双曲线第一课定义(带动画).

合集下载

双曲线定义(带动画)

双曲线定义(带动画)

cx a2 a (x c)2 y2
F1
(c2 a2 )x2 a2y2 a2(c2 a2)
令c2-a2=b2
x2 a2
y2 b2
1
y
M
o
双曲线的标准方程
y
M
y M
F
1
OF
2
x
F2 x
O
F1
x2 a2
y2 b2
1
y2 x2 a2 b2 1
(a 0,b 0)
思考:如何由双曲线的标准方程来判断它的焦点 是在X轴上还是Y轴上?
三、例题选讲
例1 已知两定点 F1 5,0, F25,0 ,动点 P 满
足 PF1 PF2 6 ,求动点P 的轨迹方程
解:∵ F1F2 10 >6, PF1 PF2 6
∴由双曲线的定义可知,点 P 的轨迹是一条双曲线,
∵焦点为 F1(5, 0), F2(5, 0)
∴可设所求方程为:
x2 a2
判断:x2
16
y2 9
1与
y2 9
x2 16
1的焦点位置?
结论:看 x2 , y 2前的系数,哪一个为正,则
焦点在哪一个轴上。
双曲线的标准方程与椭圆的 标准方程有何区别与联系?
双曲线与椭圆之间的区别与联系
椭圆
双曲线
定义 方程
|MF1|+|MF2|=2a
x2 a2
y2 b2
1(a
b
0)
y2 a2
课堂巩固
已知双曲线的焦点为F1(-5,0), F2(5,0)双曲线上一点到焦点的距离差 的绝对值等于6,则
3 5 (1) a=_______ , c =_______ , b =_______

双曲线定义与方程(带动画)

双曲线定义与方程(带动画)
(1)F1F2延长线和反向延长线(两条射线) (2)轨迹不存在 (3)线段F1F2的垂直平分线
F
1
M
o
F
2
3.双曲线的标准方程
1. 建系. 以F1,F2所在的直线为X轴, 如何求这优美的曲线的方程? 线段F1F 2的中点为原点建立直角坐 标系 2.设点. 设M(x , y),双曲线的焦 距为2c(c>0),F1(-c,0),F2(c,0) 3.列式. |MF1|
平面内与两个定点F1,F2的距离的差的绝对值 等于常数2a (小于︱F1F2︱) 的点的轨迹叫做双曲线. ① 两个定点F1、F2——双曲线的焦点;
② |F1F2|=2c ——焦距. 注意
M
(1)距离之差的绝对值
| |MF1| - |MF2| | = 2a
|MF1| - |MF2| = 2a
F
1
o
F2
x2 y2 2.已知方程 1 9k k 3 3 k 9且 k 6; (1)方程表示椭圆,则 k的取值范围是 __________ ______
小结 ----双曲线定义及标准方程
定义
| |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
y
M
M F2
y
图象
F1
o
F2
x
2 2
2
(c a ) x a y a (c a )
2 2 2 2 2 2 2 2
令c2-a2=b2
x y 2 1 2 a b
2
2
双曲线的标准方程
y
M
y
M F2 x
F
O
1
F
2
x
O

双曲线及其标准方程(带动画)PPT课件

双曲线及其标准方程(带动画)PPT课件

16
小结 ----双曲线定义及标准方程
定义
| |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
y
y
M M
F2
图象
F1 o F2 x
x
F1
方程
焦点 a.b.c 的关

x2 a2

y2 b2
1
y2 x2 a2 b2 1
F ( ±c, 0)
F(0, ± c)
c2 a2b2
17
18
12/30/2019
19
2019/12/30
20
x2 a2
y2 b2
1(ab0)
y2 x2 1(ab0) a2 b2
x2 a2
y2 b2
1(a0,b0)
y2 a2
bx22
1(a0,b0)
焦点
a.b.c的关 系
F(±c,0) F(0,±c)
a>b>0,a2=b2+c2
F(±c,0) F(0,±c)
a>0,b>0,但a不一 定大于b,c2=a2+b2
判断:x 2
16

y2 9
1与 y2
9
x2
16
1 的焦点位置?
结论:看 x 2 , y 2前的系数,哪一个为正,则
焦点在哪一个轴上。
13
例题分析
例1.已知双曲线的焦点为F1(-5,0), F2(5,0)双曲线上一点到焦点的距离差的 绝对值等于6,则
3 5 4 (1) a=_______ , c =_______ , b =_______
图象
M
F1 o F2 x

