双曲线及其标准方程(带动画)修改

合集下载

双曲线及其标准方程式

双曲线及其标准方程式

双曲线及其标准方程式
双曲线是代数曲线中的一种,其标准方程常用于描述其形状。

标准方程式表示为:
(x^2/a^2) - (y^2/b^2) = 1 (双曲线的方程式)
其中x和y是坐标系中的变量,a和b是正实数,而a>b。

双曲线通常是对称于x轴和y轴的,并且具有两个分支。

当a和b相等时,双曲线变成一个特殊的形状,称为单位双曲线。

单位双曲线的标准方程变为:
(x^2/a^2) - (y^2/a^2) = 1 (单位双曲线的方程式)
双曲线在数学和物理中有广泛的应用,例如在电磁学、光学和力学等领域中描述抛物面、光学器件的形状和物体的运动等。

双曲线及其标准方程

双曲线及其标准方程

(F1、F2是两定点, |MF1|-|MF2| =2a, |F1F2| =2c (0<a<c)
当|MF1|-|MF2|=2a时,点M的轨迹 双曲线的右支

当|MF2|-|MF1|=2a时,点M的轨迹 双曲线的左支 ;
若2a=2c,动点MM的轨迹 以F1、F2为端点的两条射线 ;
若2a>F21c,动点MF的2 轨迹不存在
h
12
①如图(A), |MF1|-|MF2|=|F2F|=2a
②如图(B), |MF2|-|MF1|=|F1F|=2a
由①②可得: | |MF1|-|MF2| | = 2a
(差的绝对值)
上面 两条合起来叫做双曲线
根据实验及椭圆定义,h 你能给双曲线下定义吗?13
Байду номын сангаас、双曲线定义
平面内与两个定点F1,F2的距离的差的绝对值 等于常数(小于︱F1F2︱)的点的轨迹叫做双曲线.
x
F1
焦点及位置 判定
焦 F 1 ( 点 c,0 )F ,2(c,0 )
焦 F 1 (0 点 , c )F ,2 (0 ,c )
标准方程
a,b,c之间
的关系
x2 a2
by22
1(ab0)
a>b>0,a2=b2+c2
y2 a2
bx22
1(ab0)
一.复习提问:
1、椭圆的定义
平面内与两定点F1、F2的距离的 和 等于常数
双曲线的标准方程与椭圆的 标准方程有何区别与联系?
h
21
双曲线与椭圆之间的区别与联系
定义 方程
椭圆
|MF1|+|MF2|=2a
x2 a2

双曲线及其标准方程 课件

双曲线及其标准方程 课件
双曲线及其标准方程
新知视界
1.双曲线的定义 把平面内与两个定点F1,F2的距离的差的绝对值 等于常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个 定点叫做双曲线的焦点,两焦点间的距离叫做双曲线 的焦距.
思考感悟
1.双曲线的定义中,常数为什么要小于|F1F2|? 提示:①如果定义中常数改为等于|F1F2|,此时 动点的轨迹是以 F1、F2 为端点的两条射线(包括端 点). ②如果定义中常数为 0,此时动点轨迹为线段 F1F2 的垂直平分线. ③如果定义中常数改为大于|F1F2|,此时动点轨 迹不存在.
解得ab22= =19, 6, ∴双曲线的方程为1y62 -x92=1.
(2)解法一:设双曲线方程为xa22-by22=1. 由题意易求得 c=2 5. 又双曲线过点(3 2,2),∴3a222-b42=1. 又∵a2+b2=(2 5)2,∴a2=12,b2=8. 故所求双曲线的方程为1x22 -y82=1.
2.平面内与两个定点F1、F2的距离的差等于常数 (小于
|F1F2|)的点的轨迹是不是双曲线? 提示:不是,是双曲线的某一支.
在双曲线的定义中,P为动点,F1,F2分别为双曲 线的左、右焦点,则①|PF1|-|PF2|=2a,曲线只表示 双曲线的右支.
② |PF1| - |PF2| = - 2a , 曲 线 只 表 示 双 曲 线 的 左 支.
类型三 双曲线中的焦点三角形 [例 3] 若 F1,F2 是双曲线x92-1y62 =1 的两个 焦点,P 是双曲线上的点,且|PF1|·|PF2|=32,试 求△F1PF2 的面积.
双曲线 [分析] 双曲线方程 的―定―→义 |PF1|-|PF2|=±2a ―平―方→ |PF1|2+|PF2|2的值 余―弦―定→理 ∠F1PF2=90° 面积公式 ――→ S△F1PF2

