高三一轮-功能关系----动能定理

合集下载

高考物理一轮复习 第5章 机械能及其守恒律 第4节 功能关系 能量守恒律

高考物理一轮复习 第5章 机械能及其守恒律 第4节 功能关系 能量守恒律

取夺市安慰阳光实验学校第4节功能关系能量守恒定律知识点1 功能关系1.内容(1)功是能量转化的量度,即做了多少功就有多少能量发生了转化.(2)做功的过程一定伴随着能量的转化,而且能量的转化必须通过做功来实现.2.做功对应变化的能量形式(1)合外力的功等于物体的动能的变化.(2)重力做功等于物体重力势能的变化.(3)弹簧弹力做功等于弹性势能的变化.(4)除重力和系统内弹力以外的力做功等于物体机械能的变化.知识点2 能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,在转化和转移的过程中,能量的总量保持不变.2.适用范围能量守恒定律是贯穿物理学的基本规律,是各种自然现象中普遍适应的一条规律.3.表达式(1)E初=E末,初状态各种能量的总和等于末状态各种能量的总和.(2)ΔE增=ΔE减,增加的那些能量的增加量等于减少的那些能量的减少量.1.正误判断(1)做功的过程一定会有能量转化.(√)(2)力对物体做了多少功,物体就有多少能.(×)(3)力对物体做功,物体的总能量一定增加.(×)(4)能量在转化或转移的过程中,其总量会不断减少.(×)(5)能量的转化和转移具有方向性,且现在可利用的能源有限,故必须节约能源.(√)(6)滑动摩擦力做功时,一定会引起能量的转化.(√)2.[功能关系的理解]自然现象中蕴藏着许多物理知识,如图5­4­1所示为一个盛水袋,某人从侧面缓慢推袋壁使它变形,则水的势能( )图5­4­1A.增大B.变小C.不变D.不能确定A[人缓慢推水袋,对水袋做正功,由功能关系可知,水的重力势能一定增加,A正确.]3.[摩擦生热的理解]如图5­4­2所示,木块A放在木板B的左端上方,用水平恒力F将A拉到B的右端,第一次将B固定在地面上,F做功W1,生热Q1;第二次让B在光滑水平面可自由滑动,F做功W2,生热Q2,则下列关系中正确的是( )【:92492233】图5­4­2A. W1<W2,Q1=Q2B.W1=W2,Q1=Q2C.W1<W2,Q1<Q2D.W1=W2,Q1<Q2A[设木板B长s,木块A从木板B左端滑到右端克服摩擦力所做的功W =F f s,因为木板B不固定时木块A的位移要比木板B固定时长,所以W1<W2;摩擦产生的热量Q=F f l相对,两次都从木块B左端滑到右端,相对位移相等,所以Q1=Q2,故选A.]4.[几种常见的功能关系应用](多选)悬崖跳水是一项极具挑战性的极限运动,需要运动员具有非凡的胆量和过硬的技术.跳水运动员进入水中后受到水的阻力而做减速运动,设质量为m的运动员刚入水时的速度为v,水对他的阻力大小恒为F,那么在他减速下降深度为h的过程中,下列说法正确的是(g为当地的重力加速度)( )A.他的动能减少了(F-mg)hB.他的重力势能减少了mgh -12mv2C.他的机械能减少了FhD.他的机械能减少了mghAC[合力做的功等于动能的变化,合力做的功为(F-mg)h,A正确;重力做的功等于重力势能的变化,故重力势能减小了mgh,B错误;重力以外的力做的功等于机械能的变化,故机械能减少了Fh,C正确,D错误.]对功能关系的理解及应用1(1)做功的过程是能量转化的过程.不同形式的能量发生相互转化是通过做功来实现的.(2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数量上相等.2.几种常见功能关系的对比各种力做功对应能的变化定量关系合力的功动能变化合力对物体做功等于物体动能的增量W合=E k2-E k1重力的功重力势能变化重力做正功,重力势能减少,重力做负功,重力势能增加,且W G=-ΔE p=E p1-E p2弹簧弹力的功弹性势能变化弹力做正功,弹性势能减少,弹力做负功,弹性1.(多选)(2017·枣庄模拟)如图5­4­3所示,取一块长为L的表面粗糙的木板,第一次将其左端垫高,让一小物块从板左端的A点以初速度v0沿板下滑,滑到板右端的B点时速度为v1;第二次保持板右端位置不变,将板放置水平,让同样的小物块从A点正下方的C点也以初速度v0向右滑动,滑到B点时的速度为v2.下列说法正确的是( )图5­4­3A.v1一定大于v0B.v1一定大于v2C.第一次的加速度可能比第二次的加速度小D.两个过程中物体损失的机械能相同BCD[物块向下滑动的过程中受到重力、支持力和摩擦力的作用,若重力向下的分力大于摩擦力,则物块做加速运动,若重力向下的分力小于摩擦力,则物块做减速运动.故A错误;斜面的倾角为θ时,物块受到滑动摩擦力:f1=μmg cos θ,物块克服摩擦力做功W1=f1L=μmg cos θ·L.板水平时物块克服摩擦力做功:W2=μmg·L cos θ=W1.两次克服摩擦力做的功相等,所以两个过程中物体损失的机械能相同;第一次有重力做正功.所以由动能定理可知第一次的动能一定比第二次的动能大,v1一定大于v2,故B、D正确.物块向下滑动的过程中受到重力、支持力和摩擦力的作用,若重力向下的分力大于摩擦力,则:a1=mg sin θ-fm,板水平时运动的过程中a2=fm,所以第一次的加速度可能比第二次的加速度小,故C正确.]2.(多选)(2017·青岛模拟)如图5­4­4所示,一根原长为L的轻弹簧,下端固定在水平地面上,一个质量为m的小球,在弹簧的正上方从距地面高度为H处由静止下落压缩弹簧.若弹簧的最大压缩量为x,小球下落过程受到的空气阻力恒为F f,则小球从开始下落至最低点的过程( )【:92492234】图5­4­4A.小球动能的增量为零B.小球重力势能的增量为mg(H+x-L)C.弹簧弹性势能的增量为(mg-F f)(H+x-L)D.系统机械能减小F f HAC[小球下落的整个过程中,开始时速度为零,结束时速度也为零,所以小球动能的增量为0,故A正确;小球下落的整个过程中,重力做功W G=mgh=mg(H+x-L),根据重力做功量度重力势能的变化W G=-ΔE p得:小球重力势能的增量为-mg(H+x-L),故B错误;根据动能定理得:W G+W f+W弹=0-0=0,所以W弹=-(mg-F f)(H+x-L),根据弹簧弹力做功量度弹性势能的变化W弹=-ΔE p得:弹簧弹性势能的增量为(mg-F f)(H+x-L),故C正确;系统机械能的减少等于重力、弹力以外的力做的功,所以小球从开始下落至最低点的过程,克服阻力做的功为:F f(H+x-L),所以系统机械能减小为:F f(H+x-L),故D 错误.]功能关系的应用技巧1.在应用功能关系解决具体问题的过程中,若只涉及动能的变化用动能定理分析,W总=ΔE k.2.只涉及重力势能的变化用重力做功与重力势能变化的关系分析,即W G =-ΔE p.3.只涉及机械能变化用除重力和弹力之外的力做功与机械能变化的关系分析,即W其他=ΔE.4.只涉及电势能的变化用电场力做功与电势能变化的关系分析,即W电=-ΔE p.对能量守恒定律的理解及应用1(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等.(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.2.能量转化问题的解题思路(1)当涉及滑动摩擦力做功,机械能不守恒时,一般应用能的转化和守恒定律.(2)解题时,首先确定初末状态,然后分析状态变化过程中哪种形式的能量减少,哪种形式的能量增加,求出减少的能量总和ΔE减和增加的能量总和ΔE 增,最后由ΔE减=ΔE增列式求解.[多维探究]●考向1 涉及弹簧的能量守恒定律问题1.如图5­4­5所示,两物块A、B通过一轻质弹簧相连,置于光滑的水平面上,开始时A和B均静止.现同时对A、B施加等大反向的水平恒力F1和F2,使两物块开始运动,运动过程中弹簧形变不超过其弹性限度.在两物块开始运动以后的整个过程中,对A、B和弹簧组成的系统,下列说法正确的是( )图5­4­5A.由于F1、F2等大反向,系统机械能守恒B.当弹簧弹力与F1、F2大小相等时,A、B两物块的动能最大C.当弹簧伸长量达到最大后,A、B两物块将保持静止状态D.在整个过程中系统机械能不断增加B[在弹簧一直拉伸的时间内,由于F1与A的速度方向均向左而做正功,F2与B的速度方向均向右而做正功,即F1、F2做的总功大于零,系统机械能不守恒,选项A错误;当弹簧对A的弹力与F1平衡时A的动能最大,此时弹簧对B的弹力也与F2平衡,B的动能也最大,选项B正确;弹簧伸长量达到最大时,两物块速度为零,弹簧弹力大于F1、F2,之后两物块将反向运动而不会保持静止状态,F1、F2对系统做负功,系统机械能减少,选项C、D均错误.]2.