几种证明全等三角形添加辅助线的方法
全等三角形中常见辅助线的添加方法
典例1:如图,△ABC中, ∠C =90 o,BC=10,BD=6, AD平分∠BAC,则点D到AB的距离等于 4 .
过点D作DE⊥AB
A
构造全等的 直角三角形
E
B
D
C
三.用角平分线的性质构造全等
典例2:如图,梯形中, ∠A= ∠D =90o,
BE、CE均是角平分线, 求证:BC=AB+CD.
B
A
F
过点E作EF⊥BC
E
构造全等的 直角三角形
C
还有其他的方法吗?
D
四、截长与补短
四、截长与补短
典例1、已知在△ ABC中, AD是∠BAC 的角平分线 ,
∠C=2∠B, 求证 :AB=AC+CD
A
E
12
B
D
C
在AB 上取点E使得AE=AC ,连接DE
F
在AC的延长线上取点F使得CF=CD,连接DF
A
D
B
C
1 2 3 *
一题多解
典例3:如图,已知在四边形 ABCD中,BD是∠ABC的 角平分线, AD=CD,求证:∠ BAD+∠BCD=180 °
A
D
1 2
B
34
E
C
在BC上截取BE,使BE=AB ,连结DE。
1 2 3 *
一题多解
典例3:如图,已知在四边形 ABCD中,BD是∠ABC的 角平分线, AD=CD,求证:∠ BAD+∠BCD=180 ° F
四、截长与补短
变题:已知在△ ABC中, AD是∠BAC的角平分线 ,
AB=AC+CD, 求证:∠C=2∠B
A
E
12
全等三角形辅助线添加方法
全等三角形辅助线添加方法全等三角形是指具有相同形状和大小的两个三角形。
要证明两个三角形全等,我们通常使用SAS(两边和夹角),ASA(两角和边),SSS(三边)等条件来进行证明。
为了证明这些条件,我们可以添加一些辅助线来简化问题。
以下是几种常见的全等三角形辅助线添加方法:1.中位线法中位线是连接一个三角形的一个顶点和对边中点的线段。
在证明两个三角形全等时,可以通过连接两个三角形的对应顶点及对边中点来添加中位线。
这样,原来的两个三角形就分解成了两个平行四边形,从而简化了证明过程。
2.高线法高线是从一个顶点垂直于对边的线段。
在证明两个三角形全等时,可以添加一条高线,从而将一个三角形分解成两个直角三角形。
这样,我们可以利用直角三角形的性质来进行证明。
3.角平分线法角平分线是从一个角的顶点分别平分两个相邻边的线段。
在证明两个三角形全等时,可以通过连接两个三角形的对应顶点和相邻边的角平分线来添加辅助线。
这样,原来的两个三角形就分解成了两个高度相等的直角三角形。
4.旁切线法旁切线是从一个角的顶点切线到对边的线段。
在证明两个三角形全等时,可以添加一条旁切线,从而将一个三角形分解成两个全等的直角三角形。
这样,我们可以利用直角三角形的性质来进行证明。
5.等腰三角形法等腰三角形是指具有两个边相等的三角形。
在证明两个三角形全等时,如果我们发现其中一个三角形是等腰三角形,可以添加一条辅助线,将该等腰三角形分成两个全等的直角三角形。
这样,我们可以利用直角三角形的性质来进行证明。
通过添加这些辅助线,我们可以改变问题的形式,简化证明过程,并帮助我们找到更多的全等条件。
但是需要注意的是,辅助线的添加要符合几何图形的性质,不能改变原有图形的形状和大小。
总之,在证明两个三角形全等时,辅助线的添加是一个常用的方法,可以帮助我们简化证明过程,找到更多的全等条件,提高证明的效率和准确性。
需要根据具体问题来选择合适的辅助线添加方法,灵活运用几何定理和性质来进行证明。
全等三角形添加辅助线的方法
全等三角形添加辅助线的方法要向一个全等三角形添加辅助线,只需在三角形内或外画直线,以切割或连接三角形的一些部分。
这些辅助线可以帮助我们更好地理解和分析三角形的特性和属性。
接下来,我将介绍几种常见的方法来添加辅助线。
1.三角形中线:连接每个顶点与对边中点的线段。
这条线段将三角形划分为两个全等的三角形。
它们的边长相等,角度相等。
2.三角形的角平分线:从每个顶点作出形成该顶点角的两个邻边的角平分线。
这些角平分线会相交于三角形内部的一点,该点是三角形内角平分线的交点。
3.三角形的高线:从每个顶点作出与对边垂直相交的线段。
这些线段的交点将构成三角形的三条高线,它们的长度相等,且垂直于对边。
4.三角形的中线:从每个顶点作出与对边平行的线段。