双曲线及其标准方程课件

双曲线及其标准方程课件

(3)当 k<0 时,方程为y42--x24k=1,表示焦点在 y 轴上的双曲线;
(4)当 0<k<1 时,方程为x42+y42=1,表示焦点在 x 轴上的椭圆; k
(5)当 k>1 时,方程为x42+y42=1,表示焦点在 y 轴上的椭圆. k
[一点通] 解决这类题的基本方法是分类讨论,在分
类讨论的过程中应做到不重不漏,选择适当的分界点.在
(3)若|F1F2|<2a,动点的轨迹不存在.
2.通过双曲线方程xa22-by22=1(焦点在 x 轴上)和ay22-xb22 =1(焦点在 y 轴上)(a>0,b>0)可以看出:如果 x2 项的系 数是正的,那么焦点在 x 轴上;如果 y2 项的系数是正的, 那么焦点在 y 轴上.对于双曲线,a 不一定大于 b,但是无 论双曲线的焦点在哪个轴上,方程中的三个量都满足 c2 =a2+b2.
[例3] 已知方程kx2+y2=4,其中k为实数,对于不同 范围的k值分别指出方程所表示的曲线类型.
[思路点拨] 解答本题可依据所学的各种曲线的标准形 式的系数应满足的条件进行分类讨论.
[精解详析] (1)当 k=0 时,y=±2,表示两条与 x 轴平行 的直线;
(2)当 k=1 时,方程为 x2+y2=4,表示圆心在原点,半径 为 2 的圆;
72 b2 =1,
解得a12=19, b12=116,
即 a2=9,b2=16.
∴所求双曲线的标准方程为y92-1x62 =1.
法二:∵双曲线的焦点位置不确定,
∴设双曲线方程为 mx2+ny2=1(mn<0). ∵P1,P2 在双曲线上,所以
4m+445n=1, 196×7m+16n=1,

双曲线定义与方程(带动画)

双曲线定义与方程(带动画)
(1)F1F2延长线和反向延长线(两条射线) (2)轨迹不存在 (3)线段F1F2的垂直平分线
F
1
M
o
F
2
3.双曲线的标准方程
1. 建系. 以F1,F2所在的直线为X轴, 如何求这优美的曲线的方程? 线段F1F 2的中点为原点建立直角坐 标系 2.设点. 设M(x , y),双曲线的焦 距为2c(c>0),F1(-c,0),F2(c,0) 3.列式. |MF1|
平面内与两个定点F1,F2的距离的差的绝对值 等于常数2a (小于︱F1F2︱) 的点的轨迹叫做双曲线. ① 两个定点F1、F2——双曲线的焦点;
② |F1F2|=2c ——焦距. 注意
M
(1)距离之差的绝对值
| |MF1| - |MF2| | = 2a
|MF1| - |MF2| = 2a
F
1
o
F2
x2 y2 2.已知方程 1 9k k 3 3 k 9且 k 6; (1)方程表示椭圆,则 k的取值范围是 __________ ______
小结 ----双曲线定义及标准方程
定义
| |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
y
M
M F2
y
图象
F1
o
F2
x
2 2
2
(c a ) x a y a (c a )
2 2 2 2 2 2 2 2
令c2-a2=b2
x y 2 1 2 a b
2
2
双曲线的标准方程
y
M
y
M F2 x
F
O
1
F
2
x
O

双曲线及其标准方程完整版课件

双曲线及其标准方程完整版课件
2
2
则双曲线的标准方程为20 − 16 =1.
(2)设双曲线方程为 mx2-ny2=1,
1
= 25 ,
49-72 = 1,
则有
解得
1
28-9 = 1,
= ,
75
2
2
则双曲线的标准方程为25 − 75 =1.
归纳总结
求双曲线的标准方程与求椭圆的标准方程的方法相似,可
以先根据其焦点位置设出标准方程,然后用待定系数法求出a,b
联立两方程解得 x=8(舍负),y=5 3,
所以 P(8,5 3),
kPA=tan∠PAx= 3,所以∠PAx=60°,
所以 P 点在 A 点的北偏东 30°方向.
当堂达标
1.已知两定点F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,则当a=3和5时
,P点的轨迹为(
)
A.双曲线和一条直线
情景导学
双曲线也是具有广泛应用的一种圆锥曲线,如发电厂冷却塔的外形、通过声
音时差测定定位等都要用到双曲线的性质。本节我们将类比椭圆的研究方法研究双
曲线的有关问题。
问题导学
新知探究
如图,在直线
l 上取两个定点
在平面内,取定点
F1 , F 2,以点 F1 为圆心、线段
在以 F 2 为圆心、线段
我们知道,当点
2
2
解析:∵方程1+ + -2=1,∴(m-2)(m+1)<0,
解得-1<m<2,∴m的取值范围是(-1,2).
答案:D
)
4. 一块面积为12公顷的三角形形状的农场.如图所示△PEF,已知
1
tan∠PEF=

双曲线标准方程及其变形

双曲线标准方程及其变形

双曲线标准方程及其变形类型一:122=+ny mx (0<mn )双曲线的标准方程:焦点在x 轴上时,)0,0(12222>>=-b a b y a x ⇒)0,0(1112222>>=⋅-⋅b a y b x a焦点在y 轴上时,)0,0(12222>>=-b a b x a y ⇒)0,0(1112222>>=⋅-⋅b a x by a令21a m =,21b n -=,则两个标准方程可变形为: 122=+ny mx (0<mn )利用这个变形公式在求解双曲线方程时可避免讨论焦点的位置,使得计算量减小,从而提高解题速度和准确率。

