纤维素的水解
纤维素的水解产物
纤维素的水解产物
纤维素水解是利用化学或生物方法将纤维素分解成更小的分子的一种
过程。
纤维素水解的水解产物包括单糖、二聚糖、三聚糖、水解淀粉、水
解糊精、聚乙二醇、水解糊液等。
单糖是水解后纤维素主要产物,单糖主要有葡萄糖、果糖、半乳糖、
木糖、樟脑糖等,它们分子量很小,易溶于水,是最理想的制糖原料之一。
二聚糖主要有淀粉、硫酸淀粉等,它们具有提升表面特性、增强粘合性、调节均匀性和改善物料塑化性等优良功能,可用于食品、饮料、医药
和化妆品等行业。
三聚糖主要有凝胶糖和糊精,其分子量比二聚糖大,但也比纤维素小,它们具有很高的粘合性,可以在某些产品中用作凝胶剂。
聚乙二醇是水解纤维素后的另一种重要产物,它有着优良的体外稳定性,抗氧化性广泛应用于食品、医药和个人护理等行业。
最后,水解糊液是纤维素水解过程中重要的一种产物,它可以发挥物
料的凝胶、润滑、抗氧化、制粒和保湿等功能,用于胶体的制备等行业。
教学实验报告——纤维素的水解
教学实验报告——纤维素的水解实验目的:1.了解纤维素的水解反应;2.掌握通过酶解纤维素产生糖类的方法;3.探究不同温度对纤维素水解反应的影响。
实验原理:纤维素是由许多葡萄糖分子通过β-1,4-糖苷键连接而成的多糖,具有很高的结晶度和市民性,使得其难以被一般酶水解。
为了提高纤维素的可利用性,可以利用一些纤维素酶水解纤维素,将纤维素分解成糖类。
在本实验中,我们使用的是Trichoderma reesei产生的纤维素酶,其主要包含β-1,4-葡聚糖酶和β-1,4-葡聚糖截断酶。
在一定温度条件下,纤维素酶可以有效水解纤维素。
实验步骤:1.准备反应液:将纤维素酶与方式的纤维素按一定质量比混合,加入一定量的缓冲液,制成反应液;2.分别将反应液转移到不同温度条件下的水浴锅中,保持一定时间;3.将反应液暴露在100℃水浴中,停止反应;4.将反应液进行离心处理,分离液相;5.测定液相中的还原糖浓度。
实验结果:通过实验,我们得到了不同温度下纤维素水解反应的结果。
在不同温度条件下,反应液中的还原糖浓度如下表所示:温度(℃)还原糖浓度(mg/mL)30 0.0840 0.1250 0.2560 0.4570 0.5380 0.6090 0.62实验讨论:通过对实验结果的分析,我们可以得出以下结论:1.温度对纤维素水解反应具有显著影响,随着温度的升高,反应速率增加,还原糖浓度增加;2.在本实验中,纤维素的水解反应在70℃时达到阳极,此时还原糖浓度最高;3.在一定温度范围内,温度越高,纤维素的水解速率越快。
实验结论:通过实验我们可以得出纤维素的水解反应可以通过纤维素酶实现,纤维素的水解速率受温度的影响,温度越高,反应速率越快。
对纤维素进行酶解处理是提高其可利用性的有效途径。
实验改进:1.本实验可以进一步改进,例如结合不同的pH值,探究不同pH条件下纤维素水解反应的影响;2.还可以在实验中引入不同浓度的纤维素酶,研究其对纤维素水解反应的影响;3.对于实验结果进行重复性试验,以确保实验结果的可靠性和准确性。
纤维素水解化学实验
纤维素水解化学实验
实验名称:纤维素水解化学实验
实验目的:
1.熟悉使用催化剂对纤维素进行水解聚合反应的实验原理和操
作步骤。
2.通过水解聚合反应,生产出水溶性的高分子单体,探究其产物和水解纤维素分子量的关系。
实验原理:
水解聚合反应(hydrolysis polymerization)是一种利用酸、碱作为催化剂,对纤维素进行分解聚合的一种方法。
在水解聚合反应过程中,纤维素的羟基结合部位受到酸、碱催化剂的作用而被水解为羧酸(碱),原纤维素被分解成短链结构的单体,随后单体之间互相缩合,从而形成新的高分子。
实验仪器:烧杯、旋流床热器、搅拌棒、称量瓶、PH计、烘箱、显微镜等。
实验步骤:
1.准备试剂:根据实验的质量比准备好相应的试剂,如纤维素粉末、碱性水解液以及氢氟酸等。
2.称取材料:将纤维素材料放入烧杯中,用称量瓶称取适量的材料,待用。
3.加入碱性水解液:将规定的碱性水解液加入烧杯中,搅拌均匀,形成液体混合物。
4.加入催化剂:以规定的量加入无水氢氟酸,作为催化剂。
5.加热反应:应用旋流床加热器对反应混合物进行加热,以缩短反应时间,加热时间约为1h。
6.检测纤维素含量:取出反应混合物,加入少量氢氟酸稀释后,并用滤纸过滤后,分析其中纤维素的含量,以此来检验水解后纤维素的稀释程度。
纤维素水解
CH2OH C HO H H C C C OH H H O
CH2OH C C C C O O H OH
CH2OH C O OH OH H H C C H OH
+H2O
C
CH2OH
CH2OH
CH2OH
烯醇式结构
酮式结构
COOH OH H H C C C CH2OH H OH CH2OH
同碳二元醇
COOH C C C OH H OH
1 纤维素的酸水解
浓酸水解纤维素 的过程如下:
浓酸 纤维素 膨胀和溶 解
浓酸水分较少, 纤维素分解生成 的是寡糖,其中 主要是纤四糖
部分水解 生成低分 子多糖和 少量单糖
加水稀释 加热
进一步水解 生成单糖
单糖进一 步分解
100~200℃ 1~3h
缺点:酸必须回收,而且回用要经济上能过关,回收过程通常是高 成本的,要求防腐蚀的容器,体积也要较大。
2、主水解阶段,将纤维素水解成寡糖和葡萄糖单体的阶段;
3、后水解阶段,它是保证寡糖水解的阶段,而寡糖中主要是纤维四糖
寡糖和葡萄糖之间的比例则决定于所用酸的浓度
1 纤维素的酸水解
1.5 酸水解纤维素性质变化
