三视图中高难度的练习及答案
三视图(20个含答案)
三视图(一)1(2011西城一模理12).一个棱锥的三视图如图所示,则这个棱锥的体积为_____.2(2011西城一模文5).一个棱锥的三视图如图所示,则这个棱锥的体积是(A)6(B)12(C)24(D)363.(2011朝阳一模理6)已知某个三棱锥的三视图如图所示,其中正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形,则此三棱锥的体积等于()(A )612(B )33(C )64(D )2334(2011门头沟一模理3).一几何体的三视图如右图所示,则该几何体的体积是(A) 2 (B) 4 3(C)312+(D)316+正(主)视图俯视图侧(左)视图3443 33正(主)视图俯视图侧(左)视图3443 33侧视图正视图1俯视图2主视图左视图111ABC DO EA 1B 1C 1D 1 5(2011石景山一模理4).一个空间几何体的三视图及部分数据如图所示(单位:cm ),则这个几何体的体积是( ) A . 33cm B .352cm C . 32cm D .332cm6(2011朝阳一模文6.)已知三棱锥的三视图如图所示,其中侧视图为直角三角形,俯视图为等腰直角三角形,则此三棱锥的体积等于()(A )23(B )33(C )223 (D )2337(2011丰台文5).如图所示,O 是正方体ABCD -A 1B 1C 1D 1对角线A 1C 与AC 1的交点,E 为棱BB 1的中点,则空间四边形OEC 1D 1在正方体各面上的正投影不可能...是( )8(2011海淀一模文11). 如图,在正方体1111ABCD A B C D -中,点P 是上底面1111A B C D 内一动点,则三棱锥P ABC -的主视图与左视图的面积的比值为_____.(A) (B) (C) (D)正视图俯视图侧视图13PDCBA1A 1D 1B 1C 左视主视9(2011门头沟一模文10).一几何体的三视图如左下图所示,则该几何体的体积是10(2011石景山一模文4).一个空间几何体的三视图及部分数据如图所示 (单位:cm ),则这个几何体的表面积是( ) A .29πcm B .212πcm C .215πcm D .224πcm参考答案:1.122.B3.B4.B5.D6.B7.A _8._1__9. 3710.D俯视23主视左视11(第10题(二)1(10。
高三专项训练:三视图练习题(一)
高三专项训练:三视图练习题(一)(带答案)一、选择题1.如图是某几何体的三视图,则此几何体的体积是( )A .36B .108C .72D .1802.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A 、球B 、三棱锥C 、正方体D 、圆柱3.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A 、9πB 、10πC 、11πD 、12π4.有一个几何体的三视图及其尺寸如图(单位cm ),则该几何体的表面积及体积为( )A.3212,24cm cm ππB. 3212,15cm cm ππC. 3236,24cm cm ππD.以上都不正确5.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.A. B. CD .36.一空间几何体的三视图如图所示,则该几何体的体积为.A. B. C D. [7. 若某空间几何体的三视图如图所示,则该几何体的体积是A .13 B .23C .1D .28.右图是某几何体的三视图,则该几何体的体积为( )A . B.C. D.1362942π+3618π+9122π+9182π+正视图俯视图9.已知一个几何体的三视图如图所示,则该几何体外接球的表面积为( )A .43π B . 163π C .1912π D . 193π 10.某几何体的正视图如图所示,则该几何体的俯视图不可能的是11.已知某个几何体的三视图如图(主视图中的弧线是半圆),根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )cm 3.A .π+8B .328π+C .π+12D .3212π+侧视图主视俯视第8题图俯视图侧视图 正视图12.已知正六棱柱的底面边长和侧棱长均为2cm ,其三视图中的俯视图如图所示,则其左视图的面积是( )(A )243cm (B )223cm (C )28cm (D )24cm13.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .6πB .7πC .8πD .9π14.如右图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为 ( )A .π3B .π2C .π23 D .π4 15.如图是一个几何体的三视图,若它的体积是33,则图中正视图所标a=( )A .1B 3C 3D .316.已知某几何体的三视图如图所示(单位:cm ),其中正视图、侧视图都是等腰直角三角形,则这个几何体的体积是( )A .338cmB .3316cm C .33216cm D . 3332cm17.一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .B .C .D .18.若某空间几何体的三视图如图所示,则该几何体的体积是 ( )A.13 B. 23C. 1D. 2 俯视图侧视图正视图22119.某物体是空心的几何体,其三视图均为右图,则其体积为( )A 、8B 、43π C 、483π+ D 、483π- π12π34π3π312正视图 侧视图俯视图 正视第9题22 4 2侧视图 22俯视20.如图,水平放置的三棱柱ABC-A 1B 1C 1中,侧棱AA 1⊥平面A 1B 1C 1,其正视图是边长为a 的正方形.俯视图是边长为a 的正三角形,则该三棱柱的侧视图的面积为A .a 2B .a 2C a 2D 221.右图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3π B .24+3π C .20+4π D .24+4π22.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .12πB .π34C .3πD .π312.23.如右图为一个几何体的三视图,其中俯视图为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为( )12正视图 侧视图 俯视图 AC A 11正视图 侧视图俯视图24.图1是设某几何体的三视图,则该几何体的体积为()A.942π+B.3618π+C.9122π+D.9182π+、25.已知某几何体的三视图如图所示,根据图中标注的尺寸(单位cm)可得该几何体的体积是()A.313cm B.323cmC.343cm D.383cm26.小红拿着一物体的三视图(如图所示)给小明看,并让小明猜想这个物件的形状是A. 长方形 B. 圆柱 C. 立方体 D. 圆锥27.一个几何体的三视图如图所示,则这个几何体的体积为()正视图侧视图俯视图332正视图俯视图图1AB .12C .32 D1+28.一个空间几何体的三视图如图(1)所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积和表面积分别为 ( )A 、64,48+B 、32,48+ C 、643,32+D 、332,48+29.若某多面体的三视图(单位: cm )如图所示,则此多面体的体积是( ) A .21cm 3 B .32cm 3 C .65cm 3 D .87cm 3正视图俯视图图(1)侧(左)视图 1111130.一个空间几何体的正视图、侧视图均是长为2、高为3的矩形,俯视图是直径为2的圆(如右图),则这个几何体的表面积为A .12π+B .7πC . π8D .π2031.(一空间几何体的三视图如图所示,则该几何体的体积为( ).A. B.C.D. 32.已知几何体其三视图(如图),若图中圆半径为1,等腰三角形腰为3,则该几何体表面积为 ( ) A .6π B .5π C.4π D.3π2π+4π+2π4π+正视侧视俯视俯视..A .2,23B .22,2D .2,434.如图,有一个几何体的正视图与侧视图都是底为6cm ,腰为5cm 的等腰三角形,俯视图是直径为6cm 的圆,则该几何体的体积为 ( )A .12πcm 3B .24πcm 3C .36πcm 3D .48πcm 335 (A )348cm (B )324cm (C )332cm (D )328cm36. 