立体几何-小学奥数
高斯小学奥数五年级下册含答案第09讲_立体几何
第九讲立体几何- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -首先,我们来学习一下长方体、正方体的体积与表面积的计算方法.练一练.1.一个正方体的棱长总和是72厘米,它的一个面是边长_______厘米的正方形,它的表面积是_______平方厘米,体积是_______立方厘米.2.一个长方体的长是5分米,宽是45厘米,高是24厘米,它的表面积是_______平方厘米,体积是_______立方厘米.3.做一个长8分米,宽4分米,高6分米的长方体玻璃鱼缸,至少需要_______平方分米的玻璃.4.有一块棱长是10厘米的正方体的铁块,现在要把它熔铸成一个横截面积是20平方厘米的长方体,这个长方体的长是_______厘米.如果要求这个长方体每条棱的长度都是整数厘米,它的表面积最小是_______平方厘米.相信同学们对于这些公式都很熟悉,但是对于较复杂的立体图形,往往我们并不能直接应用公式进行计算,这个时候又该怎么办呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.有30个边长为1米的正方体,如图所示堆成一个四层的立体图形.请问:该立体图形的表面积等于多少平方米?分析:所谓表面积,就是立体图形露在外面的总面积.我们可以从上、下、左、右、前、后6个不同的方向去考虑这个立体图形,把每个方向露出的面积加在一起就行了.练习1.用14个棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?在观察物体的时候,我们往往可以从不同的角度进行观察.角度不同,看到的风景就会不同.比如:我们可以从正面看,上面看,左面看,看到的图形分别称为正视图,俯视图和左视图.并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是相同的.对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积.例题2.一个正方体被切成24个大小形状相同的小长方体(见下图),这些小长方体的表面积之和为162平方厘米,那么原正方体的体积是多少立方厘米?分析:我们先来分析一下切成小块的过程中,图形的表面积是如何变化的.同学们请看下图:一刀下去,正方体被一分为二.表面积和原来比,正好多出了A,B两个面.不难看出,这两个面的面积都等于原正方体6个面中1个面的面积.按这种方法,每切一刀,增加的都是两个面的面积.同学们可以计算一下,按如图的方式切了6刀后,表面积究竟增加了多少?练习2.一个正方体被切成36个大小形状相同的小长方体(见下图),这些小长方体的表面积之和为500平方厘米,那么原正方体的体积是多少立方厘米?例题3.如图,有一个边长为30厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小正方体后,表面积变为5496平方厘米,那么挖掉的小正方体的棱长是多少厘米?分析:挖去小正方体后,表面积会发生变化.如果挖的位置,最终结果会有区别吗?练习3.一个正方体棱长10厘米,在它的表面上挖去一个棱长3厘米的小正方体.请求出剩下立体图形表面积的所有可能.除了长方体、正方体之外,圆柱和圆锥在我们的生活中也特别常见.如图,圆柱的两个圆面叫做底面;周围的面叫做侧面;两个底面之间的距离叫做高. 圆锥的圆面叫做底面;尖点叫做顶点;顶点到底面的距离叫做高,顶点到底面圆周上任意一点的连线叫做母线.关于圆锥的内容,我们不作深入的学习,同学们只需要学会如何计算它的体积即可.大家可以把圆柱想象成一个底面是圆形的柱子,那其他柱体也就是底面是其他图形的柱子.如图,所有“上下一般粗”的图形都称为柱体,图中的两个图形分别叫做三棱柱和四棱柱,它们的体积计算公式都是:底面底面求所形成的立体图形的体积.分析:圆柱体的底面半径和高与长方形的长和高有什么关系?圆锥体呢?练习4.有一个圆柱和一个圆锥,它们的高和底面直径如图所示.圆柱体积及表面积分别是多少?圆锥的体积是多少?(π取3.14)6例题5.下图是一个棱长为4厘米的正方体,分别在前、后、左、右、上、下各面的中心位置挖去一个棱长1厘米的正方体,做成一种玩具.该玩具的表面积是多少平方厘米?如果把这些洞都打穿,表面积又变成了多少平方厘米?分析:打穿以后,表面积的计算有点复杂.想想都有哪些面是露在外面的?例题6.如图,一个底面长20分米,宽8分米,高15分米的长方形水池,存有三分之二池水.将一个高50分米,体积400立方分米的长方体竖直放入池中,那么长方体被水浸湿的部分有几分米高?分析:很明显长方体没有被水浸没,还有一部分在外面.水的体积没有变化过,但是形状发生了变化.原来是一个长方体,后来是什么样的形状?-正多面体正多面体,指各面都是全等的正多边形且每一个顶点所接的面数都是一样的凸多面体.一共有五种正多面体,分别是正四面体、正六面体(正方体)、正八面体、正十二面体和正二十面体.这些正多面体的作法都收录在了《几何原本》的第13卷中.柏拉图认为世界万物都是由火、气、水、土四元素构成的,其形状如正多面体中的四个.➢火的热令人感到尖锐和刺痛,好像小小的正四面体.➢空气是用正八面体制的,可以粗略感受到,它极细小的结合体十分顺滑.➢当水放到人的手上,它会自然流出,那它就应该是由很多小球所组成,好像正二十面体.➢土与其他的元素相异,因为它可以被堆栈,正如立方体.剩下没有用的正多面体——正十二面体,柏拉图以不清晰的语调写道:“神使用正十二面体以整理整个天空旳星座.”柏拉图的学生亚里士多德添加了第五个元素——以太,并认为天空是用此组成,但他没有将以太和正十二面体联系起来.约翰内斯·开普勒依随文艺复兴建立数学对应的传统,将五个正多面体对应五个行星——水星、金星、火星、木星和土星,同时它们本身亦对应了五个古典元素.在立体图形中,正多面体非常对称.除了正多面体之外,还有很多图形也具有非常漂亮的对称性.下面就是一些例子,不过要注意,它们可不是正多面体哦.作业1.如图所示,一个正方体被切成16个大小形状相同的小长方体,这些小长方体的表面积之和为256平方厘米,那么原正方体的体积是多少?作业2.一个正方体棱长8厘米,在它的表面上挖去一个棱长为2厘米的小正方体.则剩下的立体图形表面积可能是多少?作业3.如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小正方体后,表面积变为2454平方厘米,那么挖掉的小正方体的边长是多少?作业4.图中的立体图形中,每个小正方形的边长都是1.那么这个立体图形的表面积和体积分别是多少?作业5.正方形的边长为4,按照图中所示的方式旋转,那么得到的旋转体的体积和表面积分别是多少?(π取3)第九讲 立体几何例题1. 答案:72详解:用三视图法.从上往下看,面积为16平方米;从左往右看,面积为10平方米;从前往后看,面积也是10平方米.所以这个立体图形的表面积是()161010272++⨯=平方米.例题2. 答案:27详解:一共切了6刀,会增加12个大正方形的面积.加上原来的6个大正方形,一共有18个大正方形.162189÷=,每个大正方形的面积是9平方厘米,边长就应该是3厘米.正方体的体积是33327⨯⨯=立方厘米.例题3. 答案:4详解:在角上挖一个正方体,表面积不会增加.在棱上挖一个正方体,会增加2个小正方形的面积.在面上挖一个正方体,会增加4个小正方形的面积.一共增加了6个小正方形的面积.说明一个小正方形的面积是()25496630616-⨯÷=平方厘米,边长是4厘米.即小正方体的棱长是4厘米.例题4. 答案:(1)401.92,301.44;(2)37.68详解:(1)得到的旋转体为圆柱体,圆柱体的底面半径为4,高为8,则体积为2π48128π=401.92⨯⨯=,表面积为222π2π2π482π496π301.44r h r ⨯+=⨯⨯⨯+⨯⨯==.(2)以边长为4的直角边为轴旋转一周,所得立体图形为底面半径为3,高为4的圆锥体,体积为21π3412π37.683⨯⨯⨯==.例题5. 答案:120,126详解:从一个面中心位置挖去一个棱长1厘米的正方体,比原来增加4个面,增加了4平方厘米.共挖去6个正方体,增加24个面,增加了24平方厘米.加上原来的面积96平方厘米,共120平方厘米.如果把这些洞打穿,每个洞的表面积为31412⨯⨯=平方厘米,3个洞的表面积为36平方厘米.总的表面积变为96366126+-=平方厘米.例题6. 答案:101019详解:首先可算出这个长方体的底面积是8平方分米.将这个长方体竖直放入水中,该长方体一定不会被浸没.水池中水的体积为22081516003⨯⨯⨯=立方分米.放入长方体后水面的高度为()2001016002088101919÷⨯-==分米.长方体被水浸湿部分的高度也就是101019分米. 练习1.答案:46简答:()977246++⨯=.练习2. 答案:125简答:切了7刀,会增加14个大正方形,加上原来的6个一共20个.由此可知每个大正方形的面积是5002025÷=平方厘米,边长是5厘米.原正方体的体积是125立方厘米. 练习3.答案:600平方厘米,618平方厘米,636平方厘米简答:如果从角上挖,表面积不变,仍为600平方厘米;如果从棱上挖,表面积增加2个小正方体的面,表面积变为60092618+⨯=平方厘米;如果从面上挖,表面积增加4个小正方体的面,表面积变为60094636+⨯=平方厘米. 练习4.答案:696,768简答:如果只挖6个小正方体,表面积会增加24个小正方形,变成22610242696⨯+⨯=平方厘米.如果打穿,表面积为22610622424768⨯-⨯+⨯⨯=平方厘米.作业1. 答案:300简答:切了3刀,增加了6个面.切开后,立体图形的表面积为5512300⨯⨯=.作业2. 答案:384、392或400平方厘米简答:有挖角上、棱上与面上三种可能.作业3. 答案:3简答:各挖掉一个小正方体后,表面积会增加6个小正方形的面积.那么一个正方形的面积是()2454240069-÷=平方厘米,小正方体的棱长为3厘米.作业4. 答案:46,14简答:从上面可以看到9个正方形;从左边可以看到7个正方形,还有一个看不到的,一共8个;从前面可以看到6个正方形.所以表面积为()986246++⨯=.体积为14.作业5. 答案:48,72简答:旋转得到的圆柱底面半径为2,高为4.441648V ππ=⨯==,42442472S πππ=⨯+⨯==.。
五年级立体几何拓展----三视图专属奥数讲义
