大学工程力学》课后习题解答汇总

合集下载

(完整版)工程力学课后详细答案

(完整版)工程力学课后详细答案

第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。

2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。

工程力学课后习题答案(静力学和材料力学)

工程力学课后习题答案(静力学和材料力学)

解:图(a):θ = arcsin 4 ,
5
∑ Fx = 0 ,
F sin(60° − θ ) − W sinθ = 0 , F = 1672 N
图(b):θ = 53.13° ,
∑ Fx = 0 , F cos(θ − 30°) − W sinθ = 0 , F = 217N
Fy
x
30D B

y
可推出图(b)中 FAB = 10FDB = 100F = 80 kN。
FED αD
FDB FD′ B
FCB
α
B
F 习题 1-12 解 1 图
F AB 习题 1-12 解 2 图
1—13 杆 AB 及其两端滚子的整体重心在 G 点,滚子搁置在倾斜的光滑刚性平面上,如
图所示。对于给定的θ 角,试求平衡时的 β 角。
=
25 kN 6

FR
= ( 5 , 10 )kN 23
作用线方程: y = 4 x + 4 3
讨论:本题由于已知数值的特殊性,实际 G 点与 E 点重合。
2-3三个小拖船拖着一条大船,如图所示。每根拖缆的拉力为5kN。试求:(1)作用于大 船上的合力的大小和方向。(2)当A船与大船轴线x的夹角θ为何值时,合力沿大船轴线方向。
投影: Fx1 = F cosα , Fy1 = F sinα
讨论: ϕ = 90°时,投影与分力的模相等;分力是矢量,投影是代数量。
图(b):
分力: Fx2 = (F cosα − F sin α tan ϕ )i2 ,
Fy2
=
F sinα sinϕ
j2
投影: Fx2 = F cosα ,
Fy2 = F cos(ϕ − α )

《工程力学》课后习题与答案全集

《工程力学》课后习题与答案全集
解:取DC杆上的C为动点,OAB为动系,定系固结在支座上。
由 ,作出速度平行四边形,如图示:
即:
7.图示平行连杆机构中, mm, 。曲柄 以匀角速度 2rad/s绕 轴转动,通过连杆AB上的套筒C带动杆CD沿垂直于 的导轨运动。试示当 时杆CD的速度和加速度。
解:取CD杆上的点C为动点,AB杆为动系。对动点作速度分析和加速度分析,如图(a)、(b)所示。图中:
解:设该力系主矢为 ,其在两坐标轴上的投影分别为 、 。由合力投影定理有:
=-1.5kN
kN
kN

由合力矩定理可求出主矩:
合力大小为: kN,方向
位置: m cm,位于O点的右侧。
2.火箭沿与水平面成 角的方向作匀速直线运动,如图所示。火箭的推力 kN与运动方向成 角。如火箭重 kN,求空气动力 和它与飞行方向的交角 。
(d)由于不计杆重,杆AB在A、C两处受绳索作用的拉力 和 ,在B点受到支座反力 。 和 相交于O点,
根据三力平衡汇交定理,
可以判断 必沿通过
B、O两点的连线。
见图(d).
第二章力系的简化与平衡
思考题:1.√;2.×;3.×;4.×;5.√;6.×;7.×;8.×;9.√.
1.平面力系由三个力和两个力偶组成,它们的大小和作用位置如图示,长度单位为cm,求此力系向O点简化的结果,并确定其合力位置。

(mm/s)
故 =100(mm/s)
又有: ,因
故:
即:
第四章刚体的平面运动
思考题
1.×;2.√; 3.√;4.√;5.×.
习题四
1.图示自行车的车速 m/s,此瞬时后轮角速度 rad/s,车轮接触点A打滑,试求点A的速度。