如图,直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其侧视图的面积为 ( )A .4B .3C .32D .237.某四面体的三视图如下图所示,则该四面体的四个面中,直角三角形的面积和是_______.二、填空题 正视图 左视图俯视图正视图侧视图 俯视图 第6题 ·38.一个几何体的三视图如右图所示,主视图与俯视图都是一边长为3cm 的矩形,左视图是一个边长为2cm 的等边三角形,则这个几何体的体积为________.39.如图所示是一个几何体的三视图(单位:cm ),主视图和左视图是底边长为4cm ,腰长为22的等腰三角形,俯视图是边长为4的正方形,则这个几何体的表面积是-__________40.某几何体的三视图如图所示,则该几何体的体积的最大值为 .41.一正多面体其三视图如图所示,该正多面体的体积为___________.主视图 左视图俯视图3主视图 俯视图 侧视图42.若某几何体的三视图(单位:cm )如右图所示,则该几何体的体积为 cm 2.43.已知某几何体的三视图如图所示,其中侧视图是等腰直角三角形,正视图是直角三角形,俯视图ABCD 是直角梯形,则此几何体的体积为 ;44.某四面体的三视图如上图所示,该四面体四个面的面积中最大的是1正视图俯视图左视图45.一个几何体的三视图如右图所示(单位:),则该几何体的体积为__________46.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则球的表面积是_____.47.如图,一个简单空间几何体的三视图其主视图与左视图都是边长为的正三角形,其俯视图轮廓为正方形,则其体积是_________.48. 某几何体的三视图如图所示,则它的体积是___________俯视图m 3m 249.设某几何体的三视图如图所示,则该几何体表面积是50.一个几何体的三视图如右图所示,正视图是一个边长为2的正三角形,侧视图是一个等腰直角三角形,则该几何体的体积为.三视图练习题(一)参考答案1.B【解析】此几何体是一个组合体,下面是一个正四棱柱上面是一个四棱锥.其体积为166********V =⨯⨯+⨯⨯⨯=.2.D【解析】圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆; 三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形; 圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆。
(完整版)高中数学3三视图课后习题(带答案)
(完整版)高中数学3三视图课后习题(带答案)332 正视图侧视图俯视图图1 三视图课后习题1.(陕西理5)某几何体的三视图如图所示,则它的体积是A .283π-B .83π-C .82π-D .23π2.(全国新课标理6)。
在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为3.(湖南理3)设图1是某几何体的三视图,则该几何体的体积为A .9122π+B .9182π+C .942π+D .3618π+4.(广东理7)如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A .63 B .93C .123D .1835.(北京理7)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是A .8B .62C .10D .826.(安徽理6)一个空间几何体的三视图如图所示,则该几何体的表面积为(A )48 (B )32+817 (C )48+817 (D )807.(辽宁理15)一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是.8.(天津理10)一个几何体的三视图如右图所示(单位:m ),则该几何体的体积为__________3m9.(2010湖南文数)13.图2中的三个直角三角形是一个体积为20cm 2的几何体的三视图,则h= cm10.(2010浙江理数)(12)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是___________3cm .11.(2010辽宁文数)(16)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为 .12.(2010辽宁理数)(15)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.13.(2010天津文数)(12)一个几何体的三视图如图所示,则这个几何体的体积为。
三视图练习题含答案(K12教育文档)
三视图练习题含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(三视图练习题含答案(word 版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为三视图练习题含答案(word版可编辑修改)的全部内容。
23正视图侧视图2俯视图2第3题三视图练习题1.某几何体的三视图如图所示,则它的体积是( ) A 。
283π-B 。
83π- C.π28- D 。
23π2.某四棱锥的三视图如图所示,该四棱锥的表面积是( )A .32B 。
16+162 C.48 D 。
16322+3。
如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为( )A .43B .4C .23D .24。
如图是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+ C.9122π+ D.9182π+ 5。
一个空间几何体的三视图如图所示,则该几何体的表面积为( )A 。
48 B.32+817 C.48+817 D.806.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )A 。
35233cm B.3203 3cmC 。
22433cm D.1603 3cm3 32正视图侧视图第1题第2题7.若某空间几何体的三视图如图所示,则该几何体的体积是( )A 。
2B.1C.23D 。
138。
某几何体的三视图如图所示,则该几何体的体积为( )A 。
π816+B 。
π88+ C. π1616+ D. π168+ 9. 某四棱台的三视图如图所示,则该四棱台的体积是( ) A.4 B 。
高三专项训练:三视图练习题
高三专项训练:三视图练习题(一)(带答案)一、选择题1.如图是某几何体的三视图,则此几何体的体积是( )A .36B .108C .72D .1802.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A 、球B 、三棱锥C 、正方体D 、圆柱3.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A 、9πB 、10πC 、11πD 、12π4.有一个几何体的三视图及其尺寸如图(单位cm ),则该几何体的表面积及体积为( )A.3212,24cm cm ππB. 3212,15cm cm ππC. 3236,24cm cm ππD.以上都不正确5.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.A .23B .22C .5D .36.一空间几何体的三视图如图所示,则该几何体的体积为.A. 1B. 3 C 6 D. 2[7. 若某空间几何体的三视图如图所示,则该几何体的体积是A .13 B .23C .1D .28.右图是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+C.9122π+ D.9182π+9.已知一个几何体的三视图如图所示,则该几何体外接球的表面积为( )332正视图俯视图A .43πB . 163πC .1912πD . 193π 10.某几何体的正视图如图所示,则该几何体的俯视图不可能的是11.已知某个几何体的三视图如图(主视图中的弧线是半圆),根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )cm 3.A .π+8B .328π+C .π+12D .3212π+12.已知正六棱柱的底面边长和侧棱长均为2cm ,其三视图中的俯视图如图所示,则侧视图主视俯视22 312第8题图2俯视图 332 1侧视图 正视图1 1 1其左视图的面积是( ) (A )243cm (B )223cm (C )28cm (D )24cm13.