学科教师辅导讲义一.三视图在观察物体的时候,我们往往可以从不同的角度进行观察.角度不同,看到的风景就会不同.比如:我们可以从正面看,上面看,左面看,看到的图形分别称为正视图,俯视图和左视图.并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是知识图谱错题回顾三视图知识精讲相同的.对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积. 二.正方体的展开图我们采用不同的剪开方法,共可以得到下面11种展开图.三.长方体的展开图观察上图可以发现,长方体的展开图由6个长方形组成,相对面的面积相等,即上面=下面=长×宽,左面=右面=宽×高,前面=后面=长×高. 四.判断图形折叠后能否围成长方体或正方体的方法.判断一个图形折叠后能否围成正方体或长方体,首先,要依据它们各自展开图的特点判断;其次,可以运用空间想象或实际操作进一步判断.重难点:展开图、三视图及三视图求个数和表面积.高宽长右面左面 后面下面 前面 上面上 后 前右左下 展开后由上、下、左、右、前、后六个正方形面组成,这六个正方形面的面积都相等.三点剖析题模精选题模一:展开图与对立面例1.1.1 一个正方体的六个面上分别写着A ,B ,C ,D ,E ,F 六个字母.请你根据图中的三种摆放情况,判断每个字母的对面是______________,______________,______________【答案】 B 与D 相对,E 与A 相对,C 与F 相对 【解析】 由于正方体的6个面上写了6个不同的字母,那么每个字母在正方体的面上只能出现1次,如果2个字母在相邻的面上出现,那么它们一定不能相对.第一步,先看前2种摆放情况:在这2种摆放情况中,只有字母B 出现了2次,那么由第一种摆放可知,B 不与A 相对,也不与F 相对;由第二种摆放可知,B 不与C 相对,也不与E 相对.那么在所有的字母中,B 只能与D 相对.第二步,再看后2种摆放情况:在这2种摆放情况中,只有字母E 出现了2次,那么由第二种摆放可知,E 不与B 相对,也不与C 相对;由第三种摆放可知,E 不与D 相对,也不与F 相对.那么在所有的字母中,E 只能与A 相对.正方体有三个对面,因B 与D 相对,E 与A 相对,那么第三组对面上一定是C 与F 相对.例1.1.2 图中的四个正方体标字母的方式是完全相同的,请你利用图中已知的信息,判断A 、B 、C 的对面分别标的是哪个字母?【答案】 A 的对面标有D ,B 的对面标有F ,C 的对面标有E【解析】 由已知条件,标有C ,D 的两个面不能相对,那么或A 的对面标有D ,或B 的对面标有D .如果标有D ,A 的两个面相对,那么“标有C ,D 的两个面不能相对”,“标有E ,A 的两个面也不能相对”这两个条件都可以满足.注意到当D 在朝右的面,E 在朝上的面时,F 在朝前的面上,那么只能是标有E ,C 的两个面相对,而标有F ,B 的两个面相对.经检验,这种情况满足题目要求.如果标有D ,B 的两个面相对,那么由于标有E ,A 的两个面也不能相对,于是标有A 的对面就是标有F 的面,而标有C 的对面就是标有E 的面.此时D 在朝后的面上,E 在朝左的面上,F 在朝下的面上.我们把六面体旋转,把D 转到朝右的面,并把E 转到朝上的面,此时朝前的面上标的是A ,而朝后的面上标的是F ,与题意不符.A BC综上所述,满足题意的答案只有一个:A 的对面标有D ,B 的对面标有F ,C 的对面标有E .例1.1.3 如图,第1个方格内放着一个正方体木块,木块六个面上分别写着ABCDEF 六个字母.其中A 与D 相对,B 与E 相对,C 与F 相对.现在将木块标有字母A 的那个面朝上,标有字母D 的那个面朝下放在第1个方格内,然后让木块按照箭头指向,沿着图中方格滚动,当木块滚到21格时,木块向上的面上写的是哪个字母?【答案】 字母A【解析】 发现木块向左滚4格后,各个面上标的字母与初始时的情况完全一致.那么木块朝其它方向滚时也有类似的情况,即木块向任意方向连滚4格,它的各个面上标的字母不变. 所以木块向左滚4格到第5格时,各个面上标的字母与在第1格时的情况完全一致.再向下滚4格到第9格,再向右滚4格到第13格,再向下滚4格到第17格,最后向左滚4格到第21格,每次都是朝同一方向滚4格,因此在第5格,第9格,第13格,第17格,第21格木块向上的面上总是写的字母A .例1.1.4 如图,在一个正方体的表面上写着1~6这6个自然数,并且1对着4,2对着5,3对着6.现在将正方体的一些棱剪开,使它的表面展开图如图所示.如果只知道1和2所在的面,那么6应该在哪个面上(写出字母代号)?【答案】 A【解析】 对于立方体展开图,我们可以把任一个面当作底面,把它还原成立方体的表面.如图1,观察虚线圈住的部分,可以发现写有1,A ,B 的三个面两两相邻;再观察图2的虚线圈住的部分,发现写有A ,B ,C 的三个面也两两相邻.此时,写有1的面与A 面,B 面都相邻,C 面也与A 面,B 面都相邻,因此写有1的面与C 面相对,即C 面上写的是4.图11 AB C 2D图2 1 AB C 2D1与C 相对,C 面上写的是41 AB C 2D 3 12观察图3中的虚线圈住的部分,容易看出写有2的面与B 面相对,因此B 面上写的是5.则立方体展开图就如图4所示.还剩下A 面与D 面上的数字没有确定,这两个面上分别写有3和6.由于写有1的面,写有5的面与A 面两两相邻,把这三个面还原到立方体中.在图2所示的立方体中,5与2相对,在立方体朝左的侧面上;1在朝前的侧面上.在展开图中以写有1的面为朝前的侧面,A 面为下底面,则写有5的面恰好在朝左的侧面上.此时写有1的面,写有5的面都对齐了,而原立方体中下底面写有数字6,因此A 面上就是6.例1.1.5 下图是正方体,四边形APQC 是表示用平面截正方体的截面,截面的线表现在展开图的哪里呢?把大致的图形在右面展开图里画出来.【答案】 见解析【解析】 截线在展开图中如图所示:例1.1.6 右图是一个立体图形的平面展开图,图中的每个小方格都是边长为1的正方形.现在将其沿实线...折叠,还原成原来的立体图形,那么立体图形的体积等于_________.P图31 AB 4 2D2与B 相对, B 面上写的是5图41 A5 4 2DA . 3B . 4C . 5D . 6【答案】B【解析】 根据实线还原,体积为4. 题模二:三视图求表面积例1.2.1 下图是由5个相同的正方体木块搭成的,从上面看到的图形是( ).A . A 图B . B 图C . C 图D . D 图【答案】C【解析】 5个在原图均已看到,易知C 符合要求.例1.2.2 右图是由18个棱长为1cm 的小正方形拼成的立体图形,它的表面积是( )平方厘米.A . 44B . 46C . 48D . 50【答案】C【解析】 从正面、左面、上面分别可看见8、7、9块,故表面积为()21879248cm ⨯++⨯=.例1.2.3 右图中的一些积木是由16块棱长为2cm 的正方体堆成的,它的表面积是________2cm .【答案】 200【解析】 从前到后的3面依次有2块、5块、7块,因此还剩162572---=块,为可看D.B .C .A .见的1块与其下方的1块.由此易知正视图、俯视图、左视图分别能看到7块、9块、8块,此外离我们最近的2块有两个面从6个方向均无法看到,综上共可看到()7982250++⨯+=个面,表面积为22250200cm ⨯=.例 1.2.4 图中的立体是由大小相同的若干单位正方体积木搭成的.这样的积木一共有多少块?画出它的三视图,表面积是多少?【答案】 37;三视图如下图所示;102【解析】 将此图分为从左到右的5层,分别有16、9、5、6、1块,故共有16956137++++=块.三视图见答案,分别可看见17、15、16块,其中左视图有3块“被遮挡”,因此表面积为()17151632102+++⨯=⎡⎤⎣⎦.例1.2.5 图中的立体图形由11个棱长为1的立方块搭成,这个立体图形的表面积为_______.【答案】34【解析】 按一定的顺序,从不同的角度来看这个立体图形的表面的面积. 题模三:已知三视图反推个数例1.3.1 这个图形最少是由( )个正方体整齐堆放而成的.正视图 俯视图 左视图A.12B.13C.14D.15【答案】B【解析】从上面看下去,最少需要:122412113++++++=.例1.3.2此图是某几何体从正面和左面看到的图形.若该几何体是由若干个棱长为1的正方体垒成的,则这个几何体的体积最小是________.【答案】6【解析】根据正视图,理论上最少需要6块.而6块可以构造出来,例如,其俯视图如下图所示.因此,体积最小为3166⨯=.例 1.3.3一个立体图形,从前面,上面,右边三个方向看到的图形都如图所示,是一个样的,那么该立体图形最多由__________块小立方体组成.【答案】23【解析】按由上到下逐层分析,各层的小立方体数目分别不超过1个、4个、8个、10个,所以该立体图形最多由23个小立方体组成.例 1.3.4有一些大小相同的正方形木块堆成一堆,从上往下看是图3-1,从前往后看是图3-2,从左往右看是图3-3,那么这堆木块最多有多少块?最少有多少块?从正面看从左面看1 412212【答案】 16,13【解析】 43416+⨯=块,424113+⨯+=块.这堆木块最多有16块,最少有13块.例1.3.5 地上有一堆小立方体,从上面看时如图1所示,从前面看时如图2所示,从左边看时如图3所示.这一堆立方体一共有几个?如果每个小立方体的棱长为1厘米,那么这堆立方体所堆成的立体图形表面积为多少平方厘米?【答案】 10个;42平方厘米【解析】 采用在俯视图上标数的方法来求解,只要知道俯视图上的每格有几块小立方体,就可以很轻松的得到这堆立方体所形成的立体图形的样子.首先从俯视图很容易看出,有3个格子里是没有小立方体的,而其他6个格子里至少有一个小立方体.如下图,将所得信息填入俯视图中.结合俯视图和主视图,不难看出,有两格只有1块小立方体.将所得信息填入俯视图中.同样的,结合俯视图和左视图,又可以知道有一格只有1块小立方体.将所得信息填入俯视图中.从前面看图1图2图3我们来继续考虑,左视图中最左边一排有2块小立方体,所以俯视图左上角处有2块小立方体.将所得信息填入俯视图中.同理,主视图最右边一排有2块小立方体,所以俯视图最右边中间处有2块小立方体.将所得信息填入俯视图中.不难看出,俯视图中最后剩下的那块有3个小立方体,所以俯视图中每格的小立方体数如下:于是这一堆立方体一共有21321110+++++=个. 接着很容易得到这个立体图形的样子,如下图.上下各能看到6个面,前后各能看到6个面,左右各能看到6个面,同时注意到立体图形的中间共有6个会互相遮挡的面,所以表面积是()2666642⨯+++=平方厘米.从左边看随堂练习随练1.1将一正方体纸盒沿右图所示的粗实线剪开,展开成平面图,其展开图的形状为().A.A图B.B图C.C图D.D图【答案】B【解析】竖向只剪了1刀,故前、后、左、右四个面应在一条线上,排除A、D.易知上、下两面不在一条线上,排除C,故选B.随练1.2水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如下图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面.则“祝”、“你”、“前”分别表示正方体的________________________.【答案】后面、上面、左面【解析】易知你、程相对,前、锦相对,祝、似相对,因此“祝”、“你”、“前”分别表示正方体的后面、上面、左面.随练1.3小明把五颗完全相同的骰子拼摆成一排(如图),那么这五颗骰子底面上的点数之和是__________.【答案】16【解析】根据已知推出(4,5)(1,3)(2,6)互为对立面,所以这五颗骰子底面上的点数之和是++++=.6152216随练1.4右图是由八个相同的小正方体组成而成的几何体,则从正面观察,得到的平面图形是__________.序号)【答案】 ②【解析】 从正面看到图②,从上面看到图①,从右面看到图③.