第三晶体振动与晶体的热学性质

合集下载

《固体物理基础》晶格振动与晶体的热学性质

《固体物理基础》晶格振动与晶体的热学性质

一、三维简单格子
二、三维复式格子
三、第一布里渊区
四、周期性边界条件
◇一个原胞内有P
个不同原子,则
有3P个不同的振
动模式,其中3支 声学波。
◇具有N个原胞的 晶体中共有3PN个
振动模式,其中
3N个声学波, 3N(P-1)个光学波。
四、周期性边界条件 总结
§ 3.4 声子
声子:晶格振动中格波的能量量子
二、一维单原子链的振动
格波
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
周期性边界条件
玻恩—卡曼边界条件
二、一维单原子链的振动
周期性边界条件
即q有N个独立的取值—晶格中的原胞数第一布
◇非弹性X射线散射、非弹性中子散射、可见光 的非弹性散射。
§ 3.4 声子
§ 3.4 声子
90K下钠晶体沿三个方向的色散关系
§ 3.5 晶格热容
一、晶格振动的平均能量
热力学中,固体定容热容:
根据经典理论,每一个自由度的平均能量是kBT, kBT/2为平均动能,kBT/2为平均势能,若固体有
N个原子,总平均能量: 取N=1摩尔原子数,摩尔热容是:
二、一维单原子链的振动
一维单原子链的振动
二、一维单原子链的振动
简谐近似下的运动方程
二、一维单Hale Waihona Puke 子链的振动简谐近似下的运动方程
在简谐近似下,原子的相互作用像一个弹 簧振子。一维原子链是一个耦合谐振子,各原 子的振动相互关联传播,形成格波。

《固体物理学》房晓勇主编教材-思考题解答参考03第三章_晶体振动和晶体的热学性质

《固体物理学》房晓勇主编教材-思考题解答参考03第三章_晶体振动和晶体的热学性质

第三章晶体振动和晶体的热学性质3.1相距为某一常数(不是晶格常数)倍数的两个原子,其最大振幅是否相同?解答:(王矜奉3.1.1,中南大学3.1.1)以同种原子构成的一维双原子分子链为例, 相距为不是晶格常数倍数的两个同种原子, 设一个原子的振幅A, 另一个原子振幅B, 由《固体物理学》第79页公式,可得两原子振幅之比(1)其中m原子的质量. 由《固体物理学》式(3-16)和式(3-17)两式可得声学波和光学波的频率分别为, (2). (3)将(2)(3)两式分别代入(1)式, 得声学波和光学波的振幅之比分别为, (4). (5)由于=,则由(4)(5)两式可得,1B A=. 即对于同种原子构成的一维双原子分子链, 相距为不是晶格常数倍数的两个原子, 不论是声学波还是光学波, 其最大振幅是相同的.3.2 试说明格波和弹性波有何不同?解答:晶格中各个原子间的振动相互关系3.3 为什么要引入玻恩-卡门条件?解答:(王矜奉3.1.2,中南大学3.1.2)(1)方便于求解原子运动方程.由《固体物理学》式(3-4)可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难.(2)与实验结果吻合得较好.对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N 个原子构成的的原子链, 硬性假定的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证(《固体物理学》§3.1与§3.6). 玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件.3.4 试说明在布里渊区的边界上()/q π=a ,一维单原子晶格的振动解n x 不代表行波而代表驻波。

固体物理基础第3章-晶格振动与晶体的热学性质

固体物理基础第3章-晶格振动与晶体的热学性质

3-2 一维单原子链模型
格波的色散关系 4 2 2 aq sin ( )
m 2 • ω取正值,则有 (3)
(q)
aq 2 sin( ) m 2 • 频率是波数的偶函数
• 色散关系曲线具有周期性, 仅取简约布里渊区的结果即可 • 由正弦函数的性质可知,只有满足 0 2 / m 的格波 才能在一维单原子链晶体中传播,其它频率的格波将被强
原子n和原子n+1间的距离
非平衡位置
原子n和原子n+1间相对位移
a n1 n
n1 n
3-2 一维单原子链模型
• 忽略高阶项,简谐近似考虑原子 振动,相邻原子间相互作用势能 1 d 2v v(a ) ( 2 ) a 2 2 dr • 相邻原子间作用力 dv d 2v f , ( 2 )a d dr • 只考虑相邻原子的作用,第n个原 子受到的作用力
• 连续介质中的波(如声波)可表示为 Ae ,则可看出 • 格波和连续介质波具有完全类似的形式 • 一个格波表示的是所有原子同时做频率为ω的振动 • 格波与连续介质波的主要区别在于(2)式中,aq取值任意加减 2π的整数倍对所有原子的振动没有影响,所以可将波数q取值 限制为 q a a
V
O
a
r
• 第n个原子的运动方程
(n1 n ) (n n1 ) (n1 n1 2n )
(1)
平衡位置
d 2 n m 2 ( n1 n 1 2n ) dt
非平衡位置
——牛顿第二定律F=ma
3-2 一维单原子链模型
• 上述(1)式的解(原子振动位移)具有平面波的形式