1、DP降为200左右,成粉末状; 2、吸湿能力改变,先下降后上升; 3、碱溶能力增加, 4、还原性增强; 5、机械强度下降。
1 纤维素的酸水解
小结:酸水解整体成线理解 • 浓酸水解
纤维素 酸复合物 低聚糖 葡萄糖
• 稀酸水解
纤维素 水解纤维素 可溶性多糖 葡萄糖
纤维素多相水解所得残渣为水解
纤维素,所得溶液为低聚糖和单糖 溶液。在高温作用下,降解后的单 糖分解,成为有机酸,使得溶液显 酸性。
纤维素降解
纤维素降解
纤维素的降解是指在化学或物理因素的作用下,纤维素发生功能基转化,聚合度下降并引起葡萄糖基中碳-碳键、碳-氧键断裂,直至完全裂解转化,生成各种小分子化合物的反应。
纤维素在稀酸中水解时,有快、慢两个阶段,这是由纤维素的微细结构引起的。
非晶区结构疏松,试剂较易渗透,水解较快;结晶区结构紧密,水解较慢。
在水解初期,纤维素的平均聚合度迅速下降,经过一定时间后几乎不再变化,此时的聚合度称为平衡聚合度。
它的大小可作为晶区长短的相对标志。
在水解过程中还有另一种现象,即随着非晶态部分发生水解被逐步除掉后,水解残渣的吸湿性也随之逐步下降,但经过一最低值后又会重新上升。
这是因为水解液不能渗入结晶区内部,当非晶态部分被除去后,结晶区的水解产物从表面逐渐剥落,使残渣直径越来越小,单位重量的残渣的比表面积相对增加,吸湿性就上升。
纤维素水解
其中值得注意的是:
1.离子浓度越低, 速度越快。 2.在一定的酸浓度范围内,纤维素水解反应的速度与酸的浓度成正比。
3.温度增加酸水解反应的速度也加快;一般温度增加10℃,水解速度提高 1.2倍。
4.由于氢离子是由酸解离来,而强酸解离完全,故水解时都用强酸。
❖温度愈高,纤维素酸水解的速度愈快,但已生成的单糖的分解速度也愈 快。 ❖采用分段水解法或渗虑水解法,以缩短生成单糖在水解器中停留时间, 达到减少单糖分解造成损失的目的。
3.2.1 内切葡聚糖酶( EG, endo-1 ,4-D-葡聚糖水解酶,或 EC3.2.1.4) ,攻击纤维素纤维的低结晶区,产生游离的链 末端基;
3.2.2 外切葡聚糖酶,常称纤维二糖水解酶(CBH ,1 ,4-pD-葡聚糖纤维二糖水解酶,或EC3.2.1.91) ,通过从游离的 链末端脱除纤维二糖单元来进一步降解纤维素分子;
异变糖酸
CH2OH
异变糖酸
2 纤维素的碱性降解 2.4 反应Ⅱ:终止反应
2 纤维素的碱性降解
• 在剥皮反应发生的同时也发生着终止反应。但是, 剥皮反应速度要大于终止反应。
• 在碱法蒸煮时总是存在剥皮反应,其结果导致纤 维素聚合度下降,纸浆得率下降,故在蒸煮后期 尤其应注意不要过分延长时间以致纸浆得率和强 度下降。
2 纤维素的碱性降解
2.1 碱性水解
碱性水解使纤维素的部分苷键断裂,产 生新的还原性末端基,聚合度降低,纸浆 的强度下降。 纤维素碱水解的程度与用碱量、温度和 时间等有关,其中温度的影响最大。当温 度较低时,碱性水解反应甚微,温度越高, 水解越强烈。
2 纤维素的碱性降解 2.2 剥皮反应
剥皮反应指在碱性条件下,纤维素具有还 原性的末端基一个个掉下来使纤维素大分子 逐步降解的过程。
最新纤维素的水解实验报告
最新纤维素的水解实验报告实验目的:探究最新纤维素水解方法的效率和产物纯度,为工业生产和生物能源转化提供数据支持。
实验材料:1. 原始纤维素样品2. 硫酸溶液3. 水解酶制剂4. 缓冲溶液5. 蒸馏水6. 旋转蒸发器7. 恒温水浴8. pH试纸9. 离心机10. 紫外分光光度计11. 纤维素分析试剂盒实验方法:1. 将原始纤维素样品按照一定比例与硫酸溶液混合,调整pH值至2.0,确保反应体系的酸性条件。
2. 加入水解酶制剂,按照酶与纤维素的质量比为1:200的比例进行添加。
3. 将混合液置于恒温水浴中,控制在50°C下反应2小时。
4. 反应结束后,用蒸馏水稀释混合液,并调节pH值至7.0。
5. 通过离心机将未反应的酶和纤维素微粒移除,收集上清液。
6. 利用旋转蒸发器将上清液中的水分蒸发,得到初步的糖类产物。
7. 使用纤维素分析试剂盒对产物进行定性和定量分析,记录结果。
实验结果:通过紫外分光光度计测定,初步得到的糖类产物中葡萄糖的浓度为XX mg/mL,其他糖类如Xylose和Arabinose的浓度分别为XX mg/mL和XX mg/mL。
通过与已知标准品比较,确定产物的纯度和转化率。
实验讨论:本次实验中,纤维素的水解效率达到了XX%,高于传统酸水解方法。
酶制剂的选择对水解效率有显著影响,建议进一步优化酶的种类和用量。
同时,反应条件如温度和pH值的控制也对产物的纯度和产率有重要影响。
未来的工作将集中在优化反应条件和提高产物纯度上,以期达到更高的工业应用价值。
结论:本实验成功地通过酶法水解纤维素,获得了较高纯度的糖类产物。
实验结果表明,该方法具有较高的转化效率和产物纯度,有望应用于生物质能源的生产和化工原料的转化。
纤维素的水解
纤维素的水解杨** 41207****(2012级化学12**班周二晚实验小组,电话:187********)一、实验原理1.纤维素的水解纤维素在一定温度和酸性催化剂条件下,发生水解,最终生成葡萄糖[1]:(C 6H 10O 5)n + n H 2O === n C 6H 12O 62.葡萄糖的检验C 6H 12O 6中含有醛基,故具有较强的还原性,在碱性条件下能将新制得的氢氧化铜还原为红色的Cu 2O 沉淀[2];能和银氨溶液发生银镜反应。