工程力学课后习题答案

工程力学课后习题答案

工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。

(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。

所有摩擦均不计,各物自重除图中已画出的外均不计。

(a)(b)(c)(d)(e)(f)(g)第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。

梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。

如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。

题2-1图解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。

转动绞车,物体便能升起。

设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。

当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。

题2-2图解得: P F PF AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。

电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。

题2-3图以AC 段电线为研究对象,三力汇交2-4 图示为一拔桩装置。

在木桩的点A 上系一绳,将绳的另一端固定在点C ,在绳的点B 系另一绳BE ,将它的另一端固定在点E 。

然后在绳的点D 用力向下拉,并使绳BD 段水平,AB 段铅直;DE 段与水平线、CB 段与铅直线成等角α=0.1rad (弧度)(当α很小时,tan α≈α)。

如向下的拉力F=800N ,求绳AB 作用于桩上的拉力。

题2-4图作BD 两节点的受力图 联合解得:kN F F F A 80100tan 2=≈=α2-5 在四连杆机构ABCD 的铰链B 和C 上分别作用有力F 1和F 2,,机构在图示位置平衡。

工程力学课后习题答案

工程力学课后习题答案

工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。

(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。

所有摩擦均不计,各物自重除图中已画出的外均不计。

(a)(b)(c)(d)(e)(f)(g)第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。

梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。

如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。

题2-1图解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。

转动绞车,物体便能升起。

设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。

当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。

题2-2图解得: P F PF AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。

电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。

题2-3图以AC 段电线为研究对象,三力汇交2-4 图示为一拔桩装置。

在木桩的点A 上系一绳,将绳的另一端固定在点C ,在绳的点B 系另一绳BE ,将它的另一端固定在点E 。

然后在绳的点D 用力向下拉,并使绳BD 段水平,AB 段铅直;DE 段与水平线、CB 段与铅直线成等角α=0.1rad (弧度)(当α很小时,tan α≈α)。

如向下的拉力F=800N ,求绳AB 作用于桩上的拉力。

题2-4图作BD 两节点的受力图 联合解得:kN F F F A 80100tan 2=≈=α2-5 在四连杆机构ABCD 的铰链B 和C 上分别作用有力F 1和F 2,,机构在图示位置平衡。

(完整版)工程力学课后详细答案

(完整版)工程力学课后详细答案

第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。

2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。

工程力学课后习题答案

工程力学课后习题答案
题2-6图
2-7 已知梁AB上作用一力偶,力偶矩为M,梁长为l,梁重不计。求在图a,b,两三种情况下,支座A和B的约束反力。
(a) (b)
题2-7图
(a) (注意,这里,A与B处约束力为负,表示实际方向与假定方向相反,结果应与你的受力图一致,不同的受力图其结果的表现形式也不同)
(b)
2-8 在题图所示结构中二曲杆自重不计,曲杆AB上作用有主动力偶,其力偶矩为M,试求A和C点处的约束反力。
题3-1图
3-2 图示力系中,F1=100N,F2=300N,F3=200N,各力作用线的位置如图所示。将力向原点O简化
题3-2图
3-3 边长为a的等边三角形板,用六根杆支持在水平面位置如图所示。若在板面内作用一力偶,其矩为M,不计板重,试求各杆的内力。
题3-3图
3-4 如图所示的空间构架由三根杆件组成,在D端用球铰链连接,A、B和C端也用球铰链固定在水平地板上。今在D端挂一重物P=10kN,若各杆自重不计,求各杆的内力。
题6-2图
6-3题6-2图所示圆截面杆,已知载荷 , , 段的直径 ,如欲使 与 段横截面上的正应力相同,试求 段的直径。
6-4设图示结构的1和2两部分皆为刚体,刚拉杆 的横截面直径为 ,试求拉杆内的应力。
题6-4图
1做受力图
2列平衡方程求解
解得F=6kN, FN=3kN, AB杆的应力为:
6-5某受扭圆管,外径 ,内径 ,横截面上的扭矩 ,试计算距轴心21mm处圆管横截面与纵截面上的扭转切应力。
题2-4图
作BD两节点的受力图
联合解得:
2-5在四连杆机构ABCD的铰链B和C上分别作用有力F1和F2,,机构在图示位置平衡。求平衡时力F1和F2的大小间的关系。

