双曲线第一课定义(带动画).
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x y 2 1 2 a b
F ( ±c, 0)
2
2
y2 x2 2 1 2 a b
F(0, ± c)
2 2
c a b
2
F1
y
M
o
F2
x
- |MF2|= 2a _ 2a (x-c)2 + y2 = +
即
(x+c)2 + y2 -
4.化简.
(x c)2 y2 (x c)2 y2 2a
( (x c)2 y2 )2 ( (x c)2 y2 2a)2
y
M F1
o
cx a2 a (x c)2 y2
F(0,±c)
a.b.c的关 系
F(0,±c)
a>0,b>0,但a不一 定大于b,c2=a2+b2
a>b>0,a2=b2+c2
课堂巩固
已知双曲线的焦点为F1(-5,0), F2(5,0)双曲线上 一点到焦点的距离差的绝对值等于6,则 5 4 3 (1) a=_______ , c =_______ , b =_______
第一课时
北京摩天大楼
巴西利亚大教堂
法拉利主题公园
花瓶
反比例函数的图像
冷却塔
罗兰导航系统原理
画双曲线
演示实验:用拉链画双曲线
①如图(A), |MF1|-|MF2|=|F2F|=2a ②如图(B),
|MF2|-|MF1|=|F1F|=2a
由①②可得: | |MF1|-|MF2| | = 2a (差的绝对值)
(c a ) x a y a (c a )
2 2 2 2 2 2 2 2
令c2-a2=b2
x y 2 1 2 a b
2
2
双曲线的标准方程
y
M
y
M F2 x
F1
O
F2
x
O
F1
x y 2 1 2 a b
2
2
y x 1 2 2 a b
2
2
(a 0,b 0)
思考:如何由双曲线的标准方程来判断它的焦点 是在X轴上还是Y轴上?
(2) 双曲线的标准方程为______________ (3)双曲线上一点P, |PF1|=10, 4或16 则|PF2|=_________
小结 ----双曲线定义及标准方程
定义
| |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
y
M
M F2
y
图象
F1
o
F2
x
F1
x
方程 焦点
a.b.c 的关 系
方程
2 2 x2 y 2 x y 2 1(a b 0) 2 1(a 0, b 0) 2 2 a b a b 2 2 y 2 x2 y x 2 1(a b 0) 2 1(a 0, b 0) 2 2 a b a b
焦点
F(±c,0)
F(±c,0)
x2 y2 y2 x2 1与 判断: 1 的焦点位置? 16 9 9 16
结论: 看
x , y 前的系数,哪一个为正,则
2
2
焦点在哪一个轴上。
双曲线的标准方程与椭圆的 标准方程有何区别与联系?
双曲线与椭圆之间的区别与联系
椭
定义
圆
双曲线
||MF1|-|MF2||=2a
|MF1|+|MF2|=2a
M
(1)距离之差的绝对值
F1
o
F2
| |MF1| - |MF2| | = 2a
(2)常数要小于|F1F2|大于0
0<2a<2c
ቤተ መጻሕፍቲ ባይዱ
3.双曲线的标准方程
1. 建系. 以F1,F2所在的直线为X轴, 如何求这优美的曲线的方程? 线段F1F 2的中点为原点建立直角坐 标系 2.设点. 设M(x , y),双曲线的焦 距为2c(c>0),F1(-c,0),F2(c,0) 3.列式. |MF1|
上面 两条合起来叫做双曲线
根据实验及椭圆定义,你能给双曲线下定义吗?
2.双曲线的定义 回忆椭圆的定义
平面内与两个定点 F1, F 平面内与两个定点 F F2的距离的和为一个定 2的距离的差的绝对值 1, 等于常数 (小于︱ F1F2︱) 的点的轨迹叫做双曲线. 值(大于 ︱F1F2︱ )的点的轨迹叫做椭圆 ① 两个定点F1、F2——双曲线的焦点; ② |F1F2|=2c ——焦距. 注意