所以正确答案是图②.随练1.5 由棱长为1的正方体搭成如图所示的图形,共有__________个正方体,它的表面积是__________.【答案】 10;34【解析】 第一层有8个,第二层有2个,共10个.其三视图分别能看到4、5、8个,故表面积为()11458234⨯⨯++⨯=.随练1.6 如图,有9个边长为1米的正方体,如图所示堆成一个立体图形.该立体图形的表面积等于__________平方米.【答案】 38【解析】 利用三视图.从前面、右面、上面看依次如图所示.所以该立体图形的表面积是()26672138++⨯⨯=平方米.随练1.7 如图6,用若干个棱长为1的小正方体堆成一个大的几何体,这个几何体的表面积(含底面积)是__________.① ② ③ ④【答案】 90【解析】 根据三视图,大的几何体的表面积等于正视图面积+俯视图面积+右视图面积的2倍,所以是()21415162190++⨯⨯=.随练 1.8 用棱长是1厘米的小立方体拼成如图所示的立体图形,这个图形的表面积是__________平方厘米.【答案】 46平方厘米【解析】 如图1,从立体图形上方和下方看去,看到的都是9块小正方形.面积是9平方厘米.从四个侧面看去,看到的是图2形式的7块小正方形,面积是7平方厘米. 所以立体图形的表面积为927446⨯+⨯=平方厘米.随练1.9 把若干个棱长为1厘米的小正方体木块搭成一个图形,从上面和前面看到的都是如图所示的情形,这个图形最多需要__________个这样的小正方体,最少需要__________个这样的小正方体.【答案】 9;7【解析】 由从上方看到的结果可知第一层必有5个,且第二层至多5个;由从前面看到的结果可知共有2层,且第二层至少2个.再结合两个视图可知第二层至多4个.综上,最多9个,最少7个.图1图2 图6自我总结课后作业作业1一个数学玩具的包装盒是正方体,其表面展开图如下.现在每方格内都填上相应的数字.已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是_____________.【答案】3,1,2【解析】正方体的平面展开图中,相对面之间一定隔着一个正方形,所以在此正方体上与“A”相对的面上的数是“0”.与“B”相对的面上的数是“2”.与“C”相对的面上的数是“1”.所以A、B、C内的三个数字依次是3,1,2.作业2把1至6各一个分别写在正方形的六个面上,每个面只写一个数字,且1与4相对,2与5相对,3与6相对,从某个角度看到的三个面上的数字如图(a)所示,从另一个角度看到的三个面如图(b)所示,那么图(b)中的“?”代表的数字是___________.A.2B.3C.4D.5【答案】A【解析】如图,4对面是1,所以在图a中把4翻到底面,顶部变成了1,如图b,而5对面是2,所以当6转到正面时,5在左侧,右侧自然是2了,故答案是2..作业3 下图由一个正五边形,五个长方形,五个等边三角形组成,它是一个立体图形的平面展开图,那么这个立体图形有__________条棱.【答案】 20【解析】 此立体图形,示意图如上:共20条棱.作业4 用若干个棱长为1cm 的小正方体码放成如图所示的立体,则这个立体的表面积(含下底面面积)等于___________2cm .【答案】 60【解析】 根据三视图,我们可知,此立体图形的前面与后面,左面与右面,上面与下面的表面积分别相等.所以我们只要知道前面有11个正方形,右面有8个正方形,上面有11个面,就可求出它露在外面的面共计()11811260++⨯=个正方形,所以它的表面积是2260160cm ⨯=.作业5 如图,把19个边长为1厘米正方体重叠起来堆成如图所示的立方体,这个立方体的表面积是______平方厘米.【答案】 54【解析】 从上下左右前后六个方向看,分别可以看到9、9、8、8、10、10个小正方形面,所以总的表面积为54平方厘米.作业6 图中的立体是由大小相同的若干单位正方体积木搭成的.这样的积木一共有多少块?画出它的三视图,表面积是多少?【答案】 30;三视图如下图所示;76【解析】 将此图分为从左到右的4层,分别有11、7、5、7块,故共有1175730+++=块.三视图见答案,分别可看见13、12、11块,其中左视图有2块“被遮挡”,因此表面积为()1312112276+++⨯=⎡⎤⎣⎦.作业7 由若干个相同的正方体木块搭成的立体,从正面和左面看到的图形都是右图,搭这样的立体,最少用( )个这样的木块.A . 4B . 5C . 6D . 8【答案】A【解析】 按如图方式摆放即可. 正视图 俯视图 左视图作业8 由若干个棱长为1的正方体堆成的立体图形,其正视图、俯视图和左视图如下所示,请问这个立体图形体积是________.【答案】 5【解析】 由正视图和左视图可知共两层,且顶层只有1块,由俯视图可知底层有4块,故共有5块,体积为5.作业9 一仓库里堆放着若干个完全相同的正方体货箱,这堆货箱的三视图如图所示,这堆真方体货箱共有______________个.【答案】 9【解析】 俯视图确定基座,分析每块上的高度.正视图 俯视图 左视图。
小学奥数-立体几何-题库学生版
第五讲 几何——立体部分教学目标:对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.知识点拨:一、长方体和正方体如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.c b aHGFED CBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.二、圆柱与圆锥例题精讲:【例 1】 如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【例 2】 右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l 厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【例 3】 下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为14厘米,那么最后得到的立体图形的表面积是多少平方厘米?【例 4】 一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【巩固】(2008年走美六年级初赛)一个表面积为256cm 的长方体如图切成27个小长方体,这27个小长方体表面积的和是 2cm .【例 5】 如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?25块积木【例 6】 要把12件同样的长a 、宽b 、高h 的长方体物品拼装成一件大的长方体,使打包后表面积最小,该如何打包?⑴当b=2h时,如何打包?⑵当b<2h时,如何打包?⑶当b>2h时,如何打包?【巩固】要把6件同样的长17、宽7、高3的长方体物品拼装成一件大的长方体,表面积最小是多少?【例 7】如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.【例 8】(2008年“希望杯”五年级第2试)如图,棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是_______平方厘米.【例 9】把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积.【巩固】用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?【例 10】有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色.求被涂成红色的表面积.【例 11】棱长是m厘米(m为整数)的正方体的若干面涂上红色,然后将其切割成棱长是1厘米的小正方体.至少有一面红色的小正方体个数和表面没有红色的小正方体个数的比为13:12,此时m的最小值是多少?【例 12】有64个边长为1厘米的同样大小的小正方体,其中34个为白色的,30个为黑色的.现将它们拼成一个444⨯⨯的大正方体,在大正方体的表面上白色部分最多可以是多少平方厘米?【例 13】三个完全一样的长方体,棱长总和是288厘米,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,给这三个长方体涂色,一个涂一面,一个涂两面,一个涂三面.涂色后把三个长方体都切成棱长为1厘米的小正方体,只有一个面涂色的小正方体最少有多少个?【例 14】把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小正方体,其中恰好有两个面涂上红色的小正方体恰好是100块,那么至少要把这个大长方体分割成多少个小正方体?【例 15】把正方体的六个表面都划分成9个相等的正方形.用红、黄、蓝三种颜色去染这些小正方形,要求有公共边的正方形染不同的颜色,那么,用红色染的正方形最多有多少个?【例 16】一个长、宽、高分别为21厘米、15厘米、12厘米的长方形.现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少立方厘米?【例 17】有黑白两种颜色的正方体积木,把它摆成右图所示的形状,已知相邻(有公共面)的积木颜色不同,标A的为黑色,图中共有黑色积木多少块?A【巩固】这个图形,是否能够由112⨯⨯的长方体搭构而成?【巩固】有许多相同的立方体,每个立方体的六个面上都写着同一个数字(不同的立方体可以写相同的数字)先将写着2的立方体与写着1的立方体的三个面相邻,再将写着3的立方体写着2的立方体相邻(见左下图).依这样构成右下图所示的立方体,它的六个面上的所有数字之和是多少?33223323322323111111【例 18】 (05年武汉明心杯数学挑战赛)如图所示,一个555⨯⨯的立方体,在一个方向上开有115⨯⨯的孔,在另一个方向上开有215⨯⨯的孔,在第三个方向上开有315⨯⨯的孔,剩余部分的体积是多少?表面积为多少?【巩固】(2008年香港保良局第12届小学数学世界邀请赛)如图,原来的大正方体是由125个小正方体所构成的.其中有些小正方体已经被挖除,图中涂黑色的部分就是贯穿整个大正方体的挖除部分.请问剩下的部分共有多少个小正方体?第8题【巩固】一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个小正方体,把大正方【例 19】 (2009年迎春杯高年级组复赛)右图中的⑴⑵⑶⑷是同样的小等边三角形,⑸⑹也是等边三角形且边长为⑴的2倍,⑺⑻⑼⑽是同样的等腰直角三角形,⑾是正方形.那么,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的 倍.⑷⑶⑵⑴ ⑾⑽⑼⑻⑺⑹⑸【例 20】 图⑴和图⑵是以正方形和等边三角形为面的立体图形的展开图,图中所有的边长都相同.请问:图⑴能围起来的立体图形的体积是图⑵能围起来的立体图形的体积的几倍?图⑴ 图⑵【例 21】 如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)1110.511.5【例 22】 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?