a
)

晶格振动与晶体的热学性质

晶格振动与晶体的热学性质

格波: 连续介质弹性波:
Ae
i t naq
i t xq
Ae
将 µ nq
Ae i t qna
i t naq
代入运动方程得
m 2 Ae
Ae
m 2 eiaq eiaq 2 2 cos aq 1
解 得
第三章 晶格振动与晶体的热学性质
布拉伐晶格晶体中的格点表示原子的平衡位置,原子在格点附近作热振动,由于晶体内 原子之间存在相互作用力,各个原子的振动不是孤立的,而是相互联系在一起的,因此在晶 体中形成各种模式的波,称为格波。只有当振动非常微弱时,原子间的相互作用可以认为是 简谐的,非简谐的相互作用可以忽略,在简谐近似下,振动模式才是独立的。由于晶体的平 移对称性,振动模式所取的能量值不是连续的,而是分立的。通常用一系列独立的简谐振子 来描述这些独立的振动模,它们的能量量子称为声子。
nj Aje
i jt naqj


频率为 j 的特解:
方程的一般解:
n

线性变换系数正交条件: 系统的总机械能化为:
Ae
j j
i jt naqj


Q q, t einaq Nm
q
1
1 N
=N=晶体链的原胞数 晶格振动格波的总数=N· 1 =晶体链的自由度数 三、格波的简谐性、声子概念
1 2 n m 2 n 2 1 U n 晶体链的势能: n 1 2 n
晶体链的动能:T

系 统 的总 机械 能 即 体系的哈密顿量为:
H

2 1 1 2 n m n n 1 2 n 2 n
1 d2V dV V a V a 2 2 d x a d x

黄昆版固体物理学课后答案解析答案 (2)

黄昆版固体物理学课后答案解析答案 (2)

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。

固体物理学答案朱建国版完整版

固体物理学答案朱建国版完整版

固体物理学答案朱建国版3HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】固体物理学·习题指导配合《固体物理学(朱建国等编着)》使用2022年4月28日第1章晶体结构 0第2章晶体的结合 (11)第3章晶格振动和晶体的热学性质 (17)第4章晶体缺陷 (26)第5章金属电子论 (30)第1章 晶体结构1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。

从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于 多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于 面心的原子与顶角原子的距离为:R f =2a对于体心立方,处于体心的原子与顶角原子的距离为:R b那么,RfRb =31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点若ABC 面的指数为(234),情况又如何答:晶面族(123)截a 1,a 2,a 3分别为1,2,3等份,ABC 面是离原点O 最近的晶面,OA 的长度等于a 1的长度,OB 的长度等于a 2长度的1/2,OC 的长度等于a 3长度的1/3,所以只有A 点是格点。

若ABC 面的指数为(234)的晶面族,则A 、B 和C 都不是格点。

1.3 二维布拉维点阵只有5种,试列举并画图表示之。

答:二维布拉维点阵只有五种类型,两晶轴b a 、,夹角 ,如下表所示。

1 简单斜方2 简单正方3 简单六角4 简单长方5 有心长方二维布拉维点阵1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213) 答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。

固体物理第三章 晶格振动与晶体热学性质

固体物理第三章 晶格振动与晶体热学性质

固体物理第三章晶格振动与晶体热学性质第三章晶格振动与晶体的热学性质晶格振动是描述原子在平衡位置附近的振动,由于晶体内原子间存在着相互作用力,各个原子的振动也不是孤立的,而是相互联系的,因此在晶体内形成各种模式的波。