例1 已知双曲线的焦点在y 轴上,并且双曲线过点(24,3-),(5,49),求双曲线的标准方程。

例2 求中心在原点、两对称轴都在坐标轴上,并且经过)415,3(P 和)5,316(Q 两点的双曲线方程。

类型二:122=+ny m x (0<mn )双曲线的标准方程:焦点在x 轴上时,)0,0(12222>>=-b a b y a x ⇒)0,0(12222>>=-+b a b y a x 焦点在y 轴上时,)0,0(12222>>=-b a b x a y ⇒)0,0(12222>>=-+b a bx a y 令2a m =,2b n -=,则两个标准方程可变形为:122=+ny m x (0<mn ) 利用这个变形公式在求双曲线中参数的取值范围时十分便捷例3 已知16522=++-t y t x 表示焦点在y 轴的双曲线的标准方程,t 的取值范围是___________.①焦点在x 轴12222=-by a x(0>a ,0>b );②焦点在y 轴12222=-bx a y (0>a ,0>b ).①焦点在x 轴12222=-+b y a x(0>a ,0>b );②焦点在y 轴12222=-+bx a y (0>a ,0>b ).①焦点在x 轴1112222=⋅-⋅y bx a (0>a ,0>b ); ②焦点在y 轴1112222=⋅-⋅x by a (0>a ,0>b ).令2a m =,2b n =,则:122=-ny m x (0>mn ) 令2a m =,2b n -=,则:122=+ny m x (0<mn ) 令21a m =,21bn -=,则: 122=+ny mx (0<mn )。

双曲线及其标准方程课件

双曲线及其标准方程课件

音乐艺术
双曲线在音乐艺术中用于 创作优美的音乐旋律和和 声,特别是在处理音高和 音程时。
交通工程
双曲线在交通工程中用于 设计道路和轨道,特别是 在处理弯道和交叉口时。
04
双曲线的图像绘制
使用数学软件绘制双曲线
使用Ge双曲 线。用户只需在软件中输入双曲线的标准方程,即可自动生 成对应的双曲线图像。
05
双曲线的性质与方程 的关联
双曲线的性质与标准方程的关系
焦点距离
双曲线的标准方程中的系数与焦 点距离有关,决定了双曲线的开
口大小和方向。
渐近线
双曲线的标准方程中的系数决定了 渐近线的斜率和截距,反映了双曲 线的形状和位置。
离心率
双曲线的标准方程中的系数与离心 率有关,离心率决定了双曲线的开 口程度和形状。
推导结果
01
双曲线的标准方程为
$frac{x^2}{a^2}
-
frac{y^2}{b^2} = 1$。
02
其中$a > 0, b > 0$,且满足 $c^2 = a^2 + b^2$。
推导结论
双曲线是一种特殊的二次曲线,其标 准方程反映了双曲线的几何特性。
双曲线的焦点到曲线上任意一点的距 离之差为常数,这个常数等于两焦点 之间的距离的一半。
绘制双曲线
在工具箱中选择“双曲线”工具,然 后在绘图区域单击并拖动鼠标,即可 绘制出双曲线。用户可以根据需要调 整双曲线的参数和位置。
使用手工绘制双曲线
准备工具
准备一张纸、一支笔和一把直尺。
绘制过程
首先在纸上确定双曲线的中心和焦点,然后使用直尺和笔绘制出双曲线的渐近线。接着,使用笔和直尺在纸上绘 制出双曲线的上半部分。最后,使用对称性画出双曲线的下半部分。这种方法虽然比较传统,但对于理解双曲线 的几何意义非常有帮助。

原创2:2.2.1 双曲线及其标准方程

原创2:2.2.1 双曲线及其标准方程

6角形.
S = △PF1F2
1 2
6
4=12.
答案:12
2.设C点的坐标为C(x,y),则AC的斜率为
k AC
x
y
, 5
BC的斜率为 y y m(y 0)
x5 x5
依题意有
k BC
x
y
, 5
化简得mx2-y2=25m(y≠0)
因为m≠0, 所以原方程可化为 x2 y2 1(y 0) ①
(2)当双曲线的焦点位置不确定时,求双曲线的标准方程有两 种思路:一是分别讨论焦点在x轴,y轴的情况,求解时要注意 检验;二是设为一般形式Ax2+By2=1(A·B<0),这样求解 时既避免了分类讨论,又简化了运算过程.
题目类型三、双曲线定义及标准方程的应用 【技法点拨】
1.双曲线的定义对于解题的主要作用 双曲线的定义对于解题具有双向作用: (1)可用来判断平面内动点的轨迹是否为双曲线(或双曲线的一 支); (2)可以用来解决焦点三角形和焦点弦的有关问题.
25 25m
由题知方程①表示的轨迹是焦点在x轴上的双曲线(去掉两个
顶点),所以m>0.
所以所求m的取值范围是(0,+∞).
【想一想】题1中能确定点P是在双曲线的哪一支上吗? 提示:根据|PF1|∶|PF2|=3∶2知|PF1|>|PF2|,所以点P在双 曲线靠近F2点的右支上.
【易错误区】双曲线定义运用中的误区 【典例】设F1,F2是双曲线 x2 -y2 =1的焦点,点P在双曲线
题目类型一、双曲线的定义 【技法点拨】
双曲线定义中的限制条件 (1)动点到两定点的距离之差; (2)强调差的绝对值是常数; (3)常数小于两定点间的距离. 只要上述三个条件有一个不满足,动点的轨迹就不是双曲线.