这些线段的交点将构成三角形的三条中线,它们的长度相等,且平行于对边。
5.三角形的中心:连接三角形的三个顶点与重心的线段。
重心是三角形内部所有高线的交点。
三角形的重心被定义为三边中点的连线的交点,其坐标为三个顶点的坐标之和的1/3这些辅助线有助于我们更好地理解和分析全等三角形的特性和属性。
它们可以帮助我们推导出一些重要的结论和公式,还可以用于证明和解决三角形的相关问题。
例如,通过添加辅助线可以证明全等三角形的性质:全等三角形的对应边长相等,对应角度相等,对应角内的三角形也全等。
此外,辅助线还可以帮助我们解决一些基于全等三角形的问题。
比如,如果两个三角形的一对对应边长和一对对应角度都相等,我们可以利用辅助线来证明它们是全等三角形。
因此,通过添加辅助线,我们可以更好地理解和分析全等三角形的性质和问题。
在解决相关问题时,辅助线可以作为重要的工具来简化问题和得出正确的答案。
全等三角形画辅助线的方法
全等三角形画辅助线的方法以全等三角形画辅助线的方法为标题,写一篇文章。
全等三角形是指具有相同形状和大小的三角形。
在几何学中,我们可以使用一些方法来画辅助线,以帮助我们证明两个三角形是全等的。
本文将介绍几种常见的辅助线方法。
一、SAS判据法SAS(边角边)判据法是全等三角形的一个常见判定方法。
当两个三角形的两边和夹角分别相等时,可以利用这个方法来证明它们是全等的。
在画辅助线时,我们可以先根据已知条件画出两个已知边长相等的线段,然后再连接这两个线段的端点,形成一个三角形。
接下来,我们要证明这个三角形与另一个三角形全等。
为此,我们可以通过画出这两个三角形的高线,并证明它们相等,从而得出这两个三角形全等的结论。
二、ASA判据法ASA(角边角)判据法也是全等三角形的一个常见判定方法。
当两个三角形的一个角和两个边分别相等时,可以利用这个方法来证明它们是全等的。
在画辅助线时,我们可以先根据已知条件画出两个已知角度相等的角,然后再连接这两个角的端点,形成一个三角形。
接下来,我们要证明这个三角形与另一个三角形全等。
为此,我们可以通过画出这两个三角形的高线,并证明它们相等,从而得出这两个三角形全等的结论。
三、SSS判据法SSS(边边边)判据法是全等三角形的另一种常见判定方法。
当两个三角形的三条边分别相等时,可以利用这个方法来证明它们是全等的。
在画辅助线时,我们可以根据已知条件直接画出两个已知边长相等的线段,然后再连接这两个线段的端点,形成一个三角形。
接下来,我们要证明这个三角形与另一个三角形全等。
为此,我们可以通过证明这两个三角形的内角相等,从而得出它们全等的结论。
四、AAS判据法AAS(角角边)判据法是全等三角形的另一种常见判定方法。
当两个三角形的两个角和一条边分别相等时,可以利用这个方法来证明它们是全等的。
在画辅助线时,我们可以根据已知条件画出两个已知角度相等的角,然后再连接这两个角的端点,形成一个三角形。
接下来,我们要证明这个三角形与另一个三角形全等。
三角形全等添加辅助线的5种常用方法
三角形全等添加辅助线的5种常用方法
三角形全等的证明及相关问题,是初中几何部分的基础,也是重点和难点,不管是在中考还是平时的考试中,都是高频出现。
全等三角形的基础知识点就那么几条,很容易掌握,但是一般考试中的题目,不可能直接给出几组条件让我们直接写出证明过程,很多时候都要经过分析思考,添加辅助线,才能得到全等三角形。
下面就简单介绍一下构造全等三角形的五种常用方法。
一、等腰三角形三线合一法
当我们遇到等腰三角形(等边三角形)相关题目时,用三线合一性质,很容易找出思路。
它的原理就是利用三角形全等变换中的对折重叠。
我们来看一个例题:
二、倍长中线法
遇到一个中点的时候,通常会延长经过该中点的线段。
倍长中线指延长中线至一点,使所延长部分与该中线相等,并连接该点与这一条边的一个顶点,得到两个三角形全等。
如图所示,点D为△ABC边BC的中点.延长AD至点E,使得DE=AD,并连接BE,则△ADC≌△EDB(SAS)。
我们来看一个例题:
三、遇角平分线作双垂线法
在题中遇见角平分线,做双垂直,必出全等三角形。
可以从角平分线上的点向两边作垂线,也可以过角平分线上的点作角平分线的垂线与角的两边相交。
在很多综合几何题当中,关于角平分线的辅助线添加方法最常用的就是这个。
看看在具体题目中怎么操作吧!