只有当振动微弱时,原子间非谐的相互作用可以忽略,即在简谐近似下,这些模式才是独立的。

由于晶格的周期性条件,模式所取的能量值不是连续的而是分立的。

对于这些独立而又分立的振动模式,可以用一系列独立的简谐振子来描述。

和光子的情形相似,这些谐振子的能量量子称为声子。

这样晶格振动的总体就可以看成声子系综。

若原子间的非谐相互作用可以看作微扰项,则声子间发生能量交换,并且在相互作用过程中,某些频率的声子产生,某些频率的声子湮灭。

当晶格振动破坏了晶格的周期性,使电子在晶格中的运动受到散射而电阻增加,可以看作电子受到声子的碰撞,晶体中的光学性质也与晶格振动有密切关系,在很大程度上可以看作光子与声子的相互作用乃至强烈耦合。

晶格振动最早是用于研究晶体的热学性质,其对晶体的电学性质、光学性质、超导电性、磁性、结构相变等一系列物理问题都有相当重要的作用,是研究固体宏观性质和微观过程的重要基础。

ωη§3-1 简谐近似和简正坐标由原子受力和原子间距之间的关系可以看出,若离开平衡位置的距离在一定限度,原子受力和该距离成正比。

这时该振动可以看成谐振动.用n μϖ表示原子偏离平衡位置(格点)位移矢量,对于三维空间,描述N 个原子的位移矢量需要3N 个分量,表为)3,,2,1(N i i Λ=μ将体系的势函数在平衡位置附近作泰勒展开:高阶项+∑⎪⎪⎭⎫ ⎝⎛∂∂∂+∑∂∂+===j i N j i j i i N i i V V V V μμμμμμ031,2031021)(第一项为平衡位置的势能,可取为零,第二项为平衡位置的力,等于零。

若忽略高阶项,因为势能仅和位移的平方成正比,即为简谐近似。

23121i N i i m T μ&∑==引入合适的正交变换,将动能和势能用所谓的简正坐标表示成仅含平方∑==N j j ij i i Q a m 31μ项而没有交叉项,即:由分析力学,基本形式的拉格朗日方程为:)32,1(,N i q Q T Q T dt d i i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂其中)32,1(,1N i q f q i j N j j i Λϖϖ=∂∂⋅∑==μ朗日方程:)32,1(,0N i Q L Q L dt d i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂则正则方程为:)3,2,1(,02N i Q Q i i i Λ&&==+ω其解为:)sin(δω+=t A Q i i 当考察某一个j Q 时,则:)sin(δωμ+=t A m a j i iji 晶体参与的振动,且它们的振动频率相同。

黄昆版固体物理学课后答案解析答案 (3)

黄昆版固体物理学课后答案解析答案 (3)

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r 同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。

固体物理基础学:第3章 晶格振动与晶体的热学性质

固体物理基础学:第3章 晶格振动与晶体的热学性质

晶格振动在晶体中形成了各种模式的波(格波),这些模式 是相互独立的,各模式的波所取的能量是分立的 简谐近似下,通过一些数学手段处理,可以用一系列独立的 简谐振子来描述这些相互独立、能量分立的振动模式 这些谐振子的能量量子,成为声子 晶格振动的总体可看做是声子的系宗
3-0 本章导读
热容量 热运动在宏观性 质的表现
v f ( n1 - n) ( n - n 1) n
平衡位置
牛顿第二定律 F=ma
力与两个原 子的位移有关
d 2 n ( n1 - n) ( n - n 1) m dt 2
(1)
非平衡位置
这即是第n个原子的运动方程!
3-2 一维单原子链模型
dv f d
d 2v 其中 ( 2 )a dr
3-1 一维单原子链模型
现考虑第n-1和第n+1个原子对第n个原子的双重作用 同样,写出简谐近似后的相互作用势v,如下:
v
1 2 2 ( ) ( ) n n 1 n 1 n 2
对位移求偏导,得到力:
杜隆-珀替经验规律: 一摩尔固体有N个原子,有3N个振动自由度,按能量均分 定律,每个自由度平均热能为kT,摩尔热容量 3Nk=3R
—— 实验表明在较低温度下,热容量随着温度的降低而下降 爱因斯坦模型与德拜模型
研究晶格振动的意义远不限于热学性质。晶格振动是 研究固体 宏观性质和微观过程的重要基础。对晶体的热学性质、电学性 质、光学性质、超导电性、磁性、结构相变有密切关系。
其中任意一个简正坐标方程解
Qi Asin(it )
可化为 i
—— ωi是振动的圆频率,当只考察某一个 的振动时:
方程

固体物理第三章 晶格振动与晶体的热学性质.