反应方程式分别如下:C 6H 12O 6+2C u(O H )2CH 2OH(CHOH)4COOH+Cu 2O+2H 2O C 6H 12O 6+2Ag(NH 3)2OH CH 2OH(CHOH)4COONH 4+2Ag↓+3NH 3↑+H 2O二、实验操作过程与实验现象(一)纤维素的水解1.按浓硫酸与水7∶3(体积比)的比例配制H 2SO 4溶液20mL 于50mL 的烧杯中。
2.取圆形滤纸一片的四分之一撕碎,向小烧杯中边加边用玻璃棒搅拌,使其变成无色粘稠状的液体,然后将烧杯放入水浴(用250mL 烧杯代替水浴锅)中加热约10min ,直到溶液显棕色为止。
(溶液显棕色是因为纤维素部分炭化的结果)3.取出小烧杯,冷却后将棕色溶液倾入另一盛有约20mL 蒸馏水的烧杯中,用移液管取该溶液1mL 注入一大试管中。
用固体NaOH 中和溶液(加固体NaOH 时,要一粒一粒加,待前一粒溶解后再加后一粒),直至溶液变为黄色,再加Na 2CO 3调节溶液的pH 至9。
(二)葡萄糖的检验1.洗干净试管,配制银氨溶液。
在试管中滴加AgNO 3溶液,然后逐滴加入氨水,刚开始看到黄色沉淀生成,再滴加氨水溶液直至沉淀恰好消失,停止滴加氨水。
将3中溶液取2~3mL 滴加到盛有银氨溶液的试管里,水浴加热,管壁附积一层银镜。
2.配制好Cu(OH)2后,使溶液的pH >11,取3中溶液2~3mL 于新制的Cu(OH)2试管中,酒精灯上加热,可见到红色沉淀Cu 2O 生成[2]。
纤维素水解产物
纤维素水解产物正是纤维素水解产物,被认为是生物燃料、食品添加物以及工业制剂的有效基础原料。
纤维素是一种高级的植物细胞墙组分,由β-环糊精和降冰凝聚糊精组成,大部分纤维素都是木质素,具有极高的稳定性和强度;它可以在极端的生物环境中存活,抵抗挥发性有机化合物,腐败和降解等因素,快速穿透物质并形成极其稳定的二氧化碳气泡层。
纤维素水解是一种分解纤维素的示踪技术,通过应用水热和化学反应将纤维素降解成葡萄糖、乳糖、果糖、糖苷类、单糖醇和醇酸类等细胞外分子。
纤维素水解可以将纤维素溶解或聚合,并产生一种称为“纤维素水解产物”的有机物质,其中包含糖、醇、酸类物质等,这些物质可以催化纤维素分解过程。
纤维素水解产物被广泛应用于生物燃料、食品添加物以及工业制剂中,它可以作为一种高效能、可持续的取代石油的能源来源,可以作为食品添加物,改善食品的味道,营养和口感,故越来越受到消费者的欢迎;此外,纤维素水解产物还可以用于制造一些医药、化工和日用品,如洗发水、肥皂、洗衣粉等。
纤维素水解产物的应用越来越广泛,但是它的开发也面临着一些挑战。
纤维素水解是一种相对复杂的过程,需要一定的时间和技术,而且由于纤维素水解是一种消耗能源的过程,因此它可能比其他生物过程耗费更多的能源。
此外,纤维素水解产物也可能会产生有害的有机物,从而影响环境和人类健康。
因此,为了更有效地开发纤维素水解产物,需要从细胞增殖、细胞分化、细胞形态等方面发展出新的技术和材料。
此外,为满足相关的生物燃料、食品添加物以及工业制剂的应用,还需要不断完善纤维素水解技术以降低能耗,同时开发新的纤维素水解发酵剂,使其产出更多有效组分,减少污染物产生,以及优化纤维素水解工艺,便于大规模生产。
综上所述,纤维素水解产物具有广泛的应用,并且由于它的可再生性和耐久性,未来在生物燃料、食品添加物以及工业制剂的使用越来越普及,将成为未来绿色能源的重要来源。
然而,由于纤维素水解技术的复杂性,还需要研究人员不断开发新的技术和材料,使纤维素水解产物的开发更具效率性。
纤维素的水解
纤维素的水解一、前言纤维素是一种常见的多糖类物质,存在于植物细胞壁中,是植物体中最主要的成分之一。
由于其结构特殊,使得其水解变得相对困难。
但是,纤维素的水解对于生物质能源化利用具有重要的意义。
本文将介绍纤维素的水解过程及其机制。
二、纤维素的结构纤维素是由β-葡聚糖链组成,每个葡萄糖分子通过1,4-β-键连接在一起形成长链。
这些链相互作用形成微晶体,在植物细胞壁中起到支撑和保护作用。
三、纤维素的水解方式1. 酸性水解酸性条件下,β-葡聚糖链被酸催化裂解为低聚糖和单糖。
其中,低聚糖包括二糖和三糖等。
2. 碱性水解碱性条件下,β-葡聚糖链被碱催化裂解为低聚糖和单糖。
与酸性条件下不同的是,在碱性条件下还会产生一些其他的化合物,如糠醛、乙酸等。
3. 酶促水解在自然界中,纤维素的水解主要是由微生物和真菌等生物体内的酶催化完成。
其中,最常见的是纤维素酶和β-葡苷酶,它们可以分别将纤维素链水解为低聚糖和单糖,也可以同时作用于两种不同类型的链。
四、纤维素水解机制1. 酸性水解机制在酸性条件下,β-葡聚糖链上的羟基被质子化形成了更容易断裂的离子态。
随着pH值的降低,离子态越来越稳定,并且在一定程度上促进了β-葡聚糖链的断裂。
同时,在高温下,β-葡聚糖链上的羟基可以被质子化形成更稳定的离子态,并且更容易被断裂。
2. 碱性水解机制在碱性条件下,β-葡聚糖链上的羟基会被去质子化形成更容易断裂的离子态。
此外,在碱性条件下还会产生一些其他的化合物,如糠醛、乙酸等。
这些化合物可以与β-葡聚糖链上的羟基发生反应,从而促进链的断裂。
3. 酶促水解机制在酶促条件下,纤维素酶和β-葡苷酶等酶类可以通过不同的机制将纤维素链水解为低聚糖和单糖。
其中,纤维素酶主要通过切割β-葡聚糖链来实现水解;而β-葡苷酶则通过切割单糖之间的键来实现水解。
五、纤维素水解条件1. 酸性条件在工业上,常用硫酸或盐酸等强酸来进行纤维素的水解。
此外,在自然界中也存在一些微生物和真菌等可以在弱酸性条件下完成纤维素的水解。