工程力学课后习题答案

工程力学课后习题答案

工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。

(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。

所有摩擦均不计,各物自重除图中已画出的外均不计。

(a)(b)(c)(d)(e)(f)(g)第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。

梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。

如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。

题2-1图解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。

转动绞车,物体便能升起。

设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。

当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。

题2-2图解得: P F PF AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。

电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。

题2-3图以AC 段电线为研究对象,三力汇交2-4 图示为一拔桩装置。

在木桩的点A 上系一绳,将绳的另一端固定在点C ,在绳的点B 系另一绳BE ,将它的另一端固定在点E 。

然后在绳的点D 用力向下拉,并使绳BD 段水平,AB 段铅直;DE 段与水平线、CB 段与铅直线成等角α=(弧度)(当α很小时,tan α≈α)。

如向下的拉力F=800N ,求绳AB 作用于桩上的拉力。

题2-4图 作BD 两节点的受力图 联合解得:kN F F F A 80100tan 2=≈=α2-5 在四连杆机构ABCD 的铰链B 和C 上分别作用有力F 1和F 2,,机构在图示位置平衡。

(完整版)工程力学课后习题答案

(完整版)工程力学课后习题答案

工程力学练习册学校学院专业学号教师姓名第一章静力学基础 1第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。

(a)(b)(c)2 第一章静力学基础(d)(e)(f)(g)第一章静力学基础 3 1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)4 第一章静力学基础1-3 画出图中指定物体的受力图。

所有摩擦均不计,各物自重除图中已画出的外均不计。

(a)第一章静力学基础 5 (b)(c)(d)6 第一章静力学基础(e)第一章静力学基础7 (f)(g)8 第二章 平面力系第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。

梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。

如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。

题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如第二章 平面力系 9图所示。

转动绞车,物体便能升起。

设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。

当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。

题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F F BC yBC AB x解得: PF P F AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。

电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。

工程力学课后习题答案(2-6章-版本2)

工程力学课后习题答案(2-6章-版本2)

3.3 图3.3所示钢架的点B 作用一个水平力F ,钢架重量忽略不计。

求支座A 、D 的约束力。

解:由图3.3可以确定D 点受力的方向,这里将A 点的力分解为x 、y 方向,如图3.3.1 根据力与矩平衡有)2(:)(0:)(0:)(=-=-=-∑∑∑FL L F A M F F y F F F x F Dy Dx (1)解上面三个方程得到 )(2),(2),(↑=↓=←=F F F F F F D y x3.5如图3.5铰链四杆机构ABCD 的CD 边固定,在铰链A 、B 处有力F1、F2作用,如图所示。

该机构在图示位置平衡,杆重忽略不计。

求力F1和力F2的关系。

解:(1)对A 点分析,如图3.5.1,设AB 杆的内力为T ,则将力投影到垂直于AC 方向的AM 上有0)15cos()30cos(:)(1=︒-︒∑T F AM F ①图3.5(2)对B 点分析,如图3.5.2,将力投影到垂直于BD 方向的BN 有 0)30cos()60cos(:)B N (2=︒-︒∑T F F ②由①、②可得 22108593790.64395055332F F F ≈+=3.8如图3.8有5根杆件组成的结构在A 、B 点受力,且CA 平行于DB ,CA DE BE DB ===。

F=20kN,P=12kN 。

求BE 杆的受力。

解:(1)对A 点受力分析,将力投影到垂直于AC 方向的AN 上有060sin :)(=-︒∑F FAN F AB①(2)对B 点受力分析,如图3.8.2.将力投影到垂直于BD 方向的BM 上有060cos 60sin 30cos :)B M (=︒-︒-︒∑P F FF BE AB②由①、②可得373095kN 16.1658075kN 328≈=BE F (方向斜向上)3.9如图(见书上)所示3根杆均长2.5m ,其上端铰结于K 处,下端A 、B 、C 分别与地基铰结,且分布在半径r=1.5m 的圆周上,A 、B 、C 的相对位置如图所示。