双曲线的标准方程

双曲线的标准方程

双曲线的标准方程双曲线是解析几何中的一类二次曲线,具有许多特殊的几何和代数性质。

本文将详细介绍双曲线的标准方程及其性质。

1. 双曲线的定义双曲线是指一组点P和一个点F,满足从P到F到一个定点D的距离差的绝对值等于一个定值e,即PF - PD = e。

双曲线可以通过椭圆的定义进行推导。

如果从椭圆上的固定点F到点P的距离之和等于一个定值2a,那么从F到P的距离差将等于2a - 2PF,即PF - PD = e,其中e = 2a - 2c,c为椭圆的其中一个焦点到椭圆中心的距离。

因此,双曲线可以看作是一个椭圆的镜像,是的焦点位置沿着中心轴移动了一段距离,从而形成的一组点。

2. 双曲线的标准方程双曲线的标准方程通常写作:x^2/a^2 - y^2/b^2 = 1 (a > 0, b > 0)这里的a和b分别是椭圆的半轴。

对于双曲线的方程,可以进一步推导出其他形式。

例如,将x和y交换,在方程中加上常数c,可以得到:-y^2/a^2 + x^2/b^2 = c这种形式叫做横向双曲线;另一种形式是纵向双曲线:y^2/a^2 - x^2/b^2 = 1这里的a和b是椭圆的半轴。

3. 双曲线的几何性质双曲线有一些有趣的几何性质,如下所示:(1) 双曲线具有两个分离的分支,这两个分支无穷远处相交于双曲线的渐近线。

(2) 双曲线的渐近线是其方程中不等于0的项所对应的直线。

(3) 双曲线对称于其两条渐近线。

(4) 双曲线移动或旋转后仍然是双曲线。

(5) 两个相交的双曲线组成了双曲线族。

(6) 双曲线上的点到两个焦点的距离之差等于常数e。

4. 双曲线的代数性质双曲线也有许多有趣的代数性质,例如:(1) 双曲线是一类二次曲线,它们的方程可以写成x^2 + y^2 + Ax + By + C = 0的形式。

(2) 双曲线的法线与其渐近线的夹角相等。

(3) 双曲线的切线与两个焦点之间的连线垂直。

(4) 不同的双曲线是正交的。

双曲线及其标准方程

双曲线及其标准方程

双曲线及其标准方程
双曲线是平面上的一种曲线,它的标准方程可以表示为:
(x^2/a^2) - (y^2/b^2) = 1 或 (y^2/b^2) - (x^2/a^2) = 1
其中,a和b是两个正实数,且a不等于b。

双曲线有两个分支,分别称为左右分支或上下分支,取决于标准方程中x和y的系数的正负关系。

在左右分支的情况下,a控制横轴方向上的扁平程度,b控制
纵轴方向上的扁平程度。

而在上下分支的情况下,a控制纵轴
方向上的扁平程度,b控制横轴方向上的扁平程度。

双曲线的焦点是曲线的特殊点,表示为(F1, F2),位于曲线的
横轴或纵轴上。

焦点与曲线的距离称为焦距,用c表示。

焦距与横轴或纵轴的交点称为顶点。

双曲线也具有渐近线,即曲线无限延伸时,与曲线趋于平行的直线。

对于左右分支的双曲线,渐近线是曲线的对称轴,方程为y=0;对于上下分支的双曲线,渐近线是曲线的纵轴和横轴,方程分别为x=0和y=0。

双曲线在数学、物理学和工程学中都具有重要的应用,例如在椭圆偏振光、天体力学、电磁场分布等领域。

双曲线及其标准方程课件

双曲线及其标准方程课件
双曲线及其标准方程ppt 课件
欢迎来到本次ppt课件,将带您深入了解双曲线及其标准方程。让我们一起探 索这个有趣而美丽的数学概念!
什么是双曲线?
双曲线是数学中的一种曲线,它的形状类似于一个张开的双金属圆弧。它具有很多独特的特性和 性质。
图形特征
形状
双曲线的主轴长度大于副轴 长度,呈现出独特的开口形 状。
双曲线的图像与性质
焦点与准线
双曲线有两个焦点和两条 准线,这些元素决定了曲 线的位置和形状。
双曲线的离心率
离心率是衡量曲线弯曲程 度的指标,对于双曲线而 言,离心率大于1。
双曲线的对称性
双曲线具有对称性,关于 焦点、顶点、中心和原点 都存在对称性。
双曲线的应用
天文学
双曲线在行星轨道和彗星轨道的描述中发挥着重要作用。
渐近线
双曲线具有两条渐近线,可 以帮助我们更好地理解其形 状和趋势。
顶点
双曲线有两个顶点,它们是 曲线的最近点和最远点。
双曲线的标准方程
1 横轴标准方程
x²/a² - y²/b² = 1
2 纵轴标准方程
y²/a² - x²/b² = 1
3 参数方程
x = a*cos(θ), y = b*sin(θ)
通信技术
双曲线广泛应用于卫星通信和雷达系统中。
工程建模
双曲线在工程建模、电子设计和信号处理等领Leabharlann 具有广泛的应用价值。练习题
1
问题1
找到双曲线的焦点和准线。
问题2
2
计算给定双曲线的离心率。
3
问题3
应用双曲线方程解决实际问题。
结论和要点
1 双曲线是一种独特的数学曲线。
它具有特殊的形状、标准方程和性质。

