7月全国自考离散数学试题及答案解析试卷及答案解析
《离散数学》试题及答案
《离散数学》试题及答案一、选择题(每题5分,共25分)1. 下列关系中,哪个是等价关系?()A. 小于等于(≤)B. 大于等于(≥)C. 整除(|)D. 模2同余(≡)答案:D2. 下列哪个图是完全图?()A. 无向图B. 有向图C. 简单图D. n阶完全图答案:D3. 设A和B为集合,若A∪B=A,则下列哪个结论成立?()A. A⊆BB. B⊆AC. A=BD. A∩B=∅答案:B4. 下列哪个命题是永真命题?()A. (p→q)∧(q→p)B. (p∧q)→(p∨q)C. (p→q)∧(p→¬q)D. (p∧¬q)→(p→q)答案:B5. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的最小生成树的边数是()。
A. 4B. 5C. 6D. 7答案:B二、填空题(每题5分,共25分)6. 设A={1,2,3,4,5},B={3,4,5,6,7},则A∩B=_________。
答案:{3,4,5}7. 设图G的顶点集V={a,b,c,d},边集E={e1,e2,e3,e4,e5},其中e1=(a,b),e2=(a,c),e3=(b,d),e4=(c,d),e5=(d,a),则G的邻接矩阵为_________。
答案:[0 1 1 0 0; 1 0 0 1 0; 1 0 0 1 0; 0 1 1 0 1;0 0 0 1 0]8. 设p为真命题,q为假命题,则(p∧q)∨(¬p∧¬q)的值为_________。
答案:真9. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的度数序列为(3,3,3,3,3,3),则G的边数是_________。
答案:1510. 下列命题中,与“若p,则q”互为逆否命题的是_________。
学历类《自考》自考专业(计算机应用)《离散数学》考试试题及答案解析
学历类《自考》自考专业(计算机应用)《离散数学》考试试题及答案解析姓名:_____________ 年级:____________ 学号:______________1、下面四组数能构成无向图的度数列的有( )。
A 、2,3,4,5,6,7 B 、1,2,2,3,4 C 、2,1,1,1,2 D 、3,3,5,6,0 正确答案:B 答案解析:暂无解析2、下列几个图是简单图的有( )。
A 、G1=(V1,E1),其中V1={a,b,c,d,e},E1={ab,be,eb,ae,de}B 、G2=(V2,E2)其中V2=V1,E2={,,,,,}C 、G=(V3,E3),其中V3=V1,E3={ab,be,ed,cc}D 、G=(V4,E4),其中V4=V1,E4={(a,a ),(a,b ),(b,c ),(e,c ),(e,d )}。
正确答案:B 答案解析:暂无解析3、下列图中是欧拉图的有( )。
A 、 B 、 C 、 D 、 正确答案:B 答案解析:暂无解析4、与命题公式P→(Q→R)等价的公式是( ) A 、 B 、 C 、 D 、 正确答案:B 答案解析:暂无解析5、命题公式(A∧(A→B))→B 是一个矛盾式。
1、正确2、错误正确答案:错误答案解析:暂无解析6、任何循环群必定是阿贝尔群,反之亦真。
1、正确2、错误正确答案:错误答案解析:暂无解析7、根树中最长路径的端点都是叶子。
1、正确2、错误正确答案:错误答案解析:暂无解析8、若集合A上的关系R是对称的,则R∧-1也是对称的。
1、正确2、错误正确答案:正确答案解析:暂无解析9、数集合上的不等关系(≠)可确定A的一个划分。
1、正确2、错误正确答案:错误答案解析:暂无解析10、设集合A、B、C为任意集合,若A×B=A×C,则B=C。
1、正确2、错误正确答案:正确答案解析:暂无解析11、函数的复合运算“。
”满足结合律。
7月全国自考离散数学试题及答案解析试卷及答案解析真题
浙江省2019年7月高等教育自学考试离散数学试题课程代码:02324一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。
每小题2分,共30分)1. 下述不是命题的是( )A. 做人真难啊!B. 后天是阴天。
C. 2是偶数。
D. 地球是方的。
2. 命题公式P →(P ∨Q ∨R)是( )A. 恒真的B. 恒假的C. 可满足的D. 合取范式3. 命题公式﹁B →﹁A 等价于( )A. ﹁A ∨﹁BB. ﹁(A ∨B)C. ﹁A ∧﹁BD. A →B4. 设有A={a,b,c}上的关系R={<a,a>,<b,b>,<a,b>,<b,a>,<c,a>},则R 不具有( )A. 自反性B. 对称性C. 传递性D. 反对称性5. 设×是定义在所有(-∞,+∞)上的连续函数集合C 上的普通乘法运算,则×不满足( )A. 封闭性B. 结合律C. 交换律D. 等幂律6. 下述集合对所给的二元运算封闭的是( )A. 集合S={-1,0,1,2…}上规定运算ο为 a οb=min{a,b-1}, ∀a,b ∈SB. 集合S={x|x=2n ,n ∈N}上的乘法运算C. 集合S={x|x>0}上的规定运算ο为 a οb=ba b ln a ln ++ ∀a,b ∈S D. 集合S={1,3,5,7,…}上的加法运算7. 如果A ∩B=A ∩C ,则下述结论成立的是( )A. B=CB. B ⊆A 且C ⊆AC. B ∪A=C ∪AD. 以上结论都不对8. 下列哪个式子不是谓词演算的合式公式( )A. (∀x)(A(x,2)∧B(y))B. (∀x)(A(x)∧B(x,y))C. ((∀x)∧(∃y))→(A(x,y)∧B(x,y))D. (∀x)(A(x)→B(y))9. 谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y( )A. 是自由变元但不是约束变元B. 是约束变元但不是自由变元C. 既是自由变元又是约束变元D. 既不是自由变元又不是约束变元10. 设有一个连通平面图,共有6个结点、11条边,则它的边数为( )A. 6B. 7C. 8D. 911. 设A={1,2,3,4,5,6},B={a,b,c,d,e},以下哪一个关系是从A 到B 的满射函数( )A. f={<1,a>,<2,b>,<3,c>,<4,d>,<5,e>}B. f={<1,e>,<2,d>,<3,c>,<4,b>,<5,a>,<6,e>}C. f={<1,a>,<2,b>,<3,c>,<4,a>,<5,b>,<6,c>}D. f={<1,a>,<2,b>,<3,c>,<4,d>,<5,e>,<1,b>}12. 设(B ,·,+, ̄,0,1)是布尔代数,a,b 是B 中元素,a ≤b,则下面公式中与a ·b 等价的是( )A. a+bB. a·bC. aD. a+b13. 下图中是哈密尔顿图的是( )14. 下列是欧拉图的是( )15. 下列不是森林是( )二、填空题(每空2分,共20分)1. 设P,Q是二个命题,则命题公式P∧Q的合取范式是______。
