高等数学-微积分下-课件-华南理工大学 (20).

合集下载

高等数学-微积分下-课件-华南理工大学 (25).

高等数学-微积分下-课件-华南理工大学 (25).
4
如果当各小段长度的最大值 0时 ,
n
P(i ,i )xi的极限总存在, 则称此极限为函数
i 1
P( x, y)在有向曲线弧 L上 对坐标x的曲线积分,
或称 第二型曲线积分.记作 P( x, y)dx,即 L
n
L
P(
x,
y)dx
lim
0
i 1
P(i
,i
)xi
n
类似地定义 Q( x, y)dy L
1 23
化成参数式方程为 x 1 t, y 1 2t,z 1 3t A点对应 t 0, B点对应 t 1,于是
xdx ydy ( x y 1)dz
01(1 t)dt (1 2t)2dt (1 3t )3dt
1
0 (6 14t)dt 13
17
例3 计算 x2dx ( y x)dy, 其中 L
n
P( x,
y, z)dx
lim
0
i 1
P(i
,i ,
i
)xi
n
Q(
x,
y,
z)dy
lim
0
i 1
Q(i
,i
,
i
)yi
n
R( x,
y, z)dz
lim
0
i 1
R(i ,i , i )zi
8
6. 性质
y L L2
(1) 如果把 L分成 L1和 L2 , 则
L1 O
x
Pdx Qdy Pdx Qdy Pdx Qdy
(1) L是上半圆周 y a2 x2 , 反时针方向;
(2) L是x轴上由点 A(a,0) 到点B(a,0) 的线段.
解 (1)中L的参数方程为

华南理工大学版微积分下课件19

华南理工大学版微积分下课件19

第六节 高斯公式和斯托克斯公式一、高斯公式定理1:设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数()()()z y x R z y x Q z y x P ,,,,,,,,在Ω上具有一阶连续偏导数,则有⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂Rdxdy Qdzdx Pdydz dv z R y Q x P或()⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂dS R Q P dv z R y Q x P γβαcos cos cos这里∑是Ω的整个边界曲面的外侧,γβαcos ,cos ,cos 是∑上 点()z y x ,,出的法向量的方向余弦。

证明:我们只需证明三个等式⎰⎰⎰⎰⎰∑Ω=∂∂Pdydz dv x P ,⎰⎰⎰⎰⎰∑Ω=∂∂Qdzdx dv y Q ,⎰⎰⎰⎰⎰∑Ω=∂∂Rdxdy dv z R证明等式最重要的是处理好积分区域! 证明⎰⎰⎰⎰⎰∑Ω=∂∂Rdxdy dv z R(如图1) 例1:计算⎰⎰∑++dxdy zx dzdx yz dydz xy 2222,其中∑为椭球面12222=++z y x 的内侧。

解:利用高斯公式⎰⎰∑++dxdy zx dzdx yz dydz xy2222=()⎰⎰⎰∑++-dxdydz x z y 2222()()⎰⎰⎰⎰⎰≤+≤+-----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛--+--+-=++-=123222222121212222222222221342122y x y x y x y x dxdy y x y x y x dzz y xdxdy()⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡-+--=123223201232212dr r r r r d πθ ⎰=⎪⎪⎭⎫ ⎝⎛+-=2423sin cos sin 32cos sin 22ππdt t t t t tr ⎰⎪⎪⎭⎫⎝⎛-+-=2053sin 322sin 32sin 322ππdt t t t πππ5225332232543223232322-=-=⎪⎪⎭⎫ ⎝⎛-+-= 例2:计算曲面积分⎰⎰∑++xdzdx ydydz dxdy e z ,其中积分曲面∑为)20(22≤≤+=z y x z ,并取下侧。