双曲线的基本知识点PPT

双曲线的基本知识点PPT

按方程形式分类
双曲线方程的对称性 双曲线的标准方程是(x-a)²/b² - (y-b)²/a² = 1,其具有中心对称性,即点 (a, b)为中心。 双曲线的焦距与实轴长度的关系 在双曲线中,焦距c与实轴长度2a有固定的数学关系:c² = a² + b²,此 式被称为双曲线的基本性质之一。
T 双曲线关于其轴和中心点均具有对称性,这是由其定义决定的。 双曲线的渐近线性质 双曲线的渐近线是一条直线,该直线与双曲线交于两个无穷远点,这是双 曲线的重要特性之一。
05 双曲线的实际应用
双曲线的实际应用:物理中的应 用
双曲线的几何特性 双曲线是二次曲线的一种,其 双曲线的几何特性 双曲线是二次曲线的一种,其几何特性包括焦点在两个固定点,且所有到两 焦点距离之和为定长的点的集合。 双曲线的方程式 双曲线的标准方程是(x^2)/a^2 - (y^2)/b^2 = 1,其中a, b > 0, a^2 + b^2 = c^2 双曲线在物理中的应用 双曲线广泛应用于物理学中,如电磁场理论、光学、量子力学等,例如,双 曲线的焦散线就是光学中的一条重要概念。 双曲线与实际问题的联系 双曲线的许多性质,如离心率、焦点等,可以用于解决实际问题,如测量物 体的距离、角度等。
双曲线的图形特征:焦点和准线
双曲线定义 双曲线是平面内到两个定点的距离之差的绝对值等于常数的点的轨迹。 焦点性质 双曲线的两个焦点位于实轴两端,距离实轴相等。 准线特征 双曲线有两条互相垂直的准线,分别交坐标轴于原点和渐近线点。
04 双曲线的性质解析
双曲线的性质解析:主要性质
双曲线的焦点特性 双曲线有两焦点位于其对称轴上,距离中心等距。 双曲线的对称性 双曲线具有旋转对称性和平移对称性。 双曲线的渐近线 双曲线有两个渐近线,分别代表双曲线在x轴和y轴上的极限状态。 实数双曲线的面积 实数双曲线的面积是πab/4。

双曲线的定义及标准方程课件

双曲线的定义及标准方程课件

双曲线的性质及应用
双曲线拥有许多重要的性质和应用。在工程、物理学和金融等领域,双曲线的概念经常被应用于解决实际问题。 让我们深入研究双曲线的性质和应用。
结论及要点
通过本课件的学习,我们回顾了双曲线的定义、标准方程、图像特征以及其 性质和应用。掌握这些知识,可以帮助我们更好地理解曲线的性质和实际应 用。谢谢大家!
双曲线的图像特征
双曲线具有许多独特的图像特征。它的形状、对称性以及与其他曲线的关系使其在几何学和应用数学中具有广 泛的应用价值。
ห้องสมุดไป่ตู้
双曲线的焦点与准线
双曲线的焦点和准线是双曲线的重要属性。它们不仅确定了双曲线的形状, 还对我们理解双曲线的性质和应用起到关键作用。
双曲线的渐近线
双曲线的渐近线是一条特殊的直线,与双曲线的曲线趋势密切相关。了解双 曲线的渐近线有助于我们对双曲线的图像和性质有更深入的理解。
双曲线的定义及标准方程 ppt课件
欢迎来到本次精彩的课程介绍!我们将一起探讨双曲线的定义、标准方程以 及其图像特征。准备好了吗?让我们开始吧!
双曲线的定义
双曲线是数学中一种重要的曲线形式。它由离心率小于1的点构成,并具有特定的几何性质。让我们深入了解 双曲线的定义和性质。
双曲线的标准方程
双曲线可以使用标准方程来表示。这种方程的形式简洁,方便我们对双曲线 进行分析和计算。让我们掌握双曲线的标准方程。