四、作平行线法
在几何题的证明中,作平行线的方法也非常实用,一般来讲,在等腰、等边这类特殊的三解形中,作平行线绝对是首要考虑。
五、截长补短法
题目中出现线段之间的和、差、倍、分时,考虑截长补短法;截长补短的目的是把几条线段之间的数量关系转换为两条线段间的等量关系。
构造全等三角形添加辅助线的方法
构造全等三角形添加辅助线的方法构造全等三角形是初中数学中的一个重要内容,理解并掌握构造全等三角形的方法对同学们建立良好的几何直观和提高几何证明能力等方面有很大帮助。
添加辅助线是构造全等三角形的重要方法之一。
本文列举了10条关于构造全等三角形添加辅助线的方法,并详细描述了每一种方法的步骤和原理。
一、通过中位线构造全等三角形步骤:1、作出一个三角形ABC和它的一条中位线AD;2、将角BAD和角ACD作为两个角,作一个新的三角形BAD,使它的对边和AC平行;3、证明三角形BAC和三角形BAD全等。
原理:两个平行线截一组平行于它们的直线形成的线段,具有相等的长度。
二、通过角平分线构造全等三角形步骤:1、作出一个三角形ABC,以角A为中心画一条角平分线AE;2、将角EAB和角EAC作为两个角,分别连线得到三角形EAB和三角形EAC;3、证明三角形ABC和三角形EAB全等。
原理:在一个三角形中,一边上的角平分线将这条边分成两个相等的线段,同时将对角的两个角平分为两个相等的角。
三、通过三角形内角和不变构造全等三角形步骤:1、作出两个全等三角形ABC和DEF;2、在三角形ABC内部选取一个点M;3、以点M为中心,作一个半径等于EF的圆,在这个圆上分别找到两个点P、Q;4、连接点P、Q和点M,分别得到三角形AMP和BMQ;5、证明三角形AMP和三角形BMQ全等。
原理:三角形中角的和不变,即两个全等三角形中任意两个内角之和相等。
四、通过角平分线和垂线构造全等三角形步骤:1、作出一个三角形ABC,以角A为中心画一条角平分线AE,垂直于BC;2、在AE上选取一点G,将角GAB和角GAC作为两个角,分别连线得到三角形GAB和三角形GAC;3、以点B为中心,作一个半径等于CG的圆,在这个圆上分别找到两个点M、N;4、连接MN和点B,分别得到三角形MBC和NBC;5、证明三角形GAB和三角形MBC全等。
原理:在一个三角形中,角平分线和垂线的交点将底边分成相等的线段,在垂线上的任意一点到底边的两个端点距离相等。
(完整版)几种证明全等三角形添加辅助线的方法
教学过程构造全等三角形几种方法在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系。
现分类加以说明。
一、延长中线构造全等三角形例1. 如图1,AD是△ABC的中线,求证:AB+AC>2AD。
证明:延长AD至E,使AD=DE,连接CE。
如图2。
∵AD是△ABC的中线,∴BD=CD。
又∵∠1=∠2,AD=DE,∴△ABD≌△ECD(SAS)。
AB=CE。
∵在△ACE中,CE+AC>AE,∴AB+AC>2AD。
二、沿角平分线翻折构造全等三角形例2. 如图3,在△ABC中,∠1=∠2,∠ABC=2∠C。
求证:AB+BD=AC。
证明:将△ABD沿AD翻折,点B落在AC上的E点处,即:在AC上截取AE=AB,连接ED。
如图4。
∵∠1=∠2,AD=AD,AB=AE,∴△ABD≌△AED(SAS)。
∴BD=ED,∠ABC=∠AED=2∠C。
而∠AED=∠C+∠EDC,∴∠C=∠EDC。
所以EC=ED=BD。
∵AC=AE+EC,∴AB+BD=AC。
三、作平行线构造全等三角形例3. 如图5,△ABC中,AB=AC。
E是AB上异于A、B的任意一点,延长AC到D,使CD=BE,连接DE交BC于F。
求证:EF=FD。
证明:过E作EM∥AC交BC于M,如图6。
则∠EMB=∠ACB,∠MEF=∠CDF。
∵AB=AC,∴∠B=∠ACB。
∴∠B=∠EMB。
故EM=BE。
∵BE=CD,∴EM=CD。
又∵∠EFM=∠DFC,∠MEF=∠CDF,∴△EFM≌△DFC(AAS)。
EF=FD。
四、作垂线构造全等三角形例4. 如图7,在△ABC中,∠BAC=90°,AB=AC。
M是AC边的中点。
AD ⊥BM交BC于D,交BM于E。
求证:∠AMB=∠DMC。
证明:作CF⊥AC交AD的延长线于F。
如图8。
∵∠BAC=90°,AD⊥BM,∴∠FAC=∠ABM=90°-∠BAE。
∵AB=AC,∠BAM=∠ACF=90°,∴△ABM≌△CAF(ASA)。
全等三角形作辅助线的常用方法
全等三角形作辅助线的常用方法全等三角形是指具有相同形状和大小的三角形。
在解决几何问题时,我们常常会用到全等三角形作为辅助线来辅助推导和证明。
下面介绍几种常用的方法:1. SSS法:如果两个三角形的三边分别相等,则它们是全等三角形。
在使用SSS法时,我们要注意较长边对应较长边,较短边对应较短边。
2. SAS法:如果两个三角形的两边和夹角分别相等,则它们是全等三角形。
在使用SAS法时,我们要注意两个已知边的夹角位置,确保它们对应正确。
3. ASA法:如果两个三角形的两个夹角和一边分别相等,则它们是全等三角形。
在使用ASA法时,我们要注意两个已知夹角的边位置,确保它们对应正确。
4. RHS法:如果两个直角三角形的斜边和一个锐角分别相等,则它们是全等三角形。
在使用RHS法时,我们要注意斜边和锐角的位置,确保它们对应正确。
以上四种方法是解决全等三角形问题时常用的方法,根据具体情况选择合适的方法来辅助推导和证明。
除了这些方法,我们还可以利用全等三角形的性质来简化问题。