2020年7月全国自考离散数学试题及答案解析试卷及答案解析真题
浙江省 2019 年 7 月高等教育自学考试离散数学试题课程代码:02324单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。
每小题 1 分,共14 分)1. 给定如下 4 个语句:(1)我不会游泳。
(3)我每天都看新闻联播。
其中不是复合命题的是((2)如果天不下雨,我就去踢足球。
(4)火星上有人吗? )。
A.(1)(4)B.(1)(3)(4)C.(1)(3)D.(3)(4)2.设P,Q,R是命题公式,则 A R, QfR, PVQ ( )。
A. PB. QC. RD. n R3.下列公式中正确的等价式是( )。
A.n ( x)A(x) ( x) n A(x)B.n ( x)A(x) ( x) n A(x)C.( x)( y)A(x,y) ( y)( x)A(x,y)D.( x)( (x) A B(x)) ( x)A(x) V ( x)B(x)4.谓词公式(x)(P(x)V( y)R(y))-Q(x)中的x( )。
A. 只是约束变元B.只是自由变元C.既非约束变元又非自由变元D.既是约束变元又是自由变元5.设个体域为整数集,则下列公式中值为真的是( )。
A.( y)( x)(x - y=2)B.( x)( y)(x - y=2)C.( x)(x - y=x)D.( x)( y)(x+y=2y)6.设A={a,b,c}, 则 A 中的双射共有( )。
A.3 个B.6个C.8 个D.9个7.设S={a,b,c},则S的募集的元素的个数有( )。
A.3 个B.6个C.8 个D.9个18.设A={a,b,c},则AXA中的元素有( )。
A.3 个B.6 个C.8 个D.9 个9.设(G,+,*) 是一个除环,则它不满足的运算律是( )。
A. 加法交换律B. 乘法交换律C.乘法消去律D.加法消去律10.对于一个代数系统,以下命题成立的是( )。
A. 每个元素必有左逆元B.一个元素有左逆元,则它也是右逆元C. 一个元素的左右逆元不一定相等D.一个元素的左逆元存在时必唯一11.若一个代数系统(A,*) 满足运算封闭性及结合律,且有幺元,则它是( )。
2020年7月全国自考试题及答案解析离散数学
1全国2018年7月自考试题离散数学课程代码:02324一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设P :他聪明,Q :他用功,命题“他虽聪明但不用功”的符号化正确的是( )A .⎤ P ∧QB .P ∧⎤ QC .P →⎤ QD .P ∨⎤ Q2.下面联结词运算不可交换的是( )A .∧B .→C .∨D .3.下列命题公式不是重言式的是( )A .Q →(P ∨Q )B .(P ∧Q )→PC .⎤(P ∧⎤ Q )∧(⎤ P ∨Q )D .(P →Q )(⎤ P ∨Q )4.下列等价式不正确的是( )A .)(Q )(P ))(Q )(P (x x x x x x x ∀∨∀⇔∨∀B .)(Q )(P ))(Q )(P (x x x x x x x ∀∧∀⇔∧∀C .)(Q )(P ))(Q )(P (x x x x x x x ∃∨∃⇔∨∃D .Q )(P )Q )(P (∧∀⇔∧∀x x x x5.设A (x ):x 是人,B (x ):x 犯错误,命题“没有不犯错误的人”符号化为( )A .))(B )(A (x x x ∧∀ B .⎤→∃)(A (x x ⎤ B (x ))C .⎤))(B )(A (x x x ∧∃D .⎤∧∃)(A (x x ⎤ B(x))6.设M={x|f1(x)=0},N={x|f2(x)=0},则方程f1(x)·f2(x)=0的解为()A.M∩N B.M∪NC.M⊕N D.M-N7.设A-B=∅,则有()A.B=∅B.B≠∅C.A⊆B D.A⊇B8.A,B是集合,P(A),P(B)为其幂集,且A∩B=∅,则P(A)∩P(B)为()A.∅B.{∅}C.{{∅}} D.{∅,{∅}}9.设集合A={1,2,3,……,10},下列定义的运算关于集合A是不封闭的是()A.x*y=max{x,y}B.x*y=min{x,y}C.x*y=GCD{x,y},即x,y的最大公约数D.x*y=LCM{x,y},即x,y的最小公倍数10.设H,K是群(G,ο)的子群,下面代数系统是(G,ο)的子群的是()A.(H∩K,ο) B.(H∪K,ο)C.(K-H,ο)D.(H-K,ο)11.设A={1,2,3,4,5},B={6,7,8,9,10},以下关系是从A到B的入射函数的是()A.f ={<1,8>,<3,9>,<4,10>,<2,6>,<5,7>}B.f ={<1,7>,<2,6>,<4,8>,<1,9>,<5,10>}C.f ={<1,6>,<2,7>,<4,9>,<3,8>}D.f ={<1,10>,<5,9>,<3,6>,<4,6>,<2,8>}12.设简单图G所有结点的度数之和为12,则G一定有()23A .3条边B .4条边C .5条边D .6条边13.下列不一定是树的是( )A .无回路的连通图B .有n 个结点,n-1条边的连通图C .每对结点之间都有通路的图D .连通但删去一条边则不连通的图14.下面关于关系R 的传递闭包t(R)的描述最确切的是( )A .t(R)是包含R 的二元关系B .t(R)是包含R 的最小传递关系C .t(R)是包含R 的一个传递关系D .t(R)是任何包含R 的传递关系15.欧拉回路是( )A .路径B .迹C .既是初级回路也是迹D .既非初级回路也非迹二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