如图5­4­6所示,固定斜面的倾角θ=30°,物体A与斜面之间的动摩擦因数μ=32,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C点.用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A和B,滑轮右侧绳子与斜面平行,A的质量为2m,B的质量为m,初始时物体A到C点的距离为L.现给A、B一初速度v0>gL,使A开始沿斜面向下运动,B向上运动,物体A将弹簧压缩到最短后又恰好能弹到C点.已知重力加速度为g,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求:图5­4­6(1)物体A向下运动刚到C点时的速度;(2)弹簧的最大压缩量;(3)弹簧的最大弹性势能.【:92492235】【解析】(1)A与斜面间的滑动摩擦力f=2μmg cos θ,物体从A向下运动到C点的过程中,根据能量守恒定律可得:2mgL sin θ+12·3mv20=12·3mv2+mgL+fL解得v=v20-gL.(2)从物体A接触弹簧,将弹簧压缩到最短后又恰回到C点,对系统应用动能定理-f·2x=0-12×3mv2解得x=v202g-L2.(3)弹簧从压缩到最短到恰好能弹到C点的过程中,对系统根据能量守恒定律可得:E p+mgx=2mgx sin θ+fx所以E p=fx=3mv204-3mgL4.【答案】(1)v20-gL(2)v202g-L2(3)3mv204-3mgL4●考向2 能量守恒定律与图象的综合应用3.将小球以10 m/s 的初速度从地面竖直向上抛出,取地面为零势能面,小球在上升过程中的动能E k 、重力势能E p 与上升高度h 间的关系分别如图5­4­7中两直线所示.g 取10 m/s 2,下列说法正确的是( )图5­4­7A .小球的质量为0.2 kgB .小球受到的阻力(不包括重力)大小为0.20 NC .小球动能与重力势能相等时的高度为2013 mD .小球上升到2 m 时,动能与重力势能之差为0.5 JD [在最高点,E p =mgh 得m =0.1 kg ,A 项错误;由除重力以外其他力做功E 其=ΔE 可知:-fh =E 高-E 低,E 为机械能,解得f =0.25 N ,B 项错误;设小球动能和重力势能相等时的高度为H ,此时有mgH =12mv 2,由动能定理得:-fH -mgH =12mv 2-12mv 20,解得H =209 m ,故C 项错;当上升h ′=2 m 时,由动能定理得:-fh ′-mgh ′=E k2-12mv 20,解得E k2=2.5 J ,E p2=mgh ′=2 J ,所以动能与重力势能之差为0.5 J ,故D 项正确.]摩擦力做功与能量的转化关系1.(1)从功的角度看,一对滑动摩擦力对系统做的功等于系统内能的增加量. (2)从能量的角度看,是其他形式能量的减少量等于系统内能的增加量. 2.两种摩擦力做功情况比较静摩擦力滑动摩擦力不同点能量的转化方面只有能量的转移,而没有能量的转化既有能量的转移,又有能量的转化一对摩擦力的总功方面一对静摩擦力所做功的代数和等于零一对滑动摩擦力所做功的代数和不为零,总功W =-F f ·l相对,产生的内能Q =F f ·l 相对相同点正功、负功、不做功方面两种摩擦力对物体可以做正功、负功,还可以不做功[电动机的带动下,始终保持v 0=2 m/s 的速率运行,现把一质量为m =10 kg 的工件(可看做质点)轻轻放在皮带的底端,经过时间1.9 s ,工件被传送到h =1.5 m 的高处,g 取10 m/s 2,求:图 5-4-8(1)工件与传送带间的动摩擦因数; (2)电动机由于传送工件多消耗的电能. 【自主思考】(1)1.9 s 内工件是否一直加速?应如何判断?提示:若工件一直匀加速,由v m 2×t =hsin θ可得:工件的最大速度v m =61.9m/s>v 0,故工件在1.9 s 内应先匀加速运动再匀速运动.(2)工件在上升过程中其所受的摩擦力是否变化? 提示:变化,先是滑动摩擦力,后是静摩擦力.(3)电动机传送工件的过程中多消耗的电能转化成了哪几种能量? 提示:工件的动能、重力势能及因摩擦力做功产生的热量三部分. 【解析】 (1)由题图可知,皮带长x =hsin θ=3 m .工件速度达v 0前,做匀加速运动的位移x 1=v t 1=v 02t 1匀速运动的位移为x -x 1=v 0(t -t 1) 解得加速运动的时间t 1=0.8 s 加速运动的位移x 1=0.8 m所以加速度a =v 0t 1=2.5 m/s 2由牛顿第二定律有:μmg cos θ-mg sin θ=ma解得:μ=32.(2)从能量守恒的观点,显然电动机多消耗的电能用于增加工件的动能、势能以及克服传送带与工件之间发生相对位移时摩擦力做功产生的热量.在时间t 1内,皮带运动的位移x 皮=v 0t 1=1.6 m在时间t 1内,工件相对皮带的位移x 相=x 皮-x 1=0.8 m在时间t 1内,摩擦生热Q =μmg cos θ·x 相=60 J工件获得的动能E k =12mv 20=20 J工件增加的势能E p =mgh =150 J电动机多消耗的电能W =Q +E k +E p =230 J.【答案】 (1)32 (2)230 J[母题迁移]●迁移1 水平传送带问题1.如图5­4­9所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物体从静止释放到相对静止这一过程中,下列说法正确的是( )【:92492236】 图5­4­9A .电动机做的功为12mv 2B .摩擦力对物体做的功为mv 2C .传送带克服摩擦力做的功为12mv 2D .电动机增加的功率为μmgvD [由能量守恒可知,电动机做的功等于物体获得的动能和由于摩擦而产生的内能,选项A 错误;对物体受力分析知,仅有摩擦力对物体做功,由动能定理知,其大小应为12mv 2,选项B 错误;传送带克服摩擦力做功等于摩擦力与传送带对地位移的乘积,可知这个位移是物体对地位移的两倍,即W =mv 2,选项C 错误;由功率公式知电动机增加的功率为μmgv ,选项D 正确.]●迁移2 倾斜传送带 逆时针转动 2.(多选)(2017·太原模拟)如图5­4­10所示,与水平面夹角为θ=37°的传送带以恒定速率v =2 m/s沿逆时针方向运动.将质量为m =1 kg 的物块静置在传送带上的A 处,经过1.2 s 到达传送带的B 处.已知物块与传送带间的动摩擦因数为μ=0.5,其他摩擦不计,物块可视为质点,重力加速度g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.下列对物块从传送带A 处运动到B 处过程的相关说法正确的是( )【:92492237】图5­4­10A .物块动能增加2 JB .物块机械能减少11.2 JC .物块与传送带因摩擦产生的热量为4.8 JD .物块对传送带做的功为-12.8 JBC [由题意可知μ<tan 37°,因而物块与传送带速度相同后仍然要加速运动.物块与传送带速度相同前,由牛顿第二定律有mg (sin θ+μcos θ)=ma 1,v =a 1t 1,x 1=12a 1t 21, 解得a 1=10 m/s 2,t 1=0.2 s ,x 1=0.2 m ,物块与传送带速度相同后,由牛顿第二定律有mg (sin θ-μcos θ)=ma 2,v ′=v +a 2t 2,x 2=vt 2+12a 2t 22,而t 1+t 2=1.2 s ,解得a 2=2 m/s 2,v ′=4 m/s ,x 2=3 m ,物块到达B 处时的动能为E k =12mv ′2=8 J ,选项A 错误;由于传送带对物块的摩擦力做功,物块机械能变化,摩擦力做功为W f =μmgx 1cos θ-μmgx 2cos θ=-11.2 J ,故机械能减少11.2 J ,选项B 正确;物块与传送带因摩擦产生的热量为Q =μmg (vt 1-x 1+x 2-vt 2)cos θ=4.8 J ,选项C 正确;物块对传送带做的功为W =-μmgvt 1cos θ+μmgvt 2cos θ=6.4 J ,选项D 错误.]1.水平传送带:共速后不受摩擦力,不再有能量转化.倾斜传送带:共速后仍有静摩擦力,仍有能量转移.2.滑动摩擦力做功,其他形式的能量转化为内能;静摩擦力做功,不产生内能.3.公式Q=F f·l相对中l相对为两接触物体间的相对位移,若物体在传送带上做往复运动时,则l相对为总的相对路程.。