(完整版)双曲线及其标准方程详解

(完整版)双曲线及其标准方程详解

2.2 双曲线2.2.1 双曲线及其标准方程【课标要求】1.了解双曲线的定义、几何图形和标准方程的推导过程. 2.会利用双曲线的定义和标准方程解决简单的应用问题. 【核心扫描】1.用定义法、待定系数法求双曲线的标准方程.(重点) 2.与双曲线定义有关的应用问题.(难点)自学导引1.双曲线的定义把平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.试一试:在双曲线的定义中,必须要求“常数小于|F 1F 2|”,那么“常数等于|F 1F 2|”,“常数大于|F 1F 2|”或“常数为0”时,动点的轨迹是什么?提示 (1)若“常数等于|F 1F 2|”时,此时动点的轨迹是以F 1,F 2为端点的两条射线F 1A ,F 2B (包括端点),如图所示.(2)若“常数大于|F 1F 2|”,此时动点轨迹不存在.(3)若“常数为0”,此时动点轨迹为线段F 1F 2的垂直平分线. 2.双曲线的标准方程焦点在x 轴上 焦点在y 轴上 标准方程 x 2a 2-y 2b 2=1 (a >0,b >0) y 2a 2-x 2b 2=1 (a >0,b >0)焦点坐标 F 1(-c,0),F 2(c,0)F 1(0,-c ),F 2(0,c )a ,b ,c 的关系c 2=a 2+b 2想一想:如何判断方程x 2a 2-y 2b 2=1(a >0,b >0)和y 2a 2-x 2b 2=1(a >0,b >0)所表示双曲线的焦点的位置?提示 如果x 2项的系数是正的,那么焦点在x 轴上,如果y 2项的系数是正的,那么焦点在y 轴上.对于双曲线,a 不一定大于b ,因此,不能像椭圆那样比较分母的大小来判定焦点在哪一个坐标轴上.名师点睛1.对双曲线定义的理解(1)把定常数记为2a ,当2a <|F 1F 2|时,其轨迹是双曲线;当2a =|F 1F 2|时,其轨迹是以F 1、F 2为端点的两条射线(包括端点);当2a >|F 1F 2|时,其轨迹不存在.(2)距离的差要加绝对值,否则只为双曲线的一支.若F 1、F 2表示双曲线的左、右焦点,且点P 满足|PF 1|-|PF 2|=2a ,则点P 在右支上;若点P 满足|PF 2|-|PF 1|=2a ,则点P 在左支上.(3)双曲线定义的表达式是|||PF 1|-|PF 2|=2a (0<2a <|F 1F 2|).(4)理解双曲线的定义要紧扣“到两定点距离之差的绝对值为定值且小于两定点的距离.”2.双曲线的标准方程(1)只有当双曲线的两焦点F 1、F 2在坐标轴上,并且线段F 1F 2的垂直平分线也是坐标轴时得到的方程才是双曲线的标准方程.(2)标准方程中的两个参数a 和b ,确定了双曲线的形状和大小,是双曲线的定形条件,这里b 2=c 2-a 2,与椭圆中b 2=a 2-c 2相区别,且椭圆中a >b >0,而双曲线中a 、b 大小则不确定.(3)焦点F 1、F 2的位置,是双曲线定位的条件,它决定了双曲线标准方程的类型.“焦点跟着正项走”,若x 2项的系数为正,则焦点在x 轴上;若y 2项的系数为正,那么焦点在y 轴上.(4)用待定系数法求双曲线的标准方程时,如不能确定焦点的位置,可设双曲线的标准方程为Ax 2+By 2=1(AB <0)或进行分类讨论.题型一 求双曲线的标准方程 【例1】 根据下列条件,求双曲线的标准方程.(1)经过点P ⎝⎛⎭⎫3,154,Q ⎝⎛⎭⎫-163,5; (2)c =6,经过点(-5,2),焦点在x 轴上.[思路探索] 由于(1)无法确定双曲线焦点的位置,可设x 2a 2-y 2b 2=1(a >0,b >0)和y 2a 2-x 2b2=1(a >0,b >0)两种情况,分别求解.另外也可以设双曲线方程为mx 2+ny 2=1(mn <0)或x 2m +y 2n=1(mn <0),直接代入两点坐标求解.对于(2)可设其方程为x 2a 2-y 2b 2=1(a >0,b >0)或x 2λ-y 26-λ=1(0<λ<6).解 (1)法一 若焦点在x 轴上,设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),由于点P ⎝⎛⎭⎫3,154和Q ⎝⎛⎭⎫-163,5在双曲线上, 所以⎩⎨⎧9a 2-22516b 2=1,2569a 2-25b 2=1,解得⎩⎪⎨⎪⎧a 2=-16,b 2=-9(舍去).若焦点在y 轴上,设双曲线的方程为y 2a 2-x 2b2=1(a >0,b >0),将P 、Q 两点坐标代入可得⎩⎨⎧22516a 2-9b 2=1,25a 2-2569b 2=1,解之得⎩⎪⎨⎪⎧a 2=9,b 2=16,所以双曲线的标准方程为y 29-x 216=1.法二 设双曲线方程为x 2m +y 2n=1(mn <0).∵P 、Q 两点在双曲线上,∴⎩⎨⎧9m +22516n=1,2569m +25n =1,解得⎩⎪⎨⎪⎧m =-16,n =9.∴所求双曲线的标准方程为y 29-x 216=1.(2)法一 依题意,可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).依题设有⎩⎪⎨⎪⎧a 2+b 2=6,25a 2-4b 2=1,解得⎩⎪⎨⎪⎧a 2=5,b 2=1,∴所求双曲线的标准方程为x 25-y 2=1.法二 ∵焦点在x 轴上,c =6,∴设所求双曲线方程为x 2λ-y 26-λ=1(其中0<λ<6).∵双曲线经过点(-5,2), ∴25λ-46-λ=1,∴λ=5或λ=30(舍去). ∴所求双曲线的标准方程是x 25-y 2=1.规律方法 求双曲线的标准方程与求椭圆的标准方程的方法相似,可以先根据其焦点位置设出标准方程的形式,然后用待定系数法求出a ,b 的值.若焦点位置不确定,可按焦点在x 轴和y 轴上两种情况讨论求解,此方法思路清晰,但过程复杂,注意到双曲线过两定点,可设其方程为mx 2+ny 2=1(mn <0),通过解方程组即可确定m 、n ,避免了讨论,实为一种好方法.【变式1】 求适合下列条件的双曲线的标准方程: (1)a =3,c =4,焦点在x 轴上;(2)焦点为(0,-6),(0,6),经过点A (-5,6). 解 (1)由题设知,a =3,c =4,由c 2=a 2+b 2,得b 2=c 2-a 2=42-32=7.因为双曲线的焦点在x 轴上,所以所求双曲线的标准方程为x 29-x 27=1.(2)由已知得c =6,且焦点在y 轴上.因为点A (-5,6)在双曲线上,所以点A 与两焦点的距离的差的绝对值是常数2a ,即2a =|(-5-0)2+(6+6)2-(-5-0)2+(6-6)2|=|13-5|=8,则a =4,b 2=c 2-a 2=62-42=20.因此,所求双曲线的标准方程是y 216-x 220=1.2.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b=1(a >0,b >0)有相同的焦点,P 是两曲线的一个交点,则|PF 1|·|PF 2|的值为( )A .m -aB .m -bC .m 2-a 2D .m -bA 解析:设点P 为双曲线右支上的点,由椭圆定义得|PF 1|+|PF 2|=2m . 由双曲线定义得|PF 1|-|PF 2|=2a .∴|PF 1|=m +a ,|PF 2|=m -a . ∴|PF 1|·|PF 2|=m -a .