固体物理第三章 晶格振动与晶体的热学性质.

方程了,方程解为: nq Aei( tnaq )
2. 格波—解的物理意义 连续介质波的解:
i (t 2
Ae
x)
Ae i(t qx )
格波:上述原子振动方程的解与一般连续介质的波有完全类似
的形式,所不同的是只在格点位置上有原子的振动。我们称原
子振动的波为“格波”。
格波与连续介质波的区别:
(1)连续介质中x表示空间任意一点,而格波中空间位置只能取
将包含N个原胞的有限原子链首位相连, 呈封闭环,使链上所有原(胞)子等价。
第n个原(胞)子与第n+N个原子情况完 全相同。B-K边界条件也
称周期性边界条件。nq Aei(tnaq)
边界条件要求:eiNaq 1 即:Nqa=2 π h, q 2 h (h为 整 数)
Na
q
a
a
N h N , h取N个整数值 2 / a N
(Qi
)
i (Qi
)
解出:
i
(ni
1 2
)hi
ni
i
h
exp(
22)Hni来自()其中
i
h
Qi
系统的本征能量:
,Hni(ξ)是厄米尔多项式。
E
3N i 1
(ni
1 2
)hi
3N
系统的本征函数:
(Q1 ,Q2 ...Q3N )
ni (Q1 )
i 1
只要找出系统的简正坐标,或说是振动模, 晶格振动问题就解决
4. 简正坐标代表所有原子的一种集体运动(而不是哪个原子的位移) 因为原子位移和简正坐标之间存在正交变换关系:
mi i
aij Q j
假设只存在某一个Qi,j 其它的都为0 (即只考察一个Qj振动),那么,

晶格振动与晶体热学性质习题原子质量为m间距为a恢复

晶格振动与晶体热学性质习题原子质量为m间距为a恢复

第三章 晶格振动与晶体热学性质1. 原子质量为m,间距为a,恢复力常数为的一维简单晶格,频率为ω的格波)cos(qna t A u n -=ω,求(1) 该波的总能量,(2) 每个原子的时间平均总能量。

[解答](1) 格波的总能量为各原子能量的总和。

其中第n 个原子的动能为,)(212tu m n ∂∂ 而该原子与第n+1个原子之间的势能为21)(21--n n u u β 若只为考虑最近邻相互作用,则格波的总能量为,)(21)(21212--+∂∂=∑∑n n nn n u u t um E β将)cos(pna t A u n-=ω代入上式得,2sin ])12(21[sin 421)(sin22222221qaqa n t A qna t A m E ⋅+-+-=∑∑ωβωϖϖ 设T 为原子振动周期,利用21)(sin 102=-⎰dt t T T ϕω 可得()dtqa n t T A dt qna t T A qaT nT n 2221022210222sin ]12([sin 14)(sin 121⋅+-+-=E ⎰∑⎰∑ωβωω =241ωm A 2N +2sin 22qa N Aβ. 式中N 为原子总数。

(2) 每个原子的时间平均总能量为2sin A A 412222qam N E βω+=-再利用色散关系2sin 4)cos 1(222qa m qa m ββϖ=-= 便得到每个原子的时间平均能量2221A m N E ϖ=-2. 一维复式格子,原子质量都为m ,原子统一编号,任一原子与两最近邻的间距不同,力常数不同,分别为1β和2β,晶格常数为a,求原子的运动方程及色散关系. [解答]图3.2 一维双原子分子链此题实际是一双原子分子链.设相邻分子间两原子的力常数为2β,间距为b ;一个分子内两原子力常数1β;晶格常数为a;第n-1,n,n+1,n+2个原子的位移分别为211,,,++-n n n n u u u u .第n-1与第n+1个原子属于同一原子,第n 与n+1第个原子属于同一个原子,于是第n 和第n+1个原子受的力分别为)()(1112-+---=n n n n n u u u u f ββ, )()(121211n n n n n u u u u f ---=++++ββ.其运动方程分别为)()(111222-+---=n n n n nu u u u dt u d m ββ )()(12121212n n n n n u u u u dtu d m ---=++++ββ 设格波的解分别为[][]t qna i t a q i n AeAeu n ϖϖ--==212)([][]t qna i t qb a q i n BeAeB u n ϖϖ--++==212)('1.代入运动方程,得 )()(122iqa Be A A B A m ----=-ββϖ .)()(212A B B Ae B m iqa ---=-ββϖ整理得)()(,0)()(22122221=-++-=--+-B m A e B e A m iqaiqa ϖββββββϖββ由于A 和B 不可能同时为零。

