模糊控制与模糊策略

合集下载

模糊控制的基本结构

模糊控制的基本结构

模糊控制的基本结构
模糊控制是一种智能控制方法,其基本结构主要包括以下几个部分:
1. 定义变量:决定程序被观察的状况及考虑控制的动作。

例如在一般控制问题上,输入变量有输出误差E与输出误差变化率EC,而模糊控制还将控制变量作为下一个状态的输入U。

其中E、EC、U统称为模糊变量。

2. 模糊化:将输入值以适当的比例转换到论域的数值,利用口语化变量来描述测量物理量的过程,根据适合的语言值(linguistic value)求该值相对的隶属度,此口语化变量称为模糊子集合(fuzzy subsets)。

3. 知识库:包括数据库(data base)与规则库(rule base)两部分,其中数据库提供处理模糊数据的相关定义;而规则库则藉由一群语言控制规则描述控制目标和策略。

4. 逻辑判断:该部分是模糊控制器的精髓所在。

5. 解模糊化:将模糊推理得到的模糊输出量转换为实际执行机构的精确输出。

以上内容仅供参考,如需更具体的信息,建议查阅关于模糊控制的资料、文献或书籍。

1。

模糊控制的基本原理

模糊控制的基本原理

模糊控制的基本原理模糊控制是一种基于模糊逻辑的控制方法,它模仿人类的思维方式,通过模糊化、模糊推理和解模糊化来实现对系统的控制。

模糊控制的基本原理可以概括为以下几个方面。

模糊控制通过将输入和输出与一组模糊集相对应,来模拟人类的模糊推理过程。

在传统的控制方法中,输入和输出通常是精确的数值,而在模糊控制中,输入和输出可以是模糊的、不确定的。

通过将输入和输出模糊化,可以将问题从精确的数学计算转化为模糊的逻辑推理,使得控制系统更加灵活和适应性强。

模糊控制通过定义一组模糊规则来描述系统的行为。

模糊规则是一种类似于人类思维的规则,它由若干模糊条件和模糊结论组成。

模糊条件和模糊结论通过模糊集来表示,并通过模糊推理来确定系统的控制策略。

模糊推理是基于模糊规则和模糊集的逻辑推理过程,它通过对模糊条件的匹配和模糊结论的合成,来确定系统的输出。

然后,模糊控制通过解模糊化将模糊输出转化为精确的控制信号。

解模糊化是将模糊输出映射到一个确定的值域上的过程,它可以通过取模糊输出的平均值、加权平均值或者其他方式来实现。

解模糊化的目的是将模糊的控制信号转化为精确的控制动作,以实现对系统的精确控制。

模糊控制通过反馈机制来实现对系统的自适应调节。

反馈机制是模糊控制系统中的重要组成部分,它通过不断测量系统的输出,并与期望输出进行比较,来调节系统的控制策略。

通过反馈机制,模糊控制系统可以根据系统的实际情况进行调节,以适应不同的工作环境和工作条件。

模糊控制的基本原理包括模糊化、模糊推理、解模糊化和反馈机制。

通过模糊化和模糊推理,模糊控制可以将问题从精确的数学计算转化为模糊的逻辑推理,使得控制系统更加灵活和适应性强。

通过解模糊化,模糊控制可以将模糊的控制信号转化为精确的控制动作,以实现对系统的精确控制。

通过反馈机制,模糊控制可以根据系统的实际情况进行调节,以适应不同的工作环境和工作条件。

模糊控制的基本原理为工程领域提供了一种灵活、适应性强的控制方法,可以应用于各种复杂的控制问题中。

模糊 pid控制策略

模糊 pid控制策略

模糊 pid控制策略
模糊PID控制策略是将模糊控制和PID控制结合起来的一种
控制策略。

它利用模糊控制的模糊推理能力来对PID控制器
的参数进行调节,以提高控制系统的性能。

在传统的PID控制策略中,控制器的参数需要通过实验或调
整来获得最佳的控制效果。

而模糊PID控制策略则借助于模
糊推理的思想,通过模糊控制器自动调整PID控制器的参数,使得控制系统能够适应不同的工况和系统变化。

具体而言,模糊PID控制策略包括以下步骤:
1. 设计模糊控制器:根据控制系统的输入和输出变量的模糊集合,设计模糊控制器的模糊规则库。

2. 模糊推理:根据当前的输入变量值,利用模糊控制器的模糊规则库进行模糊推理,得到输出变量的模糊集合。

3. 解模糊:通过对输出变量的模糊集合进行解模糊操作,得到具体的输出变量值。

4. 参数调整:根据解模糊得到的输出变量值,调整PID控制
