数学史 第10讲 几何学的突破

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黎曼(B.Riemann,1826-1866)
黎曼是现代数学史上最具创造性的数学 家之一。他对数学分析、微分几何、微分方 程做出了重要贡献。奠定了近代解析数论的 基础;他最初引入黎曼曲面这一概念,对近 代拓扑学影响很大;在代数函数论方面,如 黎曼-诺赫定理也很重要。在微分几何方面, 建立黎曼几何学。他的名字出现在黎曼ζ 函 数,黎曼积分,黎曼引理,黎曼流形,黎曼 空间,黎曼映照定理,黎曼-希尔伯特问题, 柯西-黎曼方程,黎曼思路回环矩阵中。黎曼 的一生很短暂,但成就很卓越。
萨凯里、克吕格尔和兰伯特等,都 可以看作非欧几何的先行者。但他们走 到了非欧几何的门槛前,却由于各自不 同的原因或则却步后退(如萨凯里在证 明一系列非欧几何的定理后却宣布“欧 几里得无懈可击”),或则徘徊不前 (如兰伯特在生前对是否发表自己的结 论一直踌躇不定,《平行线理论》一书 也是他死后由其朋友发表)。突破具有 两千年根基的欧氏几何的束缚,需要更 高大的巨人。
高斯(C.F.Gauss,1777年4月30日-1855年2月23日) 德国著名数学家、物理学家、天文学家、大地测 量学家;是近代数学奠基者之一,高斯被认为是历史 上最重要的数学家之一,并享有“数学王子”之称; 高斯和阿基米德、牛顿并列为世界三大数学家;一生 成就极为丰硕,以他名字“高斯”命名的成果达110个, 属数学家中之最;高斯在历史上影响巨大,可以和阿 基米德、牛顿、欧拉并列。高斯是最早认识到可能存 在一种不适用平行线公理的几何学的人之一,他逐渐 得出革命性的结论:确实存在这样的几何学,其内部 相容并且没有矛盾但因为与同代人的观点相背,他不 敢发表。
公元前3世纪到18世纪末,数学家都坚 信欧氏几何的完美与正确。但美中不足的 是欧几里得第五公设与众不同:比较特殊, 不像其它公设那样简洁、明了,数学家们 就此而耿耿于怀。当时就有人怀疑它不像 一个公设而更像一个定理,并产生了从其 他公设和定理推出这条公设的想法。甚至 欧几里得本人对这条公设似乎也心存犹豫。
四、非欧几何的发明人
1.高斯 ①最先认识到非欧几何是一种逻辑上相容并且可以 描述物质空间、像欧氏几何一样正确的新几何学; ②1799年,意识到平行公设不能由其他的欧几里得公 理推出; ③从1813年起发展了这种平行公设在其中不成立的 新几何; ④“非欧几何”这个名词来自高斯(起先称为“反欧 几里得几何”,最后改称“非欧几里得几何”) ⑤高斯生前并没有发表任何关于非欧几何的论著, 也不肯公开支持罗巴切夫斯基。
2.J· 波约 ①J· 波约想借助高斯的评价,将自己关于非欧几 何的研究公之于世。 ②在1832年2月14日这一天,F· 波约就把他儿子 的题为《绝对空间的科学》(“绝对空间”就 是“非欧几何”)文章寄给高斯,文章有26 页。 ③高斯给回信,说这个与他在30至35年前的思考 不谋而合。J· 波约深感失望并认为高斯剽窃他 的成果。 ④1840年,俄国数学家罗巴切夫斯基关于非欧 几何的德文著作《平行线理论的几何研究》发 表后,从此不再发表数学论文。
3.罗巴切夫斯基
这三位发明人中,只有他最早、最系统地发表了自己的研究 成果。 ①1815年,着手研究平行线理论。前人和自己的失败从反面启 迪了他大胆思索问题的相反提法:可能根本就不存在第五公 设的证明。在试证第五公设不可证的过程中发现了一个崭新 的几何世界; ②1826年2月23日,在喀山大学物理数学系学术会议上,宣读 了他的第一篇关于非欧几何的论文《几何学原理及平行线定 理严格证明的摘要》标志着非欧几何的诞生。然而,立即遭 到正统数学家的冷漠和反对; ③1829年,撰写出一篇题为《几何学原理》的论文,重现了第 一篇论文的基本思想,并且有所补充和发展。此时,罗巴切 夫斯基为喀山大学校长,出自对校长的“尊敬”,论文在 《喀山大学通报》全文发表; ④1840年,德文版的非欧几何著作《平行线理论的几何研究》 发表; ⑤他的最后一部巨著《论几何学》,双目失明时,口授他的学 生完成。
罗巴切夫斯基(1792年12月1日—1856年2月24日) 俄罗斯数学家,非欧几何的早期发现人之一。罗巴 切夫斯基为非欧几何的生存和发展奋斗了三十多年,他 从来没有动摇过对新几何远大前途的坚定信念。为了扩 大非欧几何的影响,争取早日取得学术界的承认,除了 用俄文外,他还用法文、德文写了自己的著作,同时还 精心设计了检验大尺度空间几何特性的天文观测方案。 不仅如此,他还发展了非欧几何的解析和微分部分,使 之成为一个完整的、有系统的理论体系。在身患重病, 卧床不起的困境下,口授由他的学生完成他的最后一部 巨著《论几何学》。 非欧几何诞生之后,想要得到普遍接受,就需要确实地 建立非欧几何自身的无矛盾性和现实意义。罗巴切夫斯 基终其一生都在做这个事儿,但至死都没有实现这个目 标。但在他死后,非欧几何的发展是朝着这个方向的。