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .6πB .7πC .8πD .9π14.如右图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为 ( )A .π3B .π2C .π23 D .π4 15.如图是一个几何体的三视图,若它的体积是33,则图中正视图所标a=( )A .1B 3C 3D .316.已知某几何体的三视图如图所示(单位:cm ),其中正视图、侧视图都是等腰直角三角形,则这个几何体的体积是( )A .338cmB .3316cm C .33216cm D . 3332cm17.一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π12B .π34C .π3D .π31218.若某空间几何体的三视图如图所示,则该几何体的体积是 ( )A.13 B. 23C. 1D. 2 俯视图侧视图正视图22119.某物体是空心的几何体,其三视图均为右图,则其体积为( )A 、8B 、43π C 、483π+ D 、483π-正视图 侧视图俯视图 正视第9题22 4 2侧视图 22俯视20.如图,水平放置的三棱柱ABC-A 1B 1C 1中,侧棱AA 1⊥平面A 1B 1C 1,其正视图是边长为a 的正方形.俯视图是边长为a 的正三角形,则该三棱柱的侧视图的面积为A .a 2B .12a 2C .32a 2 D .3a 221.右图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3πB .24+3πC .20+4πD .24+4π22.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .12πB .π34C .3πD .π312. 23.如右图为一个几何体的三视图,其中俯视图为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为( )A. 6+3B. 24+3C. 24+23D. 32正视图 侧视图 俯视图 AC A 11正视图 侧视图俯视图24.图1是设某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+ C.9122π+ D.9182π+ 、25.已知某几何体的三视图如图所示,根据图中标注的尺寸(单位cm )可得该几何体的体积是( )A .313cmB .323cm C .343cm D .383cm26.小红拿着一物体的三视图(如图所示)给小明看,并让小明猜想这个物件的形状是A. 长方形B. 圆柱C. 立方体D. 圆锥27.一个几何体的三视图如图所示,则这个几何体的体积为( )A 32B .12C .32D 312+ 正视图侧视图俯视图 332正视图俯视图图128.一个空间几何体的三视图如图(1)所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积和表面积分别为 ( )A 、64,48+B 、32,48+C 、643,32+ D 、332,48+29.若某多面体的三视图(单位: cm )如图所示,则此多面体的体积是 ( )A .21cm 3B .32cm 3C .65cm 3 D .87cm 3 30.一个空间几何体的正视图、侧视图均是长为2、高为3的矩形,俯视图是直径为2的圆(如右图),则这个几何体的表面积为正视侧视俯视正视图俯视图图(1)侧(左)视图 11111A .12π+B .7πC . π8D .π2031.(一空间几何体的三视图如图所示,则该几何体的体积为( ). A.223π+ B. 423π+C. 2323π+D. 2343π+ 32.已知几何体其三视图(如图),若图中圆半径为1, 等腰三角形腰为3,则该几何体表面积为 ( )A .6πB .5πC .4πD .3π33.若一个正三棱柱的三视图如下图所示,则这个正三棱柱的高和底面边长分别为( )A .2,23B .22,2 D .2,434.如图,有一个几何体的正视图与侧视图都是底为6cm ,腰为5cm 的等腰三角形,俯视图是直径为6cm 的圆,则该几何体的体积为 ( )A .12πcm 3B .24πc m 3C .36πcm 3D .48πcm 3正视图 2 32 左视图俯视图正视图 侧视图俯视35.一个多面体的三视图分别是正方形、等腰三角形和矩形, 其尺寸如图,则该多面体的体积为(A )348cm (B )324cm(C )332cm (D )328cm36. 如图,直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其侧视图的面积为 ( )A .4B .3C .32D .237.某四面体的三视图如下图所示,则该四面体的四个面中,直角三角形的面积和是_______.38.一个几何体的三视图如右图所示,主视图与俯视图都是一边长为3cm 的矩形,左视图是一个边长为2cm 的等边三角形,则这个几何体的体积为________.二、填空题3主视图 俯视图 侧视图39.如图所示是一个几何体的三视图(单位:cm ),主视图和左视图是底边长为4cm ,腰长为22的等腰三角形,俯视图是边长为4的正方形,则这个几何体的表面积是-__________40.某几何体的三视图如图所示,则该几何体的体积的最大值为 .41.一正多面体其三视图如图所示,该正多面体的体积为___________.42.若某几何体的三视图(单位:cm )如右图所示,则该几何体的体积为 cm 2.31正视图俯视图左视图主视图 左视图俯视图43.已知某几何体的三视图如图所示,其中侧视图是等腰直角三角形,正视图是直角三角形,俯视图ABCD是直角梯形,则此几何体的体积为;44.某四面体的三视图如上图所示,该四面体四个面的面积中最大的是45.一个几何体的三视图如右图所示(单位:m),则该几何体的体积为__________3m 46.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则球的表面积是_____.47.如图,一个简单空间几何体的三视图其主视图与左视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是_________.主视图左视图俯视图48.某几何体的三视图如图所示,则它的体积是___________49.设某几何体的三视图如图所示,则该几何体表面积是50.一个几何体的三视图如右图所示,正视图是一个边长为2的正三角形,侧视图是一个等腰直角三角形,则该几何体的体积为.三视图练习题(一)参考答案1.B【解析】此几何体是一个组合体,下面是一个正四棱柱上面是一个四棱锥.其体积为166********V =⨯⨯+⨯⨯⨯=.2.D【解析】圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆; 三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形; 圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆。
三视图通关100题(含答案)
㐸 ,其正视图和侧视图都是边长为 ,th
的正方形,俯视图是
的体积是
72. 一个多面体从前面、后面、左侧、右侧、上方看到的图形分别如图所示(其中每个正方形边长 都为 ),则该多面体的表面积为 .
73. 已知正三棱锥 面积为 .
th 的正视图、俯视图如图所示,则该三棱锥的体积为
,侧视图的
74. 图中的三个直角三角形是一个体积为 㐸 cm 的几何体的三视图,该几何体的外接球表面积 为
36. 某几何体的三视图如图所示,则它的表面积为
,体积为
.
37. 某几何体的三视图(单位: cm)如图所示,则此几何体的所有棱长之和为 为 cm .
cm ,体积
38. 某几何体的三视图如图所示(单位: :),且该几何体的体积是 是 cm,该几何体的表面积是 cm .
cm ,则正视图中的
的值
39. 某几何体的三图所示,则某几何体的体积为
m .
14. 一个几何体的三视图如图所示(单位:cm),则该几何体的体积为
cm .
第 4页(共 42 页)来自高中数学解题研究会
QQ 群 339444963 欢迎关注微信公众号
欢迎关注微信公众号(QQ 群):兰老师高中数学研究会 557619246
15. 某几何体的三视图如图所示,则此几何体的体积是
.
9. 一个正三棱柱的侧棱长和底面边长相等,体积为 是一个矩形,则这个矩形的面积是 .
,它的三视图中的俯视图如图所示,左视图
10. 一个正三棱柱的三视图如图所示,则这个正三棱柱的表面积为
.