【例 23】 (第四届希望杯2试试题)圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米.(结果用π表示)【例 24】 如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(π 3.14=)【巩固】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?(π 3.14=)【例 25】 把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米.原来的圆柱体的体积是多少立方厘米?【例 26】 一个圆柱体的体积是50.24立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? (π 3.14=)【例 27】 (2008年”希望杯”五年级第2试)一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是_______ 立方厘米.(π取3.14)(单位:厘米)【巩固】一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?【巩固】一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.7cm4cm5cm【例 28】一个盛有水的圆柱形容器,底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为17厘米的铁圆柱垂直放入容器中.求这时容器的水深是多少厘米?【例 29】有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米?【例 30】如图,甲、乙两容器相同,甲容器中水的高度是锥高的13,乙容器中水的高度是锥高的23,比较甲、乙两容器,哪一只容器中盛的水多?多的是少的的几倍?甲乙【例 31】(2008年仁华考题)如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径为20厘米,中间有一直径为8厘米的卷轴,已知薄膜的厚度为0.04厘米,则薄膜展开后的面积是平方米.20cm8cm100cm【巩固】图为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4毫米,问:这卷纸展开后大约有多长?【例 32】如图,ABC是直角三角形,AB、AC的长分别是3和4.将ABC∆绕AC旋转一周,求ABC∆扫出的立体图形的体积.(π 3.14=)CBA43【例 33】 已知直角三角形的三条边长分别为3cm ,4cm ,5cm ,分别以这三边轴,旋转一周,所形成的立体图形中,体积最小的是多少立方厘米?(π取3.14)【巩固】如图,直角三角形如果以BC 边为轴旋转一周,那么所形成的圆锥的体积为16π,以AC 边为轴旋转一周,那么所形成的圆锥的体积为12π,那么如果以AB 为轴旋转一周,那么所形成的几何体的体积是多少?ABC【例 34】 如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD 相交O .E 、F 分别是AD 与BC的中点,图中的阴影部分以EF 为轴旋转一周,则白色部分扫出的立体图形的体积是多少立方厘米?(π取3)ABAB【巩固】(2006年第十一届华杯赛决赛试题)如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD相交O .图中的阴影部分以CD 为轴旋转一周,则阴影部分扫出的立体的体积是多少立方厘米?B A【例 35】 (人大附中分班考试题目)如图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下底面的中心打通一个圆柱形的洞.已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下底面的洞口是直径为4厘米的圆,求此立体图形的表面积和体积.课后练习练习1.(《小学生数学报》邀请赛)从一个棱长为10厘米的正方形木块中挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?(写出符合要求的全部答案)练习2.一个酒瓶里面深30cm,底面内直径是10cm,瓶里酒深15cm.把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm.酒瓶的容积是多少?(π取3)302515练习3.如右图所示,由三个正方体木块粘合而成的模型,它们的棱长分别为1米、2米、4米,要在表面涂刷油漆,如果大正方体的下面不涂油漆,则模型涂刷油漆的面积是多少平方米?练习4.(2008年第二届两岸四地”华罗庚金杯”少年数学精英邀请赛)一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆柱体的表面积大22008cm,则这个圆柱体木棒的侧面积是________2cm.(π取3.14)第2题练习5.如图,厚度为0.25毫米的铜版纸被卷成一个空心圆柱(纸卷得很紧,没有空隙),它的外直径是180厘米,内直径是50厘米.这卷铜版纸的总长是多少米?月测备选【备选1】如右图,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?【备选2】一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,圆柱体的底面直径和高都是12厘米.其内有一些水,正放时水面离容器顶11厘米,倒放时水面离顶部5厘米,那么这个容器的容积是多少立方厘米?(π3)5cm11cm【备选3】如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?【备选4】一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少?4cm【备选5】(2009年”希望杯”一试六年级)如图,圆锥形容器中装有水50升,水面高度是圆锥高度的一半,这个容器最多能装水升.。
小学六年级奥数之立体图形的表面积和体积知识
小学六年级奥数之立体图形的表面积和体积知识四种常见几何体的平面展开图1.正方体沿正方体的某些棱将正方体剪开铺平,就能够得到它的平面展开图,这个展开图是由六个全等的正方形组成的2.长方体沿长方体的某些棱将长方体剪开铺平,就能够得到它的平面展开图。
这个展开图是六个两两彼此全等的长方形组成的3.(直)圆柱体沿圆柱的一条母线和侧面与上、下底面的交线将圆柱剪开铺平,就得到圆柱体的平面展开图。
它由一个长方形和两个全等的圆组成,这个长方形的长是圆柱底面圆的周长,宽是圆柱体的高。
这个长方形又叫圆柱的侧面展开图。
4.(直)圆锥体沿圆锥体的一条母线和侧面与下底面圆的交线将圆锥体剪开铺平,就得到圆锥的平面展开图。
它是由一个半径为圆锥体的母线长,弧长等于圆锥体底面圆的周长的扇形和一个圆组成的,这个扇形又叫圆锥的侧面展开图。
【篇二】四种常见几何体表面积与体积公式1.长方体长方体的表面积=2×(a×b+b×c+c×a)长方体的体积=a×b×c(这里a、b、c分别表示长方体的长、宽、高)。
2.正方体正方体的表面积=6×a2正方体的体积=a3(这里a为正方体的棱长)。
3.圆柱体圆柱体的侧面积=2πRh圆柱体的全面积=2πRh+2πR2=2πR(h+R)圆柱体的体积=πR2h(这里R表示圆柱体底面圆的半径,h表示圆柱的高)。
【篇三】例题讲解一个长方体,前面和上面的面积和是209平方厘米,这个长方体的长、宽、高以厘米为单位的数都是质数。
这个长方体的体积和表面积各是多少?【思路导航】长方体的前面与上面的面积和是长×宽+宽×高=长×(高+宽),因为长方体的长、宽、高用厘米为单位的数都是质数,所以有209=11×19=11×(17+2),即长、宽、高分别为11、17、2厘米。
小学奥数之立体几何问题
多做练习题
练习是提高解题能力的关键,通过大量的练习可以加深对立体几何的 理解和掌握。 练习不同类型的题目,有助于拓展思维和提高解题技巧。
在练习中不断总结经验和教训,可以避免犯同样的错误。
定期进行自我评估和反思,找出自己的不足之处并加以改进。
善于总结与反思
总结解题方法: 归纳不同类型的 立体几何问题, 提炼出相应的解 题方法。
解题技巧的运用
空间想象:培养良好的空间感,能够想象出立体图形 逻辑推理:运用数学定理和公式,进行逻辑推理和证明 转化思想:将复杂问题转化为简单问题,将未知转化为已知 分类讨论:根据不同情况分别讨论,得出结论
挑战与突破
难度:小学奥数 中的立体几何问 题难度较大,需 要学生具备较好 的空间想象能力 和逻辑思维能力。
适用范围:适用于简单的几何图形,如长方形、正方形、三角形等。
解题步骤:观察几何图形,找出关键信息,如边长、角度等,然后利用基 本性质或定理进行推导。
注意事项:观察时要全面、细致,注意图形的对称性、平行性、垂直性等 特点。
归纳法
定义:通过观察和实验,总结出具有普遍性的规律或性质,并以此推断出其他类似 情况下的结论。
运用定理和性质:掌握并运用常见的定理和性质,如平行线性质、三角形内角和定理等。
运用辅助线:在解题过程中,通过添加适当的辅助线来帮助解决问题。
常见题型及解题方法
计算几何体的表面积和体积 判断点、线、面的位置关系 求解几何体的角度和长度 空间思维与推理问题
经典例题的解析与解答
题目:一个正方体,棱长为 5cm,求其体积和表面积。
反证法
定义:通过否定命题的结论,经 过推理得到矛盾,从而肯定命题 的结论。
步骤:假设命题结论不成立,然 后推导出矛盾,最后得出结论成 立。
小学六年级奥数 立体几何——表面积与体积
立体几何——表面积与体积【例1】(★★)【温故】基本图形表面积体积6a a2 3 如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?2(ab+ac+bc)abc 常用方法:三视图,阿基米德原理【例2】一个正方体木块,棱长是15。
从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体。
这个木块剩下部分的表面积最少是多少?【例3】(★★)如图所示,由三个正方体木块粘合而成的模型,它们的棱长分别为1米、2米、4米,要在表面涂刷油漆,如果大正方体的下面不涂油漆,则模型涂刷油漆的面积是多少平方米?1【例4】(★★★)【例5】(★★★)小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面看如下图左,从上面看如下图右。
那么这个几何体至少用了_____块木块。
有大、中、小三个正方形水池,它们的内边长分别是6米、3米、2米。
把两堆碎石分别沉没在中、小水池的水里,两个水池的水面分别升高了6厘米和4厘米。
如果将这两堆碎石都沉没在大水池的水里,大水池的水面升高了多少厘米?【例6】(★★★★★)【例7】(★★)如图,有一个棱长为10厘米的正方体铁块,现已在每两个对面的中央钻一个边长为4厘米的正方形孔(边平行于正方体的棱),且穿透。