纤维素水解
纤维素水解
纤维素水解是一个广泛应用于工业和生物科学领域的过程。
纤维素是一种多糖
类聚合物,主要存在于植物细胞壁中,包括木质素和纤维素。
纤维素水解是将纤维素分解为更简单的单糖,如葡萄糖,以便更好地利用其作为生物质资源。
纤维素的结构
纤维素是由葡萄糖分子通过β-1,4-糖苷键连接而成的线性多糖,具有高度的结
晶性和稳定性。
这种结构赋予了纤维素出色的机械强度和耐久性,同时也增加了其降解的难度。
纤维素水解的方法
纤维素水解通常采用酶解法和酸解法两种主要方法。
酶解法
酶解法是目前应用最为广泛的纤维素水解方法之一。
在酶解过程中,纤维素酶
通过降解纤维素的β-1,4-糖苷键来将纤维素水解为葡萄糖。
常用的纤维素酶包括纤
维素酶、β-葡聚糖酶等。
酶解法具有选择性高、反应条件温和等优点,但同时也存在酶的稳定性、成本等方面的挑战。
酸解法
酸解法是另一种纤维素水解的方法,通过在酸性条件下将纤维素水解成葡萄糖。
常用的酸包括硫酸、盐酸等。
酸解法具有操作简单、反应速度快等优点,但会产生大量的废弃物,并对环境造成污染。
纤维素水解的应用
纤维素水解是生物质能源利用的重要途径之一。
通过将纤维素水解成葡萄糖,
可以进一步转化为乙醇、生物柴油等可再生燃料。
同时,纤维素水解产生的糖类还可以用于生物化学品和生物材料的生产,促进生物经济的发展。
纤维素水解技术的不断发展将为可再生能源和生物资源开发提供更多可能性,
促进绿色和可持续发展的实现。
纤维素的水解实验报告
纤维素的水解一、实验目的1. 掌握纤维素水解的原理,理解运用银镜实验和新制的氢氧化铜检验醛基的原理。
2. 掌握纤维素水解实验的操作技能和演示方法。
二、实验原理1.纤维素的水解纤维素在一定温度和酸性催化剂条件下,发生水解,最终生成葡萄糖:(C6H10O5)n+n H2O===nC6H12O62.葡萄糖的检验葡萄糖分子中含有醛基,故具有较强的还原性,在碱性条件下能将新制得的氢氧化铜还原为红色的Cu2O沉淀;能和银氨溶液发生银镜反应。
反应方程式分别如下:C6H12O6+2Cu(O H)2△CH2OH(CHOH)4COOH+Cu2O+2H2OC6H12O6+2Ag(NH3)2O HCH2△OH(CHOH)4CO O NH4+2Ag↓+3NH3+H2O三、主要仪器与药品1. 实验仪器及材料烧杯(50mL,250mL)﹑石棉网﹑三角架﹑试管﹑试管夹﹑酒精灯﹑玻璃棒、滤纸或脱脂棉。
2. 实验药品浓H2SO4、NaOH、5% NaOH溶液、pH试纸、无水Na2CO3、2% AgNO3溶液、5% CuSO4溶液、2%氨水、蒸馏水。
四、实验操作过程与实验现象1. 按浓硫酸与水7∶3(体积比)的比例配制H2SO4溶液20mL于50mL的烧杯中。
2. 取圆形滤纸一片的四分之一撕碎,向小烧杯中边加边用玻璃棒搅拌,使其变成无色粘稠状的液体,然后将烧杯放入水浴(用250mL烧杯代替水浴锅)中加热约10m in,直到溶液显棕色为止。
(溶液显棕色是因为纤维素部分炭化的结果)水解方程为:(C6H10O5)n+n H2O===nC6H12O63. 取出小烧杯,冷却后将棕色溶液倾入另一盛有约20mL蒸馏水的烧杯中,用移液管取该溶液1mL注入一大试管中。
用固体NaOH中和溶液(加固体NaOH时,要一粒一粒加,待前一粒溶解后再加后一粒),直至溶液变为黄色,再加Na2CO3调节溶液的pH至9。
纤维素的水解实验报告
纤维素的水解一、目的与要求掌握纤维素水解实验操作技能和演示方法二、实验原理纤维素在一定温度和酸性催化剂条件下,发生水解,最终生成葡萄糖:(C6H10O5)n+nH2O nC6H12O6(条件:加热,催化剂)纤维素葡萄糖葡萄糖分子中含有醛基,故具有较强的还原性,在碱性条件下能将新制得的氢氧化铜还原为红色的Cu2O沉淀;能和银氨溶液发生银镜反应。
方程式分别如下:HOCH2(CHOH)4CHO + 2Cu(OH)2 + NaOH HOCH2(CHOH)4COONa + Cu2O +3H2O条件:加热CH2OH(CHOH)4CHO+2Ag(NH3)OH CH2OH(CHOH)4COONH4+2Ag+3NH3 +H2O 条件:水浴加热三、主要仪器与药品仪器:烧杯(50ml、250ml)、石棉网、三脚架、试管、试管夹、酒精灯、玻璃棒。
药品:铝制或脱脂棉、浓H2SO4、NaOH、5%NaOH 溶液、pH试纸、无水Na2CO3、2%溶液AgNO3、5%CuSO4溶液、2%氨水、蒸馏水。
四、实验内容1、按浓硫酸与水7:3(体积比)的比例配置H2SO4溶液20ml与50ml的烧杯中。
2、取滤纸的一半撕碎,向小烧杯中边加边边用玻璃棒搅拌,使其变成无色粘稠状的液体,然后将烧杯放入水浴中(用250ml烧杯代替水浴锅)中加热约10min,直到溶液显棕色为止。
3、取出小烧杯,冷却后将棕色溶液倾入另一盛有约20ml蒸馏水的烧杯中,用移液管取该溶液1ml注入一大试管中。
用固NaOH 中和溶液,直至溶液变为黄色,再加无水Na2CO3调节溶液的pH 至9。
4、洗干净试管,配置银氨溶液:取3ml 2%溶液AgNO3于试管逐滴加入2%氨水直至产生的沉淀恰好消失。
将3中溶液去3ml滴加到盛有银氨溶液的试管里,水浴加热管壁附积一层银镜。
为了防止产生的物质被氧化,尽快用硝酸处理。
5、配制好Cu(OH)2后,使溶液的pH>11,取3中溶液去3ml滴加到新制的Cu(OH)2试管中,酒精灯上加热,可以见到红色沉淀Cu2O 生成。
纤维素水解用浓硫酸还是稀硫酸? 有什么区别?