11. 设某几何体的三视图如下(尺寸的长度单位为 m),则该几何体的体积为
第 3页(共 42 页)来自高中数学解题研究会
三视图习题(含答案)较难
三视图习题(含答案)较难⼏何体的三视图练习题1309131、若某空间⼏何体的三视图如图所⽰,则该⼏何体的体积是()(A )2(B )1(C )23(D )132、⼀个⼏何体的三视图如图,该⼏何体的表⾯积是()(A )372 (B )360 (C )292 (D )2803、若某⼏何体的三视图(单位:cm )如图所⽰,则此⼏何体的体积是(A )3523cm 3 (B )3203cm 3 (C )2243cm 3 (D )1603cm 34、⼀个长⽅体去掉⼀个⼩长⽅体,所得⼏何体的正(主)视图与侧(左)视图分别如右图所⽰,则该⼏何体的俯视图为:()5、若⼀个底⾯是正三⾓形的三棱柱的正视图如图所⽰,则其侧⾯积...等于 ( ) AB .2 C..66、图2中的三个直⾓三⾓形是⼀个体积为20cm 2的⼏何体的三视图,则h= cm7、⼀个⼏何体的三视图如图所⽰,则这个⼏何体的体积为。
8、如图,⽹格纸的⼩正⽅形的边长是1,在其上⽤粗线画出了某多⾯体的三视图,则这个多⾯体最长的⼀条棱的长为______.第2题第5题9、如图1,△ ABC 为正三⾓形,AA '//BB ' //CC ' , CC ' ⊥平⾯ABC 且3AA '=32BB '=CC '=AB,则多⾯体△ABC -A B C '''的正视图(也称主视图)是()10、⼀空间⼏何体的三视图如图所⽰,的体积为( ).A.2π+B. 4π+C.2π+ D. 4π+11、上图是⼀个⼏何体的三视图,根据图中数据,可得该⼏何体的表⾯积是()A .9πB .10πC .11πD .12π12、⼀个棱锥的三视图如图,则该棱锥的全⾯积(单位:c 2m )为()(A )(B )(C )(D ) 13、若某⼏何体的三视图(单位:cm )如图所⽰,则此⼏何体的体积是 3 cm .第7题侧(左)视图正(主)视俯视图俯视图正(主)视图侧(左)视图第14题14、设某⼏何体的三视图如上图所⽰。
三视图习题50道(含答案).
三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是( (A2 (B1 (C23(D132、一个几何体的三视图如图,该几何体的表面积是((A372 (B360 (C292 (D2803、若某几何体的三视图(单位:cm如图所示,则此几何体的体积是(A3523cm3(B3203cm3 (C2243cm3(D1603cm34、一个长方体去掉一个小长方体,所得几何体的正(主视图与侧(左视图分别如右图所示,则该几何体的俯视图为: (5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 (A.2 C..66、图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm第2题第5题7、一个几何体的三视图如图所示,则这个几何体的体积为。
8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图是(10、一空间几何体的三视图如图所示,则该几何体的体积为( .A.2π+B. 4π+C. 2π+D. 4π 11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(A .9πB .10πC .11πD .12π第7题侧(左视图正(主视图俯视图俯视图正(主视图侧(左视图12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c2m为((A(B(C(D13、若某几何体的三视图(单位:cm如图所示,则此几何体的体积是3cm.14、设某几何体的三视图如上图所示。
则该几何体的体积为3m15、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm,可得这个几何体的体积是(A.3 4000 cm3B.3 8000 cm3C.3 2000cmD.34000cm16、一个几何体的三视图如上图所示,其中正视图与侧视图都是边长为2的正三角形,则这个几何体的侧面积为(A.33π B.2πC.3π D.4π第14题正视图侧视图俯视图第17题17、如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积为(A .32πB .16πC .12πD .8π18、下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是A.9πB.10πC.11π D .12π19、右图是一个多面体的三视图,则其全面积为( AB6C6 D4 20、如图所示,一个空间几何体的正视图和侧视图都是底为1,高为2的矩形,俯视图是一个圆,那么这个几何体的表面积为(A .2πB .52πC .4πD .5π21、一个几何体的三视图及其尺寸(单位:cm如图所示,则该几何体的侧面积为_ ______cm 2.22、如果一个几何体的三视图如图所示(单位长度: cm, 则此几何体的表面积是(A. 2(20cm + B.212cmC. 2(24cm + D. 242cm俯视图左视图俯视图图2723. 如右图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为A .π3 B .π2 C .π23D .π424. 如下图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12。
三视图习题50道(含答案).
三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是( (A2 (B1 (C23(D132、一个几何体的三视图如图,该几何体的表面积是((A372 (B360 (C292 (D2803、若某几何体的三视图(单位:cm如图所示,则此几何体的体积是(A3523cm3(B3203cm3 (C2243cm3(D1603cm34、一个长方体去掉一个小长方体,所得几何体的正(主视图与侧(左视图分别如右图所示,则该几何体的俯视图为: (5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 (A.2 C..66、图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm第2题第5题7、一个几何体的三视图如图所示,则这个几何体的体积为。
8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图是(10、一空间几何体的三视图如图所示,则该几何体的体积为( .A.2π+B. 4π+C. 2π+D. 4π 11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(A .9πB .10πC .11πD .12π第7题侧(左视图正(主视图俯视图俯视图正(主视图侧(左视图12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c2m为((A(B(C(D13、若某几何体的三视图(单位:cm如图所示,则此几何体的体积是3cm.14、设某几何体的三视图如上图所示。