双曲线的几何性质课件

双曲线的几何性质课件

2
渐近线特点
渐近线具有与曲线相交的独特特点,可以使用它们来描述和绘制双曲线的形状。
3
渐近线的运用
渐近线对于双曲线的研究和应用具有重要意义,例如在建筑设计和曲线绘制中的 应用。
双曲线的参数方程
双曲线可以用参数方程表示,这种表示形式不仅简洁明了,而且更加灵活,适用于各种数学和物理问题的研究。
双曲线的几何性质实例
光学应用
建筑设计
双曲线在光学中有着广泛的应用, 如反射镜、折射器和光学透镜的 设计。
双曲线在建筑设计中用于创建独 特的曲线结构,例如拱形天花板 和拱门。
桥梁结构
双曲线被广泛应用于桥梁设计中, 能够提供更大的强度和稳定性。
焦点和直线
双曲线有两个焦点和一条与两个 焦点距离之差为常数的轴线。
参数方程
双曲线可以用参数方程表示,这 使得研究其运动和性质更加方便。
双曲线的离心率
双曲线的离心率是一个重要参数,它描述了曲线的形状和特征。离心率越大, 曲线形状越扁平;离心率越小,曲线形状越接近于直线。
双曲线的应用举例
天体运动
双曲线广泛应用于描述天体的轨道运动,如彗 星的轨道和宇宙飞船的航行轨迹。
金融市场
双曲线模型被广泛应用于金融市场的期权定价 和风险管理。
通信技术
双曲线在无线通信中起着重要作用,如GPS系统 中卫星的定位和测量。
物理学
双曲线在物理学中有着重要的应用,如电磁场 的辐射模式和夸克的弹性碰撞。
双曲线的渐近线
1
渐近线定义
渐近线是双曲线与其渐近线之间的关系。渐近线可以是直线,曲线,或者是一点。
双曲线的几何性质
通过本课件,我将为您介绍双曲线的定义、公式、基本图形、渐近线、离心 率、焦点和直线、参数方程以及应用举例。

双曲线的标准方程动态演示课件

双曲线的标准方程动态演示课件
2、双曲线的标准方程与椭圆的标准方程有何区 别与联系?
双曲线与椭圆之间的区别与联系
定义 方程
焦点 a.b.c的关

椭圆
双曲线
|MF1|+|MF2|=2a
||MF1|-|MF2||=2a
x2 y2 a2 b2 1(a b 0) y2 x2 a2 b2 1(a b 0)
解: 由(2 m)(m 1) 0 得m 2或m 1 ∴ m 的取值范围为 (, 2) (1, )
思考:
方程 x2 y2 1 表示焦点在y轴双曲线时, 2m m1
则m的取值范围____m_______2__.
例3.已知A,B两地相距800m,在A地听到炮弹爆炸声比在B 地晚2s,且声速为340m/s,求炮弹爆炸点的轨迹方程.
变式2答案
变式训练 2:已知两定点 F1(5, 0) , F2(5, 0) ,动点 P 满足 PF1 PF2 6 ,求动点 P 的轨迹方程.
解:∵ F1F2 10 >6, PF1 PF2 6
∴ 由双曲线的定义可知, 点 P 的轨迹是双曲线的一支 (右支),
∵焦点为 F1(5, 0), F2(5, 0)
∴ 由双曲线的定义可知,点 P 的轨迹是一条双曲线,
∵焦点为 F1(5, 0), F2(5, 0)
∴可设所求方程为:
x2 a2