题型二 双曲线定义的应用【例2】如图,若F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离; (2)若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2[思路探索] (1)由双曲线的定义,得||MF 1|-|MF 2||=2a ,则点M 到另一焦点的距离易得; (2)结合已知条件及余弦定理即可求得面积.解 双曲线的标准方程为x 29-y 216=1,故a =3,b =4,c =a 2+b 2=5.(1)由双曲线的定义,得||MF 1|-|MF 2||=2a =6,又双曲线上一点M 到它的一个焦点的距离等于16,假设点M 到另一个焦点的距离等于x ,则|16-x |=6,解得x =10或x =22.故点M 到另一个焦点的距离为6 或22.(2)将||PF 2|-|PF 1||=2a =6,两边平方,得 |PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36, ∴|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|= 36+2×32=100.在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=100-1002|PF 1|·|PF 2|=0,∴∠F 1PF 2=90°, ∴S △F 1PF 2=12|PF 1|·|PF 2|=12×32=16.规律方法 (1)求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据||PF 1|-|PF 2||=2a 求解,注意对所求结果进行必要的验证(负数应该舍去,且所求距离应该不小于c -a ).(2)在解决双曲线中与焦点三角形有关的问题时,首先要注意定义中的条件||PF 1|-|PF 2||=2a 的应用;其次是要利用余弦定理、勾股定理或三角形面积公式等知识进行运算,在运算中要注意整体思想和一些变形技巧的应用.【变式2】1.已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小(O 为坐标原点).1.解:连接ON ,ON 是△PF 1F 2的中位线,所以|ON |=12|PF 2|.因为||PF 1|-|PF 2||=8,|PF 1|=10,所以|PF 2|=2或18,|ON |=12|PF 2|=1或9.2.设P 为双曲线x 216-y29=1上一点,F 1,F 2是该双曲线的两个焦点,若∠F 1PF 2=60°,求△PF 1F 2的面积.解:由方程x 216-y 29=1,得a =4,b =3,故c =16+9=5,所以|F 1F 2|=2c =10.又由双曲线的定义,得||PF 1|-|PF 2||=8,两边平方,得|PF 1|2+|PF 2|2-2|PF 1||PF 2|=64.①在△PF 1F 2中,由余弦定理,得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°, 即|PF 1|2+|PF 2|2-|PF 1||PF 2|=100.② ①-②,得|PF 1||PF 2|=36,所以12PF F S ∆=12|PF 1||PF 2|sin 60°=12×36×32=93.3.已知双曲线x 29-y 216=1的左、右焦点分别是F 1、F 2,若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.解 由x 29-y 216=1,得a =3,b =4,c =5.由定义和余弦定理,得|PF 1|-|PF 2|=±6, |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°, 所以102=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 所以|PF 1|·|PF 2|=64,∴S △F 1PF 2=12|PF 1|·|PF 2|·sin ∠F 1PF 2=12×64×32=16 3.误区警示 忽略双曲线焦点位置致误【示例】 方程x 22-m +y 2|m |-3=1表示双曲线,那么m 的取值范围是________.[错解] 由⎩⎪⎨⎪⎧2-m >0,|m |-3<0解得-3<m <2,∴m 的取值范围是{m |-3<m <2}.只考虑焦点在x 轴上,忽视了焦点在y 轴上的情况.[正解] 依题意有⎩⎪⎨⎪⎧ 2-m >0|m |-3<0或⎩⎪⎨⎪⎧2-m <0,|m |-3>0,解得-3<m <2或m >3.∴m 的取值范围是{m |-3<m <2或m >3}. 答案 {m |-3<m <2或m >3}方程x 2m +y 2n=1既可以表示椭圆又可以表示双曲线.当方程表示椭圆时,m 、n 应满足m >n >0或n >m >0,当m >n >0时,方程表示焦点在x 轴上的椭圆;当n >m >0时,方程表示焦点在y 轴上的椭圆.当方程表示双曲线时,m 、n 应满足mn <0,当m >0,n <0时,方程表示焦点在x 轴上的双曲线;当m <0,n >0时,方程表示焦点在y 轴上的双曲线. 当堂检测1.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( )A .22=1169x y -(x ≤-4) B .22=1916x y -(x ≤-3) C .22=1169x y -(x ≥4) D .22=1916x y -(x ≥3) 答案:D 解析:由已知动点P 的轨迹是以F 1,F 2为焦点的双曲线的右支,且a =3,c =5,b 2=c 2-a 2=16,∴所求轨迹方程为22=1916x y -(x ≥3). 2.已知双曲线为22=12x y λ+,则此双曲线的焦距为( ) AB.CD.答案:D 解析:由已知λ<0,a 2=2,b 2=-λ,c 2=2-λ,∴焦距2c = 3.已知双曲线22=1169x y -上的点P 到(5,0)的距离为15,则点P 到点(-5,0)的距离为( ) A .7 B .23 C .5或25 D .7或23 答案:D 解析:设F 1(-5,0),F 2(5,0), 则由双曲线的定义知:||PF 1|-|PF 2||=2a =8,而|PF 2|=15,解得|PF 1|=7或23.4.在平面直角坐标系xOy 中,已知△ABC 的顶点A (-6,0)和C (6,0),顶点B 在双曲线22=12511x y -的左支上,则sin sin sin A C B-=______. 答案:56解析:如图,||||sin sin ||||210522||sin ||21262BC AB A C BC AB a RR AC B AC c R---=====.5.在平面直角坐标系xOy 中,已知双曲线22=1412x y-上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为__________.答案:4 解析:设右焦点为F ,则点F 的坐标为(4,0).把x =3代入双曲线方程得y =±15,即M 点的坐标为(3,±15).由两点间距离公式得|MF|=(3-4)2+(±15-0)2=4.。