另有一长方体容器,从内部量,长、宽、高分别为15厘米、12厘米、9厘米,内部有水,水深3 厘米。
若将正方体铁块平放入长方体容器中,则铁块在水下部分的体积为___立方厘米。
图是4×5×6长方体,如果将其表面涂成红色,那么其中一面、二面、三面被涂成红色的小正方体各有多少块?2【知新】【例8】(★★★)基本图形表面积体积2πR2+2πRhπR2h 如图,用高都是 1米,底面半径分别为 1.5米、 1米和. 。
多少平方米?( π取 3.14)1 3 πR2h 0.51111.5【例9】(★★★)(”希望杯”一试六年级)如图,圆锥形容器中装有水50升,水面高度是圆锥高度的一半,这个容器最多能装水升。
最新小学奥数之立体几何问题
立体图形⑴ 立体图形的表面积和体积公式长方体和正方体如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.c b aHGFED BA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.二、圆柱与圆锥【例 1】 如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?改.又是多少?【例 2】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)练习:在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【例 3】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为14厘米,那么最后得到的立体图形的表面积是多少平方厘米?【例 4】一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?(锯一次增加两个面)练习.一个表面积为256cm的长方体如图切成27个小长方体,这27个小长方体表面积的和是2cm.表面积最小:互相重合的面最多时表面积最小【例 5】如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?体积:例1. 如图11-6,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长2米的正方形,然后,沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?例2. 某工人用薄木板钉成一个长方体的邮件包装箱,并用尼龙编织条如图11-9所示在三个方向上加固.所用尼龙编织条的长分别为365厘米、405厘米、485厘米.若每个尼龙条加固时接头处都重叠5厘米,则这个长方体包装箱的体积是多少立方米?⑵不规则立体图形的表面积整体观照法例1. 如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.例2. 如图,棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是_______平方厘米.例3.把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积.例4.用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?例5.下图是由18个边长为1厘米的小正方体拼成的,求它的表面积。
小学奥数教学立体几何
立体图形⑴立体图形的表面积和体积公式长方体和正方体如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.①在六个面中,两个对面是全等的,即三组对面两两全等.(叠放在一起能够完全重合的两个图形称为全等图形. )②长方体的表面积和体积的计算公式是:长方体的表面积:S长方体=2(ab亠be」ca);长方体的体积:V长方体^abC .③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:S正方体=6 a , V正方体=a .二、圆柱与圆锥立体图形表面积体积f二刁h 圆柱匕工S圆柱=侧面积+2个底面积=2 xh +2 ∏22V圆柱=X h/[\ 圆锥-丄一S圆锥=侧面积+底面积=—∏2+ ∏2360注:1是母线,即从顶点到底面圆上的线段长1 2V圆锥体π h3【例1】如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?C【例2】右图是一个边长为 4厘米的正方体,分别在前后、左右、上 下各面的中心位置挖去一个边长 I 厘米的正方体,做成一种玩具.它的表面积是多少平方厘米 ?(图中只画出了前面、 右 面、上面挖去的正方体)练习:在一个棱长为 50厘米的正方体木块,在它的八个角上各挖 去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多 少?【例3】下图是一个棱长为 2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长 为L 厘米的正方形小洞,第三个正方形小洞的挖法和前两个相2同为L厘米,那么最后得到的立体图形的表面积是多少平方厘4米?【例4】一个正方体木块, 棱长是1米,沿着水平方向将它锯成 2片,每片又锯成3长条, 每条又锯成4小块,共得到大大小小的长方体 24块,那么这24块长方体的表面积之和是多少?(锯一次增加两个面)练习• 一个表面积为56cm 2的长方体如图切成 27个小长方体,这 是 Cm 2 ./ O /卸叵/27个小长方体表面积的和改.又是多少?表面积最小:互相重合的面最多时表面积最小【例5】如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?体积:例1. 如图11-6 ,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长2米的正方形,然后,沿虚线折叠成长方体容器•这个容器的体积是多少立方厘米?例2. 某工人用薄木板钉成一个长方体的邮件包装箱,并用尼龙编织条如图11-9所示在三个方向上加固•所用尼龙编织条的长分别为365厘米、405厘米、485厘米.若每个尼龙条加固时接头处都重叠5厘米,则这个长方体包装箱的体积是多少立方米?图11-9⑵不规则立体图形的表面积整体观照法例6.5分米的正方体上放一个棱长为 4分米的小正方体,求这例2.如图,棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起,则例5.下图是由18个边长为1厘米的小正方体拼成的,求它的表面积。
小学一年级奥数复习 立体几何
小学一年级奥数:立体几何我们称之为:体。
长方体,立方体,圆柱,圆锥,棱柱,棱锥,球体。
关于立体几何,有很多的公式,要求有丰富的空间想象能力,可以把它和我们的现实生活联系起来。
对于下面研究的图例,它们的面积和体积全部都有固定的公式,我们只要求认长方体就是每个面由长方形构成,总共有6个面,就有6个长方形。
正方体 由6个正方形构成,每条边长都一样。
有12条棱。
圆柱体 两个底面是完全相同的圆。
三棱柱 上下底面是三角形柱体与锥体:两端相同的,成对称的立方体;而锥体是一端是点,另一端是图形(圆或者多边形)。
圆锥三棱锥(四面体)四棱锥球,可以理解为是圆的立体化。
最中心的地方叫做球心,到球面的距离叫做球的半径。
立体图形,要有立体的想象能力,下面,我们把立体的图形解剖开来,看看它们的平面效果。
长方体展开图示:圆锥展开图形四棱锥展开图你能看出来它们是什么吗?你知道他展开后是什么样子的吗?观察下面的图形中阴影部分占整体的几分之几?图形的等积变化和等积划分问题:在奥数中通常会碰到一些比较怪异的图形,我们最常用的方法就是把它进行等积变化,变成可以计算的规则的图形。
等积划分就是把一个不规则的图形如何分为面积相等的两份,观察是最重要的途径。
1,变梯形为三角形:可以自己动手做一做!2,经典问题:五个小正方形,变成一个大正方形:3,如何把正方形再拼成一个等腰直角三角形?把图形分成面积相等的几分,关键在找到对称点,找到使两个或者多个单独的部分有相同的形状和结构。
1,分下面图形成面积相等的两部分:2,分下面的图两个相等的部分:如图,如何把院子里的12棵树分成大小相等,形状相同的4个小区,每个小区有3棵树?。
小学奥数思维训练-几何(三)立体图形(拓展训练)(通用,含答案)
保密★启用前小学奥数思维训练几何(三)立体图形一、选择题1.如图给出了一个立体图形的正视图、左视图和俯视图,图中单位为厘米.立体图形的体积()立方厘米.A.2πB.2.5πC.3πD.3.5π二、解答题2.将NNN(N是正整数)正方体的一些面涂上颜色以后,再将它切割成111的小正方体.已知至少有一面涂色的小正方体恰好占总数的52%,N是多少?3.小红的生日舞会,做了一顶圆锥形帽子,要将帽子涂成红色和蓝色,O点为顶点,BC为底面圆直径30cm,A点是OB的下三分之一处,OB=30cm,从A点出发,CA 之间最短的距离之上涂成红色,下边涂成蓝色.那么小红的帽子有多大地方涂的是蓝色?(π=3)4.一个正方体纸盒中恰好能放入一个体积为628立方厘米的圆柱,纸盒的容积有多大?(π=3.14)5.图中的立体图形是由14个棱长为5cm的立方体组成的,求这个立体图形的表面积?6.圆柱形的售报亭的高和底面直径相等(如图),开一个边长等于底面半径的正方形售报窗口.问窗口处挖去的圆柱部分的面积占圆柱形侧面积的几分之几?7.一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是多少?8.如图,一个正方体形状的木块,棱长1米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么这60块长方体表面积的和是多少平方米?9.如图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为1/2厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同,棱长为1/4厘米,那么最后得到的立体图形的表面积是多少平方厘米?10.把一个棱长为2cm正方体在同一平面的边的中点用线段连接起来,如图.然后把正方体顶点上的三角锥锯掉,请问最后所得的立体图形的表面积的多少平方厘米?(1.732×1.732=3)参考答案:1.A【解析】【详解】首先确定此图形为“不完整的圆柱”,先求出圆柱体积,再求出缺失的半个小圆柱,最后作差.如图,从给定的正视图、左视图和俯视图可以看出,该立体图形由一个半径为1厘米、高为1厘米的圆柱和一个半径为1厘米、高为2厘米的半圆柱组成..π×1×1×(1+2)-12π×1×1×2=2π,选A【点睛】这里的要点在于还原,还原的技巧在于先补全,再细雕刻2.5【解析】【详解】一个正整数×52%=另一个正整数,那么这个正整数必须能被25整除1352%25⎛⎫=⎪⎝⎭因为.那么N必须能被5整除.