纤维素水解用浓硫酸还是稀硫酸?有什么区别?
分别用玻璃棒醮取两种酸在纸或木材或棉布上画痕,一段时间后,表面脱水炭化的是浓硫酸。
淀粉和纤维素属于天然高分子化合物,在自然界中分布最广,也是最重要的多糖。
它们在无机酸存在下能完全水解,并定量地得到D-葡萄糖。
纤维素分子呈丝状,这些分子以氢键的形式连接成纤维素胶束。
胶束中氢键的数目很多,所以结合得很牢固,物理和化学性质比较稳定,因此纤维素的水解比淀粉难。
纤维素跟较浓的硫酸作用时,纤维素中的游离羟基按一般醇的方式起酯化作用,生成硫酸氢酯,同时纤维素在葡萄糖残基之间以氧原子连接的地方逐渐水解为较小的分子,从而使纤维素溶解。
70%的硫酸在室温下和较短的时间内只能溶解纤维表面一层。
纤维的部分水解产物是分子量大的粉纤维和水解纤维素等,这些水解产物往往较牢固地粘附在纤维的表面。
只有对该硫酸略作加热处理,才能使纤维素完全溶解。
这时水解的程度增大,在水解时生成六糖、四糖和三糖等产物,最后生成纤维二糖和葡萄糖。
这些化合物能溶于水,并含有游离的半缩醛羟基,所以在碱溶液中能还原银离子和铜离子。
(2)溶解棉花、滤纸等纤维素,常选用70~80%的硫酸。
硫酸浓度低于70%时,纤维素较难溶解;浓度过高时,它的脱水能力明显增强,很容易使纤维素炭化。
这种选择是在常温条件下。
如果实验时能控制好温度,那么即使直接使用98%的浓硫酸,也同样能把棉花之类的纤维素顺利溶解、水解。
相反,如果只有1∶1的硫酸,甚至更稀一些的硫酸,只要控制好温度,同样可以溶解、水解纤维素。
下面介绍用95~98%的浓硫酸使纤维素水解,特点是溶解和水解所需时间很短。
纤维素的水解
改进Ⅱ
1. 把少许脱脂棉放入试管中,加入70%的 硫酸3mL~4mL。 2. 用玻璃棒把棉花捣烂,形成无色粘稠液体。
3. 把试管放在水浴中加热约15min,可看到 溶液呈亮棕色。 4. 放冷后倾入盛有20mL水的烧杯里,用氢 氧化钠中和硫酸,至溶液显碱性(用pH试 纸检验)。
5. 取一只洁净的试管,注入2mL上述水解后 已中和的溶液,再注入新配制的银氨溶液, 振荡后,放在水浴中加热,可观察到有银镜 生成。 6. 取一支试管,加入2mL 10%的NaOH溶液, 滴入4滴 2%的CuSO4溶液,振荡,溶液 变成淡蓝色后,加入2mL上述中和后的纤 维素水解液,振荡后,在酒精灯上加热煮沸, 很快就出现红色的Cu2O沉淀。
Hale Waihona Puke 【实验改进】 改进Ⅰ 1. 用少许脱脂棉(或几片碎滤纸)放入试管里, 加入3mL~4mL 1∶5的硫酸溶液,在 酒精灯上加热2min~3min,试管内棉花完 全溶解成透明液体。 2. 继续加热2min,液体呈亮棕色。 3. 然后将此亮棕色液体倾入盛有2mL~3mL 水的烧杯里,用氢氧化钠溶液将其pH调 至11。 4. 再滴加3滴硫酸铜溶液,振荡后,取混合 液2mL,在酒精灯上加热,即可看到有 红色的Cu2O沉淀生成。
纤维素的水解
【实验目的】 了解纤维素能发生水解的性质。 【实验原理】 纤维素在浓酸中或用稀酸在一定压强下长 时间加热,可发生水解反应,生成具有还 原性的葡萄糖。 催化剂 (C6H10O5)n+nH2On C6H12O6 纤维素 葡萄糖
生成的葡萄糖可用新制的氢氧化铜来检验。
【实验步骤】
1. 把一小团棉花或几小片滤纸放入试管中, 加入几滴90%的浓硫酸,用玻璃棒把棉 花或滤纸捣成糊状。 2. 小火微热,使之成为亮棕色溶液。 3. 稍冷,滴入3滴硫酸铜溶液,并加入过量 氢氧化钠溶液,以中和浓硫酸并生成新制 的氢氧化铜悬浊液,此时混合液应呈碱性 (pH≈11)。 4. 加热煮沸,可看到试管中有红色Cu2O沉 淀生成。
纤维素的水解.doc1
纤维素的水解一、 实验目的1. 了解纤维素水解的实验过程。
2. 掌握纤维素水解实验的操作技能和演示方法。
二、 实验原理1. 纤维素在一定温度和浓硫酸提供的酸性环境条件下发生水解,最终生成葡萄糖:(C 6H 10O 5)n +nH 2O nC 6H 12O 6纤维素 葡萄糖2. 葡萄糖分子中含有醛基,因此具有还原性。
在碱性条件下能将新制得的氢氧化铜还原为红色的Cu 2O 沉淀;能和银氨溶液在水浴加热下发生银镜反应。
反应方程式为:C 6H 12O 6+Cu(OH)2 (C 5H 11O 5COO)2Cu+Cu 2O ↓+H 2OC 6H 12O 6+2Ag(NH 3)2OH C 5H 11O 5COONH 4+3NH 3+2Ag↓+H 2O三、 实验试剂及仪器1. 实验试剂:滤纸(2*2cm ),浓H 2SO 4、NaOH 、5% NaOH 溶液、pH 试纸、无水Na 2CO 3、2% AgNO 3溶液、5% CuSO 4溶液、2% 氨水、蒸馏水。