2.2.1双曲线及其标准方程

2.2.1双曲线及其标准方程
2 2 2
y x 因此, 双曲线的标准为 1. 16 20
2
2
F1
O
F2 x
2
你能在y轴上找出一点 , 使得 | OB | b 吗? B
点的坐标都满足方程2 ,以方程2 的解
从上述过程可以看到, 双曲线上任意一
x, y 为坐标的点到双曲线的两个焦点 F1 c,0 , F2 c,0 的距离之差的绝对值 为2a, 即以方程2 的解为坐标的点都在 双曲线上.这样, 我们把方程 2 叫做 双
我们根据双曲线的几何 特征, 选择适当的坐标系 , 建立双曲线的标准方程 .
y
M
F1
O
设 M x, y 是双曲线 上任意一点, 双曲线的焦距为 2cc 0 , 那么, 焦点F1 , F2的坐标分别是 c,0 , c,0 . 又设点M 与F1 , F2 的距离的差的绝对值常 2a. 数
M
F2
O
x
F1
y 2 x2 此时双曲线的方程是 2 2 1 a 0, b 0 , a b 这个方程也是双曲线的 标准方程.
例1 已知双曲线两个焦点分 别为F1 5,0 , 对值5,0 , 双曲线上一点 到 F1 , F2 距离差的绝 P
我们把平面内与两个定 F1 , F2 的距离的 点 差的绝对值等于常数小于 | F1 F2 | 的点的
轨迹叫做 双曲线 hyperbola .这 两个定点
叫做 双曲线的焦点, 两个焦点间的距离叫 做 双曲线的焦距.
探究 类比椭圆标准方程的建 立过程, 你 能说说应怎样选择坐标 , 建立双曲线的 系 标准方程吗?
x c 2 y 2 , 2 x c y 2 , 所以
F1

双曲线的标准方程动态演示ppt课件

双曲线的标准方程动态演示ppt课件
思考:
方程 x2 y2 1 表示焦点在y轴双曲线时, 2m m1
则m的取值范围____m_______2__.
设M(x , y),则F1(-c,0),F2(c,0)
y
M
F1 O F2 x
3.列式 |MF1| - |MF2|=±2a
即 (x c)2 y2 (x c)2 y2 2a
4.化简
(x c)2 y2 (x c)2 y2 2a
2
2
(x c)2 y 2 2a (x c)2 y 2
x2 a2
y2 b2
1(a
b
0)
y2 a2
x2 b2
1(a
b
0)
x2 y2 1(a 0,b 0) a2 b2Βιβλιοθήκη y2 a2x2 b2
1(a
0,b
0)
F(±c,0) F(0,±c)
F(±c,0) F(0,±c)
a>b>0,a2=b2+c2
a>0,b>0,但a不一 定大于b,c2=a2+b2
∵焦点为 F1(5, 0), F2(5, 0)
∴可设所求方程为:
x2 a2
y2 b2
1
(a>0,b>0).
∵2a=6,2c=10,∴a=3,c=5.
所以点 P 的轨迹方程为 x2 y2 1 . 9 16
变式训练 1:已知两定点 F1(5, 0) , F2(5, 0) ,动点 P 满足 PF1 PF2 10 ,求动点 P 的轨迹方程. 解: ∵ F1F2 10 , PF1 PF2 10 ∴ 点 P 的轨迹是两条射线, 轨迹方程为 y 0( x ≥ 5或x ≤ 5) . 变式训练 2:已知两定点 F1(5, 0) , F2(5, 0) ,动点 P 满足 PF1 PF2 6 ,求动点 P 的轨迹方程.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1) a=_______ , c =_______ , b =_______
3
5
4
(2) 双曲线的标准方程为______________ (3)双曲线上一点P, |PF1|=10, 4或16 则|PF2|=_________
双曲线的标准方程与椭圆的 标准方程有何区别与联系?
双曲线与椭圆之间的区别与联系
2
2
双曲线定义及标准方程
定义
| |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
y
M
M F2
y
图象
F1 o F2
x
F1
x
方程 焦点 a.b.c 的关系
x y 2 1 2 a b
2
2
y x 2 1 2 a b
2
2
F ( ±c, 0) F(0, ± c) c 2 a 2 b 2 (c a, c b, a与b的大小不确定)
(c a ) x a y a (c a )
2 2 2 2 2 2 2 2
令c2-a2=b2
x y 2 1 2 a b
2
2
双曲线的标准方程
焦点在x轴上
y
M
焦点在y轴上
y
F2
M x
F
1
O
F
2
x
O
F1
2 2 x y y x 2 1 2 1 2 2 a b a b 2 2 2 (a 0,b 0)并且c =a b