则该几何体的体积为3m15、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm,可得这个几何体的体积是(A.3 4000 cm3B.3 8000 cm3C.3 2000cmD.34000cm16、一个几何体的三视图如上图所示,其中正视图与侧视图都是边长为2的正三角形,则这个几何体的侧面积为(A.33π B.2πC.3π D.4π第14题正视图侧视图俯视图第17题17、如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积为(A .32πB .16πC .12πD .8π18、下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是A.9πB.10πC.11π D .12π19、右图是一个多面体的三视图,则其全面积为( AB6C6 D4 20、如图所示,一个空间几何体的正视图和侧视图都是底为1,高为2的矩形,俯视图是一个圆,那么这个几何体的表面积为(A .2πB .52πC .4πD .5π21、一个几何体的三视图及其尺寸(单位:cm如图所示,则该几何体的侧面积为_ ______cm 2.22、如果一个几何体的三视图如图所示(单位长度: cm, 则此几何体的表面积是(A. 2(20cm + B.212cmC. 2(24cm + D. 242cm俯视图左视图俯视图图2723. 如右图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为A .π3 B .π2 C .π23D .π424. 如下图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12。
高中三视图试题及答案
高中三视图试题及答案一、选择题(每题2分,共10分)1. 在三视图中,主视图、左视图和俯视图分别表示物体的哪个面?A. 正面、侧面、上面B. 侧面、正面、上面C. 正面、上面、侧面D. 上面、侧面、正面2. 以下哪个选项不是三视图的组成部分?A. 主视图B. 左视图C. 右视图D. 俯视图3. 根据三视图的规则,物体的长、宽、高分别在哪个视图中表示?A. 主视图、俯视图、左视图B. 俯视图、主视图、左视图C. 左视图、主视图、俯视图D. 主视图、左视图、俯视图4. 如果一个物体的主视图和俯视图都是圆形,那么这个物体可能是:A. 圆柱体B. 圆锥体C. 球体D. 立方体5. 在绘制三视图时,如果一个物体的左视图和主视图相同,那么这个物体可能是:A. 正方体B. 长方体C. 圆柱体D. 圆锥体二、填空题(每空1分,共10分)6. 三视图包括______、______和______。
7. 物体的三视图应该按照______、______、______的顺序排列。
8. 在三视图中,______视图可以反映物体的高度和长度。
9. 如果一个物体的主视图是一个矩形,左视图是一个圆形,那么这个物体可能是______。
10. 在绘制三视图时,需要考虑物体的______、______和______。
三、简答题(每题5分,共10分)11. 简述三视图的定义及其重要性。
12. 描述如何根据一个物体的主视图和俯视图推断其形状。
四、绘图题(每题5分,共10分)13. 根据以下描述绘制一个物体的三视图:- 主视图:一个正方形- 左视图:一个矩形,宽度为正方形的边长的一半- 俯视图:一个圆形,直径等于正方形的边长14. 根据以下三视图,描述物体的形状:- 主视图:一个圆形- 左视图:一个矩形- 俯视图:一个圆形答案:一、选择题1. A2. C3. D4. C5. A二、填空题6. 主视图、左视图、俯视图7. 主视图、左视图、俯视图8. 左视图9. 圆柱体10. 长度、宽度、高度三、简答题11. 三视图是工程图学中用来描述物体形状的三个基本视图,包括主视图、左视图和俯视图。
三视图习题50道(含答案)
三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是( )(A )2(B )1(C )23(D )132、一个几何体的三视图如图,该几何体的表面积是 ( ) (A )372 (B )360 (C )292 (D )2803、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 (A )3523cm 3 (B )3203cm 3 (C )2243cm 3 (D )1603cm 34、一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为: ( )5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于 ( ) A .3 B .2 C .23 D .66、图2中的三个直角三角形是一个体积为20cm 2的几何体的三视图,则h= cm第1题第2题第3题第5题第6题7、一个几何体的三视图如图所示,则这个几何体的体积为 。
8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )10、一空间几何体的三视图如图所示,则该几何体 的体积为( ).A.223π+B. 423π+C. 2323π+D. 2343π+ 第7题第8题22侧(左)视图222 正(主)视图俯视图第10题俯视图正(主)视图侧(左)视图 2 322 第11题11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .10πC .11πD .12π12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为 ( )(A )48+122 (B )48+242 (C )36+122 (D )36+242 13、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .14、设某几何体的三视图如上图所示。
三视图通关100题(含答案)
,表面积是
.
16. 某几何体的三视图如图所示(单位: cm ),则该几何体的体积是 是 cm .
cm ,表面积
17. 已知一个四棱锥的三视图如图所示,则此四棱锥的体积为
.
18. 已知三棱锥的外接球的表面积为 表π,该三棱锥的三视图如图所示,三个视图的外轮廓都是直 角三角形,则其侧视图面积的最大值为 . QQ 群 339444963 欢迎关注微信公众号
42. 某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为
.
第 11页(共 42 页)来自高中数学解题研究会
QQ 群 339444963 欢迎关注微信公众号
欢迎关注微信公众号(QQ 群):兰老师高中数学研究会 557619246
43. 某几何体的三视图如图所示(单位:cm),则该几何体最长棱的棱长为
的等腰三角形,侧视图是半径为
的半圆,
QQ 群 339444963 欢迎关注微信公众号
欢迎关注微信公众号(QQ 群):兰老师高中数学研究会 557619246
47. 一空间几何体的三视图如图所示,则该几何体的体积为
.
48. 如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 是 .
,体积
72. 一个多面体从前面、后面、左侧、右侧、上方看到的图形分别如图所示(其中每个正方形边长 都为 ),则该多面体的表面积为 .
73. 已知正三棱锥 面积为 .
th 的正视图、俯视图如图所示,则该三棱锥的体积为
,侧视图的
74. 图中的三个直角三角形是一个体积为 㐸 cm 的几何体的三视图,该几何体的外接球表面积 为
th 中,四面体
坐标平面上的一组正投影图
23. 某几何体的三视图如图所示(其中俯视图中的圆弧是半圆),则该几何体的体积为
三视图练习题
三视图练习题在我们学习几何的过程中,三视图可是一个非常重要的知识点。
它就像是一个神奇的魔法,能够让我们通过不同角度的观察,了解一个物体的形状和结构。
今天,咱们就一起来做做三视图的练习题,好好地练练手!先来看看什么是三视图。
三视图,简单来说,就是从三个不同的方向去观察一个物体,然后把看到的形状分别画出来。
这三个方向通常是正视图(也叫主视图)、侧视图(分为左视图和右视图)和俯视图。
比如说,有一个长方体,它的长、宽、高分别是 5 厘米、3 厘米、2 厘米。
那正视图看到的就是一个长 5 厘米、高 2 厘米的长方形;左视图呢,是一个宽 3 厘米、高 2 厘米的长方形;俯视图则是一个长 5 厘米、宽 3 厘米的长方形。
咱们来做一道练习题。
有一个圆柱体,底面半径是 2 厘米,高是 5厘米。
那它的正视图是什么样的?答案就是一个长 4 厘米(因为直径是 4 厘米)、高 5 厘米的长方形。
俯视图呢,是一个半径为 2 厘米的圆。
左视图和正视图是一样的。
