原价为2500元,现以八折销售,如果想使降价前后的销售额都为10万元,那么销售额应增加多少?2.新华书店一天内销售两种书籍,甲种书籍共卖得1560元。

(完整word版)初一数学应用题归类(二到六类)

(完整word版)初一数学应用题归类(二到六类)

第二类 利润 、打折、盈亏的问题利润问题现价=原价*折扣率折扣价=现价/原价*100%每件商品的利润=售价-进货价=利润率*进价毛利润=销售额-费用利润率=成本利润=成本成本销售价-=成本销售价-1进价=售价-利润售价=利润+进价销售价=成本×(1+利润率)或者 成本=利润率销售价1利润与折扣问题的公式利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)例1、一种衣服过去每件进价60元,卖掉后每件的毛利润是40元。

现在这种衣服的进价降低,为了促销,商家将衣服八折出售,毛利润却比过去增加了30%,请问现在每件衣服进价是多少元?分析:其实这道题是以现在的进价按原来的售价打八折出售,所以利润提高了。

解:设现在每件衣服进价是X 元,根据题意得0.8﹙60+40﹚-X =40﹙1+30%﹚例2 某个体商贩在一次买卖中,同时卖出两件上衣,每件都以135元出售,若按成本计算,其中一件盈利25%,另一件亏本25%,则他在这次买卖中A .不赔不赚B .赚9元C .赔18元D .赚18元分析:盈利就是售价减去进价,亏损就是进价减去售价解:设第一件衣服进价为X 元,第二件衣服进价为Y 元,根据题意得135-X =25%X X =108Y -135=25%Y Y =180135—108=27 180—135=45 即盈利27元 亏损45元所以45—27=18即最后亏损18元例3一件商品如果以八折出售,可以获得相当于进价20%的毛利,那么如果以原价出售,可以获得相当于进价百分之几的毛利?A .20%B .30%C .40%D .50%例4 一种衣服过去每件进价60元,卖掉后每件的毛利润是40元。

现在这种衣服的进价降低,为了促销,商家将衣服八折出售,毛利润却比过去增加了30%,请问现在每件衣服进价是多少元?( )A.28 B.32 C.40 D.48练习题:1.某商品按定价的八折出售,售价14.8元,则原定价是多少元?2.小赵去商店买练习本,回来后问同学:“店主告诉我,如果多买一些就给我八折优惠,我就买了20本,结果便宜了1.6元,你猜原来每本的价格是多少?3.某种商品的进价是400元,标价为600元,打折销售时的利润率为5%,那么,此商品是按几折销售的?4.国庆期间,某商厦举行促销活动,定价为180元的某一品牌的皮鞋打七折销售,每双仍可获利50元,求这种皮鞋每双的进价为多少元?5.果品公司购进苹果5.2万千克,每千克的进价是0.98元,运费的开支为1840元,预计损耗为1%,如果希望全部销售后能获利17%,问每千克苹果零售价应当定为多少元?6.一家商店将某型号彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”。

七年级数学应用题知识点

七年级数学应用题知识点

七年级数学应用题知识点数学应用题是数学学科的重点,在教学中十分重要。

七年级的学生需要掌握数学应用题的解题方法和应用技巧。

本文将从应用题分类、解题思路和技巧三个方面介绍七年级数学应用题的知识点。

一、应用题分类数学应用题主要可以分为以下四类:1. 填空题填空题是应用题的基础,主要考察学生的基本计算和运算能力。

填空题需要学生灵活运用四则运算和化简技巧,解题思路简单明了,但是需要小心粗心误填。

2. 选择题选择题需要学生有较强的辨别能力和推理能力,正确选择其中的答案。

一般选择题有较多的拓展,要求考生进行推理和证明,需要多阅读题干,发掘隐含条件来推断出结果。

3. 计算题计算题是应用题的中等难度,需要学生灵活运用基本数学知识和技能,解决具体问题。

计算题主要考察学生的运算能力和转化问题为算式的能力。

4. 解决问题解决问题类应用题是难度最大的,需要学生具有较强的综合能力和创造性思维。

这类题目需要学生运用多种方法和策略解决问题,有时候需要创造性的想法和富有创造性的策略来处理新的情况。

二、解题思路数学应用题解题思路主要有以下三个方面:1. 阅读题目要仔细要先看一遍题,弄明白题目要求,找出给定的数据、许可条件、目标条件等,揣摩题目,确定合理方法和策略,有利于找到解题思路和解决方法。