晶格振动与晶体的热学性质-习题

晶格振动与晶体的热学性质-习题

第三章 晶格振动与晶体的热学性质1。

什么是简谐近似?解:当原子在平衡位置附近作微小振动时,原子间的相互作用可以视为与位移成正比的虎克力,由此得出原子在其平衡位置附近做简谐振动。

这个近似即称为简谐近似。

2.试定性给出一维单原子链中振动格波的相速度和群速度对波矢的关系曲线,并简要说明其意义.解:由一维单原子链的色散关系2sin2qamβω= ,可求得一维单原子链中振动格波的相速度为22sinqa qamaqv p βω== (1)2cos qam a dq d v g βω==. 由(1)式及结合上图3。

1中可以看出,由于原子的不连续性,相速度不再是常数。

但当0→q 时,mav p β=为一常数。

这是因为当波长很长时,一个波长范围含有若干个原子,相邻原子的位相差很小,原子的不连续效应很小,格波接近与连续媒质中的弹性波。

由(2)式及结合上图3。

1中可以看出,格波的群速度也不等于相速度.但当0→q ,mav v p g β==,体现出弹性波的特征,当q 处于第一布区边界上,即aq π=时,0=g v ,而mav p βπ2=,这表明波矢位于第一布里渊区边界上的格波不能在晶体中传播,实际上它是一种驻波。

3。

周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大,q 的取值将会怎样?解:由于实际晶体的大小总是有限的,总存在边界,而显然边界上原子所处的环境与体内原子的不同,从而造成边界处原子的振动状态应该和内部原子有所差别。

考虑到边界对内部原子振动状态的影响,波恩和卡门引入了周期性边界条件.其具体含义是设想在一长为Na 的有限晶体边界之外,仍然有无穷多个相同的晶体,并且各块晶体内相对应的原子的运动情况一样,即第j 个原子和第j tN +个原子的运动情况一样,其中t =1,2,3…。

引入这个条件后,导致描写晶格振动状态的波矢q 只能取一些分立的不同值。

如果晶体是无限大,波矢q 的取值将趋于连续。

固体物理 课后习题解答(黄昆版)第三章

固体物理 课后习题解答(黄昆版)第三章


w
M M

us −1
d 2us = C (Vs −1 − us ) + 10C (Vs − us ) , dt 2 d 2Vs = 10C ( us − Vs ) + C ( us +1 − Vs ) , dt 2
w
a/2
o
vs −1
. e h c 3 . w
c 10c
m o c
o

o

us
vs
当 当
k = k x ,且 k y = 0 时的 ω − k 图,和 kx = k y
时的 ω − k 图,如右图所示。
3.5 已知 Nacl 晶体平均每对离子的相互作用能为 U (r ) = −
马德隆常数 α =1.75,n=9,平均离子间距 r0 = 2.82 Å 。 (1)试求离子在平衡位置附近的振动频率
(b)根据题意,
μl ,m = μ (0) exp[i (lk x a + mk y a − ωt )]
) = c[( μl +1,m + μl −1,m − 2μl ,m ) 的解, dt 2 + ( μl ,m +1 + μl ,m −1 − 2μl ,m )] M(
因为
d 2 μl , m
μl ,m = μ (0) exp[i (lk x a + mk y a − ωt )]
代回到运动方程得到
若 A、B 有非零的解,系数行列式满足:
w
两种不同的格波的色散关系:
w
. e h c 3 . w
-2-
m o c
——第一布里渊区
解答(初稿)作者 季正华