射影几何
• 概括的说,射影几何学是几何学的一个重要分支 学科,它是专门研究图形的位置关系的,也是专 门用来讨论在把点投影到直线或者平面上的时候, 图形的不变性质的科学。
• 1566年,科曼迪诺把阿波罗尼奥斯的《圆 锥曲线论》前四卷译成拉丁文,引起了人们 对几何的兴趣,几何上的创造活动开始复 兴.在短短几十年的时间里,便突破传统几 何的局限,产生了一门崭新的学科——射影 几何.
阿尔贝蒂精于绘画 、 雕刻,在他的主要著 作《论绘画》(1435) 中.引入了投影线和截 影的概念,阐明了最早 的数学透视法思想.他 的工作后来成为射影几 何发展的起点.
1639年发表《试论圆锥与 平面相交结果》,这部著 作充满了创造性的思想, 引入了无穷远点、无穷远 直线、德沙格定理、交比 不变性定理、对合调和点 德沙格(1591-1661)
欧几里得五大公设
1.假定从任意一点到任意一点可作直线; 2.一条直线可不断延长; 3.以任意中心和直径可以画圆; 4.凡直角彼此相等; 5.若一直线落在两直线上所构成的同旁内角和 小于两直角,那么把直线无限延长,它们将 在同旁内角和小于两直角的一侧相交。
二、对第五公设的证明研究
1.替代公设: 过已知直线外一点能且只能作一条直 线与已知直线平行。 一般将这个替代公设归功于苏格兰数学 家、物理学家普莱菲尔,所以有时也称普 莱菲尔公设。但实际上古希腊数学家普洛 克鲁斯在公元5世纪就陈述过它。 平行公设的等价命题还有:
但是,每一种“证明”要么隐含了一个与 第五公设等价的假定,要么存在着其他形 式的推理错误。并且这类工作对wenku.baidu.com学思想 的进展没有多大现实意义。因此,18世纪 中叶的达朗贝尔把平行共设的证明问题称 为:“几何原理中的家丑”。
三、非欧几何的先行者
1.萨凯里:最先使用归谬法(反证法)证明平行公设。 他在一本叫《欧几里得无懈可击》(1733)的书中, 从著名的“萨凯里四边形”出发来证明平行公设。 2.克吕格尔:1763年,在他的博士论文中首先指出萨凯 里的工作实际并未导出矛盾,只是得到了似乎与经验不 符的结论。克吕格尔是第一个对平行公设能否由其他公 理加以证明表示怀疑的数学家。 3.兰伯特:1766年,兰伯特写出了《平行线理论》一书。 在这本书里,他也像萨凯里那样考虑了一个四边形,不 过他考虑的是一个三直角四边形(萨凯里考虑的是双直 角等腰四边形)。兰伯特最先指出:通过替换平行公设 而展开新的无矛盾的几何学的道路。
但黎曼的理论仍然难以被同时代的人 理解。到19世纪70年代以后,意大利数 学家贝尔特拉米、德国数学家克莱因和 法国数学家庞加莱等人先后在欧几里得 空间中给出了非欧几何的直观模型,从 而揭示出非欧几何的现实意义。至此, 非欧几何才真正获得了广泛的理解。
非欧几何诞生的伟大意义
(1)解决了长期悬而未决的平行公理独立性问题,同时又极大地 推动了关于一般公理体系的独立性、相容性、完备性问题的研究, 促成了数学基础这一更为深刻的数学分支的形成和发展,从而极 大地推动了整个数学的发展和成熟。 (2)非欧几何的产生证明了对公理方法本身的研究和讨论是极其 有意义的,证明了公理方法本身能推动数学的发展。因而,自从 非欧几何产生并为越来越多的人所接受,在整个数学领域掀起了 一个公理化运动,各数学分支纷纷建立自己的公理体系,被认为 最不容易建立在公理体系之上的概率论也迟于20世纪30年代建 立了公理。一场颇为壮观的公理化运动又孕育了元数学的产生和 发展。 (3)非欧几何与相对论的汇合是科学史上的划时代事件。人们都 认为是爱因斯坦创立了相对论,但是,也许爱因斯坦更清楚,是 他和一批数学家庞加莱、闵可夫斯基、希尔伯特共同创立了相对 论。这不仅开辟了人类更大的开发前景,也极大地拓宽了人类的 空间视野。不变的时间变化了,绝对的空间不绝对了,动钟延缓, 动尺缩短,时空弯曲等现象都成为相对论和非欧几何的科学发现。
• 基于绘图学和建筑学的需要,古希腊几何学家 就开始研究透视法,也就是投影和截影。 • 早在公元前200年左右,阿波罗尼奥斯就曾把 二次曲线作为正圆锥面的截线来研究。 • 在4世纪帕普斯的著作中,出现了帕普斯定理。
• 文艺复兴时期,绘画和建筑艺术促进了摄影几何的 发展。 • 为了在画布上忠实地再现大自然,就需要解决一个 数学问题:如何把三维的现实世界反映到二维的画 布上.