7月自考离散数学试题及答案
一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列句子不是..命题的是( D ) A .中华人民共和国的首都是北京B .张三是学生C .雪是黑色的D .太好了!2.下列式子不是..谓词合式公式的是( B ) A .(∀x )P (x )→R (y )B .(∀x ) ┐P (x )⇒(∀x )(P (x )→Q (x ))C .(∀x )(∃y )(P (x )∧Q (y ))→(∃x )R (x )D .(∀x )(P (x ,y )→Q (x ,z ))∨(∃z )R (x ,z )3.下列式子为重言式的是( )A .(┐P ∧R )→QB .P ∨Q ∧R →┐RC .P ∨(P ∧Q )D .(┐P ∨Q )⇔(P →Q )4.在指定的解释下,下列公式为真的是( )A .(∀x )(P (x )∨Q (x )),P (x ):x =1,Q (x ):x =2,论域:{1,2}B .(∃x )(P (x )∧Q (x )),P (x ):x =1,Q (x ):x =2,论域: {1,2}C .(∃x )(P (x ) →Q (x )),P (x ):x >2,Q (x ):x =0,论域:{3,4}D .(∀x )(P (x )→Q (x )),P (x ):x >2,Q (x ):x =0,论域:{3,4}5.对于公式(∀x ) (∃y )(P (x )∧Q (y ))→(∃x )R (x ,y ),下列说法正确的是( )A .y 是自由变元B .y 是约束变元C .(∃x )的辖域是R(x , y )D .(∀x )的辖域是(∃y )(P (x )∧Q (y ))→(∃x )R (x ,y )6.设论域为{1,2},与公式(∀x )A (x )等价的是( )A .A (1)∨A (2)B .A (1)→A (2)C .A (1)∧A (2)D .A (2)→A (1)7.设Z +是正整数集,R 是实数集,f :Z +→R , f (n )=log 2n ,则f ( )A .仅是入射B .仅是满射C .是双射D .不是函数8.下列关系矩阵所对应的关系具有反对称性的是( )A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001110101B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101110001C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001100100D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010101 9.设R 1和R 2是集合A 上的相容关系,下列关于复合关系R 1︒R 2的说法正确的是( )A .一定是等价关系B .一定是相容关系C.一定不是相容关系D.可能是也可能不是相容关系10.下列运算不满足...交换律的是()A.a*b=a+2b B.a*b=min(a,b)C.a*b=|a-b| D.a*b=2ab11.设A是偶数集合,下列说法正确的是()A.<A,+>是群B.<A,×>是群C.<A,÷>是群D.<A,+>, <A,×>,<A,÷>都不是群12.设*是集合A上的二元运算,下列说法正确的是()A.在A中有关于运算*的左幺元一定有右幺元B.在A中有关于运算*的左右幺元一定有幺元C.在A中有关于运算*的左右幺元,它们不一定相同D.在A中有关于运算*的幺元不一定有左右幺元13.题13图的最大出度是()A.0 B.1C.2 D.314.下列图是欧拉图的是()15.一棵树的3个4度点,4个2度点,其它的都是1度,那么这棵树的边数是()A.13 B.14C.15 D.16二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
离散考试试题及答案
离散考试试题及答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念不是布尔代数的基本运算?A. 与B. 或C. 非D. 模答案:D2. 集合论中,下列哪个符号表示“属于”关系?A. ∈B. ∉C. ⊆D. ⊂答案:A3. 命题逻辑中,下列哪个符号表示“蕴含”关系?A. ∧B. ∨C. →D. ↔答案:C4. 关系R在集合A上是自反的,意味着什么?A. 对于所有a∈A,(a, a)∈RB. 对于所有a∈A,(a, a)∉RC. 对于所有a∈A,(a, b)∈RD. 对于所有a∈A,(a, b)∉R答案:A二、填空题(每题5分,共20分)1. 一个集合的基数是集合中元素的________。
答案:数量2. 在有向图中,如果存在一条从顶点u到顶点v的路径,则称顶点v 是顶点u的________。
答案:可达的3. 一个图是连通的,当且仅当图中任意两个顶点都是________。
答案:连通的4. 在命题逻辑中,一个命题的否定是________。
答案:它的对立命题三、简答题(每题10分,共30分)1. 请解释什么是图的哈密顿回路。
答案:哈密顿回路是一个图中的闭合回路,它恰好访问图中的每个顶点一次。
2. 描述一下什么是二元关系,并给出一个例子。
答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。
例如,小于关系是数字集合上的一个二元关系。
3. 什么是图的生成树?答案:图的生成树是图的一个子图,它包含图中的所有顶点,并且是一棵树,即它是连通的且没有环。
四、计算题(每题15分,共30分)1. 给定一个集合A={1,2,3,4,5},计算它的幂集。