高三一轮复习秘籍-第五章第4讲 功能关系 能量守恒定律

高三一轮复习秘籍-第五章第4讲 功能关系 能量守恒定律

第五章机械能第3讲功能关系能量守恒定律过好双基关————回扣基础知识训练基础题目一、几种常见的功能关系及其表达式力做功能的变化定量关系合力的功动能变化W=E k2-E k1=ΔE k重力的功重力势能变化(1)重力做正功,重力势能减少(2)重力做负功,重力势能增加(3)W G=-ΔE p=E p1-E p2弹簧弹力的功弹性势能变化(1)弹力做正功,弹性势能减少(2)弹力做负功,弹性势能增加(3)W弹=-ΔE p=E p1-E p2只有重力、弹簧弹力做功机械能不变化机械能守恒,ΔE=0除重力和弹簧弹力之外的其他力做的功机械能变化(1)其他力做多少正功,物体的机械能就增加多少(2)其他力做多少负功,物体的机械能就减少多少(3)W其他=ΔE一对相互作用的滑动摩擦力的总功机械能减少内能增加(1)作用于系统的一对滑动摩擦力一定做负功,系统内能增加(2)摩擦生热Q=F f·x相对二、两种摩擦力做功特点的比较类型比较静摩擦力做功滑动摩擦力做功不同点能量的转化方面只有机械能从一个物体转移到另一个物体,而没有机械能转化为其他形式的能(1)将部分机械能从一个物体转移到另一个物体(2)一部分机械能转化为内能,此部分能量就是系统机械能的损失量不同点一对摩擦力的总功方面一对静摩擦力所做功的代数和总等于零一对滑动摩擦力做功的代数和总是负值相同点正功、负功、不做功方面两种摩擦力对物体可以做正功,也可以做负功,还可以不做功三、能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.表达式ΔE减=ΔE增.3.基本思路(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.研透命题点————细研考纲和真题分析突破命题点1.只涉及动能的变化用动能定理分析.2.只涉及重力势能的变化,用重力做功与重力势能变化的关系分析.3.只涉及机械能的变化,用除重力和弹簧的弹力之外的其他力做功与机械能变化的关系分析.【例1】(多选)某运动员参加百米赛跑,他采用蹲踞式起跑,在发令枪响后,左脚迅速蹬离起跑器,在向前加速的同时提升身体重心.如图所示,假设质量为m 的运动员,在起跑时前进的距离s 内,重心升高量为h ,获得的速度为v ,阻力做功为W f ,则在此过程中()A .运动员的机械能增加了12mv 2B .运动员的机械能增加了12mv 2+mgh C .运动员的重力做功为mghD .运动员自身做功W =12mv 2+mgh -W f 答案BD 解析运动员的重心升高h ,获得的速度为v ,其机械能的增量为ΔE =mgh +12mv 2,A 错误,B 正确;运动员的重心升高h ,重力做负功,W G =-mgh ,C错误;根据动能定理得,W+W f-mgh=1mv2-0,解得W=21mv2+mgh-W f,D正确.2【变式1】(多选)物体由地面以120J的初动能竖直向上抛出,当它从抛出至上升到某一点A的过程中,动能减少40J,机械能减少10J.设空气阻力大小不变,以地面为零势能面,则物体()A.落回到地面时机械能为70JB.到达最高点时机械能为90JC.从最高点落回地面的过程中重力做功为60JD.从抛出到落回地面的过程中克服阻力做功为60J答案BD解析物体以120J的初动能竖直向上抛出,向上运动的过程中重力和空气阻力都做负功,当上升到某一高度时,动能减少了40J,而机械能损失了10 J.根据功能关系可知:合力做功为-40J,空气阻力做功为-10J,对从抛出点到A点的过程,根据功能关系:mgh+F f h=40J,F f h=10J,得F f=1mg;3当上升到最高点时,动能为零,动能减小120J,设最大高度为H,则有:mgH+F f H=120J,解得mgH=90J,F f H=30J,即机械能减小30J,在最高点时机械能为120J-30J=90J,即上升过程机械能共减少了30J;当下落过程中,由于阻力做功不变,所以机械能又损失了30J,故整个过程克服阻力做功为60J,则该物体落回到地面时的机械能为60J,从最高点落回地面的过程中重力做功为mgH=90J,故A、C错误,B、D正确.【例2】(多选)(2020·全国Ⅰ卷)一物块在高3.0m、长5.0m的斜面顶端从静止开始沿斜面下滑,其重力势能和动能随下滑距离s的变化如图中直线Ⅰ、Ⅱ所示,重力加速度取10m/s2.则()A.物块下滑过程中机械能不守恒B.物块与斜面间的动摩擦因数为0.5C.物块下滑时加速度的大小为6.0m/s2D.当物块下滑2.0m时机械能损失了12J答案AB解析下滑5m的过程中,重力势能减少30J,动能增加10J,减小的重力势能并不等于增加的动能,所以物块下滑过程中机械能不守恒,A正确;斜面高3m、长5m,则斜面倾角为θ=37°.令斜面底端为零势面,则物块在斜面顶端时的重力势能mgh=30J,可得质量m=1kg.下滑5m过程中,由功能关系,机械能的减少量等于克服摩擦力做的功,μmg·cosθ·s=20J,求得μ=0.5,B正确;由牛顿第二定律mg sinθ-μmg cosθ=ma,求得a=2m/s2,C错误;物块下滑2.0m时,重力势能减少12J,动能增加4J,所以机械能损失了8J,D选项错误.故选AB.【变式2】(多选)如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连.弹簧处于自然长度时物块位于O点(图中未标出).物块的质量为m,AB=a,物块与桌面间的动摩擦因数为μ.现用水平向右的力将物块从O点拉至A点,拉力做的功为W.撤去拉力后物块由静止向左运动,经O点到达B点时速度为零.重力加速度为g.则上述过程中()A.物块在A点时,弹簧的弹性势能等于W-12μmgaB.物块在B点时,弹簧的弹性势能小于W-32μmgaC.经O点时,物块的动能小于W-μmgaD.物块动能最大时弹簧的弹性势能小于物块在B点时弹簧的弹性势能答案BC解析设O点到A点距离为x,则物块从O点运动到A点过程中,根据功能关系可得μmgx+E p A=W,从A点到B点过程中同理可得E p A=μmga+E p B,由于克服摩擦力做功,则E p B<E p A,则B点到O点距离一定小于a2,且x>a2,则E p A=W-μmgx<W-1μmga,A错误;在B点有E p B=W-μmg(a+x)<W2-3μmga,B正确;物块经过O点,同理可得E k O=W-2μmgx<W-μmga,2C正确;物块动能最大时所受弹力kx=μmg,而在B点弹力与摩擦力大小关系未知,故物块动能最大时弹簧伸长量与物块在B点时弹簧伸长量大小未知,故两位置弹性势能的大小关系不好判断,D错误.圆轨道与水平【例3】(多选)如图所示,竖直平面内有一半径为R的固定14轨道相切于最低点B.一质量为m的小物块P(可视为质点)从A处由静止滑下,经过最低点B后沿水平轨道运动到C处停下,B、C两点间的距离为R,物块P与圆轨道、水平轨道之间的动摩擦因数均为μ.现用力F将物块P沿下滑的路径从C处缓慢拉回圆弧轨道的顶端A,拉力F的方向始终与物块P的运动方向一致,物块P从B处经圆弧轨道到达A处过程中,克服摩擦力做的功为μmgR,下列说法正确的是()A.物块P在下滑过程中,运动到B处时速度最大B.物块P从A滑到C的过程中克服摩擦力做的功等于2μmgRC.拉力F做的功小于2mgRD.拉力F做的功为mgR(1+2μ)答案CD解析当重力沿圆轨道切线方向的分力等于滑动摩擦力时,速度最大,此位置在AB之间,故A错误;将物块P缓慢地从B拉到A,克服摩擦力做的功为μmgR,而物块P从A滑到B的过程中,物块P做圆周运动,根据向心力知识可知物块P所受的支持力比缓慢运动时要大,则滑动摩擦力增大,所以克服摩擦力做的功W f大于μmgR,因此物块P从A滑到C的过程中克服摩擦力做的功大于2μmgR,故B错误;由动能定理得,从C到A的过程中有W F -mgR-μmgR-μmgR=0-0,则拉力F做的功为W F=mgR(1+2μ),故D 正确;从A到C的过程中,根据动能定理得mgR-W f-μmgR=0,因为W f>μmgR,则mgR>μmgR+μmgR,因此W F<2mgR,故C正确.【变式3】高速公路部分路段旁建有如图所示的避险车道,车辆可驶入避险.若质量为m的货车刹车后以初速度v0经A点冲上避险车道,前进距离l时到B点减速为0,货车所受阻力恒定,A、B两点高度差为h,C为A、B 中点,已知重力加速度为g,下列关于该货车从A运动到B的过程说法正确的是()A.克服阻力做的功为1mv202B.该过程产生的热量为1mv20-mgh2C.在AC段克服阻力做的功小于在CB段克服阻力做的功D.在AC段的运动时间等于在CB段的运动时间答案B解析根据动能定理有-mgh-F f l=0-1mv20,克服阻力做的功为W f=F f l=21mv20-mgh,故A错误;克服阻力做的功等于系统产生的内能,则该过程产2生的热量为1mv20-mgh,故B正确;阻力做的功与路程成正比,在AC段克2服阻力做的功等于在CB段克服阻力做的功,故C错误;从A到B做匀减速运动,AC段的平均速度大于BC段的平均速度,故在AC段的运动时间小于在CB段的运动时间,故D错误.1.静摩擦力做功(1)静摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互作用的一对静摩擦力做功的代数和总等于零.(3)静摩擦力做功时,只有机械能的相互转移,不会转化为内能.2.滑动摩擦力做功的特点(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果:①机械能全部转化为内能;②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.(3)摩擦生热的计算:Q=F f x相对.其中x相对为相互摩擦的两个物体间的相对路程.从功的角度看,一对滑动摩擦力对系统做的总功等于系统内能的增加量;从能量的角度看,其他形式能量的减少量等于系统内能的增加量.【例4】如图所示,某工厂用传送带向高处运送物体,将一物体轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段物体与传送带相对静止,匀速运动到传送带顶端.下列说法正确的是()A.第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功B.第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加量C.第一阶段物体和传送带间因摩擦产生的热量等于第一阶段物体机械能的增加量D.物体从底端到顶端全过程机械能的增加量大于全过程摩擦力对物体所做的功答案C解析对物体受力分析知,其在两个阶段所受摩擦力方向都沿斜面向上,与其运动方向相同,摩擦力对物体都做正功,A错误;由动能定理知,合力做的总功等于物体动能的增加量,B错误;物体机械能的增加量等于摩擦力对物体所做的功,D错误;设第一阶段物体的运动时间为t,传送带速度为v,对物体有x1=v2t,对传送带有x′1=v·t,因摩擦产生的热量Q=F f x相对=F f(x′1-x1)=F f·v2t,物体机械能增加量ΔE=F f·x1=F f·v2t,所以Q=ΔE,C正确.【变式4】(多选)水平地面上固定有两个高度相同的粗糙斜面体甲和乙,斜面长分别为s、L1,如图所示.两个完全相同的小滑块A、B可视为质点,同时由静止开始从甲、乙两个斜面的顶端释放,小滑块A一直沿斜面甲滑到底端C点,而小滑块B沿斜面乙滑到底端P点后又沿水平面滑行距离L2到D点(小滑块B在P点从斜面滑到水平面时速度大小不变),且s=L1+L2.小滑块A、B与两个斜面以及水平面间的动摩擦因数相同,则()A.滑块A到达底端C点时的动能一定比滑块B到达D点时的动能小B.两个滑块在斜面上加速下滑的过程中,到达同一高度时,动能可能相同C.A、B两个滑块从斜面顶端分别运动到C、D的过程中,滑块A重力做功的平均功率小于滑块B重力做功的平均功率D.A、B两个滑块从斜面顶端分别运动到C、D的过程中,由于克服摩擦而产生的热量一定相同答案AC解析设斜面体甲的倾角为α,斜面体乙的倾角为β,根据动能定理,滑块A 由甲斜面顶端到达底端C点的过程,mgh-μmg cosα·s=12mv2C,滑块B由乙斜面顶端到达D点的过程,mgh-μmg cosβ·L1-μmgL2=12mv2D,又s=L1+L2,根据几何关系得s cosα>L1cosβ+L2,所以12mv2C<12mv2D,故A正确;两个滑块在斜面上加速下滑的过程中,到达同一高度时:mgh-μmg cosθ·hsinθ=12mv2,重力做功相等,但克服摩擦力做功不等,所以动能不同,故B错误;整个过程中,两滑块所受重力做功相同,但由于滑块A运动时间长,故重力对滑块A做功的平均功率比滑块B的小,故C正确;滑块A、B分别到达C、D时的动能不相等,由能量守恒定律知滑块A、B运动过程中克服摩擦产生的热量不同,故D错误.【例5】如图所示,半径为R=1.0m的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B和圆心O的连线与水平方向的夹角θ=37°,另一端点C 为轨道的最低点.C点右侧的光滑水平面上紧挨C点静止放置一木板,木板质量M=1kg,上表面与C点等高.质量为m=1kg的物块(可视为质点)从空中A点以v0=1.2m/s的速度水平抛出,恰好从轨道的B端沿切线方向进入轨道.已知物块与木板间的动摩擦因数μ=0.2,g 取10m/s 2.求:(1)物块经过C 点时的速率v C ;(2)若木板足够长,物块在木板上相对滑动过程中产生的热量Q .答案(1)6m/s (2)9J 解析(1)设物块在B 点的速度为v B ,从A 到B 物块做平抛运动,有:v B sin θ=v 0从B 到C ,根据动能定理有:mgR (1+sin θ)=12mv 2C -12mv 2B 解得:v C =6m/s.(2)物块在木板上相对滑动过程中由于摩擦力作用,最终将一起运动.设相对滑动时物块加速度大小为a 1,木板加速度大小为a 2,经过时间t 达到共同速度v ,则:μmg =ma 1,μmg =Ma 2,v =v C -a 1t ,v =a 2t根据能量守恒定律有:12(m +M )v 2+Q =12mv 2C 联立解得:Q =9J.【变式5】(多选)如图所示,固定的光滑竖直杆上套一个滑块A ,与滑块A 连接的细绳绕过光滑的轻质定滑轮连接滑块B ,细绳不可伸长,滑块B 放在粗糙的固定斜面上,连接滑块B 的细绳和斜面平行,滑块A 从细绳水平位置由静止释放(不计轮轴处的摩擦),到滑块A 下降到速度最大(A 未落地,B 未上升至滑轮处)的过程中()A.滑块A和滑块B的加速度大小一直相等B.滑块A减小的机械能等于滑块B增加的机械能C.滑块A的速度最大时,滑块A的速度大于B的速度D.细绳上的张力对滑块A做的功等于滑块A机械能的变化量答案CD解析两滑块与绳构成绳连接体,沿绳方向的加速度大小相等,则A沿绳的分加速度等于B的加速度,A错误;绳连接体上的一对拉力做功不损失机械能,但B受到的斜面摩擦力对B做负功,由能量守恒可知滑块A减小的机械能等于滑块B增加的机械能和摩擦生热之和,B错误;滑块A的速度最大时,将滑块A的速度分解,如图所示,绳连接体沿绳方向的速度大小相等,则A沿绳的分速度等于B的运动速度,显然滑块A的速度大于B的速度,C 正确;对A受力分析可知,除重力外,只有细绳的张力对滑块A做功,由功能关系可知,细绳上的张力对滑块A做的功等于滑块A机械能的变化量,D正确.。

高中物理高考一轮复习功能关系

高中物理高考一轮复习功能关系

德钝市安静阳光实验学校一轮复习——功能关系功能关系体现了一种重要的物理思想和思维方法,是高中物理的重要组成部分,作为冲刺的高考考生,对功能关系应该有深刻的认识和领悟。