y2 b2

1
(a>0,b>0).
∵2a=6,2c=10,∴a=3,c=5.
所以点 P 的轨迹方程为 x2 y2 1 . 9 16
变式训练 1:已知两定点 F1(5, 0) , F2(5, 0) ,动点 P 满足 PF1 PF2 10 ,求动点 P 的轨迹方程. 解: ∵ F1F2 10 , PF1 PF2 10 ∴ 点 P 的轨迹是两条射线, 轨迹方程为 y 0( x ≥ 5或x ≤ 5) . 变式训练 2:已知两定点 F1(5, 0) , F2(5, 0) ,动点 P 满足 PF1 PF2 6 ,求动点 P 的轨迹方程.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方程
2 2 x2 y 2 x y 2 1(a b 0) 2 1(a 0, b 0) 2 2 a b a b 2 2 y 2 x2 y x 2 1(a b 0) 2 1(a 0, b 0) 2 2 a b a b
焦点
F(±c,0)
F(±c,0)
上面 两条合起来叫做双曲线
根据实验及椭圆定义,你能给双曲线下定义吗?
2.双曲线的定义 回忆椭圆的定义
平面内与两个定点 F1, F 平面内与两个定点 F F2的距离的和为一个定 2的距离的差的绝对值 1, 等于常数 (小于︱ F1F2︱) 的点的轨迹叫做双曲线. 值(大于 ︱F1F2︱ )的点的轨迹叫做椭圆 ① 两个定点F1、F2——双曲线的焦点; ② |F1F2|=2c ——焦距. 注意
x y 2 1 2 a b
F ( ±c, 0)
2
2
y2 x2 2 1 2 a b
F(0, ± c)
2 2
c a b
2
F1
y
M
o
F2
x
- |MF2|= 2a _ 2a (x-c)2 + y2 = +

(x+c)2 + y2 -
4.化简.
(x c)2 y2 (x c)2 y2 2a
( (x c)2 y2 )2 ( (x c)2 y2 2a)2
y
M F1
o
cx a2 a (x c)2 y2
(c a ) x a y a (c a )
2 2 2 2 2 2 2 2
令c2-a2=b2
x y 2 1 2 a b
2
2
双曲线的标准方程
y
M
y
M F2 x
F1
O
F2
x
O
F1
x y 2 1 2 a b
2
2
y x 1 2 2 a b
2
2
(a 0,b 0)
思考:如何由双曲线的标准方程来判断它的焦点 是在X轴上还是Y轴上?
x2 y2 y2 x2 1与 判断: 1 的焦点位置? 16 9 9 16
结论: 看
x , y 前的系数,哪一个为正,则
2
2
焦点在哪一个轴上。
双曲线的标准方程与椭圆的 标准方程有何区别与联系?
双曲线与椭圆之间的区别与联系

定义

双曲线
||MF1|-|MF2||=2a
|MF1|+|MF2|=2a
第一课时
北京摩天大楼
巴西利亚大教堂
法拉利主题公园
花瓶
反比例函数的图像
冷却塔
罗兰导航系统原理
画双曲线
演示实验:用拉链画双曲线
①如图(A), |MF1|-|MF2|=|F2F|=2a ②如图(B),
|MF2|-|MF1|=|F1F|=2a
由①②可得: | |MF1|-|MF2| | = 2a (差的绝对值)
M
(1)距离之差的绝对值
F1
o
F2
| |MF1| - |MF2| | = 2a
(2)常数要小于|F1F2|大于0
0<2a<2c
3.双曲线的标准方程
1. 建系. 以F1,F2所在的直线为X轴, 如何求这优美的曲线的方程? 线段F1F 2的中点为原点建立直角坐 标系 2.设点. 设M(x , y),双曲线的焦 距为2c(c>0),F1(-c,0),F2(c,0) 3.列式. |MF1|
(2) 双曲线的标准方程为______________ (3)双曲线上一点P, |PF1|=10, 4或16 则|PF2|=_________
小结 ----双曲线定义及标准方程
定义
| |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
y
M
M F2
y
图象
F1
o
F2
x
F1
x
方程 焦点
a.b.c 的关 系
F(0,±c)
a.b.c的关 系
F(0,±c)
a>0,b>0,但a不一 定大于b,c2=a2+b2
a>b>0,a2=b2+c2
课堂巩固
已知双曲线的焦点为F1(-5,0), F2(5,0)双曲线上 一点到焦点的距离差的绝对值等于6,则 5 4 3 (1) a=_______ , c =_______ , b =_______
相关文档
最新文档