2. 理清思路,注重过程解题时要明确思路,将要解答的问题细化为若干具体的部分,梳理解题过程。

3. 检查答案解决完问题后,要核查答案是否与题目要求相符,特别是对于填空题和计算题,需要检查操作录入是否准确,特别是小数位和单位。

三、解题技巧数学应用题解题技巧主要有以下几点:1. 熟练掌握基本知识数学应用题需要涉及到多种知识点,而且需要按照一定的顺序进行计算和操作。

只有熟练掌握基本数学知识,才能更好的解决问题。

2. 根据题目要求确定方程和算式在解决问题时,应根据题目要求形成相应的方程或算式,而不是乱算一通。

通过方程和算式,可以更清晰地表达计算过程和计算过程中的关系,从而简化计算难度,提高计算效率。

(完整版)初一数学列方程解应用题归类含答案

(完整版)初一数学列方程解应用题归类含答案

应用题提高练习训练一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h=πr2h②长方体的体积 V=长×宽×高=abc1.把一段铁丝围成长方形,发现长比宽多2cm;围成正方形时,边长刚好为4cm.求所围成的长方形的长和宽各是多少?2.用一个底面半径为40mm,高为120mm的圆柱形玻璃杯向一个底面半径为100mm的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm,大玻璃杯的高度是多少?3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成.现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?4.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14).5.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm、高是10cm的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水还剩多高?若未能装满,求杯内水面离杯口的距离.二、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润×100%商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如打8折出售,即按原标价的80%出售.1.随着计算机技术的迅猛发展,电脑价格大幅度下降,某品牌电脑今年每台售出价格为4200元,比去年降低了30%,问去年该品牌电脑每台售出价为多少元?2、东方商场把进价为1890元的某商品按标价的8折出售,仍获利10%,则该商品的标价为多少?3、某种商品的进价是1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润不低于5%,那么商店最多降多少元出售此商品。

初一上学期数学应用题分类总汇

初一上学期数学应用题分类总汇

初一数学应用题专项【利润问题】1、某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少?2、某种品牌电风扇的标价为165元,若降价以九折出售,仍可获利10%(相对于成本价),那么该商品的成本价是多少?3、一商场把彩电按标价的九折出售,仍可获利20%,如果该彩电的进货价是2400元,那么彩电的标价是多少元?4、一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,•结果每件仍获利15元,这种服装每件的成本为_________.5、某件商品9折降价销售后每件商品售价为a元,则该商品每件原价为( )一种药物涨价25%的价格是50元,那么涨价前的价格x满足的方程是____________。

6、某商场将进价为每件X元的上衣标价为m元,在此基础上再降价10%,顾客需付款270元。

已知进价x元时标价m元的60%,则x的值是______________7、某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,些时仍可获利10%,此商品的进价为______.8.商店里有种型号的电视机,每台售价1200元,可盈利20%,现有一客商以11500元的总价购买了若干台这咱型号的电视机,这样商店仍有15%的利润,问客商买了几台电视机?9、某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的?10、某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?【行程问题】相遇问题:1、甲、乙两人相距60米,相向而行,甲从A地每秒走3米,乙从B地每秒走2米,如果甲先走10米,那么几秒后两人相遇?2、甲、乙两人相距60米,相向而行,甲从A地每秒走3米,乙从B地每秒走2米,那么几秒后两人相距20米?3、甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时后相遇。