做功的过程就是能量转化的过程,做功的数值就是能量的转化的数值,这是功能关系的普遍意义。

一种力做功一定对应着一种能量的变化,总之,功是能量变化的量度,这是贯穿整个物理学的一个重要思想。

学会正确分析物理过程中的功能关系,对于提高解题能力是至关重要的。

下面就针对这一部分内容进行一下归纳,以期对广大考生有所裨益。

一、高中物理中常见的几组功能关系1.重力做功对应物体重力势能的变化 W重力=-ΔE p=E p1-E p22.弹簧弹力做功对应弹性势能的变化 W弹力=-ΔE p=E p1-E p23.电场力做功对应电势能的变化 W电= -△E p4.安培力做功对应电能的变化 W安= -△E p5.合外力做功对应物体动能的变化 W合= △E k6.除重力和弹力以外的力做功对应系统机械能的变化W除重力、弹力=ΔE=E末-E初.7.一对滑动摩擦力的总功对应系统动能的变化W f总= △E k系统=-fL相对8.一对静摩擦力的总功对应系统内物体间机械能的转移W f总=0二、利用功能关系解题的基本思路1.选取研究对象,确定研究过程2.明确在一个物理过程中有哪些力参与了做功,有哪些能量参与了转化3.根据功与能的一一对应关系列方程4.解方程,对得出的结果加以分析。

三、典型例题分析例1.某人把原来静止于地面上的质量为2kg的物体向上提起1m,并使物体获得1m/s的速度,取g=10m/s2,则这个过程中A.人对物体做功21JB.合外力对物体做功1JC.物体的重力势能增加20JD.物体的机械能增加21J分析:把物体向上提起的过程中有两个力对物体做功,人对物体做正功,重力对物体做负功.物体的动能增加了1J,重力势能增加了20J,即机械能增加了21J.由功能关系知:人对物体做的功等于物体机械能的变化,所以人对物体做功21J.由动能定理知:合力对物体所做的功等于物体动能的变化,所以合外力对物体做功1J,故选项A、B、C、D均正确.例2.(2005天津理综)一带电油滴在匀强电场E中的运动轨迹如图虚线所示,电场方向竖直向下。

高考第一轮复习课件功能关系

高考第一轮复习课件功能关系

能力提高2:如图所示,水平长传送带始终以v匀速运 动,某一时刻将一质量为m的小物体p扔到传送带上, 它与皮带接触时的初速度大小也为v, 但方向相反.
经过一段时间,小物体与传送带保持相对静止,在这 一过程中, 摩擦力对小物体做的功为多少?因摩擦 而产生的内能多少?
p
摩擦力对物体做的功为0;因摩擦而产生的内能为2mv2.
. V p
p
(1)
. . p S1
S2
p
(2)
. . S1 p
V
p
(3)
S2
小结:理解功能关系;分析运动和状态,求解相对路程 是解决摩擦内能问题的关键.
课堂总结
功能关系 ----功是能量转化的量度
1、重力所做的功等于重力势能的减少 2、弹簧的弹力所做的功等于弹性势能的减少 3、合外力所做的功等于动能的增加 4、重力和弹簧的弹力以外的力所做的功等于 机械能的增加 5、克服一对滑动摩擦力所做的功在数值上等
一、功和能有本质区别
功是反映物体间在相互作用过程中能量 变化多少的物理量,是过程量,它和一段位 移(一段时间)相对应.
能是反映物体具有做功本领的物理量, 是状态量,它和一个时刻相对应.
功和能两者的单位是相同的(都是J), 但不能说“功就是能”,也不能说“功变成 了能”.
二、功能关系
各种形式的能发生转化是通过外力做功 来实现的. 做功的过程就是能量转化的过 程,做了多少功,就有多少能量发生了转化.
等于接触面之间产生的摩擦内能。
Wf = Q = Ff S相对
功能关系
电场力做功 电势能
内能 摩擦力做功 动能 重力做功 重力势能
动能定理
弹力做功 弹性势能
机械能守恒定律 功能原理

物理一轮复习 专题21 功能关系 能量守恒定律(讲)(含解析)

物理一轮复习 专题21 功能关系 能量守恒定律(讲)(含解析)

专题21 功能关系能量守恒定律1.掌握功和能的对应关系,特别是合力功、重力功、弹力功分别对应的能量转化关系。

2。

理解能量守恒定律,并能分析解决有关问题.一、功能关系功能量的变化合外力做正功动能增加重力做正功重力势能减少弹簧弹力做正功弹性势能减少电场力做正功电势能减少其他力(除重力、弹力外)做正功机械能增加二、能量守恒定律1.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.表达式:ΔE减=ΔE增.考点一功能关系的应用1.在应用功能关系解决具体问题的过程中,若只涉及动能的变化用动能定理分析.2.只涉及重力势能的变化用重力做功与重力势能变化的关系分析.3.只涉及机械能变化用除重力和弹力之外的力做功与机械能变化的关系分析.4.只涉及电势能的变化用电场力做功与电势能变化的关系分析.★重点归纳★1、功能关系问题的解答技巧对各种功能关系熟记于心,力学范围内,应牢固掌握以下三条功能关系:(1)重力的功等于重力势能的变化,弹力的功等于弹性势能的变化;(2)合外力的功等于动能的变化;(3)除重力、弹力外,其他力的功等于机械能的变化.运用功能关系解题时,应弄清楚重力做什么功,合外力做什么功,除重力、弹力外的力做什么功,从而判断重力势能或弹性势能、动能、机械能的变化.★典型案例★如图,在距水平地面高h1=1.2m的光滑水平台面上,一个质量m=1kg的小物块压缩弹簧后被锁定。

现解除锁定,小物块与弹簧分离后以一定的水平速度v1向右从A点滑离平台,并恰好从B点沿切线方向进入光滑竖直的圆弧轨道BC 。

已知B 点距水平地面的高h 2=0.6m,圆弧轨道BC 的圆心O 与水平台面等高,C 点的切线水平,并与长L=2.8m 的水平粗糙直轨道CD 平滑连接,小物块恰能到达D 处.重力加速度g=10m/s 2,空气阻力忽略不计。

求:(1)小物块由A 到B 的运动时间t ; (2)解除锁定前弹簧所储存的弹性势能E p ; (3)小物块与轨道CD 间的动摩擦因数μ. 【答案】(1)35s (2)2 J (3)0。

2022高考物理一轮复习课时练18功能关系能量守恒定律含解析

2022高考物理一轮复习课时练18功能关系能量守恒定律含解析

课时规范练18 功能关系能量守恒定律基础对点练1.(功能关系)如图所示,在粗糙的水平面上,质量相等的两个物体A、B间用一轻质弹簧相连组成系统,且该系统在水平拉力F作用下以相同加速度保持间距不变一起做匀加速直线运动,当它们的总动能为2E k时撤去水平力F,最后系统停止运动。

不计空气阻力,认为最大静摩擦力等于滑动摩擦力,从撤去拉力F到系统停止运动的过程中()A.外力对物体A所做总功的绝对值等于2E kB.物体A克服摩擦阻力做的功等于E kC.系统克服摩擦阻力做的功可能等于系统的总动能2E kD.系统克服摩擦阻力做的功一定等于系统机械能的减少量2.(功能关系)(2020江苏如皋月考)如图所示,一小物块在粗糙程度相同的两个固定斜面上从A 经B滑动到C,若不考虑物块在经过B点时机械能的损失,则下列说法中正确的是()A.从A到B和从B到C,减少的机械能相等B.从A到B和从B到C,减少的重力势能相等C.从A到B和从B到C,因摩擦而产生的热量相等D.小物块在C点的动能一定最大3.(多选)(能量守恒定律)如图所示,质量为m的物体(可视为质点)以某一速度从A点冲上倾角为g。

此物体在斜面上能够上升的最大高度为h。

30°的固定斜面,其减速运动的加速度大小为34则在这个过程中物体()mghA.重力势能增加了mghB.机械能损失了12mghC.动能损失了mghD.克服摩擦力做功144.(多选)(功能关系)(2020陕西商洛高三模拟)据报道,“新冠”疫情期间,某地利用无人机空投药品,将药品送到了隔离人员手中。

假设无人机在离地面高度为12米处悬停后将药品自由释放,药品匀加速竖直下落了2 s后落地,若药品质量为0.5 kg,重力加速度g取10 m/s2,则药品从释放到刚接触地面的过程中()A.机械能守恒B.机械能减少了24 JC.动能增加了36 JD.所受的合力做了60 J的功5.(多选)(功能关系)(2020全国卷Ⅰ)一物块在高3.0 m、长5.0 m的斜面顶端从静止开始沿斜面下滑,其重力势能和动能随下滑距离s的变化如图中直线Ⅰ、Ⅱ所示,重力加速度取10m/s2。

2、动能定理和功能关系(一)

2、动能定理和功能关系(一)

§5.2、动能定理和功能关系(一)教学目标:1、理解动能的概念并会算物体的动能;2、理解动能定理的意义并能推导该定理;3、掌握动能定理解题的一般步骤并能用来解决有关问题;4、理解功和能的关系,知道功是能转化的量度。

重点难点:动能定理解题的一般步骤教学过程:【知识要点】一、动能1、物体由于而具有的能叫做动能,表达式:E K= 。

2、动能是量,且恒为正值,在国际单位制中,能的单位是。

动能与动量大小之间的关系式是。

3、动能是状态量,公式中的速度v一般指速率。

二、动能定理1、内容:作用在物体上的等于物体。

2、公式:W= ,动能定理反映了力对间的积累效应;而动量定理却反映的是力对间的积累效应。

3、注意:①动能定理可以由牛顿运动定律和运动学公式推出;②可以证明,作用在物体上的力无论是什么性质,即无论是恒力还是变力,无论物体作直线运动还是曲线运动,动能定理都适用。

③若物体运动过程中包含几个不同的物理过程,且有些力在物体运动全过程中不是始终存在的,W是指所有外力在各阶段上所做功的代数和。

④研究对象为一物体系统,对系统用动能定理时,必须区别系统的外力与内力,内力做功不在考虑之列。

⑤动能定理中的位移和速度必须是相对于同一个参照物,一般以地面为参照物。

4、动能定理最佳应用范围:动能定理主要用于解决变力做功、曲线运动和多过程的动力学问题,对于未知加速度a和时间t,或不需求加速度和时间的动力学问题,一般用动能定理求解为最佳解法。

三、功能关系1、功可以使能量发生转化。

如:通过重力做功,和发生相互转化;通过弹力做功,和发生相互转化;通过牵引力对车辆做功,将能转化为能;通过电动机做功,将转化为能。

2、功是能量转化的量度。

能量转化过程中,即“做了多少功,就有”,功是能量转化的量度,但功不能量度能。

在能的转化和守恒的过程中,总能量是的,即:①某种形式的能量减少,一定有其它形式能量增加,且减少量等于增加量;②某个物体的能量减少,一定存在其他物体的能量增加,且减少量等于增加量。