例如,当我们需要证明两条线段相等时,可以构造一个全等三角形,利用全等三角形的性质得出结论。
同样地,当我们需要证明两个角相等时,也可以构造一个全等三角形来简化问题。
在解决几何问题时,我们经常会遇到一些特殊的情况,例如等腰三角形、全等三角形的性质等。
在这些情况下,我们可以利用全等三角形的性质来推导出一些结论,进而解决问题。
总结一下,全等三角形作为几何问题中常用的辅助线,可以帮助我们推导和证明一些结论。
在解决几何问题时,我们可以根据题目给出的条件选择合适的方法来构造全等三角形,进而简化问题。
熟练掌握全等三角形的性质和常用方法,可以提高解题效率,解决更加复杂的几何问题。
全等三角形添加辅助线的方法
全等三角形添加辅助线的方法1.中线法:将两条边的中点相连并延长,然后证明其与其他一条边的边长和角度相等。
具体步骤如下:a.连接三角形两条边的中点,并延长至交于一点O。
b.证明∆ABC与∆ADB全等,其中∠CAB=∠DAB(两对顶点角),且AB =AD各一边。
c.推导出AC=BD(全等三角形的边)2.垂直平分线法:通过构造两条垂直平分线使其中两个角相等,从而推导出三角形全等。
具体步骤如下:a.根据题意连接一个角的两边,并找出该两边的垂直平分线。
b.证明∆ABC的两个∠BAC和∠BCA各自与∠ACD和∠ACB相等(垂直平分线构成等腰三角形),即∠BAC=∠ACD,∠BCA=∠ACB。
c.推导出∆ABC和∆ACD的三个角相等,从而两个三角形全等。
3.夹边法(重心法):通过构造两个辅助三角形,使两个夹角相等,从而推导出三角形全等。
具体步骤如下:a.过三角形一边的顶点作该边对边的平行线,分别与另两边相交得到两个辅助三角形。
b.证明这两个辅助三角形的两个夹角分别与原三角形的两个对应夹角相等(平行线与三角形两边的交角),即∠BAC=∠EAB,∠CBA=∠DBA。
c.推导出∠ABC和∠EDB相等,从而两个三角形全等。
4.等腰三角形法:通过构造两个等腰三角形,使它们的顶点与原三角形的顶点相连,从而推导出三角形全等。
a.根据题意找到一个角的顶点为原三角形的顶点,并构造一个等腰三角形,顶点为该角的顶点。
b.构造另一个等腰三角形,顶点为原三角形的顶点,并使这两个等腰三角形的顶点分别与原三角形的顶点相连。
c.证明这两个等腰三角形的两个底边与原三角形的两个对应边相等,即AC=DE,BC=DF。
d.推导出∆ABC和∆DEF的三个角相等,从而两个三角形全等。
通过以上几种常见的方法,可以添加辅助线来证明三角形的全等关系。
在实际问题中,根据具体的几何信息和条件,选择合适的辅助线构造方法,可以简化证明过程,并加深对全等三角形的理解。
三角形全等证明,10道考试真题,6种常用辅助线添加的方法和技巧.doc
三角形全等证明,10道考试真题,6种常用辅助线添加的方法和技巧以下六种常用的辅助线添加方法和技巧。
相互学习,一起进步。
方法一、双垂直构造三角形全等。
遇见角平分线,角平分线上的点向角两边做垂直,必出三角形全等。
例题1,是最基础,最简单的题型。
有些,需要我们证明角平分线的时候,同样可以向角两边做垂直,那么只要两个垂线段相等,到角两边距离相等的点在角平分线上。
例题2,过点P做MN平行BC,则出现在AB边和CD 边上,双垂直。
根据题意,证明三角形QNP全等于三角形PMB,结论得证。
方法二,倍长中线。
三角形中,遇见中点,很容易想到倍长中线。
例题3,倍长中线后,得出三角形ACE全等于三角形ACM。
例题4,延长AD至E,使DE=AD。
得出三角形ADC全等于三角形EDB。
第2小题,根据三角形的三边关系,等量代换,即可求出AD的取值范围。
方法三、截长补短法。
求证两个线段和等于一个线段的时候,很容易想到截长补短的辅助线添加方法。
截长补短法,包括了截长法和补短法,两种方法。
一般来说,一道题,既可以用截长法,也可以用补短法。
例题6、解析中用了延长AD至M,使MD=FD。
请认真看解答过程。
再请按照图3的辅助线,自行练习推理,举一反三,得出结论。
方法四、平行线发或者平移法。
解题方法1,过点O做OD平行BC。
还有两个方法,请自行推理,如图3和图4.方法五,旋转法。
把一个三角形,经过旋转,旋转后必出三角形全等,得出结论。
例8和例9,其实也就是,最近经典的半角模型。
之前也专门讲过,这个几何模型。
请认真参考,这个两个例题。
从中总结规律和解题方法。
方法六、翻折法,或者叫对称法。
例题10,看起来很难,当你认真看完解题过程,肯定会有所收获。
几种证明全等三角形添加辅助线的方法
几种证明全等三角形添加辅助线的方法在几何证明中,证明两个三角形全等是常见的任务之一、为了证明两个三角形全等,可以利用几何性质和辅助线的方法。
以下是几种常见的证明全等三角形添加辅助线的方法。
方法一:辅助线连接两个三角形的顶点和中点。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过在两个三角形中选择一对对应的顶点,然后通过连接这对顶点和中点来添加辅助线。
例如,可以连接点A和B的中点M,以及连接点D和E的中点N。
通过连接辅助线MN,我们可以观察到三角形AMN和DMN是全等的,因为它们具有相等的边MN和相等的边角(由三角形ABC和DEF的边和角的性质可得)。
由于三角形AMN和DNM的对应边和对应角也相等,我们可以得出结论,三角形ABC和DEF是全等的。
方法二:辅助线连接两个三角形的顶点和底边中点。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过在两个三角形中选择一对对应的顶点,然后通过连接这对顶点和底边的中点来添加辅助线。