答案:幂集P(A)={∅, {1}, {2}, {3}, {4}, {5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3,5}, {4,5},{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, {3,4,5}, {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}, {1,2,3,4,5}, A}。
离散数学自考试题及答案
离散数学自考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个符号表示“属于”关系?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 命题逻辑中,下列哪个命题是永真命题?A. (p ∧ ¬p) → qB. p ∨ (q ∧ ¬q)C. (p → q) ∧ (q → p)D. ¬(p → ¬p)答案:B3. 函数f: A → B中,如果A中的每个元素都映射到B中的不同元素,则称f为:A. 注入函数B. 满射C. 双射D. 单射答案:C4. 在图论中,下列哪项不是无向图的基本术语?A. 顶点B. 边C. 路径D. 子图答案:D5. 以下哪个算法用于判断一个图是否包含汉密尔顿回路?A. 深度优先搜索B. 广度优先搜索C. 弗洛伊德算法D.Dijkstra算法答案:A6. 命题逻辑中,德摩根定律描述了哪些命题的等价关系?A. ¬(p ∧ q) ≡ ¬p ∨ ¬qB. ¬(p ∨ q) ≡ ¬p ∧ ¬qC. ¬(p → q) ≡ p ∧ ¬qD. 所有以上答案:D7. 在关系数据库中,下列哪个操作用于删除表中的行?A. SELECTB. INSERTC. DELETED. UPDATE答案:C8. 以下哪个是有限自动机的组成部分?A. 状态B. 转移C. 输入D. 所有以上答案:D9. 在布尔代数中,下列哪个操作不是基本操作?A. ANDB. ORC. NOTD. XOR答案:D10. 以下哪个是命题逻辑中的有效论证形式?A. 假言三段论B. 假言推理C. 析取三段论D. 所有以上答案:D二、填空题(每题2分,共20分)11. 在集合{1, 2, 3}的幂集中,含有2个元素的子集有_________。
答案:{{1, 2}, {1, 3}, {2, 3}}12. 如果命题P表示“今天是晴天”,命题Q表示“我去公园”,那么(P ∧ Q)表示_________。
自考离散数学考试题及答案
自考离散数学考试题及答案一、选择题(每题2分,共10分)1. 在集合论中,下列哪个符号表示“属于”关系?A. ∈B. ∉C. ⊆D. ∩答案:A2. 有限自动机中的一个状态不包括以下哪个元素?A. 初始状态B. 终止状态C. 转移函数D. 输入符号答案:C3. 在命题逻辑中,德摩根定律描述了哪些命题的等价性?A. (¬P ∧ ¬Q) ↔¬(P ∨ Q)B. (P ∨ Q) ↔¬(¬P ∧ ¬Q)C. (P ∧ Q) ↔¬(P ∨ Q)D. (¬P ∨ ¬Q) ↔¬(P ∧ Q)答案:A4. 以下哪个算法是用于解决图的最短路径问题?A. 欧几里得算法B. 迪杰斯特拉算法C. 快速排序算法D. 弗洛伊德算法答案:B5. 布尔代数中,一个表达式可以有的最大项数是多少?A. nB. 2^nC. n^2D. 2n答案:B二、填空题(每题3分,共15分)6. 在关系数据库中,确保实体完整性的约束称为________。
答案:主键7. 一个有向图中,如果存在从顶点A到顶点B的路径,则称顶点A可以________顶点B。
答案:到达8. 在命题逻辑中,如果命题P和命题Q都为真,则命题P → Q的真值是________。
答案:真9. 一个命题函数的真值表中,如果某一行的P和Q都为假,那么这一行的结果是________。
答案:真10. 在图论中,一个完全图是指图中任意两个顶点都________。
答案:相连三、解答题(共75分)11. (15分)证明:在任何非空集合中,至少存在一个元素不包含于该集合的任何子集中。
答案:略12. (20分)给定一个有向图,描述如何使用拓扑排序算法来对图中的顶点进行排序。
答案:略13. (20分)解释什么是正规表达式,并给出一个例子来说明如何使用它来匹配字符串。
答案:略14. (20分)证明:在任何无向图中,边数最多的生成子图最多有3n/2条边,其中n是顶点的数量。
(全新整理)7月全国自考离散数学试卷及答案解析
全国2018年7月高等教育自学考试离散数学试题课程代码:02324一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.令P:今天下雪了,Q:路滑,则命题“虽然今天下雪了,但是路不.滑”可符号化为()A.P →Q B.P ∨QC.P∧Q D.P ∧Q2.下列命题公式为重言式的是()A.Q→(P∧Q)B.P→(P∧Q)C.(P∧Q)→P D.(P∨Q)→Q3.下列4个推理定律中,不.正确的是()A.A⇒(A∧B)B.(A∨B )∧A⇒BC.(A→B)∧A⇒B D.(A→B )∧B ⇒ A4.谓词公式∀x(P(x)∨∃yR(y))→Q(x)中量词x∀的辖域是()A.))Px∃x∨∀B.P(x)(yR)((yC.(P(x)∨∃yR(y)) D.P(x), Q(x)5.设个体域A={a,b},公式∀xP(x)∧∃xS(x)在A中消去量词后应为()A.P(x)∧S(x) B.P(a)∧P(b)∧(S(a)∨S(b))C.P(a)∧S(b) D.P(a)∧P(b)∧S(a)∨S(b)6.下列选项中错误..的是()A.Ø⊆Ø B.Ø∈ØC.Ø⊆{Ø} D.Ø∈{Ø}7.设A={a,b,c,d},A上的等价关系R={<a, b>, <b, a>, <c, d>, <d, c>}∪I A,则对应于R的A 的划分是()A.{{a},{b, c},{d}} B.{{a, b},{c}, {d}}C.{{a},{b},{c},{d}} D.{{a, b}, {c,d}}18.设R为实数集,函数f:R→R,f(x)=2x,则f是()A.满射函数B.入射函数C.双射函数D.非入射非满射9.设R为实数集,R+={x|x∈R∧x>0},*是数的乘法运算,<R+,*>是一个群,则下列集合关于数的乘法运算构成该群的子群的是()A.{R+中的有理数} B.{R+中的无理数}C.{R+中的自然数} D.