《工程力学》详细版习题参考答案

《工程力学》详细版习题参考答案

∑ Fx
=FAx
+
FBx
+
FCx
=− 1 2
F
+
F

1 2
F
=0
∑ Fy
= FAy
+
FBy
+
FCy
= − 3 2
F
+
3 F = 0 2
∑ M B= FBy ⋅ l=
3 Fl 2
因此,该力系的简化结果为一个力偶矩 M = 3Fl / 2 ,逆时针方向。
题 2-2 如图 2-19(a)所示,在钢架的 B 点作用有水平力 F,钢架重力忽 略不计。试求支座 A,D 的约束反力。
(a)
(b)
图 2-18
解:(1)如图 2-18(b)所示,建立直角坐标系 xBy。 (2)分别求出 A,B,C 各点处受力在 x,y 轴上的分力
思考题与练习题答案
FAx
= − 12 F ,FAy
= − 3 F 2
= FBx F= ,FBy 0
FCx
= − 12 F ,FCy
= 3 F 2
(3)求出各分力在 B 点处的合力和合力偶
(3)根据力偶系平衡条件列出方程,并求解未知量
∑ M =0 − aF + 2aFD =0
《工程力学》
可解得 F=Ay F=D F /2 。求得结果为正,说明 FAy 和 FD 的方向与假设方向相同。 题 2-3 如 图 2-20 ( a ) 所 示 , 水 平 梁 上 作 用 有 两 个 力 偶 , 分 别 为
3-4 什么是超静定问题?如何判断问题是静定还是超静定?请说明图 3-12 中哪些是静定问题,哪些是超静定问题?
(a)

工程力学课后习题答案

工程力学课后习题答案
5-1试求图示各杆1-1、2-2、3-3截面上的轴力,并作轴力图。
题5-1图
5-2试求图示各杆在1-1、2-2截面上的扭矩。并作出各杆的扭矩图。
题5-2图
5-3在变速箱中,低速轴的直径比高速轴的大,何故?
变速箱中轴传递的扭矩与轴的转速呈反比,低速轴传递的扭矩大,故轴径大。
5-4某传动轴,由电机带动,已知轴的转速 (转/分),电机输入的功率 ,试求作用在轴上的外力偶矩。
以整体为研究对象
以AB杆为研究对象
2-26 图示两无重杆在B处用套筒式无重滑块连接,在AD杆上作用一力偶,其力偶矩MA=40N.m,滑块和AD间的摩擦因数fs=0.3。求保持系统平衡时力偶矩MC的范围。
题2-26图
以AD杆为研究对象
以BC杆为研究对象
当摩擦力反向处于临界平衡态,如b图所示,则
以AD杆为研究对象
题5-9图
题5-9图
5-10图示外伸梁,承受集度为 的均布载荷作用。试问当 为何值时梁内的最大弯矩之值(即 )最小。
题5-10图
为保证梁的最大弯矩值最小,即最大正弯矩等于最大负弯矩
第六章 杆件的应力
6-1图示的杆件,若该杆的横截面面积 ,试计算杆内的最大拉应力与最大压应力。
题6-1图
6-2图示阶梯形圆截面杆,承受轴向载荷 与 作用, 与 段的直径分别为 与 ,如欲使 与 段横截面上的正应力相同,试求载荷 之值。
以BC杆为研究对象
2-27 尖劈顶重装置如图所示。在B块上受力P的作用。A与B块间的摩擦因数为fs(其他 有滚珠处表示光滑)。如不计A和B块的重量,求使系统保持平衡的力F的值。
题2-27图
以整体为研究对象,显然水平和铅直方向约束力分别为
以A滑块为研究对象,分别作出两临界状态的力三角形