例如,可以连接点A和D的中点M,以及连接点B和E 的中点N。
通过连接辅助线MN,我们可以观察到三角形AMN和DMN是全等的,因为它们具有相等的边MN和相等的边角(由三角形ABC和DEF的边和角的性质可得)。
由于三角形AMN和DNM的对应边和对应角也相等,我们可以得出结论,三角形ABC和DEF是全等的。
方法三:辅助线连接两个三角形的对应角的角平分线。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过连接每个三角形对应角的角平分线来添加辅助线。
通过连接辅助线,我们可以得到一些相似的三角形。
根据相似三角形的性质,我们可以得到一些相等的边和角。
通过观察这些相等的边和角,我们可以得出结论,三角形ABC和DEF是全等的。
方法四:辅助线连接两个三角形的中垂线。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过连接每个三角形的边的中点,然后连接这些中点的垂线来添加辅助线。
全等三角形六种辅助线方法及例题
全等三角形六种辅助线方法及例题全等三角形是初中数学中一个非常重要的概念,掌握全等三角形的判定方法和辅助线方法对于解题至关重要。
本文将介绍全等三角形的六种辅助线方法,并结合例题进行详细讲解。
一、辅助线法1.等角分线法:将三角形内角的平分线相互交点构成的点与三角形的另外一个顶点相连,得到一条辅助线。
这条辅助线将三角形分成两个等角的小三角形,从而得到相似或全等三角形。
2.中线法:将三角形任意两边的中点相连,得到三角形的中线。
相等的中线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
3.高线法:将三角形内任意一条边的垂线向另外两边引出,得到三角形的高线。
相等的高线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
4.角平分线法:将三角形内角的平分线相互交点构成的点相连,得到三角形的角平分线。
相等的角平分线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
5.角平分线中垂线法:将三角形内角的平分线的中垂线相互交点构成的点相连,得到三角形的角平分线中垂线。
相等的角平分线中垂线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
6.外心连线法:将三角形外接圆心与三角形三个顶点分别相连,得到三条辅助线。
这三条辅助线相等,将三角形分成三个面积相等的小三角形,从而得到相似或全等三角形。
二、例题解析1.已知△ABC,点D,E分别为BC,AB边上的中点,连接AD,BE相交于点F,求证:△DEF≌△ABC。
解析:由题意可知,△ABC是由两个等腰三角形组成的,因此可使用中线法证明两个三角形的全等。
由于D,E分别是BC,AB边上的中点,因此DE是AC中线,即DE=1/2AC;同理,AE是BC中线,AF=1/2BC。
因此,△ADB和△AEC是等腰三角形,且AD=EC,AB=AB,∠BAC=∠BAC,因此△ADB≌△AEC。
又因为DE是AC中线,BF是AE中线,因此DE=1/2AC,BF=1/2AE。
全等三角形的辅助线的常见添法
全等三角形的辅助线的常见添法一、前言全等三角形是初中数学中一个重要的概念,其性质和应用十分广泛。
在解决全等三角形相关问题时,辅助线的运用是非常常见的方法之一。
本文将介绍几种常见的全等三角形辅助线添法。
二、中线中线是连接三角形一个顶点和对边中点的线段。
在全等三角形的证明中,经常使用到中线。
1. 作平移假设有两个全等三角形ABC和DEF,需要证明它们完全重合。
可以在BC上取一点M,在EF上取一点N,连接MN,并作平移使得BC重合于EF,即可证明ABC和DEF完全重合。
2. 作垂线假设有两个全等三角形ABC和DEF,需要证明它们完全重合。
可以在BC上取一点M,在EF上作MN垂直于EF,并延长至交于P,则BP=FP,CP=EP,因此可以通过SAS(边-角-边)准则证明ABC和DEF完全重合。
三、高线高线是从一个顶点向对边所在直线作垂线所得到的线段。
在证明两个直角三角形相似时常用到高线。
1. 作垂心假设有两个直角三角形ABC和DEF,需要证明它们相似。
可以在ABC 中作垂心H,连接AH、BH、CH,并在DEF中作DH垂直于EF,延长至交于K,则AK=DK,因此可以通过AA(角-角)准则证明ABC 和DEF相似。
2. 作中线假设有两个三角形ABC和DEF,其中BC=EF,需要证明它们相似。
可以在BC上取一点M,在EF上取一点N,连接MN,并作垂线PH 垂直于MN且交于O,则PO为MN的中线。
由于BM=FN,BO=EO(因为PH平分MN),因此可以通过SAS准则证明ABC和DEF相似。
四、角平分线角平分线是从一个顶点出发将角分成两个相等的角所得到的线段。
在证明两个三角形相似时常用到角平分线。
1. 作等腰三角形假设有两个三角形ABC和DEF,其中∠BAC=∠EDF且AC=DF,需要证明它们相似。
可以在BC上取一点M,在EF上取一点N,并连接AN、BM以及CN与AM的交点为P,则AP=PN(因为AP是∠BAC 的平分线),BP=PM(因为BP是∠ABM的平分线),因此可以通过SAS准则证明ABC和DEF相似。
全等三角形(4种模型2种添加辅助线方法)(学生版)