{1,2,3}10.下列运算中关于整数集不.能构成半群的是()A.aοb=max{a, b} B.aοb=bC.aοb=2ab D.aοb=|a-b|11.设Z是整数集,+,ο分别是普通加法和乘法,则(Z,+,ο)是()A.域B.整环和域C.整环D.含零因子环12.设A={a, b, c},R是A上的二元关系,R={<a, a>, <a, b>, <a, c>, <c, a>},那么R是()A.反自反的B.反对称的C.可传递的D.不可传递的13.设D=<V, E>为有向图,V={a, b, c, d, e, f}, E={<a, b>, <b, c>, <a, d>, <d, e>, <f, e>}是()A.强连通图B.单向连通图C.弱连通图D.不连通图14.在有n个结点的连通图中,其边数()A.最多有n-1条B.至少有n-1条C.最多有n条D.至少有n条15.连通图G是一棵树,当且仅当G中()A.有些边不是割边B.每条边都是割边C.无割边集D.每条边都不是割边二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
自考离散数学试题及答案
自考离散数学试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个符号表示“属于”关系?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 命题逻辑中,下列哪个表达式表示“非”操作?A. ∧B. ∨C. ¬D. →答案:C3. 在下列哪个图论的术语中,表示图中任意两个顶点都相连?A. 无向图B. 有向图C. 完全图D. 二分图答案:C4. 布尔代数中,下列哪个操作是“或”?A. ∧C. ¬D. →答案:B5. 以下哪个是等价关系的属性?A. 自反性B. 对称性C. 反对称性D. 传递性答案:A6. 有限自动机中,状态可以被分为哪两种类型?A. 初始状态和终止状态B. 接受状态和拒绝状态C. 确定状态和非确定状态D. 静态状态和动态状态答案:B7. 在关系数据库中,下列哪个操作用于删除表中的行?A. INSERTB. DELETEC. UPDATED. SELECT答案:B8. 以下哪个是谓词逻辑中的量词?B. ∃C. ∧D. ∨答案:A9. 在命题逻辑中,德摩根定律描述了哪些逻辑运算的对偶性?A. ∧ 和∨B. ¬和→C. ¬和↔D. → 和↔答案:A10. 树的深度优先搜索(DFS)算法通常使用哪种数据结构来实现?A. 队列B. 栈C. 链表D. 哈希表答案:B二、填空题(每题3分,共30分)11. 在集合{1, 2, 3, 4, 5}中,子集的总数是_________。
答案:3212. 如果命题P为真,则命题P → Q的真值表中,Q的值必须为_________。
答案:真13. 在有向图中,一个顶点的入度是指_________。
答案:指向该顶点的边的数量14. 一个关系R(A, B, C)中,如果对于任意两个元组,当它们在属性A上的值相等时,它们在属性B和C上的值也相等,则称R具有_________。
答案:候选键15. 在布尔代数中,表达式(A ∧ B) ∨ (A ∧ ¬B)的结果是_________。
离散数学试题及答案解析
离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。
在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。
2. 下列哪个命题是真命题?A. 所有偶数都是整数。
B. 所有整数都是偶数。
C. 所有整数都是奇数。
D. 所有奇数都是整数。
答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。
选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。
二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。
答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。
如果输入为真,则输出为假;如果输入为假,则输出为真。
2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。
答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。
三、简答题1. 解释什么是等价关系,并给出一个例子。
答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。
例如,考虑整数集合上的“同余”关系。
对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。
这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。
2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。
一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。
《离散数学》试题及标准答案解析