器的参数。

5. 反馈控制:将调整后的PID控制器作为反馈控制器,进行
控制系统的实时控制。

通过模糊PID控制策略,可以在一定程度上克服传统PID控制策略中参数调整的困难,提高控制系统的性能和鲁棒性。

然而,模糊PID控制策略也存在一定的复杂性和计算量较大的问题,需要根据实际情况进行权衡和应用。

自动化控制系统中的模糊控制方法与调参技巧

自动化控制系统中的模糊控制方法与调参技巧

自动化控制系统中的模糊控制方法与调参技巧自动化控制系统中的模糊控制方法是一种基于模糊逻辑的控制策略,可以处理系统模型复杂、不确定性强的问题。

模糊控制方法通过将模糊逻辑应用于控制器设计中,能够有效地应对实际系统中的各种非线性、时变和不确定性因素,提高控制系统的鲁棒性和自适应能力。

在模糊控制系统中,模糊逻辑通过将模糊的自然语言规则转化为数学形式,对系统的输入和输出进行模糊化处理,从而实现对系统的自动控制。

模糊控制方法主要包括模糊推理、模糊建模和模糊控制器设计三个主要步骤。

首先,模糊推理是模糊控制方法的核心,它根据一组模糊规则对输入变量进行模糊推理,从而确定最终的控制策略。

在模糊推理中,需要定义一组模糊规则,每个模糊规则都由若干个模糊集和若干个模糊关系所组成。

通过对输入变量的模糊化处理和模糊规则的匹配,可以得到控制器的输出。

其次,模糊建模是模糊控制方法的前提,它是将实际系统映射为模糊控制系统的关键步骤。

模糊建模可以通过实验数据、专家知识或模型等方式获得系统的输入输出数据,然后利用聚类和拟合等方法建立系统的模糊模型。

模糊建模的目的是找到系统的内在规律和数学模型,以便后续的模糊控制器设计和参数调优。

最后,模糊控制器设计是模糊控制方法的具体实现,它根据模糊推理和模糊建模的结果,确定模糊控制器的结构和参数。

模糊控制器的结构包括输入变量的模糊集合和输出变量的模糊集合,参数则决定了模糊控制器的具体行为。

参数调优是模糊控制器设计的关键环节,通过合理地设置参数,可以使模糊控制器在实际系统中具有良好的控制性能和鲁棒性。

为了获得较好的控制性能,模糊控制系统中的调参技巧是必不可少的。

调参技巧通常包括以下几个方面:首先,选取适当的输入变量和输出变量,并对其进行模糊化处理。

输入变量和输出变量的选择应考虑到系统的特性和控制目标,而模糊化处理的方法则可以采用三角函数、梯形函数等常用的模糊集合类型。

其次,确定模糊规则的数量和形式。

模糊规则的数量和形式直接影响到模糊控制系统的稳定性和鲁棒性。

模糊逻辑与模糊控制的基本原理

模糊逻辑与模糊控制的基本原理

模糊逻辑与模糊控制的基本原理在现代智能控制领域中,模糊逻辑与模糊控制是研究的热点之一。

模糊逻辑可以应用于形式化描述那些非常复杂,无法准确或完全定义的问题,例如语音识别、图像处理、模式识别等。

而模糊控制可以通过模糊逻辑的方法来设计控制系统,对那些难以表达精确数学模型的问题进行控制,主要用于不确定的、非线性的、运动系统模型的控制。

本文主要介绍模糊逻辑和模糊控制的基本原理。

一、模糊逻辑的基本原理模糊逻辑是对布尔逻辑的延伸,在模糊逻辑中,各种概念之间的相互关系不再是严格的,而是模糊的。

模糊逻辑的基本要素是模糊集合,模糊集合是一个值域在0和1之间的函数,它描述了一个物体属于某个事物的程度。

以温度为例,一般人将15℃以下的温度视为冷,20至30℃为暖,30℃以上为热。

但是在模糊逻辑中,这些概念并不是非黑即白,而可能有一些模糊的层次,如18℃可能既不是冷又不是暖,但是更接近于暖。

因此,设180℃该点的温度为x,则可以用一个图形来描述该温度与“暖”这个概念之间的关系,这个图形称为“隶属函数”或者“成员函数”图。

一个隶属函数是一个可数的、从0到1变化的单峰实函数。

它描述了一个物体与一类对象之间的相似程度。

对于温度为18℃的这个例子,可以用一个隶属函数来表示其与“暖”这一概念之间的关系。

这个隶属函数,可以用三角形或者梯形函数来表示。

模糊逻辑还引入了模糊关系和模糊推理的概念。

模糊关系是对不确定或模糊概念间关系的粗略表示,模糊推理是指通过推理机来对模糊逻辑问题进行判断和决策。