2. 实验仪器:烧杯(50mL 、250mL )、石棉网、三脚架、试管、试管夹、酒精灯、玻璃棒。
四、 实验步骤(一)、纤维素的水解1. 用量筒分别量取14mL 浓硫酸和6mL 蒸馏水。
2. 将蒸馏水倒于50mL 烧杯中,用胶头滴管吸取浓硫酸缓慢加入于烧杯中,边加边用玻璃棒搅拌,从而配置70%硫酸溶液。
3. 取滤纸撕碎,加入于稍微冷却的硫酸溶液中,边加边用玻璃棒搅拌,使其变成无色粘稠状的液体。
4. 然后将烧杯放入盛有70℃左右水的250mL 烧杯中加热,直到溶液显棕色浓硫酸 加热 加热为止。
5.取出小烧杯,冷却后将棕色溶液倾入另一盛有约20mL蒸馏水的小烧杯中,混合均匀。
6.取该溶液20mL于50ml烧杯中,加入固体NaOH中和溶液,再加无水Na2CO3调节溶液的pH至9。
(二)水解产物的性质检验1. 将一小试管洗干净(先用碱洗,再用酸洗,最后用水洗),取3mL 2%AgNO3溶液加入于该试管中,然后逐滴加入2%氨水,边加边震荡至溶液呈无色澄清。
纤维素的水解(实验报告)
实验三:纤维素的水解41307059 杨金才2013级化学2班第四实验小组一、实验教学目标1.掌握演示实验中纤维素水解的操作步骤;2.初步学会纤维素水解实验的演示教学方法。
二、实验原理1.纤维素的水解纤维素在一定温度和酸性催化剂的条件下,发生水解,最终生成葡萄糖:(C6H10O5)n + n H2n C6H12O62.葡萄糖的检验葡萄糖分子中含有醛基,故具有较强的还原性,在碱性条件下能将新制得的氢氧化铜还原为红色的Cu2O沉淀;能和银氨溶液发生银镜反应。
反应方程式分别如下:C6H12O62OH(CHOH)4COOH + Cu2O↓ + 2H2OC6H12O6 + 2Ag(NH3)2 4COONH4 + 2Ag↓ + 3NH3 + H2O三、实验仪器、材料与药品烧杯(50 mL、250 mL)、石棉网、三角架、试管、试管夹、酒精灯、玻璃棒、滤纸或脱脂棉。
浓H2SO4、NaOH、5%NaOH溶液、pH试纸、无水Na2CO3、2%AgNO3溶液、5% CuSO4溶液、2%氨水、蒸馏水。
四、实验内容1.银镜反应1.1配制H2SO4溶液按浓硫酸与水7:3(体积比)的比例配制H2SO4溶液20 mL于50 mL的烧杯中。
注意事项:①整个实验所用之水均为蒸馏水,以免引起副反应而干扰银镜反应;②酸性水解所用H2SO4的浓度过大,易使纤维素脱水炭化而致溶液变黑,浓度过小,水解度又不够,实验证明H2SO4溶液的质量分数以大约70%为宜。
1.2配制酸性纤维素溶液并加热水解取圆形滤纸一片的1/4撕碎,向小烧杯中边加边用玻璃棒搅拌,使其变为无色粘稠状的液体,然后将烧杯放入水浴(用250 mL烧杯代替水浴锅)中加热约10 min,直到溶液显棕色为止(溶液县棕色是因为纤维素部分炭化的结果)。
(C6H10O5)n + n H2O n C6H12O6注意事项:①水解时要注意控制温度不能超过60℃,即用手感觉烧杯壁不烫手。
否则极易炭化;②加入碎纸片时,H2SO4溶液应先稍微冷却,否则将使碎片发生炭化。
纤维素水解
纤维素水解姓名梁朵学号4091203409级化学四班第二实验小组邮箱:liangduo@一.实验目的1.掌握演示纤维素水解实验的操作流程。
2.熟悉调节pH的操作技巧。
二.实验原理纤维素在一定温度和酸性催化剂条件下,发生水解,最终生成葡萄糖。
(C6H10O5)n+nH2O nC6H12O6生成的葡萄糖C6H12O6含有醛基,因此它具有较强的还原性。
在碱性条件下能将新制得的氢氧化铜还原成红色Cu2O沉淀。
可发生银镜反应。
三.实验步骤1.以浓硫酸H2SO4和水H2O体积比7:3的比例配制20ml酸性催化剂于50ml 小烧杯。
使溶液降至室温。
2.将滤纸撕成碎片,向小烧杯中边加边搅拌,是变成无色粘稠状液体,后水浴约10min,温度为60-70度为宜,且水浴时不宜搅拌,至溶液呈棕色为止。
3.取出后,冷却至室温。
取约1ml至一个试管中。
用NaOH调节溶液的pH 约为7-8,然后用Na2CO3调节至pH=9.0即可。
此时的溶液为一种缓冲溶液。
稀释到10ml。
4.向AgNO3溶液中逐滴加入氨水,当沉淀恰好溶解就停止加入氨水,即得银氨溶液。
将3中溶液取4ml滴加到银氨溶液中。
然后在60-80度水中加热。
一段时间后,试管壁上会出现银镜。
5.取3-5mlCuSO4溶液于一个干净试管,加入NaOH得到蓝色悬浊液氢氧化铜。
取2-3ml步骤3中溶液于新制的氢氧化铜试液中,用酒精灯加热,有红色Cu2O 沉淀生产。
四.注意事项1.实验过程中使用蒸馏水可以避免副反应。
2.实验用的是管必须干净。
洗试管的步骤:先用沸腾的碱液洗涤试管上的油污,后用沸腾的酸液洗去试管中的无机盐,最后用蒸馏水冲洗试管。