《离散数学》试题及标准答案解析⼀、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) - ρ(B)= __________________________ .2. 设有限集合A, |A| = n, 则 |ρ(A×A)| = __________________________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________.4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_________________________________________________________________________________________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B=_________________________;A-B= _____________________ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________, ________________________, _______________________________.8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________, __________________________.9. 设集合A={1,2,3,4}, A上的关系R1= {(1,4),(2,3),(3,2)}, R2= {(2,1),(3,2),(4,3)}, 则R1?R2 = ________________________,R2? R1 =____________________________, R12 =________________________.10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________. 11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = __________________________ , B-A =__________________________ , A∩B = __________________________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为__________________________________________________________________.14. 设⼀阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是__________________________ _____.16. 设谓词的定义域为{a, b},将表达式?xR(x)→?xS(x)中量词消除,写成与之对应的命题公式是__________________________________________________________________________.17. 设集合A={1, 2, 3, 4},A上的⼆元关系R={(1,1),(1,2),(2,3)}, S={(1,3),(2,3),(3,2)}。
7月全国自考离散数学试题及答案解析试卷及答案解析
全国2018年7月高等教育自学考试离散数学试题课程代码:02324一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。
每小题1分,共14分)1.下列语句不是..命题的是( )。
A.黄金是非金属。
B.要是他不上场,我们就不会输。
C.他跑100米只用了10秒钟,你说他是不是运动健将呢?D.他跑100米只用了10秒钟,他是一个真正的运动健将。
2.关于命题变元P和Q的大项M01表示( )。
A.┐P∧QB.┐P∨QC.P∨┐QD.P∧┐Q3.公式(∀x)(∃y)(P(x,z)→Q(y))S(x,y)中的(∀x)的辖域是( )。
A.(∃y)(P(x,z)→Q(y))B.P(x,z)→Q(y)C.P(x,z)D.S(x,z)4.下列等价式不成立...的是( )。
A.┐(∃x)A(x)⇔(∀x)┐A(x)B.┐(∀x)A(x)⇔(∃x)┐A(x)C.(∀x)(A(x)∧B(x))⇔(∀x)A(x)∧(∀x)B(x)D.(∀x)(A(x)∨B(x))⇔(∀x)A(x)∨(∀x)B(x)5.公式(∃x)(∀y)(P(x,y)∧Q(z))→R(x)中的x( )。
A.只是约束变元B.只是自由变元C.既是约束变元又是自由变元D.既非约束变元又非自由变元6.设A={a,{a}},则下列各式正确的是( )。
A.{a}∈p(A)(A的幂集)B.{a}⊆p(A)C.{{a}}⊆p(A)D.{a,{a}}⊆p(A)7.集合的以下运算律不成立...的是( )。
A.A∩B=B∩AB.A∪B=B∪AC.A⊕B=B⊕AD.A-B=B-A8.设N是自然数集,R是实数集,函数f:N→R,f(n)=lgn是( )。
A.入射B.满射C.双射D.非以上三种的一般函数9.设实数集R上的二元运算o为:xoy=x+y-2xy,则o不满足( )。
A.交换律B.结合律12C.有幂等元D.有零元10.若(A ,*)是一个代数系统,且满足结合律,则(A ,*)必为( )。
离散数学考试试题及答案
离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。
答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。
答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。
答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。
答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。
答案:欧拉路径是一条通过图中每条边恰好一次的路径。
2. 解释什么是二元关系,并给出一个例子。
答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。
例如,小于关系就是一个二元关系。
3. 请说明什么是递归函数,并给出一个简单的例子。
答案:递归函数是一种通过自身定义来计算函数值的函数。
例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。
四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。
2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。
答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。