大学微积分课件(PPT幻灯片版)pptx

大学微积分课件(PPT幻灯片版)pptx

高阶导数计算
高阶导数的计算一般采用归纳法 或莱布尼茨公式等方法进行求解。 需要注意的是,在计算过程中要 遵循求导法则和运算顺序。
应用举例
高阶导数在物理学、工程学等领 域有着广泛的应用。例如,在物 理学中,加速度是速度的一阶导 数,而速度是位移的一阶导数; 在工程学中,梁的挠度是荷载的 一阶导数等。
03 一元函数积分学
VS
几何意义
函数$y = f(x)$在点$x_0$处的导数 $f'(x_0)$在几何上表示曲线$y = f(x)$在点 $(x_0, f(x_0))$处的切线的斜率。
求导法则与技巧总结
基本求导法则
包括常数的导数、幂函数的导数、指数函数的导数、对数函数的导 数、三角函数的导数、反三角函数的导数等。
求导技巧
连续性与可微性关系
连续性
函数在某一点连续意味着函数在 该点有定义,且左右极限相等并 等于函数值。连续性是函数的基 本性质之一。
可微性
函数在某一点可微意味着函数在 该点的切线斜率存在,即函数在 该点有导数。可微性反映了函数 局部变化的快慢程度。
连续性与可微性关

连续不一定可微,但可微一定连 续。即函数的连续性是可微性的 必要条件,但不是充分条件。
历史发展
微积分起源于17世纪,由牛顿和莱布尼 茨独立发展。经过数百年的完善,已成 为现代数学的重要基础。
极限思想与运算规则
极限思想
极限是微积分的基本概念,表示函数在某一点或无穷远处的变 化趋势。通过极限思想,可以研究函数的局部和全局性质。
运算规则
极限的运算包括极限的四则运算、复合函数的极限、无穷小量 与无穷大量的比较等。这些规则为求解复杂函数的极限提供了 有效方法。

高等数学(微积分)ppt课件

高等数学(微积分)ppt课件
,且f'(x0)=0,则可通过二阶导数 f''(x0)的符号来判断f(x)在x0处取得极大值还是极小值。
曲线的凹凸性与拐点
凹凸性
若函数f(x)在区间I上二阶可导,且 f''(x)>0(或<0),则称曲线y=f(x)在 I上是凹的(或凸的)。
拐点
拐点的判定
若函数f(x)在点x0处二阶可导,且 f''(x0)=0,则可通过三阶导数f'''(x0) 的符号来判断点(x0,f(x0))是否为曲线 的拐点。
THANKS
感谢观看
非线性微分方程
通过变量替换、积分等方法求解,或 利用数值方法近似求解
级数的概念与性质
级数的定义 无穷序列的部分和序列
级数的性质 加法、减法、乘法、除法、重排等性

级数的收敛与发散 部分和序列有极限则级数收敛,否则 发散
常见级数及其敛散性 等差级数、等比级数、调和级数、交 错级数等,通过比较法、比值法、根 值法等方法判断其敛散性
VS
极限的性质
唯一性、局部有界性、保号性、保不等式 性、迫敛性等。
极限的运算法则
极限的四则运算法则
若两个函数的极限存在,则它们的和、差、积、商(分母不为零)的极限也存在,且等于这两 个函数极限的和、差、积、商。
复合函数的极限运算法则
设函数$y=f[g(x)]$是由函数$u=g(x)$与函数$y=f(u)$复合而成,若$lim_{x
无穷小量的定义
如果函数$f(x)$当$x to x_0$(或$x to infty$)时的极限为零,那么称函数$f(x)$为当$x to x_0$(或$x to infty$)时 的无穷小量。

2024版大学微积分课件(ppt版)

2024版大学微积分课件(ppt版)

大学微积分课件(ppt 版)目录•微积分概述•极限与连续•导数与微分•积分学•微分方程•微积分在实际问题中的应用PART01微积分概述微积分的定义与发展微积分的定义微积分是研究函数的微分与积分的数学分支,微分研究函数在某一点的变化率,而积分则是研究函数在一定区间上的累积效应。