固体物理期末复习题目及答案

固体物理期末复习题目及答案

第一章 晶体结构1、把等体积的硬球堆成下列结构,求球可能占据的最大体积和总体积之比。

(1)简立方 (2)体心立方 (3)面心立方(4)金刚石 解:(1)、简立方,晶胞内含有一个原子n=1,原子球半径为R ,立方晶格的顶点原子球相切,立方边长a=2R,体积为()32R ,所以 ()33344330.5262n R R K V R πππ⋅==== (2)、体心立方晶胞内含有2个原子n=2,原子球半径为R ,晶胞边长为a ,立方晶格的体对角线原子球相切,体对角线长为4个原子半径,所以43a R =3334423330.68843n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭(3)、面心立方晶胞内含有4个原子n=4,晶胞的面对角线原子球相切,面对角线长度为4个原子半径,立方体边长为a,所以42a R =3334442330.74642n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭(4)、金刚石在单位晶格中含有8个原子,碳原子最近邻长度2R 为体对角线14长,体对角线为83R a = 3334483330.341683n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭2、证明面心立方和体心立方互为倒格子。

09级微电子学专业《固体物理》期末考复习题目至诚 学院 信息工程 系 微电子学 专业 姓名: 陈长彬 学号: 2109918033、证明:倒格子原胞体积为()3*2cvvπ=,其中v c为正格子原胞的体积。

4、证明正格子晶面 与倒格矢正交。

5能写出任一晶列的密勒指数,也能反过来根据密勒指数画出晶列;能写出任一晶面的晶面指数,也能反过来根据晶面指数画出晶面。

见课件例题 以下作参考: 15.如图1.36所示,试求:(1) 晶列ED ,FD 和OF 的晶列指数;(2) 晶面AGK ,FGIH 和MNLK 的密勒指数; (3) 画出晶面(120),(131)。

密勒指数:以晶胞基矢定义的互质整数( )。

第三章晶体振动和晶体的热学性质

第三章晶体振动和晶体的热学性质
第三章 晶体振动和晶体的热学性质 一、晶体振动
1.晶体振动
晶体中的原子并不是在各自的平衡位置上固定不动,
而是为绕其平衡位置作振动。
2.振动的特点
晶体中各原子的振动是相互联系的。
3.振动模式
用格波表述原子的各种振动模式。
1
二、晶体振动的分类(根据振动的剧烈程度分类)
1.晶格振动
原子在平衡位置附近的微振动。 2.空位或间隙原子 少数原子脱离其格点的振动。 3.熔解
2 q n

q相当于波矢k。

波速:v p / q
不同原子间位相差:
naq naq ( n n)aq
相邻原子的位相差:
( n 1)aq naq aq
12
3. 和q的关系——色散关系(振动频谱)
x n 1 x n 1 2 x n
12
2n sin q a
a 2 2 m
12
qa sin 2
15
q和q表示的是同一个状态。
b 2

b2
2 a


a
O
q0

a
2 a
q0
2 a
q
(2)q的取值范围 为了保证 和q的一一对应 关系,q的取值范围设定为: 对于一维布喇菲格子,有:
(1)m(2n+1)原子:
x2 n1 Ae
i q 2 n1 t
d 2 x2 n1 m x2 n 2 x2 n 2 x2 n1 n 1,2,3, N 2 dt
2 m A 2 cosqa B 0
2

21
(2)M(2n+2)原子

《固体物理学》房晓勇主编教材-习题解答参考03第三章 晶体振动和晶体的热学性质

《固体物理学》房晓勇主编教材-习题解答参考03第三章 晶体振动和晶体的热学性质

⎧ d 2 xn m = β 2 ( xn +1 − xn ) − β1 ( xn − xn −1 ) ⎪ ⎪ dt 2 ⎨ 2 ⎪m d xn +1 = β ( x − x ) − β ( x − x ) 1 2 n n+2 n +1 n +1 ⎪ dt 2 ⎩
设格波的解分别为
n i [( ) aq −ωt ] ⎧ ⎪ xn = Ae 2 ⎨ n ⎪ x = Bei[( 2 ) aq + qb −ωt ] ⎩ n +1
A 2β cos qa / m = =0 B 2β / m − 2β / M
由此可知,声学支格波中所有轻原子 m 静止。 而在光学支中,重原子 M 与轻原子 m 的振幅之比为
B 2β cos qa / M = =0 A 2β / M − 2β / m
由此可知,光学支格波中所有重原子 M 静止。 此时原子振动的图像如下图 3.6 所示:
v弹 =
ω
q
=
c
ρ
,c = βa , ρ =
1
⎡ ⎢ v弹 = ⎢ β a ⎛ m+M ⎢ ⎜ ⎢ ⎝ 2a ⎣
⎤2 1 ⎥ ⎛ 2β ⎞ 2 ⎥ =⎜ ⎟ a ⎞⎥ ⎝m+M ⎠ ⎟ ⎠⎥ ⎦
由此可以看出,弹性波的波速与长声学波的波速完全相等,即长声学波与弹性波完全一样。 长声学波,格波可以看成连续波,晶体可以看成连续介质。 3.5 设有一维原子链 (如图) , 第 2n 个原子与第 2n + 1 个原子之间的力常数为 β ; 而第 2n 个原子与第 2n − 1 个原子的力常数为 β ' ( β ' < β ) 。设两种原子的质量相等,最近邻间距均为 a,试求晶格振动的振动谱以 及q = 0 和q = ±
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所以:
Vc dZ 2 q dq 2 2
对弹性波,
vpq
则:
( )
d vp dq
dZ dq 代入 ( ) 得: dq d