离散数学试题及答案解析
离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。
B. 有些天鹅不是白色的。
C. 所有天鹅都不是白色的。
D. 没有天鹅是白色的。
答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。
答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。
答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。
答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。
答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。
答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。
证明:假设p成立,由于p是q的充分条件,所以q成立。
又因为q是r的充分条件,所以r成立。
因此,p成立可以推出r成立,即p是r的充分条件。
2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。
(全新整理)7月全国自考离散数学试题及答案解析试卷及答案解析真题
2018年7月全国自考离散数学试题试卷真题课程代码:02324一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列语句中不.是命题的只有()A.鸡毛也能飞上天?B.或重于泰山,或轻于鸿毛。
C.不经一事,不长一智。
D.牙好,胃口就好。
2.从真值角度看,命题公式的全部类型是()A.永真式B.永假式C.永真式,永假式D.永真式,永假式,可满足式3.设M(x):x是人;F(x):x要吃饭。
用谓词公式表达下述命题:所有的人都要吃饭,其中错误..的表达式是()A.))xM(⌝)(∃)x(⌝∧xM)x()(x(F∀B.))(→x(FC.)))(Mx(∨∀⌝x(F)x(M)x()(x∃D.))(∨x(F4.下列公式是前束范式的是()A.))()x(F)x)yG(y(⌝))∃∨∀(∧Hy)(Gy()()x,z(F∀B.)z(x∀(∨⌝C.)y()y,x(F)((∀)y→(∀x∃D.))()yGG)y,x(F)xy,x(→(∀5.设论域为整数集,下列真值为真的公式是()A.)0)(x)(y(=∃∀-xy)(y)(xx(=∀B.)0∃-yC.)0(xy)()x(=∃⌝∃-⌝∀yyxy)()(∀D.)0-(=x6.下列是谓词演算中的合式公式的是()A.)yG)x(F)x(∧∃∀B.)y,x(→)()x(px(∃C.)z,y((∧∀)x⌝x(∀D.)y,x(PQ)y,x(P)x().()A.B.C.D.1.()8.下列式子正确的是()A.(A-B)-C=A-(B∪C)B.A-(B∪C)=(A-B)∪C C.~(A-B)=~(B-A)D.~(A∩B) A9.下列集合对所给的运算是封闭的只有()A.非零整数集合Z*上的除法运算B.全体n×n实可逆矩阵集合M n(R)上的矩阵加法和乘法运算C.全体n×n实矩阵集合M n(R)上的矩阵加法和乘法运算D.A={1,2,…,10},x*y=LCM(x,y),即x,y最小公倍数10.设<A,○+,*>是环,则下列说法不.正确的是()A.<A,○+>是交换群B.<A,*>是半群C.*对○+是可分配的D.○+对*是可分配的11.下列四个格,是分配格的是()C.D..()A.B.12.下列各图是无向完全图的是()13.下列各有向图是强连通图的是()214.设G是具有n个结点的无向简单图,若在G中存在一条汉密尔顿路,则G中每一对结点的度数之和与n-1的关系为()A.大于B.大于等于C.等于D.小于15.设连通平面图G,共有n个结点,e条边,r个面,则欧拉证明成立的公式是()A.e-n+r=2 B.n+r-e=2C.n-r+e=2 D.n-e-r=2二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
离散数学考试题及详细参考答案
离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。
b)我今天进城,除非下雨。
c)仅当你走,我将留下。
2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。
c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R))↔(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。
(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)∀x∃y(x+y=4)b)∃y∀x (x+y=4)3.求∀x(F(x)→G(x))→(∃xF(x)→∃xG(x))的前束范式。
(4分)4.判断下面命题的真假,并说明原因。
(每小题2分,共4分)a)(A⋃B)-C=(A-B) ⋃(A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。
(每小题5分,共10分)a)A→(B∧C),(E→⌝F)→⌝C, B→(A∧⌝S)⇒B→Eb)∀x(P(x)→⌝Q(x)), ∀x(Q(x)∨R(x)),∃x⌝R(x) ⇒∃x⌝P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠∅且B≠∅,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国2018年7月高等教育自学考试
离散数学试题
课程代码:02324
一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填
在题干的括号内。
每小题1分,共14分)
1.下列语句不是
..命题的是( )。
A.黄金是非金属。
B.要是他不上场,我们就不会输。
C.他跑100米只用了10秒钟,你说他是不是运动健将呢?