微积分的发展微积分起源于17世纪的物理学和几何学问题,经过牛顿、莱布尼兹等数学家的努力,逐渐发展成为一门独立的数学学科。

微积分的研究对象与意义研究对象微积分的研究对象是函数,包括一元函数和多元函数,主要研究函数的性质、图像、变化率以及函数间的相互关系等。

研究意义微积分在自然科学、工程技术、社会科学等领域有着广泛的应用,如求解物理问题、优化工程设计、分析经济数据等。

微积分的基本思想与方法基本思想微积分的基本思想是通过局部近似来研究函数的整体性质,即“以直代曲”、“以不变应万变”。

基本方法微积分的基本方法包括微分法和积分法。

微分法是通过求导数来研究函数的局部性质,如单调性、极值等;积分法则是通过求原函数来研究函数的整体性质,如面积、体积等。

PART02极限与连续极限的概念与性质01极限的定义:描述函数在某一点或无穷远处的变化趋势。

02极限的性质:唯一性、局部有界性、保号性、四则运算法则。

03无穷小量与无穷大量:定义、性质及比较。

极限的运算法则与存在准则极限的四则运算法则加法、减法、乘法、除法。

极限存在准则夹逼准则、单调有界准则。

连续函数的概念与性质连续函数的定义函数在某一点连续的定义及性质。

间断点及其分类第一类间断点(可去间断点、跳跃间断点)、第二类间断点。

连续函数的性质局部性质(局部有界性、局部保号性)、整体性质(有界性、最值定理、介值定理)。

连续函数的四则运算加法、减法、乘法、除法。

初等函数基本初等函数及其性质,初等函数的连续性。

复合函数的连续性复合函数连续性的判断及证明。

连续函数的运算与初等函数PART03导数与微分导数的概念与几何意义导数的定义导数的几何意义可导与连续的关系描述函数图像在某一点处的局部变化率。

大学微积分课件(PPT版)

大学微积分课件(PPT版)
微分方程是包含未知函数及其导数的等式。
微分方程的解
满足微分方程的函数称为微分方程的解。
一阶微分方程
一阶线性微分方程
形如y'=f(x)y' = f(x)y'=f(x)y=f(x)的一阶微 分方程,可以通过分离变量法求解。
一阶非线性微分方程
形如y'=f(y/x)y' = f(y/x)y'=f(y/x)的一阶微 分方程,可以通过变量代换法求解。
定积分的计算
计算方法与技巧
定积分的计算是微积分中的重要技能。常用的计算方法包括换元法、分部积分法、牛顿-莱布尼兹公 式等。通过这些方法,可以将复杂的定积分转化为易于计算的形式。
反常积分
概念与计算方法
VS
反常积分分为无穷积分和瑕积分两种 类型。对于无穷积分,需要讨论其在 有限的区间上收敛的情况;对于瑕积 分,需要讨论其在某一点附近的收敛 情况。反常积分的计算方法与定积分 的计算方法类似,但需要注意收敛的 条件。
极限与连续性
极限的定义与性质
极限的定义
极限是描述函数在某点附近的变化趋势 的一种数学工具。对于函数$f(x)$,如果 当$x$趋近于$a$时,$f(x)$的值趋近于 某个确定的常数$L$,则称$L$为函数 $f(x)$在点$a$处的极限。
极限的性质
极限具有唯一性、有界性、保序性和 局部有界性等性质。这些性质有助于 我们更好地理解极限的概念和应用。
连续函数的图像
连续函数的图像是连续不断的曲线。在微积分中,我们经常需要研究连续函数的性质和 变化规律,以便更好地解决实际问题。
03
导数与微分
导数的定义与性质
要点一
导数的定义
导数是函数在某一点的变化率,表示函数在该点的切线斜 率。

高等数学微积分下华南理工大学

高等数学微积分下华南理工大学

应用问题建立微分方程的方法: 方法大体有两种
第一种方法
直接利用物理定律或几何条件列出方程, 常见的物理定律有力学、热学、光学、电学 的定律;
第二种方法
取小元素分析, 然后利用物理定律列出 方程(类似于定积分应用中的元素法).
6
例 衰变问题. 衰变速度与未衰变原子含量M成
正比,已知M t0 M0,求衰变过程中铀含量 M (t) 随时间 t 变化的规律.
解 衰变速度 dM , 由题设条件得 dt
dM M ( 0衰变系数)
dt
dM dt
M
负号是由于当 t 增加时M单调减少
dM M 代入M
dt, ln M t lnC, 即 t0 M0 , 得 M0 Ce0 C
M
Cet 通解
,
特解 M M0et 衰变规律
7
例 求游船上的传染病人数.
得 dy ky(800 y), 其中k > 0为比例常数.
dt
分离变量
dy kdt,
y(800 y)
11
dy kdt, y(800 y)
初始条件 y(0) 1, y(12) 3