工程力学课后习题答案

工程力学课后习题答案

工程力学练习册学校学院专业学号教师姓名第一章静力学基础 1第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。

(a)(b)(c)2 第一章静力学基础(d)(e)(f)(g)第一章静力学基础 31-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)4 第一章静力学基础1-3 画出图中指定物体的受力图。

所有摩擦均不计,各物自重除图中已画出的外均不计。

(a)第一章静力学基础 5(b)(c)(d)6 第一章静力学基础(e)第一章静力学基础7(f)(g)8第二章 平面力系第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。

梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。

如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。

题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如第二章 平面力系9图所示。

转动绞车,物体便能升起。

设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。

当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。

题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F FBC yBC AB x解得: PF P F AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。

电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。

工程力学课后习题答案

工程力学课后习题答案

工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。

(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。

所有摩擦均不计,各物自重除图中已画出的外均不计。

(a)(b)(c)(d)(e)(f)(g)第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。

梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。

如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。

题2-1图解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。

转动绞车,物体便能升起。

设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。

当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。

题2-2图解得: P F PF AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。

电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。

题2-3图以AC 段电线为研究对象,三力汇交2-4 图示为一拔桩装置。

在木桩的点A 上系一绳,将绳的另一端固定在点C ,在绳的点B 系另一绳BE ,将它的另一端固定在点E 。

然后在绳的点D 用力向下拉,并使绳BD 段水平,AB 段铅直;DE 段与水平线、CB 段与铅直线成等角α=0.1rad (弧度)(当α很小时,tan α≈α)。

如向下的拉力F=800N ,求绳AB 作用于桩上的拉力。

题2-4图作BD 两节点的受力图 联合解得:kN F F F A 80100tan 2=≈=α 2-5 在四连杆机构ABCD 的铰链B 和C 上分别作用有力F 1和F 2,,机构在图示位置平衡。

工程力学课后习题答案

工程力学课后习题答案

工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。

(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。

所有摩擦均不计,各物自重除图中已画出的外均不计。

(a)(b)(c)(d)(e)(f)(g)第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。

梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。

如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。

题2-1图解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。

转动绞车,物体便能升起。

设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。

当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。

题2-2图解得: P F PF AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。

电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。

题2-3图以AC 段电线为研究对象,三力汇交2-4 图示为一拔桩装置。

在木桩的点A 上系一绳,将绳的另一端固定在点C ,在绳的点B 系另一绳BE ,将它的另一端固定在点E 。

然后在绳的点D 用力向下拉,并使绳BD 段水平,AB 段铅直;DE 段与水平线、CB 段与铅直线成等角α=0.1rad (弧度)(当α很小时,tanα≈α)。

如向下的拉力F=800N ,求绳AB 作用于桩上的拉力。

题2-4图 作BD 两节点的受力图 联合解得:kN F F F A80100tan 2=≈=α 2-5 在四连杆机构ABCD 的铰链B 和C 上分别作用有力F 1和F 2,,机构在图示位置平衡。

(完整版)工程力学课后习题答案

(完整版)工程力学课后习题答案

(完整版)工程力学课后习题答案一、选择题1. 在静力学中,刚体是指()A. 不可变形的物体B. 受力后不发生变形的物体C. 受力后变形很小的物体D. 受力后变形可以忽略的物体答案:D2. 平面汇交力系的平衡方程是()A. ΣF = 0B. ΣF_x = 0,ΣF_y = 0C. ΣM = 0D. ΣM_x = 0,ΣM_y = 0答案:B3. 在材料力学中,胡克定律适用于()A. 弹性体B. 塑性体C. 非线性体D. 理想弹性体答案:D二、填空题1. 静力学的基本公理有:______、______、______。