初中数学常见应用题分类总结

初中数学常见应用题分类总结

初中数学常见应用题分类总结数学作为一门重要的学科,是我们日常生活中必不可少的一部分。

在初中阶段,学生们学习了许多数学知识,包括各种应用题。

应用题是将数学知识应用到实际问题中的题目,它们在学生的日常生活中起着重要的作用。

在本文中,我们将对初中数学常见应用题进行分类总结,并提供相应的解题思路和方法。

一、比例与比较1. 比例问题比例问题是初中数学中最常见的应用题之一。

它们涉及到两个或多个变量之间的比例关系。

在解决比例问题时,我们需要确定已知条件,建立比例关系并解方程,再根据所求条件求解。

常见的比例问题包括物品的价格比例,速度的比例等。

2. 比较问题比较问题要求我们根据已知条件对不同情况进行比较。

例如,如果给出两个商品的价格、重量等信息,我们需要确定哪一个商品更具性价比。

解决比较问题时,我们需要将已知条件转化为可比较的形式,并利用数学方法进行分析和比较。

这种类型的应用题在生活中非常常见。

二、百分比与利率1. 百分比问题百分比问题要求我们求解某个数值相对于另一个数值的百分比。

例如,求解一个商品的打折率,或者计算考试成绩的百分比。

当解决这类问题时,我们需要将百分数转化为小数,并根据已知条件进行计算。

2. 利率问题利率问题涉及到利息的计算和相关问题。

例如,计算存款利息、贷款利率等。

在解决利率问题时,我们需要了解利率的概念和计算方法,并应用相关的公式进行计算。

三、平均数与中位数1. 平均数问题平均数问题要求我们计算一组数据的平均值。

例如,求解一组考试成绩的平均分。

在解决这类问题时,我们需要将数据相加,并除以数据的个数,得到平均值。

平均数在生活中应用广泛,有助于我们对数据进行整体把握。

2. 中位数问题中位数问题要求我们找到一组数据的中间值。

例如,找到一组数中位于中间位置的值。

在解决中位数问题时,我们需要将数据按照大小进行排列,并找到中间位置的数。

中位数在统计和排序等领域有重要的应用。

四、图表与统计1. 图表问题图表问题要求我们根据给定的图表信息进行分析和计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用题练习行程问题
1.甲、乙两辆火车相向而行,甲车的速度是乙车速度的5倍还快20km/h,两地相距298km,两车同时出发,半小时后相遇。

两车的速度各是多少?
2、甲、乙两地相距300km,一列慢车从甲站开往乙站,每小时行40km,一列快车从乙站开往甲站,每小时行80km,已知慢车先行1.5h,快车再开出,问快车开出多长时间与慢车相遇?
3、一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?
4、甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度是4米/秒,乙跑几圈后,甲可超过乙一圈?
5、.甲乙两人在400米环形跑道上练习长跑,两人速度分别是200米/分和160米/分.
(1)若两人从同一地点同时反向跑,多少分钟后两人第3次相遇?
(2)若两人从同一地点同时同向跑,多少分钟后两人第2次相遇?
6. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?
二、工程类问题
1、有水桶两只,甲桶的容量是400升,乙桶的容量是150升,如果从甲桶放出的水是乙桶放出的2倍,那么甲桶剩的水是乙桶所剩的4倍。

问每桶放出了多少升水?
2、一项任务由甲完成一半以后,乙完成其余的部分,两人共用2小时。

如果甲完成任务的
3
1
以后,由乙完成其余部分,则两人共用1小时50分钟。

间由
甲、乙两人单独完成分别要用几小时?
3、车工班原计划每天生产50个零件,改进操作方法后,实际上每天比原计划多生产6个零件,结果比原计划提前5天,并超额8个零件,间原计划车工班应该生产多少个零件?
4、某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。

若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?
5、一项工程,甲队单独做10小时完成,乙队单独做15小时完成,丙队单独做20小时完成。