1 1 1 dy kdt,
800 y 800 y
两边积分,得 1 [ln 800
y
ln(800
这种解方程的方法称为分离变量法.
3
例1 求解微分方程 dy 2xy 的通解. dx
解 分离变量,dy 2xdx, y
两端积分,
dy y
2
xdx,
ln y x2 lnC
y Ce x2为所求通解.
4
例2
求解初值问题
dx
yx
xydy 0 2

大学微积分课件PPT幻灯片版

大学微积分课件PPT幻灯片版

n 0 i 1
实例2 (求变速直线运动的路程)
设某物体作直线运动,已知速度v v(t )是 时间间隔 [T1 ,T2 ] 上 t 的一个连续函数,且 v(t ) 0,求物体在这段时间内所经过的路程
思路:把整段时间分割成若干小段,每小段上 速度看作不变,求出各小段的路 程再相加,便 得到路程的近似值,最后通过对时间的无限细 分过程求得路程的 精确值.
(1)
d
x e
t 2 dt
dx d 1
(2)
1 e t 2 dt
dx d x
(3)
cosx t 2et 2 dt
dx 1
补充
如果 f (t ) 连续,a( x) 、b( x) 可导,
则F ( x)
b( x ) f (t )dt 的导数F ( x) 为 a ( x )
F ( x)
d b( x ) a( x ) f (t )dt dx
使
b a
f ( x)dx
积分中值公式
f ( )(b a).
(a b)
m(b a) 证
b f ( x)dx M (b a) a
m
1 b a
b f ( x)dx M
a
由闭区间上连续函数的介值定理知
在区间[a, b]上至少存在一个点 ,
f ()
1
b f ( x)dx,
使
b a
x
以[ xi1 , xi ]为底,f (i ) 为高的小矩形面积为
Ai
f (i )xi
曲边梯形面积的近似值为 n
A f (i )xi i1
当分割无限加细, 记小区间的最大长度 或者( x ) x max{x1 , x2 ,xn } 趋近于零 ( x 0或者 0) 时,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

c 1( y)
D
先对x后对y的二次积分
也即
f ( x, y)d
d
dy
2 ( y) f ( x, y)dx
D
c
1 ( y)
6/62
注 特殊地 D为矩形域: a≤x≤b,c≤y≤d

f ( x, y)d
b
d
a dxc
f ( x, y)dy
D
d
b
c dya f ( x, y)dx
如D是上述矩形域,且f ( x, y) f1( x) f2( y)
1
sin
y2dy
0
x
分析 siny2 对y的积分不能用基本积分法算出,
而它对x的积分可用基本积分法算出. 所以将二次积分先 交换积分次序.
交换积分次序的方法是:
(1) 将所给的积分域 用联立不等式表示 D:
0 x 1, x y 1
y
(2) 画出积分域的草图
(1,1)
(3) 改写D为: 0 y 1, 0 x y o
1
解 设D1 {( x, y) 0 x 1,0 y x},
D2
D2 {( x, y) 0 x 1, x y 1}, O
D1 1x
emax{ x2 , y2 }dxdy emax{ x2 , y2 }dxdy emax{ x2 , y2 }dxdy