O
弹性波的状态密度曲线
Vc ( ) 2 2 v 3 p
2
目录
3.2
晶格振动的经典理论
简谐振动
U ) r0 0 r
3.2.1
由于连续媒质中的弹性波的色散关系是线性的,以致相速度为常数.
d 群速度:振幅传播的速度.大小为: v g dq 对于连续媒质弹性波, v p q,而 v p与 q 无关.
所以:
d vg (v p q ) v dq
群速度等于相速度.
在晶体中传播的格波,色散关系 (q ) 不是简单的线性关系, 群速度和相速度不再相等. 当 v p 不是常数时
对于微小振动,原子间的相互作用可以视为与位移 成正比的虎克力,由此得出原子在其平衡位置附近的简谐振动.所以 称这个近似为简谐近似
目录
3.2.2
一维单原子链的振动
模型:一维无限长的单原子链,原子间距(晶格常量)为a, 原子质量为m.
n2 n 1
n
n 1
n2
a
xn 2
2
xn 1
xn
xn 1
虽然它是在直角坐标系中推出的,但是它普遍成立.
2.状态密度 状态密度:单位频率间隔内的状态数(状态数等于分立的波矢数)
dz ( ) d
角频率是波矢量的函数—色散关系 所以:
dZ
dZ dq ( ) dq d
dq 为单位波矢间隔内的状态数.对于弹性波,一个波矢对应
一个状态,而q空间中的波矢大小为q的球体内的分立波矢数Z为: Vc 4 3 Vc 3 4 3 Z q q q q 3 2 3 8 3 6 目录
2
可把q ( qnat )
Ae
e
i 2n
x(q )