2023年高考物理一轮复习讲义——功能关系 能量守恒定律

2023年高考物理一轮复习讲义——功能关系 能量守恒定律

第4讲 功能关系 能量守恒定律目标要求 1.熟练掌握几种常见的功能关系,并会用于解决实际问题.2.掌握一对摩擦力做功与能量转化的关系.3.会应用能量守恒观点解决综合问题.考点一 功能关系的理解和应用1.对功能关系的理解(1)做功的过程就是能量转化的过程,不同形式的能量发生相互转化是通过做功来实现的. (2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等. 2.常见的功能关系能量功能关系表达式势能重力做功等于重力势能减少量 W =E p1-E p2=-ΔE p弹力做功等于弹性势能减少量静电力做功等于电势能减少量 分子力做功等于分子势能减少量动能 合外力做功等于物体动能变化量 W =E k2-E k1=12m v 2-12m v 02机械能 除重力和弹力之外的其他力做功等于机械能变化量W 其他=E 2-E 1=ΔE 摩擦 产生 的内能 一对相互作用的滑动摩擦力做功之和的绝对值等于产生的内能Q =F f ·x 相对电能 克服安培力做功等于电能增加量W 电能=E 2-E 1=ΔE1.一个物体的能量增加,必定有别的物体能量减少.( √ ) 2.合力做的功等于物体机械能的改变量.( × )3.克服与势能有关的力(重力、弹簧弹力、静电力等)做的功等于对应势能的增加量.( √ ) 4.滑动摩擦力做功时,一定会引起机械能的转化.( √ )1.功的正负与能量增减的对应关系(1)物体动能的增加与减少要看合外力对物体做正功还是做负功.(2)势能的增加与减少要看对应的作用力(如重力、弹簧弹力、静电力等)做负功还是做正功.(3)机械能的增加与减少要看重力和弹簧弹力之外的力对物体做正功还是做负功.2.摩擦力做功的特点(1)一对静摩擦力所做功的代数和总等于零;(2)一对滑动摩擦力做功的代数和总是负值,差值为机械能转化为内能的部分,也就是系统机械能的损失量;(3)说明:无论是静摩擦力还是滑动摩擦力,都可以对物体做正功,也可以做负功,还可以不做功.考向1功能关系的理解例1在奥运比赛项目中,高台跳水是我国运动员的强项.质量为m的跳水运动员进入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F,当地的重力加速度为g,那么在他减速下降高度为h的过程中,下列说法正确的是()A.他的动能减少了FhB.他的重力势能增加了mghC.他的机械能减少了(F-mg)hD.他的机械能减少了Fh答案 D解析运动员进入水中后,克服合力做的功等于动能的减少量,故动能减少(F-mg)h,故A 错误;运动员进入水中后,重力做功mgh,故重力势能减小mgh,故B错误;运动员进入水中后,除重力外,克服阻力做功Fh,故机械能减少了Fh,故C错误,D正确.例2如图所示,弹簧的下端固定在光滑斜面底端,弹簧与斜面平行.在通过弹簧中心的直线上,小球P从直线上的N点由静止释放,在小球P与弹簧接触到速度变为零的过程中,下列说法中正确的是()A.小球P的动能一定在减小B.小球P的机械能一定在减少C.小球P与弹簧系统的机械能一定在增加D.小球P重力势能的减小量大于弹簧弹性势能的增加量答案 B解析小球P与弹簧接触后,刚开始弹力小于重力沿斜面向下的分力,合力沿斜面向下,随着形变量增大,弹力大于重力沿斜面向下的分力,合力方向沿斜面向上,合力先做正功后做负功,小球P的动能先增大后减小,A错误;小球P与弹簧组成的系统的机械能守恒,弹簧的弹性势能不断增大,所以小球P的机械能不断减小,B正确,C错误;在此过程中,根据系统机械能守恒,可知小球P重力势能的减小量与动能减小量之和等于弹簧弹性势能的增加量,即小球P重力势能的减小量小于弹簧弹性势能的增加量,D错误.考向2功能关系与图像的结合例3(多选)(2020·全国卷Ⅰ·20)一物块在高3.0 m、长5.0 m的斜面顶端从静止开始沿斜面下滑,其重力势能和动能随下滑距离s的变化如图中直线Ⅰ、Ⅱ所示,重力加速度取10 m/s2.则()A.物块下滑过程中机械能不守恒B.物块与斜面间的动摩擦因数为0.5C.物块下滑时加速度的大小为6.0 m/s2D.当物块下滑2.0 m时机械能损失了12 J答案AB解析由E-s图像知,物块动能与重力势能的和减小,则物块下滑过程中机械能不守恒,故A正确;由E-s图像知,整个下滑过程中,物块机械能的减少量为ΔE=30 J-10 J=20 J,重力势能的减少量ΔE p=mgh=30 J,又ΔE=μmg cos α·s,其中cos α=s2-h2s=0.8,h=3.0m,g=10 m/s2,则可得m=1 kg,μ=0.5,故B正确;物块下滑时的加速度大小a=g sin α-μg cosα=2 m/s2,故C错误;物块下滑2.0 m时损失的机械能为ΔE′=μmg cos α·s′=8 J,故D错误.考向3摩擦力做功与摩擦生热的计算例4(多选)如图所示,一个长为L,质量为M的木板,静止在光滑水平面上,一个质量为m的物块(可视为质点),以水平初速度v0,从木板的左端滑向另一端,设物块与木板间的动摩擦因数为μ,当物块与木板相对静止时,物块仍在长木板上,物块相对木板的位移为d,木板相对地面的位移为s,重力加速度为g.则在此过程中()A.摩擦力对物块做功为-μmg(s+d)B.摩擦力对木板做功为μmgsC.木板动能的增量为μmgdD.由于摩擦而产生的热量为μmgs答案AB解析根据功的定义W=Fs cos θ,其中s指物体对地的位移,而θ指力与位移之间的夹角,可知摩擦力对物块做功W1=-μmg(s+d),摩擦力对木板做功W2=μmgs,A、B正确;根据动能定理可知木板动能的增量ΔE k=W2=μmgs,C错误;由于摩擦而产生的热量Q=F f·Δx =μmgd,D错误.例5(多选)(2019·江苏卷·8)如图所示,轻质弹簧的左端固定,并处于自然状态.小物块的质量为m,从A点向左沿水平地面运动,压缩弹簧后被弹回,运动到A点恰好静止.物块向左运动的最大距离为s,与地面间的动摩擦因数为μ,重力加速度为g,弹簧未超出弹性限度.在上述过程中()A.弹簧的最大弹力为μmgB.物块克服摩擦力做的功为2μmgsC.弹簧的最大弹性势能为μmgsD.物块在A点的初速度为2μgs答案BC解析 物块处于最左端时,弹簧的压缩量最大,然后物块先向右加速运动再减速运动,可知弹簧的最大弹力大于滑动摩擦力μmg ,选项A 错误;物块从开始运动至最后回到A 点过程,由功的定义可得物块克服摩擦力做功为2μmgs ,选项B 正确;物块从最左侧运动至A 点过程,由能量守恒定律可知E p =μmgs ,选项C 正确;设物块在A 点的初速度为v 0,对整个过程应用动能定理有-2μmgs =0-12m v 02,解得v 0=2μgs ,选项D 错误.考点二 能量守恒定律的理解和应用1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式 ΔE 减=ΔE 增.3.应用能量守恒定律解题的步骤(1)首先确定初、末状态,分清有几种形式的能在变化,如动能、势能(包括重力势能、弹性势能、电势能)、内能等.(2)明确哪种形式的能量增加,哪种形式的能量减少,并且列出减少的能量ΔE 减和增加的能量ΔE 增的表达式.例6 (2020·浙江1月选考·20)如图所示,一弹射游戏装置由安装在水平台面上的固定弹射器、竖直圆轨道(在最低点E 分别与水平轨道EO 和EA 相连)、高度h 可调的斜轨道AB 组成.游戏时滑块从O 点弹出,经过圆轨道并滑上斜轨道.全程不脱离轨道且恰好停在B 端则视为游戏成功.已知圆轨道半径r =0.1 m ,OE 长L 1=0.2 m ,AC 长L 2=0.4 m ,圆轨道和AE 光滑,滑块与AB 、OE 之间的动摩擦因数μ=0.5.滑块质量m =2 g 且可视为质点,弹射时从静止释放且弹簧的弹性势能完全转化为滑块动能.忽略空气阻力,各部分平滑连接.求:(1)滑块恰好能过圆轨道最高点F 时的速度v F 大小;(2)当h =0.1 m 且游戏成功时,滑块经过E 点对圆轨道的压力F N 大小及弹簧的弹性势能E p0; (3)要使游戏成功,弹簧的弹性势能E p 与高度h 之间满足的关系. 答案 见解析解析 (1)滑块恰好能过F 点的条件为mg =m v F 2r解得v F =1 m/s(2)滑块从E 点到B 点,由动能定理得 -mgh -μmgL 2=0-12m v E 2在E 点由牛顿第二定律得F N ′-mg =m v E 2r解得F N =F N ′=0.14 N从O 点到B 点,由能量守恒定律得: E p0=mgh +μmg (L 1+L 2) 解得E p0=8.0×10-3 J(3)使滑块恰能过F 点的弹性势能 E p1=2mgr +μmgL 1+12m v F 2=7.0×10-3 J到B 点减速到0E p1-mgh 1-μmg (L 1+L 2)=0 解得h 1=0.05 m设斜轨道的倾角为θ,若滑块恰好能停在B 点不下滑, 则μmg cos θ=mg sin θ解得tan θ=0.5,此时h 2=0.2 m 从O 点到B 点E p =mgh +μmg (L 1+L 2)=2×10-3(10h +3) J 其中0.05 m ≤h ≤0.2 m.例7 如图所示,固定斜面的倾角θ=30°,物体A 与斜面之间的动摩擦因数μ=34,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C 点,用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A 和B ,滑轮右侧绳子与斜面平行,A 的质量为2m =4 kg ,B 的质量为m =2 kg ,初始时物体A 到C 点的距离L =1 m ,现给A 、B 一初速度v 0=3 m/s ,使A 开始沿斜面向下运动,B 向上运动,物体A 将弹簧压缩到最短后又恰好能弹回到C 点.已知重力加速度g =10 m/s 2,不计空气阻力,整个过程中轻绳始终处于伸直状态.求在此过程中:(1)物体A 向下运动刚到C 点时的速度大小; (2)弹簧的最大压缩量; (3)弹簧的最大弹性势能. 答案 (1)2 m/s (2)0.4 m (3)6 J解析 (1)在物体A 向下运动刚到C 点的过程中,对A 、B 组成的系统应用能量守恒定律可得 μ·2mg cos θ·L =12×3m v 02-12×3m v 2+2mgL sin θ-mgL解得v =2 m/s.(2)对A 、B 组成的系统分析,在物体A 从C 点压缩弹簧至将弹簧压缩到最大压缩量,又恰好返回到C 点的过程中,系统动能的减少量等于因摩擦产生的热量,即 12×3m v 2-0=μ·2mg cos θ·2x 其中x 为弹簧的最大压缩量 解得x =0.4 m.(3)设弹簧的最大弹性势能为E pm ,从C 点到弹簧最大压缩量过程中由能量守恒定律可得 12×3m v 2+2mgx sin θ-mgx =μ·2mg cos θ·x +E pm 解得E pm =6 J.课时精练1.(多选)如图所示,质量为m 的物体(可视为质点)以某一速度从A 点冲上倾角为30°的固定斜面,其减速运动的加速度为34g ,此物体在斜面上能够上升的最大高度为h ,则在这个过程中物体( )A .重力势能增加了mghB .机械能损失了12mghC .动能损失了mghD .克服摩擦力做功14mgh答案 AB解析 加速度大小a =34g =mg sin 30°+F f m ,解得摩擦力F f =14mg ,机械能损失等于克服摩擦力做的功,即F f x =14mg ·2h =12mgh ,故B 项正确,D 项错误;物体在斜面上能够上升的最大高度为h ,所以重力势能增加了mgh ,故A 项正确;动能损失量为克服合力做功的大小,动能损失量ΔE k =F 合x =34mg ·2h =32mgh ,故C 项错误.2.某同学用如图所示的装置测量一个凹形木块的质量m ,弹簧的左端固定,木块在水平面上紧靠弹簧(不连接)将其压缩,记下木块右端位置A 点,静止释放后,木块右端恰能运动到B 1点.在木块槽中加入一个质量m 0=800 g 的砝码,再将木块左端紧靠弹簧,木块右端位置仍然在A 点,静止释放后木块离开弹簧,右端恰能运动到B 2点,测得AB 1、AB 2长分别为27.0 cm 和9.0 cm ,则木块的质量m 为( )A .100 gB .200 gC .300 gD .400 g 答案 D解析 根据能量守恒定律,有μmg ·AB 1=E p ,μ(m 0+m )g ·AB 2=E p ,联立解得m =400 g ,D 正确. 3.