答案:力的平行四边形法则、二力平衡公理、力的可传递性公理2. 材料力学的任务是研究材料在______、______、______作用下的力学性能。

答案:外力、温度、湿度3. 轴向拉伸和压缩时,应力与应变的关系可表示为______。

答案:σ = Eε三、计算题1. 题目:一重10kg的物体,受到两个力的作用,如图所示。

求两个力的合力大小和方向。

答案:解:首先,将重力分解为水平和竖直两个方向的分力。

重力大小为F_g = mg = 10 × 9.8 = 98N。

水平方向分力为F_x = F_g × cos30° = 98 × 0.866 = 84.82N竖直方向分力为F_y = F_g × sin30° = 98 × 0.5 = 49N设合力大小为 F,合力方向与水平方向的夹角为α。

根据力的平行四边形法则,可得:F_x = F × cosαF_y = F × sinα联立以上两个方程,解得:F = √(F_x^2 + F_y^2) = √(84.82^2 + 49^2)≈ 95.74Nα = arctan(F_y / F_x) ≈ 28.96°所以,合力大小为 95.74N,方向与水平方向的夹角为28.96°。

(完整版)工程力学课后习题答案

(完整版)工程力学课后习题答案

工程力学练习册学校 ______________学院 _______________专业 ______________学号 _______________教师 _______________姓名 ______________第一章静力学基础1-1画出下列各图中物体A,构件AB, BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。

1-3画出图中指定物体的受力图。

所有摩擦均不计,各物自重除图中已画出的外均不计。

(1 J AB杆(2)CTJff(3)整体(1 ) K段槊(2) CD段梁r 3)鹫佐t 1)滑轮日⑵ABff(3) DF 样C I 】CDW⑵曲杵⑶CA杵(e)t 1,直(并tlikkiv t n OA IT(g)第二章平面力系2-1电动机重P=5000N,放在水平梁AC的中央,如图所示。

梁的A端以皎链固定,另一端以撑杆BC支持,撑杆与水平梁的夹角为30 °。

如忽略撑杆与梁的重量,求绞支座A、B处的约束反力。

F x0, F B CO S30F A COS300F y0, F A sin30F B sin30P解得:F A F B P5000N2-2 物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在绞车D上,如图所示。

转动绞车,物体便能升起。

设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为皎链连接。

当物体处于平衡状态时,求拉杆 AB 和支杆BC 所受的力。

2-3如图所示,输电线 ACB 架在两电线杆之间,形成一下垂线,下垂距离 CD=f=1m, 两电线杆间距离 AB=40m 。

电线ACB 段重P=400N,可近视认为沿 AB 直线均匀分布,求电 线的中点和两端的拉力。

F x0, F AB F BC F y0, F BC sin 30 解得:F BC 3.732P F AB 2.732Pcos30 Psin30 0 Pcos30 P 0F x 0,F A COS F C,F y 0, F A Sin F Gtan 1/10解得:F A 201NF C 2000 N2-4 图示为一拔桩装置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(a) 拱ABCD;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。

(d) (e)解:杠杆(b)FA(c)2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445N ,F 2=535 N ,不计杆重,试求两杆所受的力。

的自重不计,试求两支座的约束力。

解:(1) 研究AB o(2)相似关系:试求F F BF Adce(2) 取铰链C、CD 由前二式可得:2-9 三根不计重量的杆AB ,AC ,AD 在A 点用铰链连接,各杆与水平面的夹角分别为450,,kN 。

F F BCBF ABF 1 2F CDF 2F CBF CD3-1 已知梁AB上作用一力偶,力偶矩为M,梁长为l,梁重不计。

求在图a,b,c三种情况下,支座A和B的约束力3-2 在题图所示结构中二曲杆自重不计,曲杆AB上作用有主动力偶,其力偶矩为M,试求A和C点处的约束力。

解:(1) 取BC(2) 取AB,M 2(2) 研究AB (二力杆),受力如图:F B C2A B F ’F ’可知:(3) 研究OA 杆,受力分析,画受力图:cm,解:(1) 取BC(2) 取DAC画封闭的力三角形;解得D F’FDFAF’FD4-1 试求题4-1图所示各梁支座的约束力。