全等三角形(4种模型2种添加辅助线方法)1.题型一:一线三等角模型2.题型二:手拉手模型3.题型三:半角模型4.题型四:旋转模型5.题型五:倍长中线法6.题型六:截长补短法题型一一线三等角模型过等腰直角三角形的直角顶点或者正方形直角顶点的一条直线。
过等腰直角三角形的另外两个顶点作该直线的垂线段,会有两个三角形全等(AAS)常见的两种图形:题型二手拉手模型【基本模型】一、等边三角形手拉手-出全等二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;12题型三半角模型过等腰三角形顶点两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。
解题技巧:在图1中,△AEB 由△AND 旋转所得,可得△AEM ≌△AMN ,∴BM +DN =MN∠AMB =∠AMNAB =AH△CMN 的周长等于正方形周长的一半在图2中将△ABC 旋转至△BEF ,易得△BED ≌△BCD 同理得到边角之间的关系;总之:半角模型(题中出现角度之间的半角关系)利用旋转--证全等--得到相关结论.题型四旋转模型31一、奔驰模型旋转是中考必考题型,奔驰模型是非常经典的一类题型,且近几年中考中经常出现。
我们不仅要掌握这类题型,提升利用旋转解决问题的能力,更重要的是要明白一点:旋转的本质是把分散的条件集中化,从而解决问题2二、费马点模型费马点就是到三角形的三个顶点距离之和最小的点.最值问题是中考常考题型,费马点属于几何中的经典题型,目前全国范围内的中考题都是从经典题改编而来,所以掌握费马点等此类最值经典题是必不可少的.题型五倍长中线法三角形一边的中线(与中点有关的线段),或中点,通常考虑倍长中线或类中线,构造全等三角形.把该中线延长一倍,证明三角形全等,从而运用全等三角形的有关知识来解决问题的方法.主要思路:倍长中线(线段)造全等4在△ABC 中AD 是BC边中线延长AD 到E ,使DE =AD ,连接BE作CF ⊥AD 于F ,作BE ⊥AD 的延长线于E 连接BE延长MD 到N ,使DN =MD ,连接CD截长补短法截长补短法在初中几何教学中有着十分重要的作用,它主要是用来证线段的和差问题,而且这种方法一直贯穿着整个几何教学的始终.那么什么是截长补短法呢?所谓截长补短其实包含两层意思,即截长和补短.截长就是在较长的线段上截取一段等于要证的两段较短的线段中的一段,证剩下的那一段等于另外一段较短的线段.当条件或结论中出现a +b =c 时,用截长补短.1.补短法:通过添加辅助线“构造”一条线段使其为求证中的两条线段之和,在证所构造的线段和求证中那一条线段相等;2.截长法:通过添加辅助线先在求证中长线段上截取与线段中的某一段相等的线段,在证明截剩部分与线段中的另一段相等。
全等三角形添加辅助线的方法
全等三角形添加辅助线的方法全等三角形是指具有相等边长和相等内角的两个三角形。
在解决几何问题中,我们经常需要证明或利用全等三角形的性质。
为了更方便地使用全等三角形,我们可以使用辅助线来帮助我们找到全等三角形。
接下来,我将详细介绍几种添加辅助线的方法。
1.中点连线法:在一个三角形中,我们可以通过连接两个边的中点来构造一个平行边。
如果两个三角形的对应边都是平行的,并且两个三角形的第三边相等,那么这两个三角形是全等的。
因此,通过画出中点连线,我们可以找到两个全等的三角形。
例如,在一个三角形ABC中,我们可以通过连接边AB和AC的中点D和E来构造一个平行四边形DCBE。
然后,我们可以继续连接BE和CD,并连接AD和CE,这样就构成了两个全等三角形ADE和CDE。
通过使用这种方法,我们可以更方便地证明或利用全等三角形的性质。
2.高度法:对于一个三角形ABC,我们可以通过作其高来构造两个全等的三角形。
三角形ABC的高是指从顶点到对边的垂直线段。
如果两个三角形的高相等,并且它们的底边相等,那么这两个三角形是全等的。
因此,通过作两个三角形的高,我们可以找到两个全等的三角形。
例如,在一个三角形ABC中,我们可以通过作高AD和高BE来构造两个全等的三角形ABD和ACE。
通过使用这种方法,我们可以更方便地证明或利用全等三角形的性质。
3.角平分线法:对于一个三角形ABC,我们可以通过作角平分线来构造两个全等的三角形。
三角形ABC的角平分线是指从角的顶点到对边的线段,将角分为两个相等的角。
如果两个三角形的相应角相等,并且它们的底边相等,那么这两个三角形是全等的。
因此,通过作两个三角形的角平分线,我们可以找到两个全等的三角形。
例如,在一个三角形ABC中,我们可以通过作角平分线AD和角平分线BE来构造两个全等的三角形ADC和BEC。
通过使用这种方法,我们可以更方便地证明或利用全等三角形的性质。
4.相似三角形法:对于两个相似的三角形ABC和DEF,如果它们的对应边比例相等,那么它们是全等的。
全等三角形六种常用辅助线的添加方法和技巧
全等三角形六种常用辅助线的添加方法和技巧下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!全等三角形是初中数学中的重要概念,对于解决与三角形相关的问题具有重要作用。
全等三角形六种辅助线方法
全等三角形六种辅助线方法全等三角形是指具有相同形状和大小的三角形。
在解决与全等三角形相关的问题时,辅助线是一种常用的方法,可以帮助我们更好地理解和解决问题。
下面将介绍全等三角形的六种辅助线方法。
一、垂直辅助线法垂直辅助线法是指通过某个顶点引一条垂直线与对边相交,从而将三角形分割成两个直角三角形。
利用直角三角形的性质,我们可以更方便地求解各种问题。