一木块静置于光滑水平面上,一颗子弹沿水平方向飞来射入木块中.当子弹进入木块的深度达到最大值2.0 cm 时,木块沿水平面恰好移动距离1.0 cm.在上述过程中系统损失的机械能与子弹损失的动能之比为( ) A .1∶2 B .1∶3 C .2∶3 D .3∶2答案 C解析 根据题意,子弹在摩擦力作用下的位移为x 1=(2+1) cm =3 cm ,木块在摩擦力作用下的位移为x 2=1 cm ;系统损失的机械能转化为内能,根据功能关系,有ΔE 系统=Q =F f ·Δx ;子弹损失的动能等于子弹克服摩擦力做的功,故ΔE 子弹=F f x 1;所以ΔE 系统ΔE 子弹=23,所以C 正确,A 、B 、D 错误.4.如图所示,一质量为m的滑块以初速度v0从固定于地面的斜面底端A开始冲上斜面,到达某一高度后返回A,斜面与滑块之间有摩擦.下图分别表示它在斜面上运动的速度v、加速度a、势能E p和机械能E随时间的变化图像,可能正确的是()答案 C解析由牛顿第二定律可知,滑块上升阶段有:mg sin θ+F f=ma1;下滑阶段有:mg sin θ-F f=ma2,因此a1>a2,故选项B错误;速度-时间图像的斜率表示加速度,当上滑和下滑时,加速度不同,则斜率不同,故选项A错误;重力势能先增大后减小,且上升阶段加速度大,所用时间短,势能变化快,下滑阶段加速度小,所用时间长,势能变化慢,故选项C可能正确;由于摩擦力始终做负功,机械能一直减小,故选项D错误.5.如图所示,赫章的韭菜坪建有风力发电机,风力带动叶片转动,叶片再带动转子(磁极)转动,使定子(线圈,不计电阻)中产生电流,实现风能向电能的转化.若叶片长为l,设定的额定风速为v,空气的密度为ρ,额定风速下发电机的输出功率为P,则风能转化为电能的效率为()A.2Pπρl2v3 B.6Pπρl2v3 C.4Pπρl2v3 D.8Pπρl2v3答案 A解析风能转化为电能的工作原理为将风的动能转化为输出的电能,设风吹向发电机的时间为t,则在t时间内吹向发电机的风柱的体积为V=v t·S=v tπl2,则风柱的质量M=ρV=ρv tπl2,因此风吹过的动能为E k =12M v 2=12ρv t πl 2·v 2,在此时间内发电机输出的电能E =P ·t ,则风能转化为电能的效率为η=E E k =2Pπρl 2v3,故A 正确,B 、C 、D 错误.6.(多选)如图所示,在竖直平面内有一半径为R 的圆弧轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 点的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 点运动到B 点的过程中( )A .重力做功2mgRB .机械能减少mgRC .合外力做功12mgRD .克服摩擦力做功12mgR答案 CD解析 小球从P 点运动到B 点的过程中,重力做功W G =mg (2R -R )=mgR ,故A 错误;小球沿轨道到达最高点B 时恰好对轨道没有压力,则有mg =m v B 2R ,解得v B =gR ,则此过程中机械能的减少量为ΔE =mgR -12m v B 2=12mgR ,故B 错误;根据动能定理可知,合外力做功W 合=12m v B 2=12mgR ,故C 正确;根据功能关系可知,小球克服摩擦力做的功等于机械能的减少量,为12mgR ,故D 正确.7.质量为2 kg 的物体以10 m/s 的初速度,从起点A 出发竖直向上抛出,在它上升到某一点的过程中,物体的动能损失了50 J ,机械能损失了10 J ,设物体在上升、下降过程空气阻力大小恒定,则该物体再落回到A 点时的动能为(g =10 m/s 2)( ) A .40 J B .60 J C .80 J D .100 J 答案 B解析 物体抛出时的总动能为100 J ,物体的动能损失了50 J 时,机械能损失了10 J ,则动能损失100 J 时,机械能损失20 J ,此时到达最高点,由于空气阻力大小恒定,所以下落过程,机械能也损失20 J ,故该物体从A 点抛出到落回到A 点,共损失机械能40 J ,所以该物体再落回到A点时的动能为60 J,A、C、D错误,B正确.8.(多选)(2019·全国卷Ⅱ·18)从地面竖直向上抛出一物体,其机械能E总等于动能E k与重力势能E p之和.取地面为重力势能零点,该物体的E总和E p随它离开地面的高度h的变化如图所示.重力加速度取10 m/s2.由图中数据可得()A.物体的质量为2 kgB.h=0时,物体的速率为20 m/sC.h=2 m时,物体的动能E k=40 JD.从地面至h=4 m,物体的动能减少100 J答案AD解析根据题图可知,h=4 m时物体的重力势能E p=mgh=80 J,解得物体质量m=2 kg,抛出时物体的动能为E k0=100 J,由公式E k0=12可知,h=0时物体的速率为v=10 m/s,2m v选项A正确,B错误;由功能关系可知F f h4=|ΔE总|=20 J,解得物体上升过程中所受空气阻力F f=5 N,从物体开始抛出至上升到h=2 m的过程中,由动能定理有-mgh-F f h=E k-E k0,解得E k=50 J,选项C错误;由题图可知,物体上升到h=4 m时,机械能为80 J,重力势能为80 J,动能为零,即从地面上升到h=4 m,物体动能减少100 J,选项D正确.9.(多选)如图所示,楔形木块abc固定在水平面上,粗糙斜面ab与水平面的夹角为60°,光滑斜面bc与水平面的夹角为30°,顶角b处安装一定滑轮.质量分别为M、m(M>m)的两滑块A和B,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动,A、B不会与定滑轮碰撞.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中()A.轻绳对滑轮作用力的方向竖直向下B.拉力和重力对M做功之和大于M动能的增加量C.拉力对M做的功等于M机械能的增加量D .两滑块组成系统的机械能损失等于M 克服摩擦力做的功答案 BD解析 根据题意可知,两段轻绳的夹角为90°,轻绳拉力的大小相等,根据平行四边形定则可知,合力方向与绳子方向的夹角为45°,所以轻绳对滑轮作用力的方向不是竖直向下的,故A 错误;对M 受力分析,受到重力、斜面的支持力、绳子拉力以及滑动摩擦力作用,根据动能定理可知,M 动能的增加量等于拉力和重力以及摩擦力做功之和,而摩擦力做负功,则拉力和重力对M 做功之和大于M 动能的增加量,故B 正确;根据除重力以外的力对物体做功等于物体机械能的变化量可知,拉力和摩擦力对M 做的功之和等于M 机械能的增加量,故C 错误;对两滑块组成系统分析可知,除了重力之外只有摩擦力对M 做功,所以两滑块组成的系统的机械能损失等于M 克服摩擦力做的功,故D 正确.10.(多选)如图所示,光滑水平面OB 与足够长粗糙斜面BC 交于B 点.轻弹簧左端固定于竖直墙面,现将质量为m 1的滑块压缩弹簧至D 点,然后由静止释放,滑块脱离弹簧后经B 点滑上斜面,上升到最大高度,并静止在斜面上.不计滑块在B 点的机械能损失.换用相同材料质量为m 2的滑块(m 2>m 1)压缩弹簧至同一点D 后,重复上述过程,下列说法正确的是( )A .两滑块到达B 点的速度相同B .两滑块沿斜面上升的最大高度相同C .两滑块上升到最高点过程克服重力做的功相同D .两滑块上升到最高点过程机械能损失相同答案 CD解析 两滑块到B 点的动能相同,但速度不同,故A 错误;两滑块在斜面上运动时加速度相同,由于质量不同,则在B 点时的速度不同,故上升的最大高度不同,故B 错误;滑块上升到斜面最高点过程克服重力做的功为mgh ,由能量守恒定律得E p =mgh +μmg cos θ·h sin θ,则mgh =E p 1+μtan θ,故两滑块上升到斜面最高点过程克服重力做的功相同,故C 正确;由能量守恒定律得E 损=μmg cos θ·h sin θ=μmgh tan θ,结合C 可知D 正确. 11.(多选)如图所示,质量为M 的长木板静止在光滑水平面上,上表面OA 段光滑,AB 段粗糙且长为l ,左端O 处有一固定挡板,挡板上固定轻质弹簧,右侧用不可伸长的轻绳连接在竖直墙上,轻绳所能承受的最大拉力为F .质量为m 的小滑块以速度v 从A 点向左滑动压缩弹簧,弹簧的压缩量达到最大时细绳恰好被拉断,再过一段时间后长木板停止运动,小滑块恰未掉落.重力加速度为g ,则( )A .细绳被拉断瞬间长木板的加速度大小为F MB .细绳被拉断瞬间弹簧的弹性势能为12m v 2 C .弹簧恢复原长时滑块的动能为12m v 2 D .滑块与长木板AB 段间的动摩擦因数为v 22gl答案 ABD解析 细绳被拉断瞬间弹簧的弹力等于F ,对长木板,由牛顿第二定律得F =Ma ,得a =F M,A 正确;滑块以速度v 从A 点向左滑动压缩弹簧,到弹簧压缩量最大时速度为0,由系统的机械能守恒得,细绳被拉断瞬间弹簧的弹性势能为12m v 2,B 正确;弹簧恢复原长时长木板与滑块都获得动能,所以滑块的动能小于12m v 2,C 错误;弹簧最大弹性势能E p =12m v 2,小滑块恰未掉落时滑到木板的最右端B ,此时小滑块与长木板均静止,又水平面光滑,长木板上表面OA 段光滑,则有E p =μmgl ,联立解得μ=v 22gl,D 正确. 12.如图所示,一物体质量m =2 kg ,在倾角θ=37°的斜面上的A 点以初速度v 0=3 m/s 下滑,A 点距弹簧上端挡板位置B 点的距离AB =4 m .当物体到达B 点后将弹簧压缩到C 点,最大压缩量BC =0.2 m ,然后物体又被弹簧弹上去,弹到的最高位置为D 点,D 点距A 点的距离AD =3 m .挡板及弹簧质量不计,g 取10 m/s 2,sin 37°=0.6,求:(结果均保留三位有效数字)(1)物体与斜面间的动摩擦因数μ;(2)弹簧的最大弹性势能E pm .答案 (1)0.521 (2)24.4 J解析 (1)物体从A 点到被弹簧弹到D 点的过程中,弹簧弹性势能没有发生变化,机械能的减少量全部用来克服摩擦力做功,即:12m v02+mgAD·sin θ=μmg cos θ·(AB+2BC+BD)代入数据解得:μ≈0.521.(2)物体由A到C的过程中,动能减少量ΔE k=12m v02重力势能减少量ΔE p=mg sin θ·AC摩擦产生的热量Q=μmg cos θ·AC由能量守恒定律可得弹簧的最大弹性势能为:E pm=ΔE k+ΔE p-Q≈24.4 J.13.如图所示,在倾角为37°的斜面底端固定一挡板,轻弹簧下端连在挡板上,上端与物块A 相连,用不可伸长的细线跨过斜面顶端的定滑轮把A与另一物体B连接起来,A与滑轮间的细线与斜面平行.已知弹簧劲度系数k=40 N/m,A的质量m1=1 kg,与斜面间的动摩擦因数μ=0.5,B的质量m2=2 kg.初始时用手托住B,使细线刚好处于伸直状态,此时物体A 与斜面间没有相对运动趋势,物体B的下表面离地面的高度h=0.3 m,整个系统处于静止状态,弹簧始终处于弹性限度内.重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.(1)由静止释放物体B,求B刚落地时的速度大小;(2)把斜面处理成光滑斜面,再将B换成一个形状完全相同的物体C并由静止释放,发现C 恰好到达地面,求C的质量m3.答案(1) 2 m/s(2)0.6 kg解析(1)因为初始时刻A与斜面间没有相对运动趋势,即A不受摩擦力,此时有:m1g sin θ=F弹此时弹簧的压缩量为:x1=F弹k=m1g sin θk=0.15 m当B落地时,A沿斜面上滑h,此时弹簧的伸长量为:x2=h-x1=0.15 m所以从手放开B到B落地过程中以A、B和弹簧为系统,弹簧伸长量和压缩量相同,弹性势能不变,弹簧弹力不做功,根据能量守恒定律可得:m 2gh =m 1gh sin θ+μm 1g cos θ·h +12(m 1+m 2)v 2 代入数据解得:v = 2 m/s(2)由(1)分析同理可知换成光滑斜面,没有摩擦力,则从手放开C 到C 落地过程中以A 、C 和弹簧为系统,根据机械能守恒可得:m 3gh =m 1gh sin θ代入数据解得m 3=0.6 kg.。