bd
f1( x) f2( y)dxdy a ( c f1( x) f2( y)dy )dx
D
b
(
a
f1( x)
d c
f2 ( y)dy )dx
b
a f1( x)dx
d
c f2( y)dy
即等于两个定积分的乘积.
7/62
X型区域的特点: 穿过区域且平行于y轴的直线 与区域边界相交不多于两个交点.
y x
x
11/62
1 dx
1
sin
y2dy
0
x
y
(1,1)
sin y2d
y x
D
1
dy
y
sin
y2dx
0
0
1
(sin
y2
)
x
y
dy
0
0
o
x
D : 0 y 1, 0 x y
1 y sin y2dy 0
1
1
sin
y 2dy 2
1 (1 cos1)
20
2
12/62
计算二重积分时,恰当的选取积分次序
D
a
1 ( x )
5/62
(2) 积分区域为: c y d , 1( y) x 2( y)
其中函数1( y)、2( y)在区间 [c,d]上连续.
y
d
y
d
Y-型
D x 2( y)
x 1( y) D x 2( y)
x 1( y)
c
c
O
x
O
x
f ( x, y)d
d
(
2( y) f ( x, y)dx)dy
y y 2(x) D
X-型
y
y 2(x)
D
y 1(x)
y 1(x)
Oa
b x Oa
bx
3/62
用二重积分的几何意义说明其计算法
f ( x, y)d ( f ( x, y) 0)的值等于以D为底,
以D曲面 z f ( x, y)为顶的曲顶柱体的体积.
应用计算“平
z
z f (x, y)
y
D3
D1 D2
(用积分区域的可加性质)
O
x
D1、D2、D3都是X型区域
D
D1
D2
D3
9/62
例1
计算
D
x y
2 2
d,D:x
2,
y
x,
xy
1所围成的区域。
例2 计算 y 1 x2 y2 d,D:x 1, y x, y 1所围成的区域。
D
10/62
例3
计算二次积分
1
dx
f
(
x0 ,
y)dy
x [a,b] 有: A( x) 2( x) f ( x, y)dy 1 ( x)
*V
f
( x,
y)d
b
a A( x)dx
D
b ( 2(x) f ( x, y)dy) dx a 1( x)
称为 累次积分. 先对y后对x的二次积分
f ( x, y)d
b
dx
2 ( x) f ( x, y)dy
解 V1 f ( x, y)d
D
R2 x2d
D
Rdx R2 x2 R2 x2dy 00
2 R3
3
V
8V1
16 3
R3
o
xy o
y
y R2 x2 D
Rx
15/62
计算二重积分 emax{ x2 , y2 }dxdy,其中
DyLeabharlann D {( x, y) 0 x 1,0 y 1}.
行截面面积为 已知的立体求 y 体积”的方法.
y 2(x)
A( x0 )
D y 1(x)
O
a
x0 b x
*计算截面面积 ( 红色部分即A(x0) )
是以区间 [1( x0 ),2( x0 )]为底,曲线 z f ( x0 , y)
为曲边的曲边梯形的面积.
4/62
A( x0 )
2( x0 ) 1( x0 )
第二节 二重积分的计算
一、在直角坐标系下计算二重积分 二、在极坐标系下计算二重积分 三、二重积分的换元法
1/62
本节介绍计算二重积分的方法: 二重积分化为累次积分(即两次定积分).
2/62
一、在直角坐标系下计算二重积分
(1) 积分区域为:a x b, 1( x) y 2( x).
其中函数1( x)、2( x)在区间 [a,b]上连续.
a
(a x) f ( x)dx
(a 0)
0
0
0
提示 左边的累次积分中, f ( y)是y的抽象函数,
不能具体计算. 所以, 先交换积分次序.
积分域 0 x a, 0 y x
y
可表为 0 y a, y x a
a
a
x
a
a
dx f ( y)dy dy f ( y)dx
0
0
0
y
•(a,a)
a 0
f
( y)
x
a y
dy
a
O
(a y) f ( y)dy
0
a
x
a
(a x) f ( x)dx 证毕. 0
14/62
立体底部 x2 y2 R2
例5 求两个底圆半径为R,且这两个圆柱面的方程
分别为 x2 y2 R2及 x2 z2 R2 .求所围成的
z
立体的体积. 曲顶z R2 x2
Y型区域的特点: 穿过区域且平行于x轴的直线 与区域边界相交不多于两个交点.
(3)积分区域D既是X型:
y
a x b, 1(x) y 2(x)
d
又是Y型:
c y d, 1( y) x 2( y)
c
O
计算结果一样. 但可作出适当选择.
a
bx
8/62
(4) 若区域如图, 则必须分割. 在分割后的三个区域上分别 使用积分公式.
十分重要,它不仅涉及到计算繁简问题,而且 又是能否进行计算的问题.
凡遇如下形式积分:
sin xdx, sinx2dx, cosx2dx, ex2dx, x
y e x2dx, e xdx,
dx , 等等,一定要放在
ln x
后面积分.
13/62
例4 求证
a
x
dx f ( y)dy
相关文档
最新文档