二、模糊控制的基本原理在控制系统中,通常采用PID控制或者其他经典控制方法来控制系统,但对于一些非线性控制系统,这些方法越发显得力不从心。

模糊控制是一种强大的、在处理非线性系统方面表现出色的控制方法。

它通过对遥测信号进行模糊化处理,并将模糊集合控制规则与一系列的控制规则相关联起来以实现控制。

模糊控制的基本组成部分主要包括模糊化、模糊推理、去模糊化等三个步骤。

模糊控制在过程控制中的应用前景如何

模糊控制在过程控制中的应用前景如何

模糊控制在过程控制中的应用前景如何在当今的工业自动化领域,过程控制起着至关重要的作用。

它旨在确保生产过程的稳定性、可靠性和高效性,以满足不断增长的质量和产量要求。

而在众多的控制策略中,模糊控制作为一种智能控制方法,正逐渐展现出其独特的优势和广阔的应用前景。

模糊控制的基本原理是基于模糊逻辑和模糊推理。

与传统的精确控制方法不同,模糊控制并不依赖于精确的数学模型,而是通过模拟人类的思维和决策过程,处理具有不确定性和模糊性的信息。

这使得模糊控制在面对复杂、难以建模的过程时具有更强的适应性。

那么,模糊控制在过程控制中具体有哪些应用呢?首先,在温度控制方面,模糊控制表现出色。

例如,在工业熔炉的温度控制中,由于加热过程受到多种因素的影响,如环境温度、物料特性等,建立精确的数学模型往往十分困难。

而模糊控制可以根据经验和实时监测数据,灵活地调整加热功率,实现对温度的精确控制,从而提高产品质量和生产效率。

在化工过程控制中,模糊控制也大有用武之地。

化工生产中的反应过程通常具有非线性、时变性和多变量耦合等特点,传统控制方法难以应对。

而模糊控制可以有效地处理这些复杂特性,实现对反应过程的优化控制,降低能耗,提高产品收率。

此外,在污水处理过程中,模糊控制能够根据水质的变化、流量的波动等因素,自动调整处理设备的运行参数,确保污水处理效果达到排放标准。

那么,模糊控制为何能在这些领域取得良好的效果呢?一方面,它能够处理不精确和不确定的信息。

在实际的过程控制中,很多变量难以精确测量或定义,而模糊控制能够利用模糊语言变量和模糊规则来描述这些不确定的情况,从而做出合理的控制决策。

另一方面,模糊控制具有较强的鲁棒性。

即使系统受到外界干扰或模型发生变化,模糊控制仍然能够保持较好的控制性能,不会因为微小的偏差而导致系统失控。

然而,模糊控制在过程控制中也并非完美无缺。

其主要的局限性在于控制规则的制定往往依赖于专家经验,缺乏系统性和科学性。

此外,模糊控制的计算量较大,在实时性要求较高的场合可能会受到一定的限制。

模糊控制技术-第二章

模糊控制技术-第二章
5
上述定义表明:
①论域U中的元素是分明的,即U本身是普通 集合,只是U的子集是模糊集合,故称A为 U的模糊子集,简称模糊集。 ②隶属函数μA(u)是用来说明u隶属于A的程度 的,μA(u)的值越接近于1,表示u隶属于A 的程度越高;当μA(u)的值域变为{0,1}时, 隶属函数μA(u)蜕化为普通集合的特征函数, 模糊集合也就蜕化为普通集合。
' ~ ~ ~ ~ ~
~
0.1 0.1 0.6 0.5 0.7 0.9 0.9 1 C u1 u2 u3 u4
'
0.1 0.5 0.7 0.9 u1 u2 u3 u4
~
0.9 0.4 0.3 0.1 A u1 u2 u3 u4
18
台(support)集合
39
• 例:设X={1,2,3,4},Y={a,b, c},Z={α,β},Χ×Y以及Y×Z上的模糊关 系R与S如图所示。
2.2.2 模糊关系 (1)普通关系:客观世界存在的普遍现象,描 述了事物之间存在的某种联系。 1)集合的直积 • 由两个集合U和V的各自元素u与v组成的序 偶(u,v)的全体集合,称为U与V的直积,记 为U×V,即
U×V={(u,v)|u∈U,v∈V }
• 一般情况下,U×V≠V×U。 2)普通二元关系
A 和 A 分别称为模糊集合 A 的强 截集和弱
正则(normal)模糊集合
[0,) 1 (0, 1]
截集
如果:max A (u )
uU
1 ,则称A为正则模糊集合
凸(convex)模糊集合
A (u1 (1 )u2 ) min( A (u1 ), A (u2 )) u1,u2 U, [0, 1]