二、角平分线法角平分线法是指通过某个顶点引一条角平分线与对边相交,将三角形分割成两个等角的三角形。
利用等角三角形的性质,我们可以更容易地求解各种问题。
三、高线法高线法是指通过某个顶点引一条垂直于底边的线段,将三角形分割成一个直角三角形和一个等腰三角形。
利用这两个三角形的性质,我们可以更快速地解决问题。
四、中线法中线法是指连接三角形的两个顶点和底边中点,将三角形分割成三个相似的三角形。
利用相似三角形的性质,我们可以更高效地解决问题。
五、中垂线法中垂线法是指通过三角形的每条边的中点引一条垂直于对边的线段,将三角形分割成三个直角三角形。
利用直角三角形的性质,我们可以更轻松地解决问题。
六、对称线法对称线法是指通过三角形的某个顶点引一条对称线,将三角形分割成两个全等的三角形。
利用全等三角形的性质,我们可以更直接地解决问题。
通过以上六种辅助线方法,我们可以更灵活地分析和解决与全等三角形相关的问题。
这些方法使得计算更加简便,推理更加直观,提高了问题解决的效率。
同时,这些方法也加深了我们对全等三角形的理解,拓宽了我们的数学思维。
在实际应用中,我们可以根据具体问题的要求选择合适的辅助线方法,以便更好地解决问题。
全等三角形的六种辅助线方法是垂直辅助线法、角平分线法、高线法、中线法、中垂线法和对称线法。
这些方法在解决与全等三角形相关的问题时起到了重要的作用,使我们能够更快速、准确地解决问题。
希望通过这篇文章的介绍,能够帮助大家更好地理解和应用这些方法。
全等三角形中的辅助线的作法
全等三角形中的辅助线的作法在《全等三角形》的解题中,在解决一些复杂的全等三角形问题中往往需要构造辅助线,本文将对添加辅助线的一些常用方法进行介绍,通常有连线构全等、截长补短法、倍长中线法、角平分线构全等等四种常见辅助线。
一、连线构全等例1:已知,如图,AD =BC ,AC =BD ,求证:D C ∠=∠分析:此题是一道易错的全等三角形证明题,很多学生会错误地认为需要证明的是ADO ∆和BCO ∆,但条件明显是不能证明的,所以本题的正确解法是连结AB (或者CD )构造ADB ∆和BCA ∆全等,再得到D C ∠=∠证明:连结AB在ADB ∆和BCA ∆中⎪⎩⎪⎨⎧===BA AB BD AC BC ADADB ∆∴≌BCA ∆ (SSS )D C ∠=∠∴练习1:如图,CD AB =,DC BC =,求证:D B ∠=∠.练习2:如图,CD AB //,CD AB =,求证:BC AD =练习3:如图,AB=AC ,BD=CD ,M 、N 分别是BD 、CD 的中点,求证:ANC AMB ∠=∠二、截长补短法截长补短法:在某条线段上截取一条线段与特定线段相等,或者将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法,适合于证明线段的和、差、倍、分等类的题目。
例2:已知在ABC ∆,B C ∠=∠2,21∠=∠,求证:CD AC AB +=分析:本题证明的是线段的和差问题,可考虑利用截长或补短法。
方法一(截长法):如图1,在AB 上截取AE=AC ,连结BE ,易证ADE ∆≌ADC ∆,从而得DC DE =,AED C ∠=∠,AC AE =又因为B C ∠=∠2所以得B AED ∠=∠2,又因为BDE B AED ∠+∠=∠所以得BDE B ∠=∠可得DE BE =从而得CD AC AB +=方法二(补短法):如图2,延长AC 到点E ,使得AE=AB ,易证ADE ∆≌ADB ∆,从而得AE AB =,E B ∠=∠又因为B ACB ∠=∠2所以得E ACB ∠=∠2,又因为E CDE ACB ∠+∠=∠所以得E CDE ∠=∠可得CE CD =从而得CD AC AB +=练习1:如图所示,已知BC AD //,AE 平分DAB ∠,BE 平分ABC ∠,线段CD 经过点E 交AD 于点D ,交BC 于点C ,求证:AB BC AD =+图1图2练习2:如图,在四边形ABDE 中,C 是BD 边的中点,若AC 平分BAE ∠,︒=∠90ACE ,猜想线段AE 、AB 、DE 的长度满足的数量关系,并证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学难点通过学习全等三角形,提高学生观察能力和分析能力教学过程
构造全等三角形几种方法
在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系。
现分类加以说明。
一、延长中线构造全等三角形
例1. 如图1,AD是△ABC的中线,求证:AB+AC>2AD。
证明:延长AD至E,使AD=DE,连接CE。
如图2。
∵AD是△ABC的中线,∴BD=CD。
又∵∠1=∠2,AD=DE,
. ∴△ABD≌△ECD(SAS)。
AB=CE。
∵在△ACE中,CE+AC>AE,
∴AB+AC>2AD。
二、沿角平分线翻折构造全等三角形
例2. 如图3,在△ABC中,∠1=∠2,∠ABC=2∠C。
求证:AB +BD=AC。
证明:将△ABD沿AD翻折,点B落在AC上的E点处,即:在AC 上截取AE=AB,连接ED。
如图4。
∵∠1=∠2,AD=AD,AB=AE,
∴△ABD≌△AED(SAS)。
∴BD=ED,∠ABC=∠AED=2∠C。
而∠AED=∠C+∠EDC,
∴∠C=∠EDC。
所以EC=ED=BD。
∵AC=AE+EC,∴AB+BD=AC。
三、作平行线构造全等三角形
例3. 如图5,△ABC中,AB=AC。
E是AB上异于A、B的任意一点,延长AC到D,使CD=BE,连接DE交BC于F。
求证:EF=FD。
.