再看这道题,有一个圆锥,底面半径 3 厘米,高 4 厘米。
正视图是一个底边为 6 厘米(直径),高 4 厘米的等腰三角形。
俯视图是一个半径为 3 厘米的圆。
左视图也是一个底边为 6 厘米,高 4 厘米的等腰三角形。
做三视图练习题的时候,有几个要点要注意。
首先,一定要看清楚题目中给出的物体的尺寸和形状,别粗心大意。
其次,要想象自己站在不同的角度去看这个物体,在脑海里形成清晰的图像。
还有,画图的时候,线条要画直,比例要正确,尺寸标注要清晰。
下面咱们来做几道稍微有点难度的练习题。
有一个组合体,是由一个长方体和一个圆柱体组成的。
长方体的长、宽、高分别是 5 厘米、4 厘米、3 厘米,圆柱体的底面直径是 2 厘米,高是 4 厘米,放在长方体的上面,并且圆柱体的底面圆心和长方体上面的中心重合。
那这道题的正视图怎么画呢?先画一个长 5 厘米、高 3 厘米的长方形,这是长方体部分。
然后在长方形的上面中间位置,画一个直径 2厘米、高 4 厘米的长方形,这是圆柱体部分。
(word完整版)三视图中高难度的练习及答案
绝密★启用前2018年11月02日高中数学的高中数学组卷立体几何三视图练习中难度考试范围:xxx;考试时间:100分钟;命题人:xxx题号一总分得分注意事项:1 •答题前填写好自己的姓名、班级、考号等信息2 •请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分•选择题(共15小题)1•一个几何体的三视图如图所示,贝U该几何体的体积为(2•某几何体的三视图如图所示,贝U该几何体的体积为(om也B.116 C. 2 D.6A. B. 16 C. 8 D. 243.已知几何体的三视图如图所示,贝U该几何体是(A.体积为2的三棱锥B.体积为2的四棱锥C.体积为6的三棱锥D.体积为6的四棱锥4.如图,网格纸上小正方形的边长为2,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积S=( )A. 40 nB. 41 nC. 42 nD. 48 n5.—个几何体的三视图如图所示,贝U该几何体的体积为(A. 26 .某几何体的三视图如图所示,其中俯视图为扇形,贝U该几何体的体积为题答内线订装在要不请O OABCD- A 1B 1C 1D 1 中,点 M , N , 0, P, R , S 分别为棱 AB, D 1A 1, A 1A 的中点,则六边形 MNOPRS 在正方体各个面上9.已知某几何体的三视图如图所示,贝U 该几何体的体积是( z :J16兀 B. 4吒 c 唇 D. ieK 3 3 g 9 A . 6 6 N B. C. 0 ni Nd D . [ / A . 8.某几何体的三视图如图所示,其中俯视图和左视图中正方形的边长均为 3, 主视图和俯视图中三角形均为等腰直角三角形,则该几何体的体积为 \ 0 A . 16 ( ) B •普 7.如图,在正方体 BC, CC , C i D i , 的投影可能为( C. 8 D . 12O O10.某四棱锥的三视图如图所示(单位: cm ),则该四棱锥的体积(单位:cm 3 )是(11.某几何体的三视图如图所示,贝U 该几何体的侧面积为(A. ; :一B. ; 'I ; . c m+L D . I . ■:13.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图, 则该几何体的体积为( )A . 48 B. 36 C . 24 D . 16A .B ・一C . 4D . 8A . 4+2 :: B. 2+4.: C. 2+2 f 12.如图是一个几何体的三视图,图中每个小正方形边长均为 D . 4+4.:丄,则该几何体的表面积是( i L > X J h h i h i L 」 k1 k Hl 」LF ----------- 亠 / / \ --------/ / \IF亠/ / \ F 1 / / \IF■M■-------- 亠 、■■ ■ 、 ■■------- ■ W ---------■ i F 1r 1 r 1 r i r i f 1 ! 1 F 、 F 1 ■Fr题 答 内 线 订 装 在 要 不 请fl (£j tUE14.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为((单位:cm)如图所示,且此多面体的体积V=6cm3,A.-B.…33C-1- D.4C. 41 nD. 31 nB. 3C. 6D. 415.若某多面体的三视图请点击修改第第U卷(非选择题)n卷的文字说明题答内线订装在要不请O OO O 线线O O 订号考订O 级班O 名姓装校学装O O 外内O O2018年11月02日高中数学的高中数学组卷参考答案与试题解析.选择题(共15小题)1•一个几何体的三视图如图所示,贝U 该几何体的体积为(【分析】画出几何体的直观图,根据柱体和椎体的体积公式计算即可.【解答】解:由三视图知几何体的直观图如图所示:个三棱柱去掉一个三棱锥的几何体,v=v 三棱柱—V三棱锥丄一 1*一一【点评】本题考查了由三视图求几何体的体积,解答此类问题关键是判断几何体的形状及数据所对应的几何量.2.某几何体的三视B •—C. 2 D •—图如图所示,贝U该几何体的体积为()】再C. 8D. 24【分析】根据三视图知几何体是三棱锥为棱长为4, 2 2「泊勺长方体的一部分,画出直观图,由三视图求出几何元素的长度,由锥体的体积公式求出几何体的体积.【解答】解:根据三视图知几何体是:三棱锥D- ABC,如图所示,C分别是长方体的底面棱长的中点,三棱锥为棱长为4,2. 2.泊勺长方体的一部分,所以几何体的体积V二:二「- . - -:=8【点评】本题考查由三视图求几何体的条件,在三视图与直观图转化过程中,以一个长方体为载体是很好的方式,使得作图更直观,考查空间想象能力.3.已知几何体的三视图如图所示,贝U该几何体是()【分析】画出几何体的直观图,利用三视图的数据,求解几何体的体积即可. 【解答】解:几何体的直观图如图:由题意可得几何体的底面积为:亠-■ =3,2 体积为:V 吉xsx 2=2. 故选:B.【点评】本题考查三视图判断几何体的形状,以及几何体的体积的求法,考 查计算能力.4. 如图,网格纸上小正方形的边长为2,粗实线画出的是某多面体的三视图, 则该多面体的外接球的表面积S=(【分析】判断三视图复原的几何体的形状,通过已知的三视图的数据,求出 该多面体的外接球的表面积.【解答】解析:该多面体如图示,外接球的半径为 AG,A .体积为2的三棱锥 C.体积为6的三棱锥B. 体积为2的四棱锥 D.体积为6的四棱锥B. 41 nC. 42 n D . 48 nHA ABC 外接圆的半径,HG=2 HA 丄,2 故R =AG=4+H *=^^,•••该多面体的外接球的表面积 S=4冗R =41 n 【点评】本题考查多面体的外接球的表面积的求法, 考查空间几何体三视图、 多面体的外接球等基础知识,考查空间想象能力、运算求解能力,考查函 数与方程思想,是中档题.5•—个几何体的三视图如图所示,贝U 该几何体的体积为(【分析】由已知的三视图可得:该几何体是一个以正视图为底面的四棱锥, 计算出底面面积和高,代入锥体体积公式,可得答案.【解答】解:由已知的三视图可得:该几何体是一个以正视图为底面的四棱 锥, 棱锥的底面面积S=2X 2=4, 棱锥的高h=1故棱锥的体积V 丄“.二, 故选:D .A . 2B.二 C . 4故选:B .【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是 得到该几何体的形状.6•某几何体的三视图如图所示,其中俯视图为扇形,贝U 该几何体的体积为A.冒B. 4耳C ,M^D .冒33g9【分析】根据三视图判断几何体是圆锥的一部分,再根据俯视图与左视图的 数据可求得底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底 面圆的半径为2,把数据代入圆锥的体积公式计算.