设力的单位为kN ,力偶矩的单位为kN?m ,长度单位为m积分)。

解:(b):(1) 整体受力分析,画出受力图(平面任意力系);4-5 AB 梁一端砌在墙内,在自由端装有滑轮用以匀速吊起重物D ,设重物的重量为G ,又AB 长为b ,斜绳与铅垂线成?角,求固定端的约束力。

解:(1) 研究AB杆(带滑轮),受力分析,画出受力图(平面任意力系);(2)4-7 练钢炉的送料机由跑车A和可移动的桥B组成。

跑车可沿桥上的轨道运动,两轮间距,P);B、FAx xD的(4) 选坐标系Bxy4-17 刚架ABC和刚架CD通过铰链C连接,并与地面通过铰链A、B、D连接,如题4-17图x所示,载荷如图,试求刚架的支座约束力(尺寸单位为m ,力的单位为 kN ,载荷集度单位为 kN/m)。

解:(a):(1) 研究CD 杆,它是二力杆,又根据D 点的约束性质,可知:F C =F D =0;4-18 由杆AB 、BC 和CE 组成的支架和滑轮E 支持着物体。

物体重12 kN 。

D 处亦为铰链连接,尺寸如题4-18图所示。

试求固定铰链支座A 和滚动铰链支座B 的约束力以及杆BC 所受的力。

A B(5) 将F Ay代入到前面的平衡方程;约束力的方向如图所示。

4-20 AB、AC、DE三杆连接如题4-20图所示。

DE杆上有一插销F套在AC杆的导槽内。

求在水平杆DE的E端有一铅垂力F作用时,AB杆上所受的力。

设AD=DB,DF=FE,BC=DE,所有杆重均不计。

A解:(1) 整体受力分析,根据三力平衡汇交定理,可知B点的约束力一定沿着BC方向;(2) 研究DFE杆,受力分析,画出受力图(平面任意力系);5-4 一重量W =1000 N 的匀质薄板用止推轴承A 、径向轴承B 和绳索CE 支持在水平面上,可以绕水平轴AB 转动,今在板上作用一力偶,其力偶矩为M ,并设薄板平衡。

已知a =3时的啮合力解: (1)(2)208-1 试求图示各杆的轴力,并指出轴力的最大值。

解:(a)(2) 取1-1截面的左段;(a) (c)(d)F1F N 1(3) 取2-2截面的右段;(4) 轴力最大值: (c)(d)(1) 用截面法求内力,取1-1、2-2截面;FF N 2(2) 取1-1截面的右段;(2) 取2-2截面的右段;d 1=20解:(1) (2) 求1-1、2-2截面的正应力,利用正应力相同;8-6 题8-5图所示圆截面杆,已知载荷F 1=200 kN ,F 2=100 kN ,AB 段的直径d 1=40 mm ,如F N 1欲使AB与BC段横截面上的正应力相同,试求BC段的直径。

解:(1) 用截面法求出1-1、2-2截面的轴力;(2) 求1-1、2-2截面的正应力,利用正应力相同;8-7 图示木杆,承受轴向载荷F=10 kN作用,杆的横截面面积A=1000 mm2,粘接面的方位(2) 分别对两杆进行强度计算; 所以桁架的强度足够。

8-15 图示桁架,杆1为圆截面钢杆,杆2为方截面木杆,在节点A 处承受铅直方向的载荷F 作用,试确定钢杆的直径d 与木杆截面的边宽b 。

已知载荷F =50 kN ,钢的许用应力[σS ] =160 MPa ,木的许用应力[σW ] =10 MPa 。

8-18 图示阶梯形杆AC ,F =10 kN ,l 1= l 2=400 mm ,A 1=2A 2=100 mm 2,E =200GPa ,试计算杆AC 的轴向变形△l 。