当N取最小N=5 正方体有5×5×5=125个小正方体涂色的小正方体5×5×5×52%=65(个)不可能被涂色的小正方体3×3×3=27(个)27+65小于125成立当N=2×5=10时,正方体有10×10×10=1000个小正方体涂色的小正方体10×10×10×52%=520(个)不可能被涂色的小正方体 8×8×8=512(个) 512+520大于1000 不成立同理N 大于10都不成立所以 N=53.750平方厘米【解析】【详解】底面周长为圆锥展开后 扇形的弧长蓝色面积=圆锥侧面积-红色面积底面周长=30×π=30×3=90侧面展开后扇形所在圆的周长=2×π×30=1809011802= 所以侧面展开图为半圆 蓝色面积=π×30×30×12-12×(20+20) ×30 =1350-600=750(平方厘米)4.800cm 3【解析】【详解】设纸盒棱长为x圆柱体积=22x x x π⨯⨯⨯=628 整理上边式子得x 3=800(cm 3) 即为纸盒容积.5.1050平方厘米【解析】【详解】用透视法观察 上、下两个面的面积相等4个侧面的每个侧面面积为6个小正方形面积底面棱长5×3=15 上、下两个面的面积=15×15×2=4504个侧面面积=4×6×5×5=600总面积=450+600=1050(平方厘米)6.1 12【解析】【详解】窗口上下的弧长为底面圆周长的六分之一窗口的高为圆柱的高的二分之一挖去的圆柱部分的面积占圆柱形侧面积的16×12=1127.1252【解析】【详解】截去一个小正方体,表面积不变.只有在截去的小正方体的面相重合时,表面积才会减少.所以要使木块剩下部分的表面积尽可能小,应该在同一条棱的两端各截去棱长7与8的小正方体(如图所示),这时剩下部分的表面积比原正方体的表面积减少最多.剩下部分的表面积最小是:15×15×6-7×7×2=1252.想想为什么不是15×15×6-7×7-8×8.8.24平方米【解析】【详解】我们知道每切一刀,多出的表面积恰好是原正方体的2个面的面积.现在一共切了(3-1)+(4-1)+(5-1)=9刀,而原正方体一个面的面积1×1=1(平方米),所以表面积增加了9×2×1=18(平方米).原来正方体的表面积为6×1=6(平方米).所以现在的这些小长方体的表积之和为6+18=24(平方米).9.29.25平方厘米【解析】【详解】俯视图发现上表面积就是大正方体的一个面的面积表面积为大正方体表面积加上3个小正方体的侧面积2×2×6+1×1×4+12×12×4+14×14×4=24+4+1+1 4=29.25(平方厘米)10.18.928cm2【解析】【详解】所得立体图形表面为6个正方形和8个等边三角形勾股定理等边三角形的高的平方=底边的平方-半个底边的平方=34底边的平方6个正方形面积=6×(1×1+1×1)=6×2=12等边三角形的高的平方=34×2=32等边三角形的高的平方×底边的平方=32×2=3所以等边三角形的高×底边=1.732,等边三角形的面积=1/2×1.732=0.866立体图形的表面积=12+8×0.866=18.928(cm2)。
立体几何教案奥数
第九讲立体几何知识导航:在小学阶段,我们除了学习平面图形外,还认识了一些简单的立体图形,如长方体、正方体(立方体)、直圆柱体,直圆锥体、球体等,并且知道了它们的体积、表面积的计算公式,归纳如下:在数学竞赛中,有许多几何趣题,解答这些趣题的关键在于精巧的构思和恰当的设计,把形象思维和抽象思维结合起来.经典例题:例1:下图是由 18 个边长为 1 厘米的小正方体拼成的,求它的表面积。
例2:一个圆柱体底面周长和高相等.如果高缩短了 2 厘米,表面积就减少12.56 平方厘米.求这个圆柱体的表面积?例3:一个正方体形状的木块,棱长为 1 米.若沿正方体的三个方向分别锯成 3 份、4 份和 5 份,如下图,共得到大大小小的长方体60 块,这 60 块长方体的表面积的和是多少平方米?例4:一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如下图.已知它的容积为 26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为 6 厘米;瓶子倒放时,空余部分的高为 2 厘米。
问:瓶内酒精的体积是多少立方厘米?合多少升?例5:一个稻谷囤,上面是圆锥体,下面是圆柱体(如下图).圆柱的底面周长是9.42 米,高 2 米,圆锥的高是0.6 米.求这个粮囤的体积是多少立方米?例6:皮球掉在一个盛有水的圆柱形水桶中。
皮球的直径为12 厘米,水桶底面直径为60 厘米.皮球有一半浸在水中(下图).问皮球掉进水中后,水桶的水面升高多少厘米?例7:下图所示为一个棱长 6 厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,求剩下的体积是原正方体的百分之几?课堂练习1、大、中、小三个正方体形的水缸都盛有缸水,它们的内边长分别为 4 分米、3 分米、2 分米.把两堆碎石分别沉浸在中、小水缸的水中,两个水池的水面分别升高了 4 厘米和 11 厘米.如果将这两堆碎石都沉浸在大水缸中,大水缸中水面将升高多少厘米?2、一根圆柱形钢材,沿底面直径割开成两个相等的半圆柱体,如下图.已知一个剖面的面积是 960 平方厘米,半圆柱的体积是3014.4 立方厘米.求原来钢材的体积和侧面积.3、在一只底面直径是 40 厘米的圆柱形盛水缸里,有一个直径是10 厘米的圆锥形铸件完全浸于水中.取出铸件后,缸里的水下降 0.5厘米,求铸件的高.4、在边长为 4 厘米的正方体木块的每个面中心打一个边与正方体的边平行的洞.洞口是边长为 1 厘米的正方形,洞深 1 厘米(如下图).求挖洞后木块的表面积和体积.5、如下图所示一个零件,中间一段是高为 10 厘米,底面半径为 2 厘米圆柱体,上端是一个半球体,下端是一个圆锥,它的高是 2厘米.求这个零件的体积6、塑料制的三棱柱形的筒里装着水(如图(1)是这个筒的展开图,图中数字单位为厘米).把这个筒的 A 面作为底面,放在水平桌面上,水面的高度是 2 厘米(如图(2))问:(1)若把 B 面作为底面,放在水平的桌面上,水面的高度是多少厘米?(2)若把 C 面作为底面,放在水平桌面上,水面高度是多少厘米?7、有一个圆柱体的零件,高 10 厘米,底面直径是 6 厘米,零件的一端有一个圆柱形的直孔,如下图.圆孔的直径是 4 厘米,孔深5 厘米.如果将这个零件接触空气部分涂上防锈漆,一共需涂多少平方厘米?。
小学六年级精品数学奥数培训教案(专题7)立体几何
专题七:立体几何1、用一张长为60厘米,宽为40厘米的长方形铁皮,做一个深为8厘米的长方体无盖铁皮盒(焊接处与铁皮厚度不计)。
求这个长方体无盖铁皮盒的容积。
2、已知一长方体的底面为正方形,它的前、后、左、右面的面积和为80平方厘米,又已知长方体的高是5厘米,则该长方体的体积是多少立方厘米?3.一个长方体的高如果增加2厘米,就成为一个正方体,这时表面积就比原来增加了48平方厘米。
原来长方体的表面积是多少?4.一个表面积是100平方厘米的正方体木块,如果把它切成8个相同的小正方体,每个小正方体的表面积是多少平方厘米?5.有n个同样大小的正方体,将它们摞成一个长方体,这个长方体的底面就是原正方体的底面。
如果这个长方体的表面积是3096平方厘米,当从这个长方体的顶部拿去一个正方体后,新的长方体的表面积比原来长方体的表面积减少144平方厘米,那么n是多少?6.甲、乙两圆柱体的底面半径的比是3:5,甲容器里水深3厘米,乙容器里水深7厘米,现在同时往甲、乙两个容器里加体积相等的水,直到水面高度相等为止,这时水面高多少厘米?7.工地上有一堆圆锥形三合土,底面周长37.68米,高5米,把这些三合土在宽15.7米的路面上铺4厘米厚,可铺多少米长?8、如图,一个油瓶里面深30cm,底面内直径为10cm,瓶里面油深15cm,把瓶盖盖好后,使其瓶口向下倒立,这时油深25cm,油瓶容积是多少毫升?9.一根圆柱形木头,如果沿着与底面平行的面截成两段,它的表面积增加6.28dm²,如果沿着直径截成两个半圆柱,它的表面积增加了80dm²。
这根圆柱形木头的体积是多少立方分米?10、一个圆柱的高是8厘米,如果高减少3厘米,则表面积比原来减少94.2平方厘米,原来圆柱的体积是多少立方厘米?11.将一块圆锥形糕点沿着高垂直于底面切成两半,表面积比原来增加24cm²,测得圆锥形糕点的高是6cm。
原来这块圆锥形糕点的体积是多少?12.一个圆柱体如图A切成4块,表面积增加48平方厘米;切成3块如图B,表面积增加50.24平方厘米。
五年级奥数-立体图形问题
课程五立体图形问题1.长方体、正方体表面积的计算 2。
长方体、正方体的切割问题 3。
长方体、正方体的体积4。
不规则物体的体积计算长方体和正方体的表面积应注意的问题(1)找出必备条件(长、宽、高或棱长),如题中没有直接给出,则 先求出必备条件,再求表面积(有盖还是无盖)。
(2)统一计量单位,单位不统一的,一般要通过化、聚,使单位统一 后再计算。
(3)求所需用的面积材料时,一般用“进一法“取近似值. (4)用同样多的立体拼图,由于拼法不同,重叠的次数不同,表面积 就会发生变化,每重叠一次,就减少两个面;每切一刀,就增加两个面。
1.长方体和正方体的体积概念及其计算公式 (1)长方体体积=长×宽×高 V 长方体=abc(2) 正方体体积=棱长×棱长×棱长 V 正方体=a 3 2.求不规则物体的体积水中物体的体积=容器的底面积×水上升或下降的高度。
水上升或下降的高度=水中物体的体积÷容器的底面积容器的底面积=水中物体的体积÷水上升或下降的高度例1有一个长15厘米,宽10厘米,高8厘米的长方体,现在要在这个长方体中挖去一个棱长为5厘米的小正方体,那么剩下部分的表面积是多少?学习目标重 点总 结(1) (2) (3)分析与解法根据长方体的特征我们可以知道,挖去小正方体的位置有3种情况,可能是在面上,如图(1),可能在顶点上,如图(2),可能在棱上,如图(3).在面上时,可以用长方体的表面积+小正方体4个面的面积;在角上时,正好等于长方体的表面积;在棱上时,要用长方体的表面积+小正方体2个面的面积。
解:原长方体表面积为:(15×10+15×8+10×8) ×2=700(平方厘米) 在角上时,剩下部分的表面积是700(平方厘米); 在面上时,剩下部分的表面积是: 700+5×5×4=800(平方厘米)在棱上时,剩下部分的表面积是:700+5×5×2=750(平方厘米)所以剩下部分的表面积是700平方厘米,或800平方厘米,或750平方厘米。
小学六年级奥数 立体几何常用技巧
2
【例4】(★★★★) 如图,原来的大正方体是由125个棱长为1的小正 方体所构成的。其中有些小正方体已经被挖除, 图中涂黑色的部分就是贯穿整个大正方体的挖除 部分。请问剩下的部分的表面积是多少?
【加加点睛】 求表面积——三视图法
【例5】(★★★)
图中所示的是我们生活中常用的卷筒纸,从纸的包装纸上得到以 下资料:“两层300格,每格11.4厘米×11厘米(长×宽)”。我们用 尺子量出整卷卫生纸的内外半径分别为2.3厘米和5.8厘米,每层卫 生纸的厚度为多少(π取3)?(精确到0.01毫米)。
【加加点睛】 找不变量——体积
3
【例6】(★★★★) 如图,一个底面长30分米,宽10分米,高12分米的长方体水池 ,存有四分之三水,请问: ⑴将一个高11分米,体积330立方分米的圆柱放入水池,水面 的高度为多少分米?
⑵如果再放入一个同样的圆柱,水面高度又变成了多少分米? ⑶如果再放入一个同样的圆柱,水面高度又变成了多少分米?