, ) a a

5 a

3 a

2 a


a
0

2 a
2 a
3 a
q
目录
解释:q与q+
q
1 2 ' 5 2 2 ,q q 4 a 4 a a
2 分别对应不同的波长,为什么它们都描写同一运动状态呢? a
(m M ) 1 4mM 2 {1 [1 sin qa]} 2 mM 2 ( M m) 1 2 2 2 0 sin 2 qa ( ) 2 | sin qa | q q M m M m
2
2
二元一次齐次方程有解的条件:系数行列式为零:
2 m
2 cos qa 2 M
2
2 cos qa
0
(2 m 2 )(2 M 2 ) 4 cos 2 qa 0
目录
解得:
Mm 4 2 (M m) 2 4 2 (cos 2 qa 1) 0 1 2 2 2 2
U 1 2U U (r0 ) U (r0 ) ( ) r0 ( 2 ) r0 2 r 2 r
在平衡位置附近 (
当振动很微小时 很小,只保留到 2 项,则原子间的相互作用力可表示为:
2U f ( 2 ) r0 r
2U 其中 ( 2 ) r0 r
dv p d vg (v p q ) v p q dq dq
目录
3.1.2
周期性边界条件和状态密度
1.周期性边界条件
z
Lz
波恩-卡门边界条件
(r Lx i ) (r ) (r Ly j ) (r ) (r Lz k ) (r )
x 1
y 2
Vc ( N1 N 2 N3 ) N
(2 ) 3 * 所以: q N N
N N1 N 2 N3为原胞总数
为每个原胞体积
倒格子原 胞的体积
目录
倒格子原胞的体积与第一布里渊区的体积相等.所以第一布里渊区 * 内分立波矢量的数目为:
ZB
q
N
第一布里渊区内分立波矢量的数目等于晶体中原胞的数目.
(4) 第一布里渊区的分立波矢数=晶体原胞数. 晶体内独立状态数(振动频率数)=晶体自由度数 证:使用周期性边界条件(第二个结论显然是成立的).
第一布里渊区的长度: 2
2n q Na
xn xn N
2 b q Na N
2 a
e
iqNa
1
a
第一布里渊区分立波矢数:
q
2 a
(2 ) 3 ( 2 ) 3 q q x q y q z Lx Ly Lz Vc
注意:这里的 q 不是波矢量的增量,而是表示 q 空间的一个体积 元,式中Vc Lx Ly Lz 为所处理的晶体的体积. 把媒质分成原胞,在x,y,z方向上的基矢长度分别为a,b,c,原 胞数分别为 N1 , N 2 , N 3 . 则: Lz N 3c L N b L Na
y
Ly
x
Lx
晶体周期性边界条件
e
iqx Lx
1
qx Lx 2nx , nx 0,1,2,
2 的整数倍,即只能是一系列分立的值. Lx
所以波矢只能取
2 , 所以: q x Lx
2 q y , Ly
2 q z . Lz
在q空间中一个分立的波矢量占据的体积为 :
sin( ) qa 2 m m
v相 v群 a m
1 2
(2)驻波特征
当 q (2k 1) 时,即处于布里渊区边界时 a
v群 0
能量不向外边传 播 ——驻波
原因:入射波和反射波的迭加,可证明相邻原子的振动位相相反 目录
qa 2 | sin | m 2
4a, ' 4a / 5
从图可以看出:两条曲线描写的格点的运动状态完全相同.唯一不同的就是
两格点之间的运动状态.而这些中间状态的差异并不影响物理实质.
所以为了使x~q(ω ~q)的关系成为单值,限制q在第一布里渊区,对一维来 说q的取值( , ]
a a

目录
xn Ae
i ( qnat )


a
0
a
目录
qa 2 | sin | m 2
性质:(1) 长波

q0
sin qa
2
qa
解释:
很大,本来不连续的晶格可视为连续的了.
d qa v群 cos( ) a dq m 2
1 2
2
2
时,格波成为弹性波 1 1 qa 2 2
2
连续媒质中弹性波的波动方程:
2 2 2 其中 2 2 为拉普拉斯算符,在笛卡儿 直角坐标系中 r 2 x y z i ( q r t ) 方程解的形式: 2
xi yj zk
为波矢量,方向为波的传播方向; q
色散关系:
(r , t ) Ae
(3)周期性

xn Ae
i ( qnat )
x(q
2 xn (q) xn (q ) (q) (q 2 ) a a 2 i ( q ) na it 2 i ( qnat ) a
a
周期为一个倒格子矢量
2 (q ) max | sin a (q 2 ) | a 2 a a max | sin( q ) | (q)
第三章 晶格振动与晶体的热学性质
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 连续媒质中的弹性波 晶格振动的经典理论 晶格中振动的量子化和声子 离子晶体中的长光学波 晶体比热容的量子理论 晶体热膨胀 晶体热传导 确定晶格振动谱的实验方法
返回总目录
3.1
连续媒质中的弹性波
d (r , t ) 2 K (r , t ) 2 dt
m Ae
2
i ( qnat )
2
iq( n 1) a
e
iq( n 1) a
2e
max
iqna
)e
it
m (e
2
e
iqa
2)

m 2 (1 cos qa)
4 2 qa sin m 2
2
得色散关系 :
qa 2 | sin | m 2
mM
{( m M ) [m M 2mM cos( 2qa)] }
2支格波的最大频率和最小频率及相应得波矢分别为: 2 光学支 max ,q 0

min
2 ,q m 2a
max
2 ,q M 2a

2 2 ( ) m 1 2 2 ( ) M
3.2.3一维双原子链的振动
2n-2 2n-1 2n 2a 2n+1 2n+2 2n+3
{
m M
d 2 x2 n1
2
dt d 2 x2 n 2 dt
2
( x2 n2 x2 n x2 n1 ) ( x2 n3 x2 n1 x2 n2 )
目录
设M>m
{
{
x2 n1 Aei [ q ( 2 n1) at ] i [ q ( 2 n 2 ) a t ] x2 n2 Be
目录
1 2N 1 ( ) 2 a / m cos( qa / 2) m 2
格波有截止频率 求解格波步骤:
相关文档
最新文档