2023届高考物理一轮复习课件:功能关系、能量守恒定律

2023届高考物理一轮复习课件:功能关系、能量守恒定律
运动的整个过程,B克服弹簧弹力做的功为W,通过推导比较W与fxBC的大
小;
(3) B: -W-fSB=0-Ek
C:-fxC=0-Ek
SB>xC-xBC
SB为路程
得:W<fxBC
(4)若F=5f,请在所给坐标系中,画出C向右运动过程中加速度a随位移
x变化的图像,并在坐标轴上标出开始运动和停止运动时的a、x值(用f、k、

E多=Q+ ( − ) E多=0.8 J
=0.8 J


例2.如图所示,固定的粗糙弧形轨道下端B点水平,上端A与B点的高
度差为h 1 =0.3 m,倾斜传送带与水平方向的夹角为θ=37°,传送带的
上端C点与B点的高度差为h 2 =0.1125 m(传送带传动轮的大小可忽略
不计)。一质量为m=1 kg的滑块(可看作质点)从轨道的A点由静止滑下,
Ek=

k
[针对训练]
1.如图,一长为 L 的轻杆一端固定在光滑铰链上,另一端固定一质量为 m 的
小球。一水平向右的拉力作用于杆的中点,使杆以角速度ω匀速转动,当杆
与水平方向夹角为 60°时,拉力的功率为(
C
A.mgLω
3
B. mgLω
2
1
C. mgLω
2
3
D. mgLω
6
)
PF=P克 =mgvy
v
0
f
1.水平皮带
f
v0
+
x物 =
x皮
x皮= =2x物 ∆x= x皮-x物 =x物




=

f∆x=Q
fx物= −
思考:因传送物体多做的功?

高三物理滚动式复习6动能定理平抛运动功能关系动量守恒

高三物理滚动式复习6动能定理平抛运动功能关系动量守恒

动能定理、平抛运动、功能关系1.如图所示,水平桌面上有一轻弹簧,左端固定在A点,自然状态时其右端位于B点。

水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R=0.8m的圆环剪去了左上角135∘的圆弧,MN为其竖直直径,P点到桌面的竖直距离也是R.用质量m1=0.4kg的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B点。

用同种材料、质量为m2=0.2kg的物块将弹簧缓慢压缩到C点释放,物块过B点后其位移,求:与时间的关系为x=6t−2t2,物块飞离桌面后由P点沿切线落入圆轨道.g=10m/s2,求:(1)BP间的水平距离。

间的水平距离。

(2)判断m点。

(3)释放后m2运动过程中克服摩擦力做的功。

运动过程中克服摩擦力做的功。

1. 分析:(1)物块飞离桌面后由P 点沿切线落入圆轨道,在此过程中做点沿切线落入圆轨道,在此过程中做平抛运动平抛运动,根据高度求出物块在P 点竖直方向上的分速度,结合平行四边形定则求出平抛运动的初速度,从而求出平抛运动的水平位移.物块过B 点后其位移与时间的关系为x=6t-2t 2,知物块做初速v 0=6m/s ,加速度a=-4m/s 2的匀减速直线运动,根据速度位移公式求出BD 的距离,从而得出BP 间的水平距离.间的水平距离.(2)对D 到M 运用运用动能定理动能定理,结合牛顿第二定律求出在M 点轨道对物块的作用力,通过作用力的正负判断是否能到达M 点.点.(3)用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,知弹性势能全部克服阻力做功,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,通过B 点的速度,结合能量守恒得出弹性势能的大小.对m 2从C 到D 点研究,根据能量守恒求出克服摩擦力做功的大小.点研究,根据能量守恒求出克服摩擦力做功的大小.解答:(1)设物块由D 点以初速vD 做平抛运动,做平抛运动,由公式R=1R=1//2gt 2和v y =gt 可知物块落到P 点时其竖直速度为:点时其竖直速度为:v y =√2gR 又知:v y /v D =tan45∘代入数据联立解得:v D =4m/s 平抛用时为t,水平位移为s,则:R=1/2gt 2,s=v D t ,解得:s=2R=1.6m. 由公式x=6t −2t 2可知物块在桌面上过B 点后以初速v 0=6m/s 、加速度a=−4m/s 2减速到v D ,BD 间位移为:s 1=v 20−v 2D /2a=36−1616//2×4m=2.5m 则BP 水平间距为:s+s 1=1.6+2.5m=4.1m (2)若物块能沿轨道到达M 点,其速度为v M ,则:1/2m 2v 2M =1/2m 2v 2D −√2/2m 2gR 轨道对物块的压力为F N ,则:F N +m 2g=m 2v 2M /R 解得:FN=(1−√2)m 2g<0 即物块不能到达M 点(3)设弹簧长为AC 时的弹性势能为EP ,物块与桌面间的动摩擦因数为μ,释放m 1时,Ep=μm 1gsCB 释放m 2时,Ep=μm 2gsCB+1gsCB+1//2m 2v 20且m 1=2m 2,可得Ep=m 2v 20=7.2J m2在桌面上运动过程中克服摩擦力做功为Wf ,则:Ep=Wf+1Ep=Wf+1//2m 2v 2D可得Wf=5.6J 答:(1)BP 间的水平距离为4.1m. (2)m 2不能沿圆轨道到达M 点。

2023届高考物理一轮复习讲义:专题四 功和能

2023届高考物理一轮复习讲义:专题四  功和能

专题四 功和能重点1. 机械能守恒的条件及其表达方式。

2.以正确的步骤运用机械能守恒定律。

3.动能定理及其导出过程。

4.动能定理的应用。

难点1.如何判断机械能是否守恒,及如何运用机械能守恒定律解决实际问题。

2.建立物理模型、状态分析和寻找物理量之间的关系。

3.多过程和变力做功情况下动能定理的应用。

易错点1. 如何判断机械能是否守恒,及如何运用机械能守恒定律解决实际问题。

2.多过程和变力做功情况下动能定理的应用。

高频考点 1.动能定理的应用。

2. 运用机械能守恒定律解决实际问题。

考情分析:能量问题是历年来高考的重点和热点,考查比较全面而且有较强的综合性。

其中动能定理和功能关系更是重中之重,明确功是能量转化的途径和量度;而机械能守恒定律是另一个重点,要求学生能用守恒观点去解决问题,压轴题也会与此部分知识有关。

本专题内容常与牛顿定律、圆周运动、电磁学知识综合,高考对本部分知识的考查核心会在分析综合能力上。

考点预测:功和功率、动能和动能定理、机械能守恒定律、能量守恒定律是力学的重点,也是高考考查的重点,常以选择题、计算题的形式出现,考题常与生产生活实际联系紧密,题目的综合性较强.预计在高考中,仍将对该部分知识进行考查,复习中要特别注意功和功率的计算,动能定理、机械能守恒定律的应用以及与平抛运动、圆周运动知识的综合应用。

【解读】功和功率是物理学中两个重要的基本概念,是学习动能定理、机械能守恒定律、功能原理的基础,也往往是用能量观点分析问题的切入点。

复习时重点把握好功德概念、正功和负功;变力的功;功率的概念;平均功率和瞬时功率,发动机的额定功率和实际功率问题;与生产生活相关的功率问题。

解决此问题必须准确理解功和功率的意义,建立相关的物理模型,对能力要求较高。

动能定理是一条适用范围很广的物理规律,一般在处理不含时间的动力学问题时应优先考虑动能定理,特别涉及到求变力做功的问题,动能定理几乎是唯一的选择。

动能定理及功能关系

动能定理及功能关系

动能定理专题【知识梳理】一.动能1.动能:物体由于运动而具有的能,叫动能。

其表达式为:221mv E k =。

单位: 。

2.对动能的理解(1)动能是一个状态量,它与物体的运动状态对应.动能是标量.它只有大小,没有方向,而且物体的动能总是大于等于零,不会出现负值.(2)动能具有相对性,它与参照物的选取密切相关.研究时一般取地面为参考系。

二.动能定理:1.内容:2.表达式:动能定理反映了合外力做功与动能的关系,合外力做功的过程,是物体的动能与其他形式的能量相互转化的过程,合外力做的功是物体动能变化的量度,即12k k E E W -=合。

合W 的求解:①合W =合F S ;②合W =1W +2W +……(代数和)研究对象:单个物体或相对静止的可看作一个整体的几个物体组成的物体系3.应用动能定理的基本思路如下:(1)明确研究对象及所研究的物理过程。

(2)对研究对象进行受力分析,并确定各力所做的功,求出这些功的代数和。

(3)确定过程始、末态的动能。

(4)根据动能定理列方程求解。

注:在应用动能定理时,一定要注意所求的功是合力做的功,而不能局限于某个力做功。

例1.如图所示,将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。

(g 取10m/s 2)(注:用动能定理解题时,对于过程能用整体法的就用整体法。

整体法的优点在于可以省略中间过程量的求解) 例2.一质量M =0.5kg 的物体,以v m s 04=/的初速度沿水平桌面上滑过S =0.7m 的路程后落到地面,已知桌面高h =0.8m ,着地点距桌沿的水平距离S m 112=.,求物体与桌面间的摩擦系数是多少?(g 取102m s /)例3.质量M =1kg 的物体,在水平拉力F 的作用下,沿粗糙水平面运动,经过位移4m 时,拉力F 停止作用,运动到位移是8m 时物体停止,运动过程中E k -S 的图线如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、功能关系----动能定理斜面模型1. 已知物体与轨道之间的滑动摩擦因数相同,轨道两端的宽度相等,且轨道两端位于同一水平面上。