定义 方程

双曲线
||MF1|-|MF2||=2a
x2 y 2 2 1(a 0, b 0) 2 a b y 2 x2 2 1(a 0, b 0) 2 a b
|MF1|+|MF2|=2a
x2 y 2 2 1(a b 0) 2 a b y 2 x2 2 1(a b 0) 2 a b
∵若常数2a= |MF1|-|MF2| =0
F1 则|MF1|=|MF2| 此时点的轨迹是线段F1F2的垂直平 分线。 F2 M
3.双曲线的标准方程
1. 建系. 以F1,F2所在的直线为X轴, 如何求这优美的曲线的方程? 线段F1F 2的中点为原点建立直角坐 标系 2.设点. 设M(x , y),双曲线的焦 距为2c(c>0),F1(-c,0),F2(c,0) 3.列式.|MF1|
画双曲线
演示实验:用拉链画双曲线
①如图(A), |MF1|-|MF2|=|F1F2|=2a ②如图(B),
|MF2|-|MF1|=|F1F2|=2a
由①②可得: | |MF1|-|MF2| | = 2a (差的绝对值)
上面 两条合起来叫做双曲线
根据实验及椭圆定义,你能给双曲线下定义吗?
2.双曲线的定义 回忆椭圆的定义
北京摩天大楼
巴西利亚大教堂
法拉利主题公园
花瓶
探索研究
1.回顾椭圆的定义?
Y
平面内与两个定点F1、F2的 距离的和等于常数(大于 |F1F2|)的点轨迹叫做椭圆。M Nhomakorabea, y
F1 c, 0
O
F2 c, 0 X
思考 : 如果把椭圆定义中的“距离之和”改为“距 离之差”,那么动点的轨迹会是怎样的曲线? 即“ 平面内与两个定点 F1 、 F2 的距离的差等于常数 的点的轨迹 ”是什么?
思考:如何由双曲线的标准方程来判断它的焦点 是在X轴上还是Y轴上?
x2 y2 y2 x2 1与 判断: 1 的焦点位置? 16 9 9 16
结论: 看
x , y 前的系数,哪一个为正,则
2
2
焦点在哪一个轴上。
例题分析
例 1. 已知双曲线的焦点为 F1(-5,0), F2(5,0) 双曲线上一点到焦点的距离差的 绝对值等于6,则
焦点
F(±c,0)
F(±c,0)
F(0,±c)
a.b.c的关 系
F(0,±c)
a>0,b>0,但a不一 定大于b,c2=a2+b2
a>b>0,a2=b2+c2
小结 ----双曲线定义及标准方程
定义
| |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
y
M
M F2
y
图象
F1
o
F2
x
F1
x
方程
x y 2 1 2 a b
F ( ±c, 0)
2
2
y2 x2 2 1 2 a b
F(0, ± c)
2 2
焦点 a.b.c 的关 系
c a b
2
F
| |MF1| - |MF2| | = 2a
(2)常数要大于0小于|F1F2|
1
o
F2
0<2a<2c
①常数等于|F1F2|时
P
Q
M M F1 F2 ||MF1|-|MF2||=|F1F2|时,M点一定在上图中的射线F1P, F2Q 上,此时点的轨迹为两条射线F1P、F2Q。
②常数大于|F1F2 |时 |MF1|-|MF2| >|F1F2| 是不可能的,因为三角 形两边之差小于第三边。此时无轨迹。 ③常数等于0时
平面内与两个定点 F1, F 平面内与两个定点 F F2的距离的和为一个定 2的距离的差的绝对值 1, 等于常数 (小于︱ F1F2︱) 的点的轨迹叫做双曲线. 值(大于 ︱F1F2︱ )的点的轨迹叫做椭圆 ① 两个定点F1、F2——双曲线的焦点; ② |F1F2|=2c ——焦距. 注意
M
(1)距离之差的绝对值
F1
y
M
o
F2
x
- |MF2|= 2a _ 2a (x-c)2 + y2 = +

(x+c)2 + y2 -
4.化简.
(x c)2 y2 (x c)2 y2 2a
( (x c)2 y2 )2 ( (x c)2 y2 2a)2
y
M F1
o
cx a2 a (x c)2 y2
相关文档
最新文档