【加加点睛】
完全没过时:h水
=
V水
V铁块 S容器
;
部分没过时:h水
=
V水 器 S铁块
;
水溢出时:h水 =h容器
【例7】(★★★★) 如图若以长方形的一条宽AB为轴旋转一周后,甲乙 两部分所成的立体图形的体积比是多少? A
B
【例8】(★★★★★)华杯赛决赛试题
如图,ABCD是矩形,BC=6cm, AB=10cm,对角线 AC、BD相交O。图中的阴影部分以CD为轴旋转一周 ,则阴影部分扫出的立体的体积是多少立方厘米?
【例1】(★★)走美6年级试题
21个棱长为1厘米的小正方体组成一个立体如下图 ,它的表面积是______平方厘米。
(典型)小学数学应用题《奥数立体几何》试题附答案解析
(典型)小学数学应用题《奥数立体几何》试题附答案解析1、一个正方体木块的表面积是8平方厘米,若将木块截成体积相等的8个小正方体.问每个小正方体的表面积是多少平方厘米?8÷6÷4×6=2平方厘米2、一个正方体木块的表面积是96平方厘米,如果把它锯成8个体积相等的小正方体要块(如图),每个小正方体的表面积是______平方厘米一个面96÷6=16(平方厘米)小正方体面积16÷4=4(平方厘米)4×6=24平方厘米3、一个长方体的宽和高相等,并且都等于长的一半(如图).将这个长方体切成12个小长方体,这些小长方体的表面积之和为600平方分米.求这个大长方体的体积.4、设长方体侧面积为1平方分米,它表面积为1×2+1×2×4=10平方分米切成12个小长方体后新增表面积(1×3+1×2×2)×2=14平方分米600÷(10+14)=25平方分米25=52大长方体的体积.25×(5×2)=250(立方分米)5、从一个长方体上截下一个体积是32立方厘米的小长方体,剩下部分正好是一个棱长为4厘米的正方体。
问:原来这个长方体的表面积是多少?截面积:4×4=16(平方厘米);截下来的长度:32÷16=2(厘米);4+2=6(厘米);原长宽高分别是4厘米,4厘米和6厘米;表面积为:2(4×4+4×6×2)=128(平方厘米)答:原长方体的表面积是128平方厘米.6、一个长方体形状的木块,长8分米,宽4分米,高2分米,把它锯成若干个小正方体,然后再拼成一个大正方体,求这个大正方体的表面积=______(单位是平方分米).题意,可以拼出边长为4分米的大正方体,其表面积为:4×4×6=96(平方分米),答:这个大正方体的表面积为96平方分米7、一个正方体被切成24个大小形状一模一样的小长方体(如图),这些小长方体的表面积之和为162平方厘米.请问:原正方体的体积是多少?一个正方体被切成24个大小形状一模一样的小长方体,则需要切6次,共增加12个大正方体的面,一个面的面积:162÷(12+6)=9(平方厘米),因为3×3=9,所以可知大正方体的棱长是3厘米,大正方体的体积:3×3×3=27(立方厘米),答:原正方体的体积是27立方厘米.8、一个边长为60厘米的正方形伯片,剪去四个角后,剩下部分可以拼成一个无盖长方体,问所得长方体容积最大多少当长=宽=高时;容积最大;此时;长=宽=高=60÷3=20;此时体积=20×20×20=8000立方厘米9、一块长方形铁皮长60厘米,宽40厘米,如图,从四个角上剪去边长是10厘米的正方形,然后做成盒子,这个盒子的容积是多少升?盒子的长是: 60-10×2=40(厘米),盒子的宽是: 40-10×2=20(厘米),盒子的高是: 10厘米,盒子的容积: 40×20×10=8000(立方厘米),8000立方厘米=8立方分米=8升;答:这个盒子的容积是8升.10、右图是由120块小立方体构成的4×5×6的立方体,如果将其表面涂成红色,那么其中一面、二面三面被涂成红色的小立方体各有多少块?三面红色的小立方体位于长方体的8个顶点,共8个;二面红色的立方体位于长方体的12条边,每边的个数是原边长-2,(因为要去掉2个顶点),一共有4×((6-2)+(5-2)+(4-2))=36个;一面被涂色的立方体是长方体表面剩余的立方体,每个表面的数量是原边长-2的矩形面积,一共有2×[(2×3)+(3×4)+(4×2)]=52个11、如图所示是一个由小立方体构成的塔,请你数一数共有______块.由图可得:(1)第二层小立方体有:1+3=4(块);第三层小立方体有:4+5=9(块);第四层小立方体有:9+7=16(块);(2)把各层小立方体的个数加起来求和得: 1+4+9+16=30(块)答:图中共有小立方体30块.12、在一个表面涂满了红色的正方体,在他的每个面上都等距离的切三刀.三个面图有红色的小正方体有几个?两个面涂有红色的小正方体有几个?一个面涂有红色的小正方体有几个?没有涂到红色的小正方体有几个?三个面红的,就是8个顶点,所以是8个两个面红的,就是12条棱上了,每条有2个,一共12×2=24个一个面红的,就是6个面上的,每个面有4个,一共6×4=24个没涂到红色的就是心里的,2×2×2=8个13、有 6个相同的棱长分别是3厘米、4厘米、5厘米的长方体,把它们的某画面染上红色,使得有的长方体只有1个面是红色,有的长方体恰有2个面是红色的,有的长方体恰有3个面是红色的,有的长方体恰有4个面是红色的,有的长方体恰有5个面是红色的,还有一个长方体6个面都是红色的,染色后把所有长方体分割成棱长为1厘米的小正方体.分割完毕后,恰有一面是红色的小正方体,最多有多少个?解答:一面涂红色有:4×5=20个两面涂红色有:20×2=40个(选择对面)三面涂红色有:40-4=36个(选择4×5两面和3×4一面)四面涂红色有:36-4=32个(选择4×5两面和3×4两面)五面涂红色有:32-5=27个六面涂红色有:27-5=22个一共有:20+40+36+32+27+22=177个13、用棱长是1厘米的立方块拼成如图所示的立体图形,问该图形的表面积是多少平方厘米?上下面:9×2=18cm²左右面:7×2=14cm²前后面:7×2=14cm²14、如图,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?水平切两刀,增加4个面,竖直切三刀,增加6个面,另外一个维度方向切四刀,增加8个面。
小学六年级奥数--立体几何综合
学科培优 数学立体几何综合学生姓名 授课日期 教师姓名授课时长知识定位本讲复习已经学过的立体图形的相关知识和解题技巧,主要有:长方体、立方体、圆柱、圆锥的体积及表面积求解,立体几何计数及多面体顶点与棱以及表面的关系。
重难点在于:1.不规则立体图形的表面积或体积求解2.多面体的顶点与棱数计数 3.体积的等量代换主要的考点:1.规则立体图形的表面积(侧面积)与体积计算2.不规则立体图形的表面积与体积计算 3.染色问题4.立体图形的三视图与展开图知识梳理主要知识点 立体几何⑴规则立体图形的表面积和体积公式长方体:体积:长宽高 表面积:(长宽+宽高+长高) 立方体:体积:棱长的立方 表面积:棱长的平方6 圆柱: 体积:2r h π 侧面积:2rh π 圆锥: 体积:213r h π⑵不规则立体图形的表面积整体观照法⑶体积的等积变形①水中浸放物体:V 升水=V 物 ②测啤酒瓶容积:V=V 空气+V 水⑷三视图与展开图最短线路与展开图形状问题⑸染色问题几面染色的块数与“芯”、棱长、顶点、面数的关系。
例题精讲【试题来源】【题目】一个长方体的表面积是33.66平方分米,其中一个面的长是2.3分米,宽是2.1分米,它的体积是_____立方分米.【试题来源】 【题目】右图是一个棱长为2厘米的正方体,在正方体上面的正中向下挖一个棱长为1厘米的正方形小洞;接着在小洞的底面正中再挖一个棱长为21厘米的小洞;第三个小洞的挖法与前两个相同,棱长为41厘米.那么最后得到的立体图形的表面积是 平方厘米【试题来源】【题目】把一个长25厘米,宽10厘米,高4厘米的长方体木块锯成若干个大小相等的正方体,然后拼成一个大的正方体.这个大正方体的表面积是_____平方厘米。
【试题来源】【题目】右图是3层没有缝隙的小立方块组成的.如果它的外表面(包括底面)全都被涂成红色,那么把它们再分开成一个个小立方块时,有多少个小立方块恰有三面是红色的?【试题来源】【题目】一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是( ).【试题来源】【题目】把一根长2.4米的长方体木料锯成5段(如图),表面积比原来增加了96平方厘米.这根木料原来的体积是_____立方厘米.【试题来源】【题目】用棱长是1厘米的立方体拼成右图所示的立体图形.求这个立体图形的表面积.【试题来源】【题目】把1个棱长是3厘米的正方体分割成若干个小的正方体,这些小正方体的棱长必须是整厘米数.如果这些小正方体的体积不要求都相等,那么最少可分割成个小正方体.【试题来源】【题目】用10块长7厘米,宽5厘米,高3厘米的长方体积木堆成一个长方体,这个长方体的表面积最小是多少?【试题来源】【题目】一个盛有水的圆柱形容器,底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为17厘米的铁圆柱垂直放人容器中.求这时容器的水深是多少厘米?【试题来源】【题目】有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米?【试题来源】【题目】将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.求这个物体的表面积.【试题来源】【题目】这里有一个圆柱和一个圆锥(下图),它们的高和底面直径都标在图上,单位是厘米.请回答:圆锥体积与圆柱体积的比是多少?【试题来源】【题目】一个长、宽、高分别为21厘米、15厘米、12厘米的长方体.现从它的上面尽可能大的切下一个正方体.然后从剩余的部分再尽可能大的切下一个正方体.最后再从第二次剩余的部分尽可能大的切下一个正方体.剩下的体积是平方厘米.【试题来源】【题目】一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米.在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块.这时水面高多少厘米?【试题来源】【题目】图1是下面的表面展开图①甲正方体;②乙正方体;③丙正方体;④甲正方体或丙正方体.【试题来源】【题目】如图,剪一块硬纸片可以做成一个多面体的纸模型(沿虚线折,沿实线粘).这个多面体的面数、顶点数和棱数的总和是多少?【试题来源】【题目】下面是一辆汽车模型纸工平面展开图,中轴线上面的一半标出了尺寸.将该图剪下折叠粘合(相同字母标记处粘合在一起)做成汽车模型的体积为V .请回答:①403<v<445②473<V<500,哪一个正确,为什么?【试题来源】【题目】现有一张长40厘米、宽20厘米的长方形铁皮,请你用它做一只深是5厘米的长方体无盖铁皮盒(焊接处及铁皮厚度不计,容积越大越好),你做出的铁皮盒容积是多少立方厘米?【试题来源】【题目】如图,在一个立方体的两对侧面的中心各打通一个长方体的洞在上下侧面的中心打通一个圆柱形的洞,已知立方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下侧面的洞口是直径为4厘米的圆,求该立方体的表面积和体积(取 =3.14).【试题来源】【题目】用大小相等的无色透明玻璃小正方体和红色玻璃小正方体拼成一个大正方体ABCD —1A 1B 1C 1D (如图),大正方体内的对角线A 1C ,B 1D ,C 1A ,D 1B 所穿的小正方体都是红色玻璃小正方体,其它部分都是无色透明玻璃小正方体,小红正方体共用了401个,问:无色透明小正方体用了多少个?习题演练【试题来源】【题目】一个长方体的各条棱长的和是48厘米,并且它的长是宽的2倍,高与宽相等,那么这个长方体的体积是______ 立方厘米【试题来源】【题目】右图是一个表面被涂上红色的棱长为lO厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是_____平方厘米【试题来源】【题目】张大爷去年用长2米、宽1米的长方形苇席围成容积最大的圆柱形粮囤.今年改用了长3米、宽2米的长方形苇席围成容积最大的圆柱形粮囤.问:今年粮囤的容积是去年粮囤容积的多少倍?【试题来源】【题目】把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小长方体,其中只有两个面涂上红色的小长方体恰好是12块.那么至少要把这个大长方体分割成个小长方体.【试题来源】【题目】六个立方体A、B、C、D、E、F的可见部分如下图,下边是其中一个立体的侧面展开图,那么它是立方体____的侧面展开图.2。