【解答】解:由三视图知几何体是圆锥的一部分,由俯视图与左视图可得:底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底面圆的半径为2,故选:D.•••几何体的体积v=1X 丄 X nX 22x 4=—冗・( )【点评】本题考查了由三视图求几何体的体积,解答的关键是判断几何体的 形状及三视图的数据所对应的几何量.7•如图,在正方体ABC — A i B i C i D i 中,点M , N , O , P , R , S 分别为棱AB,BC, CC , C 1D 1, D 1A 1, A i A 的中点,则六边形 MNOPRS 在正方体各个面上 的投影可能为()【分析】根据题意分别画出六边形 MNOPRS 六个面上的投影即可. 【解答】解:正方体ABCD- A i B i C i D i 中,六边形MNOPRS 前后两个面上的投C .影如图i 所示;在左右两个面上的投影如图在上下两个面上的投影如图3所示; 圜 故选:D.【点评】本题考查了空间几何体三视图的应用问题,是基础题.8.某几何体的三视图如图所示,其中俯视图和左视图中正方形的边长均为 3,主视图和俯视图中三角形均为等腰直角三角形,则该几何体的体积为【分析】画出几何体的直观图,利用三视图的数据求解几何体的体积即可. 【解答】解:由题意可知几何体的直观图如图:右侧是放倒的三棱柱,左侧 是四棱锥,俯视图和左视图中正方形的边长均为 3,主视图和俯视图中三角形均为等腰A . 16( )B 」C. 8 D . 12直角三角形,则该几何体的体积为:=--2 yX3X3X X3X 3X 3故选:B.【点评】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键,考查计算能力.9 •已知某几何体的三视图如图所示,贝U该几何体的体积是()A. 48B. 36C. 24D. 16【分析】由已知中的三视图,判断该几何体是一个四棱锥,四棱锥的底面是一个以4和3为边长的长方形,棱柱的高为4,分别求出棱柱和棱锥的体积,进而可得答案.【解答】解:由已知中的该几何体是一个四棱锥的几何体,四棱锥的底面为边长为4和3的长方形,高为4,故V四棱锥—X 4X 3X 4=16.3【点评】本题考查的知识点是由三视图求体积,其中根据三视图判断出几何体的形状,并找出棱长、高等关键的数据是解答本题的关键.10.某四棱锥的三视图如图所示(单位:cm),则该四棱锥的体积(单位:cm3)是(【分析】首先还原几何体,根据图中数据计算几何体体积. 【解答】解:由三视图得到几何体如图:正方体的棱长为 2, 该四棱锥P -ABCD 的体积(单位:cm 3)是 【点评】本题考查了几何体的三视图;要求对应的几何体的体积或者表面积, 关键是正确还原几何体.11.某几何体的三视图如图所示,贝U 该几何体的侧面积为(【分析】首先还原几何体,根据图中数据计算几何体的侧面积.【解答】解:由三视图得到几何体如图:正方体的棱长为 2, 该四棱锥P -ABCD 的侧面积(单位:cm 2)是 yX2X2+-^X2X "心血号 XgX?血=4+4迈; 故选:D.A-1C. 4 D .8A. 4+2 :■:B. 2+4 ■:C. 2+2 :■:D. 4+4*体积为苧2X 2XBa «■(卸個C【点评】本题考查了几何体的三视图;要求对应的几何体的体积或者表面积, 关键是正确还原几何体.12 •如图是一个几何体的三视图,图中每个小正方形边长均为丄,则该几何【分析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可. 【解答】解:几何体的三视图可知几何体的直观图如图:卩从底面ABC,P0=2, AB=BC=2 ABCD是正方形,AB丄AC, 则PB=PA= PCD的高为:2 ■:.则该几何体的表面积是-X2X2+2-b2X2-H|-xV5X故选:B.【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.32B.… D.333【分析】几何体为从正方体中切出来的一个三棱锥.作出直观图代入数值计算即可.【解答】解:由三视图可知几何体为边长为6的正方体中切出的三棱锥P-ABC作出直观图如图所示:正方体的棱长为4, 其中A, B, P分别是正方体棱的中点,则棱锥的底面积S丄XQX 2=42棱锥的高h=4所以棱锥的体积V丄:-•.一 ^一.3 3故选:B.13.如图,网格纸上小正方形的边长为则该几何体的体积为()1,粗线画出的是某几何体的三视图,【点评】本题考查了不规则放置的几何体的三视图和体积计算,以正方体为模型作出直观图是解题关键.14.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为()A.竽B•警C. 41 n D. 31 n【分析】根据三视图得出空间几何体是镶嵌在正方体中的四棱锥0 - ABCD, 正方体的棱长为4, A, D为棱的中点,利用球的几何性质求解即可.【解答】解:根据三视图得出:该几何体是镶嵌在正方体中的四棱锥0- ABCD正方体的棱长为4, A,D为棱的中点,根据几何体可以判断:球心应该在过A,D的平行于底面的中截面上,设球心到截面BCO的距离为x,则到AD的距离为:4-x,••• R2=x2+ (2:-:)2, F2=22+ (4-x)2,解得出:x丄,R= 丁 ,该多面体外接球的表面积为:4nR=41n故选:C.【点评】本题综合考查了空间几何体的性质,学生的空间思维能力,构造思 想,关键是镶嵌在常见的几何体中解决.15. 若某多面体的三视图(单位:cm )如图所示,且此多面体的体积 V=6cm 3, 则 a=() 【分析】由三视图可知,几何体为三棱锥,根据公式求解即可.【解答】解:由三视图可知,几何体为三棱锥,高为 2,底边长为a ,底面 高为2, 顶点在底面上的射影是等腰三角形的顶点, 所以 V 丄x a x^x 2X 2=6,解得 a=9.3 2故选:A .【点评】本题考查学生的空间想象能力,由三视图求体积,是基础题.A . 9 B. 3 C. 6 D . 4㈣规图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何三视图练习中难度
考试范围:xxx;考试时间:100分钟;命题人:xxx
题号
一
总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上
第Ⅰ卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一.选择题(共15小题)
1.一个几何体的三视图如图所示,则该几何体的体积为( )
A. B. C. D.
14.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为( )
A. B. C.41πD.31π
15.若某多面体的三视图(单位:cm)如图所示,且此多面体的体积V=6cm3,则a=( )
A.9B.3C.6D.4
第Ⅱ卷(非选择题)
底面扇形的圆心角为120°,
又由侧视图知几何体的高为4,底面圆的半径为2,
∴几何体的体积V= × ×π×22×4= π.
故选:D.
【点评】本题考查了由三视图求几何体的体积,解答的关键是判断几何体的形状及三视图的数据所对应的几何量.
7.如图,在正方体ABCD﹣A1B1C1D1中,点M,N,O,P,R,S分别为棱AB,BC,CC1,C1D1,D1A1,A1A的中点,则六边形MNOPRS在正方体各个面上的投影可能为( )
请点击修改第Ⅱ卷的文字说明
2020高中数学的高中数学组卷
参考答案与试题解析
一.选择题(共15小题)
1.一个几何体的三视图如图所示,则该几何体的体积为( )
A. B体积公式计算即可.
【解答】解:由三视图知几何体的直观图如图所示:
一个三棱柱去掉一个三棱锥的几何体,
15.若某多面体的三视图(单位:cm)如图所示,且此多面体的体积V=6cm3,则a=( )
A.9B.3C.6D.4
【分析】由三视图可知,几何体为三棱锥,根据公式求解即可.
【解答】解:由三视图可知,几何体为三棱锥,高为2,底边长为a,底面高为2,
顶点在底面上的射影是等腰三角形的顶点,
所以V= ×a× ×2×2=6,解得a=9.