开始时三队合作,中途甲队另有任务,有乙、丙两队完成,用了6小时完工。

甲做了几小时?
6、一个水池上有两个进水管,单开甲管,10小时可把空池注满,单开乙管,15小时可把空池注满。

现先开甲管,2小时候后把乙管也打开,再过几小时池内蓄有四分之三的水?
三、数字、年龄、几何问题1.一个两位数的十们数字与个位数字的和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数,试求原两位数是多少?
2.将连续的奇数1,3,5,7,9…,排成如下的数表:
(1)十字框中的五个数的平均数与15有什么关系?
(2)若将十字框上下左右平移,可框住另外的五个数,
这五个数的和能等于315吗?
若能,请求出这五个数;若不能,请说明理由.
3.有一批课外书分给若干个儿童,若每人6本,最后缺2本;若每人分5本,最后多3本,请问有几名儿童呢?
4.在一只底面直径为30厘米,高为8厘米的圆锥形容器中倒满水,然后将水倒入一只底面直径为10厘米的圆柱形空容器里,圆柱形容器中的水有多高?
5.如图所示,两个长方形重叠
部分的面积相当于大长方形面
积的六分之一,相当于小长方
形面积的四分之一,阴影部分
的面积为224cm2,求重叠部分面积。

四、利润问题
1.某商场甲、乙两个柜组12月份营业额共64万元,1月份甲增长了20%,乙增长了15%,营业额共达到75万元,试求两柜组1月份各增长多少万元?
2、某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么商店最多可降多少元出售此商品?
3、某商场将某种DVD产品按进价提高35%, 然后打出“九折酬宾,外送50元打的费”的广告,结果每台DVD仍获利208元,则每台DVD 的进价是多少元?
4某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元?
5、一件商品按成本价提高20%标价,又以9折销售,售价为270元,这各商品的成本价是多少?五、调配、分配、配套问题
1.某商店今年共销售21英寸,25英寸,29英寸3种彩电共360台,它们的销售数量的比是1:7:4,这三种彩电各销售多少台?
2.某镇粮食仓库中,1号仓库存粮200t,2号仓库存粮70t,现在1号仓库每天运出15t,2号仓库每天运进25t粮,问几天后,2号仓库的存粮是1号仓库存粮的两倍?
3.某车间有60名工人生产太阳镜,1
名工人每天可生产镜片200片或镜架50个。

应如何分配工人生产镜片和镜架,才能使产品配套??
4.学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?
5.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。

求房间的个数和学生的人数。

6. 某工地需要派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应该怎样安排人员,正好能使挖的土及时运走?
7、用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套.现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?
8. 包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张长方形铁片可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?
9.某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,两个螺栓要配三个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?
六、积分问题
1、某企业对应聘人员进行英语考试,
试题由50道选择题组成,评分标准
规定:每道题的答案选对得3分,
不选得0分,选错倒扣1分。

已知
某人有5道题未作,得了103分,
这个人选错了多少道题?
2、某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。

某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?
七、资费问题(哪个更合算):
1、某学校组织学生春游,如果租用若干辆45座的客车,则有15个人没有座位,如果租用同数量的60座的客车,则多出1辆,其余车恰好坐满,已知租用45座的客车日租金为每辆车250元,60座的客车日租金为300元,问租用哪种客车更合算,租几辆车?
2.育才中学需要添置某种教学仪器, 方案1: 到商家购买, 每件需要8元; 方案2: 学校自己制作, 每件4元, 另外需要制作工具的月租费120元, 设需要仪器x件.
(1)试用含x的代数式表示出两种方案
所需的费用; (2)当所需仪器为多少件时, 两种方案所需费用一样多? (3)当所需仪器为多少件时, 选择哪种方案所需费用较少? 说明理由.
八.浓度问题:
1.今需将浓度为80%和15%的两种农药配制成浓度为20%的农药4千克,问两种农药应各取多少千克?
2.甲、乙两块合金,含银和铜的比分别是甲为4:3,乙为7:9,今从两块合金中各取多少千克,能得到含银84千克、含铜82千克的新合金?
3.有甲、乙两种铜和银的合金,甲种合金含银25%,乙种合金含银37.5%,现在要熔制含银30%的合金100千克,两种合金应各取多少?。

相关文档
最新文档