• • • • • • • •
三角形的三条高线交于一点。 任意三角形的内角和等于180度。 同一条直线的垂线和斜线一定相交。 同一平面上两不相交的直线与第三条任一割线必 构成相等的同位角。 任一三角形有外接圆。 存在面积相等而不全等的三角形。 与已知直线等距且同侧的三点共线。 正六边形的边长等于外接圆半径。
五、黎曼几何
在1854年,黎曼发展了罗巴切夫斯基等人的思想 建立了一种更广泛的几何,即黎曼几何。而罗巴切夫 斯基几何和欧氏几何都是它的特例。在黎曼几何中, 最重要的一种对象就是所谓的常曲率空间。拿三维的 来说,有三种情形: 1.曲率为正常数 (正常曲率曲面上的)黎曼几何,或椭圆几何 过已知直线外一点没有直线与已知直线平行。 2.曲率为负常数 罗巴切夫斯基几何,也叫双曲几何 过已知直线外一点能且至少能作两条直线与已知直线 平行。 3.曲率恒等于零 欧氏几何,也叫抛物几何 过已知直线外一点能且只能作一条直线与已知直线平 行。
2.历史上第一个证明第五公设的重大尝试: 古希腊天文学家托勒玫(约公元150年)作 出的。后来,又是普洛克鲁斯指出托勒玫 的“证明”无意中假定了后来被称为普莱 菲尔公设的东西。 3.中世纪的阿拉伯数学家奥马· 海亚姆和纳西 尔丁等也尝试过第五公设的“证明”。 4.文艺复兴时期对希腊数学兴趣的恢复使欧 洲数学家重新关注起第五公设。17世纪, 研究过第五公设的数学家有获利斯等。
J·波约(Bolyai,Janos,1802.12.15-1860.1.27) 匈牙利数学家.波约一生中的最大成就是独立 创建绝对几何. 摒弃欧氏第五公设,建立了绝对空间的概念: 在空间的平面上,过直线外一点有一束直线不与原 直线相交.当这束直线减少为一条时,该空间就是 欧氏空间.他用这一“平行公设”替代了欧氏平行 公设,再与欧氏其他公理、公设结合,逻辑地演绎 出一系列全新的、彼此相容的命题,建立起非欧几 何.这种非欧几何体系是否存在?用公理化的方法 来探讨,即非欧几何体系的整个公理体系是否在逻 辑上相容?如何能唯一地确定一个非欧几何体系? 波尔约的重大贡献就在于他独立地、成功地解答了 上述问题.
第十讲 几何学的突破
• 非欧几何的创立 • 射影几何的创立 • 几何学的统一
一、对欧几里得几何的坚决拥护
1.巴罗:列举了8点理由来肯定欧氏几何 ①概念清晰;②定义明确;③公里直观可靠而且普遍 成立;④公设清楚且易于想象;⑤公理数目少;⑥ 引出量的方式易于接受;⑦证明顺其自然;⑧避免 未知事物。 极力主张将数学包括微积分都建立在几何基础之上 2.17、18世纪的哲学家从霍布斯、洛克到康德,也都 从不同的出发点认为欧氏几何是明白的和必然的 3.笛卡尔在发明了解析几何以后仍坚持对每一个几何作 图给出综合证明 4.牛顿在首次公开他的微积分发明时也坚持给它披上几 何的外衣。
相关文档
最新文档