证明:过E作EM∥AC交BC于M,如图6。
则∠EMB=∠ACB,∠MEF=∠CDF。
∵AB=AC,∴∠B=∠ACB。
∴∠B=∠EMB。
故EM=BE。
∵BE=CD,∴EM=CD。
又∵∠EFM=∠DFC,∠MEF=∠CDF,
∴△EFM≌△DFC(AAS)。
EF=FD。
四、作垂线构造全等三角形
例4. 如图7,在△ABC中,∠BAC=90°,AB=AC。
M是AC边的中点。
AD⊥BM交BC于D,交BM于E。
求证:∠AMB=∠DMC。
证明:作CF⊥AC交AD的延长线于F。
如图8。
∵∠BAC=90°,AD⊥BM,
∴∠FAC=∠ABM=90°-∠BAE。
∵AB=AC,∠BAM=∠ACF=90°,
∴△ABM≌△CAF(ASA)。
. ∴∠F=∠AMB,AM=CF。
∵AM=CM,∴CF=CM。
∵∠MCD=∠FCD=45°,CD=CD,
∴△MCD≌△FCD(SAS)。
所以∠F=∠DMC。
∴∠AMB=∠F=∠DMC。
五、沿高线翻折构造全等三角形
例5. 如图9,在△ABC中,AD⊥BC于D,∠BAD>∠CAD。
求证:
AB>AC。
证明:把△ADC沿高AD翻折,点C落在线段DB上的E点处,即:在DB上截取DE=DC,连接AE。
如图10。
∴△ADC≌△ADE(SAS)。
AC=AE,∠C=∠AED。
∵∠AED>∠B,∴∠C>∠B。
从而AB>AC。
六、绕点旋转构造全等三角形
例6. 如图11,正方形ABCD中,∠1=∠2,Q在DC上,P在BC 上。
求证:PA=PB+DQ。
证明:将△ADQ绕点A按顺时针方向旋转90°,使AD与AB重合,
. 得到△ABM,即:延长CB到M,使BM=DQ,连接AM。
如图12。
∴△ABM≌△ADQ(SAS)。
∴∠4=∠2=∠1,∠M=∠AQD。
∵AB∥CD,∴∠AQD=∠BAQ=∠1+∠3=∠4+∠3=∠MAP。
∴∠M=∠MAP。
∴PA=PM=PB+BM=PB+DQ(因BM=DQ)。
【课堂练习】
1、如图,已知AD=AE,AB=AC.求证:BF=FC
2、如图,在△ ABC中,AB=AC,延长AB到D,使BD=AB,取AB 的中点E,连接CD和CE.F为CD中点求证:CD=2CE
3、如图,△ABC中,∠C=2∠B,∠1=∠2。
求证:AB=AC+
CD.
4、已知:AB=CD,∠A=∠D,求证:∠B=∠C
.
5、已知:如图,CD⊥AB于点D,BE⊥AC于点E,BE、CD交于点O,且AO平分∠BAC.求证:OB=OC.
6、如图,已知C为线段AB上的一点,?ACM和?CBN都是等边三角形,AN和CM相交于F点,BM和CN交于E点。
求证:?CEF是等边三角形。
7、如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。
求证:(1)EC=BF;(2)EC⊥BF
8
、如图10,四边形ABCD、DEFG都是正方形,连接AE、CG,AE
与CG相交于点M,CG与AD相交于点N.求证:CGAE?;A B C
D
A
E
B
M C
F
A B C M N
E F1
2
.
9、如图,在等腰Rt△ABC中,∠C=90°,D是斜边上AB上任一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H点,交AE于G.
求证:BD=CG.
10、已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E。
求证:(1)△BFC≌△DFC;(2)AD=DE
. EDFCBA11、已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2
12、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE
13、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.
补充:
常见辅助线的作法有以下几种:
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.
2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.
3)
遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,
A
BCD
E
F 2
1
.
EDCBA利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.
4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”
5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.
特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.1、如图,AC∥BD,EA,EB分别平分∠CAB,∠DBA,CD过点E,求证;AB=AC+BD
2、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB
于E,DF⊥AC于F.
(2)如果AB=a,AC=b,求AE (1)说明BE=CF的理由;
、BE的长.3、
EDGFCBA.
.。