【解答】解:由已知中的该几何体是一个四棱锥的几何体,
四棱锥的底面为边长为4和3的长方形,高为4,
故V四棱锥= ×4×3×4=16.
故选:D.
【点评】本题考查的知识点是由三视图求体积,其中根据三视图判断出几何体的形状,并找出棱长、高等关键的数据是解答本题的关键.
10.某四棱锥的三视图如图所示(单位:cm),则该四棱锥的体积(单位:cm3)是( )
故R=AG= = ,
∴该多面体的外接球的表面积S=4πR2=41π.
故选:B.
【点评】本题考查多面体的外接球的表面积的求法,考查空间几何体三视图、多面体的外接球等基础知识,考查空间想象能力、运算求解能力,考查函数与方程思想,是中档题.
5.一个几何体的三视图如图所示,则该几何体的体积为( )
A.2B. C.4D.
11.某几何体的三视图如图所示,则该几何体的侧面积为( )
A.4+2 B.2+4 C.2+2 D.4+4
【分析】首先还原几何体,根据图中数据计算几何体的侧面积.
【解答】解:由三视图得到几何体如图:正方体的棱长为2,
该四棱锥P﹣ABCD的侧面积(单位:cm2)是
=4+4 ;
故选:D.
【点评】本题考查了几何体的三视图;要求对应的几何体的体积或者表面积,关键是正确还原几何体.
A. B. C. D.
【分析】根据题意分别画出六边形MNOPRS在六个面上的投影即可.
【解答】解:正方体ABCD﹣A1B1C1D1中,六边形MNOPRS前后两个面上的投影如图1所示;
在左右两个面上的投影如图2所示;
在上下两个面上的投影如图3所示;
故选:D.
【点评】本题考查了空间几何体三视图的应用问题,是基础题.
6.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )
A. B. C. D.
【分析】根据三视图判断几何体是圆锥的一部分,再根据俯视图与左视图的数据可求得底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底面圆的半径为2,把数据代入圆锥的体积公式计算.
【解答】解:由三视图知几何体是圆锥的一部分,由俯视图与左视图可得:
A. B. C. D.
8.某几何体的三视图如图所示,其中俯视图和左视图中正方形的边长均为3,主视图和俯视图中三角形均为等腰直角三角形,则该几何体的体积为( )
A. B. C.8D.12
9.已知某几何体的三视图如图所示,则该几何体的体积是( )
A.48B.36C.24D.16
10.某四棱锥的三视图如图所示(单位:cm),则该四棱锥的体积(单位:cm3)是( )
3.已知几何体的三视图如图所示,则该几何体是( )
A.体积为2的三棱锥B.体积为2的四棱锥
C.体积为6的三棱锥D.体积为6的四棱锥
【分析】画出几何体的直观图,利用三视图的数据,求解几何体的体积即可.
【解答】解:几何体的直观图如图:由题意可得几何体的底面积为: =3,体积为:V= .
故选:B.
【点评】本题考查三视图判断几何体的形状,以及几何体的体积的求法,考查计算能力.
【解答】解:由三视图可知几何体为边长为6的正方体中切出的三棱锥P﹣ABC,作出直观图如图所示:正方体的棱长为4,
其中A,B,P分别是正方体棱的中点,
则棱锥的底面积S= =4
棱锥的高h=4
所以棱锥的体积V= = .
故选:B.
【点评】本题考查了不规则放置的几何体的三视图和体积计算,以正方体为模型作出直观图是解题关键.
【分析】由已知的三视图可得:该几何体是一个以正视图为底面的四棱锥,计算出底面面积和高,代入锥体体积公式,可得答案.
【解答】解:由已知的三视图可得:该几何体是一个以正视图为底面的四棱锥,
棱锥的底面面积S=2×2=4,
棱锥的高h=1
故棱锥的体积V= = ,
故选:D.
【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
A. B. C.2D.
2.某几何体的三视图如图所示,则该几何体的体积为( )
A. B.16C.8D.24
3.已知几何体的三视图如图所示,则该几何体是( )
A.体积为2的三棱锥B.体积为2的四棱锥
C.体积为6的三棱锥D.体积为6的四棱锥
4.如图,网格纸上小正方形的边长为2,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积S=( )
俯视图和左视图中正方形的边长均为3,主视图和俯视图中三角形均为等腰直角三角形,
则该几何体的体积为: = .
故选:B.
【点评】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键,考查计算能力.
9.已知某几何体的三视图如图所示,则该几何体的体积是( )
A.48B.36C.24D.16
【分析】由已知中的三视图,判断该几何体是一个四棱锥,四棱锥的底面是一个以4和3为边长的长方形,棱柱的高为4,分别求出棱柱和棱锥的体积,进而可得答案.
12.如图是一个几何体的三视图,图中每个小正方形边长均为 ,则该几何体的表面积是( )
A. B. C. D.
【分析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.
【解答】解:几何体的三视图可知几何体的直观图如图:PA⊥底面ABC,
PO=2,AB=BC=2,ABCD是正方形,AB⊥AC,
A. B. C.4D.8
【分析】首先还原几何体,根据图中数据计算几何体体积.
【解答】解:由三视图得到几何体如图:正方体的棱长为2,
该四棱锥P﹣ABCD的体积(单位:cm3)是
体积为 ×2×2×2= ;
故选:B.
【点评】本题考查了几何体的三视图;要求对应的几何体的体积或者表面积,关键是正确还原几何体.
根据几何体可以判断:球心应该在过A,D的平行于底面的中截面上,
设球心到截面BCO的距离为x,则到AD的距离为:4﹣x,
∴R2=x2+(2 )2,R2=22+(4﹣x)2,
解得出:x= ,R= ,
该多面体外接球的表面积为:4πR2=41π,
故选:C.
【点评】本题综合考查了空间几何体的性质,学生的空间思维能力,构造思想,关键是镶嵌在常见的几何体中解决.
则PB=PA= ,△PCD的高为:2 .
则该几何体的表面积是: =6+2 2 .
故选:B.
【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
13.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )
A. B. C. D.
【分析】几何体为从正方体中切出来的一个三棱锥.作出直观图代入数值计算即可.
14.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为( )
A. B. C.41πD.31π
【分析】根据三视图得出空间几何体是镶嵌在正方体中的四棱锥O﹣ABCD,正方体的棱长为4,A,D为棱的中点,利用球的几何性质求解即可.
【解答】解:根据三视图得出:该几何体是镶嵌在正方体中的四棱锥O﹣ABCD,正方体的棱长为4,A,D为棱的中点,
故选:A.
【点评】本题考查学生的空间想象能力,由三视图求体积,是基础题.
8.某几何体的三视图如图所示,其中俯视图和左视图中正方形的边长均为3,主视图和俯视图中三角形均为等腰直角三角形,则该几何体的体积为( )
A. B. C.8D.12
【分析】画出几何体的直观图,利用三视图的数据求解几何体的体积即可.