F ACB解:(1) 用截面法求AB、BC段的轴力;(2) 分段计算个杆的轴向变形;AC杆缩短。

8-22 图示桁架,杆1与杆2的横截面面积与材料均相同,在节点A处承受载荷F作用。

从2,杆A 解:(1) 计算两杆的变形;1杆伸长,2杆缩短。

(2) 画出节点A的协调位置并计算其位移;1△水平位移:铅直位移:8-26 图示两端固定等截面直杆,横截面的面积为A,承受轴向载荷F作用,试计算杆内横(4) 最大拉应力和最大压应力;8-27 图示结构,梁BD为刚体,杆1与杆2用同一种材料制成,横截面面积均为A=300 mm2,许用应力[σ]=160 MPa,载荷F=50 kN,试校核杆的强度。

解:(1) 对BD 杆进行受力分析,列平衡方程;(2)代之胡克定理,可得;1] =80,列平衡方程;(2) 根据胡克定律,列出各杆的绝对变形;FF N 1N 3(3) 由变形协调关系,列补充方程;=35.4解:(1) B 的约束反力; (2) 考虑轴销B 的挤压强度;F(3) 综合轴销的剪切和挤压强度,取8-33 图示接头,承受轴向载荷F作用,试校核接头的强度。

已知:载荷F=80 kN,板宽b=80 mm,板厚δ=10 mm,铆钉直径d=16 mm,许用应力[σ]=160 MPa,许用切应力[τ] =120 MPa,许用挤压应力[σbs] =340 MPa。

板件与铆钉的材料相等。

10-1 试计算图示各梁指定截面(标有细线者)的剪力与弯矩。

由平衡关系求内力 (b)A F F SBM B(1) 求A、B处约束反力(2) 求A+取A+截面左段研究,其受力如图;(2) 求A+截面内力;取A+截面左段研究,其受力如图;(3) 求C -截面内力;取C -截面左段研究,其受力如图;(3) 求C -取C -截面右段研究,其受力如图;A R ASA+M A+ BM A+-(4) 求C +截面内力;取C +截面右段研究,其受力如图;(d)CBM C-xF SMx(1)(2) 画剪力图与弯矩图从强度方面考虑,此种加载方式最佳。

10-5 图示各梁,试利用剪力、弯矩与载荷集度的关系画剪力与弯矩图。

A(c(dA B(b(a(1) 求约束力;(1) 求约束力;(2)(e(fx(d)xF SF SM11-6 图示悬臂梁,横截面为矩形,承受载荷F1与F2作用,且F1=2F2=5 kN,试计算梁内的最大弯曲正应力,及该应力所在截面上K点处的弯曲正应力。

解:(2) 最大弯曲拉应力(发生在下边缘点处)M Myz(3) 最大弯曲压应力(发生在上边缘点处)11-8 图示简支梁,由No28工字钢制成,在集度为q 的均布载荷作用下,测得横截面C 底边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力,已知钢的弹性模量E =200 Gpa ,a =1 m 。

(2) 画出梁的弯矩图yM x(3) 计算应力A +截面下边缘点处的拉应力及上边缘点处的压应力分别为: A -截面下边缘点处的压应力为可见梁内最大拉应力超过许用拉应力,梁不安全。

解:(1) 求约束力:(2) 画弯矩图:F B(3)解得:查表,选取No16工字钢将①式代入上式,解得:xMM x11-22 图示悬臂梁,承受载荷F 1与F 2作用,已知F 1=800 N ,F 2=1.6 kN ,l =1 m ,许用应力[σ]=160 MPa,试分别在下列两种情况下确定截面尺寸。

(1) 截面为矩形,h =2b ; (2) 截面为圆形。

-3b 拉力F 及偏心距e 的数值。

解:(1)ε横截面上正应力分布如图:(2) 上下表面的正应力还可表达为:将b、h数值代入上面二式,求得:。

相关文档
最新文档