3.酸性催化剂的浓度不能太高,否则易使纤维素脱水炭化而至溶液变黑。
浓度过小,水解度又不够。
浓硫酸的质量分数为70%为宜。
4.银氨溶液的pH=9为宜,新制的氢氧化铜的pH=11为宜。
五.实验反思做完实验后,我进行了反思。
整体来说,这次试验比较失败。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四纤维素的水解一、实验目的1.掌握纤维素水解实验的操作技能和演示方法;2.掌握銀氨溶液配制的原理和方法;3.熟练浓硫酸的稀释过程,并巩固其过程中的安全问题;4.复习含有醛基的有机物的性质。
二、实验原理纤维素是一种常见的多糖,在一定温度和酸性催化剂条件下,会发生水解,最终生成葡萄糖:(C6H10O5)n + nH2O === nC6H12O6葡萄糖分子中含有醛基,故具有较强的还原性,在碱性条件下能将新制氢氧化铜还原为红色的氧化亚铜沉淀,还能和銀氨溶液发生银镜反应。
通过这两个反应可以验证纤维素已水解为葡萄糖了。
C 5H11O5CHO + 2Cu(OH)2+ NaOH → C5H11O5COONa + Cu2O↓ + 3H2OC 5H11O5CHO + 2Ag(NH3)2OH → C5H11O5COONH4+ 2Ag↓ + 3NH3+ H2O三、实验仪器与药品烧杯,试管,试管夹,酒精灯,玻璃棒,;滤纸,浓H2SO4,NaOH,5%NaOH溶液,pH试纸,无水Na2CO3,2%AgNO3溶液,5%CuSO4溶液,2%氨水,蒸馏水。
四、实验内容(一)纤维素的水解:1.按浓H2SO4与水7:3的体积比配制H2SO4溶液20mL于50mL的烧杯中,放置一会儿,使其稍微冷却。
2.取半张滤纸,撕碎,向小烧杯中边加边用玻璃棒搅拌,使其变为无色粘稠状的液体,然后将烧杯放入水浴(用250mL烧杯代替水浴锅)中加热约10min,直到溶液显棕黄色为止。
3.取出小烧杯,冷却后将该棕黄色液体倾入另一盛有约20mL蒸馏水的烧杯中。
取1mL混合液,注入一大试管中,加入适量固体NaOH,直到溶液pH在3-5之间,再加Na2CO3调节溶液的pH至9。
(二)纤维素水解产物葡萄糖的检验:4.洗干净试管,配制銀氨溶液。
(如果试管很脏,洗不干净,可先用沸腾的碱液洗去油污,再用沸腾的酸液洗去无机盐,最后用蒸馏水冲洗干净)銀氨溶液的配制是本次实验的难点。
取3胶头滴管的2%AgNO3溶液滴入试管,将2%氨水逐滴加入AgNO3溶液中,现象是先出现棕黄色沉淀(生成的AgOH不稳定分解成Ag2O的颜色),后来沉淀逐渐消失。
当沉淀正好消失时,就是纤维素葡萄糖葡萄糖水浴加热△葡萄糖H+△我们要的銀氨溶液。
(不能往氨水里加AgNO3,不仅操作不规范,而且氨水过量会生成AgN3,易爆炸,有安全隐患。
)配制銀氨溶液的过程中发生的反应为:AgNO3 + NH3·H2O === AgOH + NH4NO3AgOH + 2NH3·H2O === Ag(NH3)2OH + H2O5.将3中溶液取2-3mL滴加到盛有銀氨溶液的试管里,水浴加热,管壁附积一层银镜。
6.配制新制Cu(OH)2溶液,取1胶头滴管的CuSO4溶液加入一干净试管中,加5%NaOH溶液,直至溶液pH为>1。
取3中溶液2-3mL于新制的Cu(OH)2试管中,酒精灯上加热,可见到砖红色沉淀Cu2O生成。
五、注意事项1.整个实验所用之水均为蒸馏水,以免引起副反应而干扰银镜反应。
2.酸性水解所用H2SO4的浓度过大,易使纤维素脱水炭化而致使溶液变黑,浓度过小,水解度又不够,实验证明H2SO4溶液的质量分数以70%为宜。
3.銀氨溶液的pH=9,新制Cu(OH)2悬浊液的pH>11,是实验成功的保证。
4.加入碎纸片时,H2SO4溶液的温度不能太高,否则也会发生炭化。
5.做银镜实验时,试管要洁净。
否则,只得到黑色疏松的银沉淀,没有银镜产生或产生的银镜不光亮。
6.溶液混合时,振荡要充分。
加入最后一种溶液时,振荡要快,否则会出现黑斑或产生银镜不均匀。
7.加入的氨水要适量。
氨水的浓度不能太大,滴加氨水的速度一定要缓慢,否则氨水容易过量。
氨水过量会降低试剂的灵敏度,且容易生成爆炸性物质(叠氮化银)。
8.Cu(OH)2一定要是新配制的,否则会影响试验现象,得不到砖红色沉淀或得到很少的沉淀。
9.銀氨溶液只能临时配制,不能久置。
如果久置会会析出氮化银、亚氨基化银等爆炸性沉淀物。
这些沉淀物即使用玻璃棒摩擦也会分解而发生猛烈爆炸。
所以,实验完毕应立即将试管内的废液倾去,用稀硝酸溶解管壁上的银镜,然后用水将试管冲洗干净。
10.浓硫酸易腐蚀,所以实验过程中一定要戴手套。
六、实验反思纤维素的水解实验是高中化学的比较重要的演示实验,对引导学生学习对纤维素水解产物的检验、对还原性糖的性质具有重要的意义。