六年级奥数-第五讲几何-立体部分教师版
第五讲 几何——立体部分教学目标:对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.知识点拨:一、长方体和正方体如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.c b aHGFED CBA①在六个面中,两个对面是相等的,即三组对面两两相等. ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.二、圆柱与圆锥例题精讲:【例 1】 如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【解析】 我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:.【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【例 2】 如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.【例 3】 如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)1110.511.5【例 4】 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?【例 5】 如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(π 3.14=)【巩固】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?(π 3.14=)【例 6】 把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米.原来的圆柱体的体积是多少立方厘米?【例 7】 一个圆柱体的体积是50.24立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? (π 3.14=)【例 8】 (2008年”希望杯”五年级第2试)一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是_______ 立方厘米.(π取3.14)(单位:厘米)【巩固】一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.【例 9】 有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米?【例 10】 如图,甲、乙两容器相同,甲容器中水的高度是锥高的13,乙容器中水的高度是锥高的23,比较甲、乙两容器,哪一只容器中盛的水多?多的是少的的几倍?甲乙【例 11】 如图,ABC 是直角三角形,AB 、AC 的长分别是3和4.将ABC ∆绕AC 旋转一周,求ABC ∆扫出的立体图形的体积.(π 3.14=)【例 12】 如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD 相交O .E 、F 分别是AD 与BC的中点,图中的阴影部分以EF 为轴旋转一周,则白色部分扫出的立体图形的体积是多少立方厘米?ABAB练习1. 一个酒瓶里面深30cm ,底面内直径是10cm ,瓶里酒深15cm .把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm .酒瓶的容积是多少?(π取3)253015练习2. (2008年第二届两岸四地”华罗庚金杯”少年数学精英邀请赛)一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆柱体的表面积大1002cm ,则这个圆柱体木棒的侧面积是________2cm .(π取3.14)第2题【备选4】一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少?【备选5】(2009年”希望杯”一试六年级)如图,圆锥形容器中装有水50升,水面高度是圆锥高度的一半,这个容器最多能装水 升.。
立体几何-小学奥数
立体几何一、要点提示在小学阶段,所学的立体图形主要有长方体、正方体、圆柱体、圆锥体,另外还有将一些立体图形拼在一起的组合图形。
学习一些几何初步知识,有助于形成空间观念。
我们在解答立体图形时,一定要理清思路,充分运用学过的基本知识,认真细致的进行分析、转化、计算,最后还要检验答案的正确性。
二、题型点击1、如图1所示,一个瓶子里装了多半瓶水,但没有达到上部变窄的部分,在不打开瓶盖的情况下,你能仅用一把带刻度的尺子测出瓶子的容积吗?怎么测?2、如图2所示,在一个正方形的两对侧面的中心各打一个长方体的洞,在上下底面的中心打通一个圆柱形的洞。
已知正方形的棱长为10厘米,侧面上的洞口是边长的4厘米的正方形,上、下面的洞口是直径为4厘米的圆。
挖出中间部分后,此图形的体积是多少?3、从一个长8厘米、宽7厘米、高6厘米的长方形中截下一个最大的正方体。
剩下的几何体的表面积是多少平方厘米?4、有一块长方体蛋糕,厚4厘米,上表面为正方形,其边长是15厘米,它的上面和侧面有一层薄薄的奶油。
现在将它分给五个小朋友,怎么分才能使5块蛋糕的体积和奶油层的面积都相等?5、如图4所示,有一块长方形的铁皮,剪下阴影部分,制成一个圆柱形状的油桶。
这个桶的容积是多少?6、如图5所示,是一个底面直径为20厘米的装有一部分水的圆柱形玻璃缸,水中放着一个底面直径为6厘米、高20厘米的一个圆锥形铅垂。
当铅垂从水中取出后,缸里的水面将下降几厘米?7、如图6所示,甲、乙两个容器,先将甲容器中装满水,然后将水倒入乙容器中。
求乙容器中水的深度。
8、如图7所示,是由22个小正方体组成的立体图形。
其中一共有多少个大大小小的正方体?由两个小正方体组成的长方体有多少个?9、如图8所示,它是由18个棱长为1厘米的小正方体组成的。
它的面积是多少平方厘米?10、有一个正方体,从它的上部截下一个高为2厘米的长方体后,正方体的表面积减少了48平方厘米。
原来正方体的体积是多少立方厘米?11、在一个正方体的表面涂上红色,然后在每个面上等距离切n刀,一共可以得到多少个小正方体?其中一面红、两面红、三面红、各个面都是白色的小正方体各有多少个?12、有一个长、宽、高分别是4分米、3分米、2分米的长方体,先沿着长边垂直切5刀,再沿着宽边垂直切4刀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何
一、要点提示
在小学阶段,所学的立体图形主要有长方体、正方体、圆柱体、圆锥体,另外还有将一些立体图形拼在一起的组合图形。
学习一些几何初步知识,有助于形成空间观念。
我们在解答立体图形时,一定要理清思路,充分运用学过的基本知识,认真细致的进行分析、转化、计算,最后还要检验答案的正确性。
二、题型点击
1、如图1所示,一个瓶子里装了多半瓶水,但没有达
到上部变窄的部分,在不打开瓶盖的情况下,你能仅用
一把带刻度的尺子测出瓶子的容积吗?怎么测?
2、如图2所示,在一个正方形的两对侧面的中
心各打一个长方体的洞,在上下底面的中心打
通一个圆柱形的洞。
已知正方形的棱长为10厘
米,侧面上的洞口是边长的4厘米的正方形,
上、下面的洞口是直径为4厘米的圆。
挖出中
间部分后,此图形的体积是多少?
3、从一个长8厘米、宽7厘米、高6厘米的长方形中截下一个最大的正方体。
剩下的几何体的表面积是多少平方厘米?
4、有一块长方体蛋糕,厚4厘米,上表面为正方形,其边长是15厘米,它的上面和侧面有一层薄薄的奶油。
现在将它分给五个小朋友,怎么分才能使5块蛋糕的体积和奶油层的面积都相等?
5、如图4所示,有一块长方形的铁皮,剪下阴影部
分,制成一个圆柱形状的油桶。
这个桶的容积是多
少?
6、如图5所示,是一个底面直径为20厘米的装有一部分水
的圆柱形玻璃缸,水中放着一个底面直径为6厘米、高20
厘米的一个圆锥形铅垂。
当铅垂从水中取出后,缸里的水面
将下降几厘米?
7、如图6所示,甲、乙两个容器,先将甲容器中装
满水,然后将水倒入乙容器中。
求乙容器中水的深
度。
8、如图7所示,是由22个小正方体组成的立体图形。
其中一共有多少个大大小小的正方体?由两个小正方体组成的长方体有多少个?
9、如图8所示,它是由18个棱长为1厘米的小正方体组成的。
它的面积是多少平方厘米?
10、有一个正方体,从它的上部截下一个高为2厘米的长方体后,正方体的表面积减少了48平方厘米。
原来正方体的体积是多少立方厘米?
11、在一个正方体的表面涂上红色,然后在每个面上等距离切n刀,一共可以得到多少个小正方体?其中一面红、两面红、三面红、各个面都是白色的小正方体各有多少个?
12、有一个长、宽、高分别是4分米、3分米、2分米的长方体,先沿着长边垂直切5刀,再沿着宽边垂直切4刀。
要使切出来的若干个长方体表面积的和是224平方分米,应沿着高边水平切多少刀?
13、有一个正方体木块,棱长2分米。
沿水平方向将它锯成3片,每片又锯成4条,每条又锯成5小块,共得到大大小小的长方体60个。
这60块长方体表面积的和是多少平方分米?
14、有一个长方体木块,长125厘米,宽40厘米,高25厘米。
把它锯成若干个体积相等的小正方体,然后再把这些小正方体拼成一个大正方体。
这个大正方体的表面积是多少平方厘米?
15、如图9所示,有甲乙两个长方体
木桶,甲桶里面装有深24厘米的水,
乙桶里面没有水。
已知甲桶底面的长
为40厘米,宽为30厘米。
乙桶底面
的长为30厘米,宽为20厘米。
现将
甲桶里的水倒一部分至乙桶里,使
甲、乙两桶里的水高度相等。
此时水
的深度是多少厘米?
16、如图10所示,把底面直径为8厘米的圆柱切割成若干等份,拼成一个近似的长方体。
这个长方体的表面积比原来圆柱的表面积增加了80平方厘米。
长方体的体积是多少立方厘米?。