D.他跑100米只用了10秒钟,他是一个真正的运动健将。
2.关于命题变元P和Q的大项M01表示( )。
A.┐P∧Q
B.┐P∨Q
C.P∨┐Q
D.P∧┐Q
3.公式(∀x)(∃y)(P(x,z)→Q(y))S(x,y)中的(∀x)的辖域是( )。
A.(∃y)(P(x,z)→Q(y))
B.P(x,z)→Q(y)
C.P(x,z)
D.S(x,z)
4.下列等价式不成立
...的是( )。
A.┐(∃x)A(x)⇔(∀x)┐A(x)
B.┐(∀x)A(x)⇔(∃x)┐A(x)
C.(∀x)(A(x)∧B(x))⇔(∀x)A(x)∧(∀x)B(x)
D.(∀x)(A(x)∨B(x))⇔(∀x)A(x)∨(∀x)B(x)
5.公式(∃x)(∀y)(P(x,y)∧Q(z))→R(x)中的x( )。
A.只是约束变元
B.只是自由变元
C.既是约束变元又是自由变元
D.既非约束变元又非自由变元
6.设A={a,{a}},则下列各式正确的是( )。
A.{a}∈p(A)(A的幂集)
B.{a}⊆p(A)
C.{{a}}⊆p(A)
D.{a,{a}}⊆p(A)
7.集合的以下运算律不成立
...的是( )。
A.A∩B=B∩A
B.A∪B=B∪A
C.A⊕B=B⊕A
D.A-B=B-A
8.设N是自然数集,R是实数集,函数f:N→R,f(n)=lgn是( )。
A.入射
B.满射
C.双射
D.非以上三种的一般函数
9.设实数集R上的二元运算o为:xoy=x+y-2xy,则o不满足( )。
A.交换律
B.结合律
1
2
C.有幂等元
D.有零元
10.若(A ,*)是一个代数系统,且满足结合律,则(A ,*)必为( )。
A.半群
B.独异点
C.群
D.可结合代数
11.设S 是自然数集,则下列运算中不满足交换律的是( )。
A.a*b=|a -b|
B.a*b=a b
C.a*b=max{a,b}
D.a*b=min{a,b}
12.设图G ′=<V ′,E ′>是图的生成子图,则必须( )。
A.V ′=V
B.V ′≠V 但E ′=E
C.E ′=E
D.E ′≠E 且V ′≠V
13.设有向图G 有5个结点,4条边,且有一条有向路经过每个结点一次,则图G 满足的最
大连通性是( )。
A.不连通
B.弱连通
C.单侧连通
D.强连通
14.一个连通图G 具有以下何种条件时,能一笔画出:即从某结点出发,经过图中每边仅一
次回到该结点。
( )。
A.G 没有奇数度结点
B.G 有1个奇数度结点
C.G 有2个奇数度结点
D.G 没有或有2个奇数度结点
二、填空题(每小题2分,共30分)
1.设P :a 2+b 2=a 2,Q:b=0,则P Q 意思是说______.
2.合式公式┐(Q →P)∧P 是永______式.
3.合式公式(P Q)∧(Q R)与P R 的关系是______.(等价或蕴含选一)
4.命题“所有的猫都是动物”的谓词表达式为__________.
5.公式(∃x)A(x)→B(y)的前束范式为______.
6.设个体域为D={-2,3,6},F(x):x ≤3,G(x):x>5.则在此解释下公式(∀x)(F(x)∧G(x))的真值为______.
7.设R 是有限集A 中的关系,若其关系矩阵M R 的主对角线上的元素全为0,则R 至少是______关系.
8.设A={a,b,c}中的关系R={<a,b>,<b,c>},则R 的对称闭包为S(R)=______.
9.设X={1,2,3},Y={a,b},则从X 到Y 的不同的函数共有______个.
10.设A={0,1,2,3},A 中的序关系“≤”定义为:a ≤b ⇔a 整除b ,则a 的最小元是 ,
最大元是______.
11.只有两个元素的群有且只有______个子群.
12.一个格称为布尔代数,如果它是______格和______格.
13.设图G 的邻接矩阵为M=⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡001011110,则G 的可达性矩阵为______.
14.设一个平面图有v 个结点,e 条边,r 个面,则它们的数量关系是______.
15.一个无向树中有6条边,则它有______个结点.
三、计算题(每小题6分,共24分)
1.求合式公式A=P→((P→Q)∧┐(┐Q∨┐P))的主析取范式和主合取范式.
2.设集合A={a,b,c},A中的关系R={<a,a>,<a,c>,<b,c>,<c,c>}.利用矩阵方法求R的传递闭包t(R).
3.
设
* a b c
a a
b c
b b a a
c c a a
讨论(S,*)是否构成独异点,并验证你的结论.
4.已知一算式的根树(如图),试分别写出按中序行遍法、前序行遍法和后序行遍法的算式.
四、证明题(每小题8分,共32分)
1.利用CP规则证明
A→(B→C),(C∧D)→E,┐D∨E→H├(A∧B)→H
2.利用推理规则证明
(∀x)(G(x)∨Q(x)),┐(∀x)G(x)⇒(∃x)Q(x)
3.设R1,R2为集合A中的两个等价关系,且R1οR2=R2οR1,试证R1οR2也是A上的等价关系.
4.试证:任一棵非平凡树G至少有两片树叶。
3。