但是此实验的结果所受影响较多,操作讲究,是一个比较难做的实验,如果按照课本上的来进行,时间比较长,不仅影响课堂效率,还有可能达不到预期的效果而影响上课的质量,所以,对此实验进行了许多的探讨和研究。
1.以正交法进行探究。
在对纤维素水解产物进行检验时,常采用两种方法,一种是在碱性条件下将新制得的氢氧化铜还原为砖红色的Cu2O沉淀;另一个则是和银氨溶液发生银镜反应。
但是由于纤维素的水解所需时间较长,生成银镜质量不高,实验效果不佳,因此在进行对纤维素水解的探究时,常以银镜反应结果作为实验指标,采用正交试验法探讨纤维素水解的最佳实验条件,以达到较好的银镜生成效果。
①以形成光亮的银镜作为试验指标,对银镜光亮程度进行评分,将定性指标转化为定量指标。
选取影响纤维素水解的因素,用L12(211)因素水平表进行实验。
从实验中根据极查值选出4个影响本实验的主要因素,再设计为三水平做进一步探讨。
得到主→次:水浴温度→纤维素用量→纤维素水解方式→纤维素用量。
得出的最佳实验条件为:用脱脂棉。
纤维素用量0.05g,在烧杯中水解,水浴温度为100℃。
此实验操作简单,银镜效果好,重复性好,成功率100%,实验全过程为7-8分钟。
②以形成光亮的银镜作为试验指标,通过实践经验和相关论文,找出认为影(211))正交试验,根据评分规则,对水响较大的三个方面确定水平因素表,L12平因素表中的各个因素打分,然后从最重要的影响因素纤维素的水解中选取3个因素,影响银镜反应的因素中选取1个因素,得出关系主→次:纤维素用量→纤维素水解方式→水浴温度→硫酸浓度。
得出最佳实验条件为:银镜反应的水浴温度为90 ℃,纤维素水解方式为烧杯+ 玻棒,纤维素用量为3 g,硫酸浓度为74%。
③以形成光亮的银镜作为试验指标,查阅有关资料和实验基础上总结归纳出13个影响因素,再根据实验对于13个因素加以分析比较以便好中优选,其中水解液固定不过滤,初步实验为十一因素二水平,采用L(211)正交试验→做四12因素三水平正交实验→L9(24)正交实验,得出关系主→次:硫酸浓度→纤维素类型→纤维素用量→水浴温度,得出最佳实验条件为,用脱脂棉纤维素用量为0.3g,硫酸浓度为70%,水浴温度为95℃。
虽然试验指标相同,采用L12(211)正交试验,但是由于实验过程不相同,即对最终确定的影响较大的实验因素以及进一步的实验过程不同,得出的实验因素的主次关系也不同,还需要我们亲自再去探究验证。
2.控制变量法探究先定好已定条件,比如:纤维素水解产物的药品用量,硫酸浓度,水浴停止时间,以试管内混合物呈浅黄色粘稠液体为准。
接着定好待定条件,首先进行水浴温度的探究,只改变温度,接着探究滤纸的用量,反应后的中和处理条件,最终得到结论为:1cm 滤纸片 5 片,70% H 2 SO 4 1mL, 水浴温度70 ℃ , 稀释用水3mL, 浓度10% 和30% 的NaOH 溶液, 酚酞指示剂。
3.准确判断碱化水解液的碱化终点也是一个比较重要的因素,在上述提到过1.可以用酚酞作指示剂。
2.根据颜色的突变来掌握,随着中和过程的不断进行,溶液颜色的变化应该是:亮棕色—浅棕色—棕色。
总结:1.影响纤维素水解的因素很多,主要的有纤维素的类型、用量,硫酸的浓度,水浴的温度。
正交试验法与控制变量法相比,能在很多的因素中找出主要的因素,并且能同时得出几个主要因素的条件,而控制变量法则需要在大量的理论和自己的经验上去确定因素,并且需要一个一个因素的进行探究,可能试验的总体过程会带来更大的误差,选定的主要因素没有正交法来的可信。
2.细节决定成败,①在进行氢氧化钠中和到PH=9时,特别注意不仅是通过PH 试纸来确定是否中和到所要的程度,更要借助更明显的方法,保证演示实验的成功。
②不仅是药品影响实验,注意实验仪器也会影响实验结果,用作银镜反应的试管的洗涤最好向试管中注入1/3 体积的10% 的氢氧化钠溶液,煮沸 1 ~2 min ,倒入另一待洗的试管中,然后用水冲洗干净。
再用质量分数为10% 的盐酸煮沸1 ~2 min ,用水冲洗干净,即可使用。
参考文献:[1]陈红,纤维素水解实验的改进[J].化学教育,1997,(5):33—33.[2]纪文惠,冯登超,纤维素水解的最佳实验方法研究[J].中国科教创新导刊,2008,(32):93—94.[3]刘庆文,纤维素水解最佳条件探索[J].创新技术,2011,(2):38—40.[4]李娟,正交设计探究纤维素水解最佳实验条件[J].昌吉学院学报,2006,(1):105—108[5]张忠云,“纤维素水解”实验最佳条件的确定[J].教学仪器与实验,2001,17(3):10—11.[6]万中尧,突破纤维素水解的技术难点[J].化学教育,2001,(11):38—38.。