问质量不同的物体,以相同的初速度沿着如图4所示的不同运行轨道运动时,末速度的大小关系( C ) A . B . C . D .2. (多选)在滑沙场有两个坡度不同的滑道AB 和(均可看作斜面).甲、乙两名旅游者分别乘两个相同完全的滑沙撬从A 点由静止开始分别沿AB 和滑下,最后都停在水平沙面BC 上,如图所示.设滑沙撬和沙面间的动摩擦因数处处相同,斜面与水平面连接处均可认为是圆滑的,滑沙者保持一定姿势坐在滑沙撬上不动.则下列说法中正确的是( AB ) A .甲在B 点的速率一定大于乙在点的速率 B .甲滑行的总路程一定大于乙滑行的总路程C .甲全部滑行的水平位移一定大于乙全部滑行的水平位移D .甲在B 点的动能一定大于乙在点的动能3. 如图所示,一质量为m 的物块以一定的初速度0v 从斜面底端沿斜面向上运动,恰能滑行到斜面顶端.设物块和斜面的动摩擦因数一定,斜面的高度h 和底边长度x 可独立调节(斜边长随之改变),下列说法错误..的是( B ) A .若仅增大m ,物块仍能滑到斜面顶端B .若再施加一个水平向右的恒力,物块一定从斜面顶端滑出C .若仅增大h ,物块不能滑到斜面顶端,但上滑最大高度一定增大D .若仅增大x ,物块不能滑到斜面顶端,但滑行水平距离一定增大4. 如图示,一个小滑块由左边斜面上1A 点由静止开始下滑,又在水平面上滑行,接着滑上右边的斜面,滑到1D 速度减为零,假设全过程中轨道与滑块间的动摩擦因素不变,不计滑块在转弯处受到撞击的影响,测得1A 、1D 两点连线与水平方向的夹角为1θ,若将物体从2A 静止释放,滑块到2D 点速度减为零,22A D 连线与水平面夹角为2θ,则( C ) A .21θθ< B .21θθ> C .21θθ=D .无法确定21v v >41v v <32v v =43v v >AB 'AB 'B 'B 'm mmm图4m 1 m 2m 3m 4v 1 v 3v 2 v 4竖直圆周模型5. 如图,光滑圆轨道固定在竖直面内,一质量为m 的小球沿轨道做完整的圆周运动已知小球在最低点时对轨道的压力大小为 ,在高点时对轨道的压力大小为重力加速度大小为g ,则 的值为( D )A .3mgB .4mgC .5mgD .6mg6. 小球P 和Q 用不可伸长的轻绳悬挂在天花板上,P 球的质量大于Q 球的质量,悬挂P 球的绳比悬挂Q 球的绳短,两球均可视为质点。

将两球拉起,使两绳均被水平拉直,如图所示。

将两球由静止释放,在各自轨迹的最低点,有( C )。

A: P 球的速度一定小于Q 球的速度 B: P 球的动能一定小于Q 球的动能C: P 球所受绳的拉力一定大于Q 球所受绳的拉力 D: P 球的向心加速度一定小于Q 球的向心加速度7. 如图所示,一个小球在竖直环内至少能做()次完整的圆周运动,当它第()次经过环的最低点时的速度大小为7m /s ,第n 次经过环的最低点时速度大小为5m /s ,则小球第()次经过环的最低点时的速度v 的大小一定满足( D ) A .等于3m /s B .小于1m /s C .等于1m /s 2D .大于1m /s8. 如图所示,竖直平面内固定有一个半径为R 的光滑圆弧轨道,其端点P 在圆心O 的正上方,另一个端点Q 与圆心O 在同一水平面上.一只小球(视为质点)从Q 点正上方某一高度处自由下落.为梗小球从Q 点进入圆弧轨道后从P 点飞出,且恰好又从Q 点进入圆弧轨道,小球开始下落时的位置到P 点的高度差h 应该是( D ) A .RB .4R QC .32RD .无论h 是多大都不可能9. 如图62所示,小球以大小为的初速度由A 端向右运动,到B 端时的速度度减小为;若以同样大小的初速度由B 端向左运动,到A 端时的速度减小为。

已知小球运动过程中始终未离开该粗糙轨道,D 为AB 中点。

以下说法正确的是( A ) A . B .C .D .两次经过D 点时速度大小相等1n +1n -1n +0v B v A v A B v v >A B v v =A B v v <10. 如图所示,小球从离地高为H 的位置A 由静止释放,从C 点切入半圆轨道后最多能上升到离地面高为h 的B 位置.再由B 位置下落,再经轨道由C 点滑出到离地高为H'的位置.速度减为零,不计空气阻力,则( A ) A. B. C. D.不能确定与的大小关系11. (多选)如图所示,一个内壁光滑的34圆管轨道ABC 竖直放置,轨道半径为R 。

O 、A 、D 位于同一水平线上,A 、D 间的距离为R .质量为m 的小球(球的直径略小于圆管直径),从管口A 正上方由静止释放,要使小球能通过C 点落到AD 区,则球经过C 点时( AD ) A .速度大小满足22c gRv gR ≤≤B .速度大小满足0c v gR ≤≤C .对管的作用力大小满足12c mg F mg ≤≤D .对管的作用力大小满足0c F mg ≤≤ 关联运动12. (多选)人用绳子通过光滑定滑轮拉静止在地面上的物体,穿在光滑的竖直杆上,当人以速度竖直向下匀速拉绳使质量为的物体上升高度后到达如图所示位置时,此时绳与竖直杆的夹角为。

己知重力加速度为,则( AD ) A .此时物体的速度为B .此时物体的速度为C .该过程中绳对物体做的功为D .该过程中绳对物体做的功为13. 如图所示,光滑水平平台上有一个质量为m 的物块,站在地面上的人用跨过定滑轮的绳子向右拉动物块,不计绳和滑轮的质量及滑轮的摩擦,且平台边缘离人手作用点竖直高度始终为h 当人以速度v 从平台的边缘处向右匀速前进位移x 时,则( B ) A .在该过程中,物块的运动可能是匀速的 B .在该过程中,人对物块做的功为()22222mv x h x +C .在该过程中,人对物块做的功为212mvD .人前进x 时,物块的运动速率为22h x+A A v m A h θg A cos vθA cos v θA 222sin mv mgh θ+A 222cos mv mgh θ+多物块14.(100分)如图所示,生产车间有两个相互垂直且等高的水平传送带甲和乙,甲的速度为。

小工件离开甲前与甲的速度相同,并平稳地传到乙上,工件与乙之间的动摩擦因数为。

乙的宽度足够大,重力加速度为。

(1)若乙的速度为,求工件在乙上侧向(垂直于乙的运动方向)滑过的距离;(2)若乙的速度为,求工件在乙上刚停止侧向滑动时的速度大小;(3)保持乙的速度不变,当工件在乙上刚停止滑动时,下一只工件恰好传到乙上,如此反复。

若每个工件的质量均为,除工件传送带之间的摩擦外,其他能量损耗均不计,求驱动乙的电动机的平均输出功率。

15.(汕头市年普通高考模拟考试试题)(18分)一传送带装置示意如图,传送带在AB区域是倾斜的,倾角θ=30°.工作时传送带向上运行的速度保持v=2m/s不变.现将质量均为m= 2kg的小货箱(可视为质点)一个一个在A处放到传送带上,放置小货箱的时间间隔均为T=1s,放置时初速为零,小货箱一到达B处立即被取走.已知小货箱刚放在A处时,前方相邻的小货箱还处于匀加速运动阶段,此时两者相距为s1=0.5m.传送带装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦,取g=10m/s2.(1)求小货箱在传送带上做匀加速运动的加速度大小.(2)AB的长度至少多长才能使小货箱最后的速度能达到v=2m/s?(3)除了刚释放货箱的时刻,若其它时间内总有4个货箱在传送带上运动,求每运送一个小货箱电动机对外做多少功?并求电动机的平均输出功率.16. 传送带是应用广泛的一种传动装置.在一水平向右匀速运动的传送带的左端A 点,每隔相同的时间T,轻放上一个相同的工件.已知工件与传送带间动摩擦因数为,工件质量为m.经测量,发现前面那些已经和传送带达到相同速度的工件之间的距离均为L.已知重力加速度为g,下列判断正确的有( AD ) A. 传送带的速度大小为B. 工件在传送带上加速时间为C. 每个工件与传送带间因摩擦而产生的热量为D. 传送带因传送每一个工件而多消耗的能量为动能定理中的临界17. (多选)如图所示,水平转台上有一个质量为的物块,用长为的细绳将物块连接在转轴上,细线与竖直转轴的夹角为角,此时绳中张力为零,物块与转台间动摩擦因数为,最大静摩擦力等于滑动摩擦力,物块随转台由静止开始缓慢加速转动,则:( BC ) A .至绳中出现拉力时,转台对物块做的功为 B .至绳中出现拉力时,转台对物块做的功为C .至转台对物块支持力为零时,转台对物块做的功为D .至转台对物块支持力为零时,转台对物块做的功为18. 如图所示,在光滑水平台面上静置一质量kg 的长木板,的右端用轻绳绕过光滑的轻质定滑轮与质量kg 的物体栓接.当从静止开始运动下落高度为m 时,在木板的最右端轻放一质量为kg 的小铁块(可视为质点),、间的动摩擦因数,最终恰好未从木板滑落,取,求:(1)木板的长度;(2)若当轻放在木板的最右端的同时,加B 一水平向右的恒力,其他条件不变,在保证能滑离木板的条件下,则、间因摩擦而产生热量的最大值多大.m L θ()tan μμθ<2sin mgL πμθ1sin 2mgL μθ2sin 2cos mgL θθ34cos mgLθ0.9A m =A A 0.9C m =C C 0.4h =A 3.6B m =B A B 0.25μ=B A g 210m s A L B A B A A B m Q19.如图所示,在粗糙水平台阶上静止放置一质量kg 的小物块,它与水平台阶表面的动摩擦因数,且与台阶边缘点的距离m 。

在台阶右侧固定了一个1/4圆弧挡板,圆弧半径m ,圆弧的圆心也在点。

今以点为原点建立平面直角坐标系.现用N 的水平恒力拉动小物块,一段时间后撤去拉力,小物块最终水平抛出并击中挡板.(取)(1)若小物块恰能击中档板上的点(与水平方向夹角为37°,已知,,则其离开点时的速度大小;(2)为使小物块击中档板,求拉力作用的最短时间;(3)改变拉力的作用时间,使小物块击中挡板的不同位置.求击中挡板时小物块动能的最小值.取值范围类练习20. 如图所示,在竖直平面内有xOy 坐标系,长为l 的不可伸长细绳,一端固定在A 点,A 点的坐标为(0、),另一端系一质量为m 的小球。

现在x 坐标轴上()固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动。

相关文档
最新文档