模糊逻辑及模糊控制

模糊逻辑及模糊控制

运算:
(1) (2) (3) (4) (5) 析取“∨” T(P∨Q)=T(P)∨T(Q) 合取“∧” T(P∧Q)=T(P)∧T(Q) 取非 “┓” T(┓P)=1-T(P) 蕴含“→” T(P→Q)=1∧[1-T(P)+T(Q)] 等值“ ” T(P Q)=1∧[1-T(P)+T(Q)]∧[1- T(Q)+T(P)]
模糊控制
Fuzzy Control
模糊命题:
概念:含有模糊概念或者具有模糊性的陈述句。 例如:模糊命题 P:“小明学习努力” 若小明“努力”的隶属度为0.8,则命题的真值为: T(P)=μA(x)=0.8 模糊命题的真值为1时表示 P 完全真,为0时为完全假, 模糊命题可看成是普通命题的推广,普通命题是模糊 命题的特例。
运算律:
1 幂等律 : x+x=x ; x· x=x 2 交换律 : x+y=y+x ; x· y=y· x 3 结合律 : (x+y)+z=x+(y+z) ; (x· y)· z=x· (y· z) 4 分配律 : x+(y· z)=(x+y)· (x+z) ; x· (y+z)=x· y+x· z 5 德摩根律 : (x+y)=x ·y ; (x ·y)= x + y 6 双重否定律 : x = x 7 常数运算法则 : 1+x=1 ; 0+x=x ; 1· x=x; 0· x=0 8 吸收律 : x+x· y=x ; x· (x+y)=x
互补率x x 1; x x 0不成立,因为 x x max( x ,1 x ) x x min( x ,1 x )

机器人模糊控制策略研究共3篇

机器人模糊控制策略研究共3篇

机器人模糊控制策略研究共3篇机器人模糊控制策略研究1机器人模糊控制策略研究机器人模糊控制是一种基于模糊逻辑理论的控制方法,该方法将传统的精确控制方法转化为一种基于经验规则的模糊控制方法。

该方法具有非线性、鲁棒性强、适应性好等优点,已经在机器人控制、工业自动化等领域得到广泛应用。

本文将对机器人模糊控制策略进行研究探讨。

一、机器人模糊控制基本原理机器人模糊控制的基本原理是将输入与输出之间的映射关系定义为一组规则,这些规则是由人类专家基于经验和知识构建的。

这些规则将输入映射到具有特定控制输出的隶属函数上,根据这些隶属函数进行模糊推理,进而产生输出控制信号。

该方法的主要特点是处理模糊不确定性、模糊不精确性和模糊模糊性。

二、机器人模糊控制系统建模机器人模糊控制系统的设计要求提高控制准确性并降低差错率,因此需要建立准确的机器人模型,如图1所示。

图1:机器人模型按照该模型设计模糊控制系统,可以将系统分为输入、输出和模糊控制三部分。

其中输入部分主要包括传感器采集的控制变量,如机器人的位置、速度和角度等;输出部分主要包括执行器实现的控制行为,如机器人的转向、前进、加速和减速等;模糊控制部分则负责连接输入和输出,根据设定的模糊规则生成模糊控制信号。

具体步骤可以参照图2进行。

图2:机器人模糊控制系统建模三、机器人模糊控制规则设计机器人模糊控制规则是机器人模糊控制系统的核心部分,直接影响机器人控制性能。

其设计目标是使系统在控制机器人运动过程中能够及时、准确、稳定地响应各种变化因素,把握复杂的动态控制环境。

因此机器人模糊控制规则的设计需要考虑系统的动态响应、误差特性、非线性特性等因素。

机器人模糊控制规则的建立方法有多种,比较流行的方法包括知识表达、经验推理、约简方法、层次分析、聚类分析等。

设计规则时需要根据输入、隶属函数以及输出等要素的规律性,建立输入变量与输出变量之间的映射模型,并对模型的适应性、实用性以及复杂性进行评估。

模糊控制基本原理

模糊控制基本原理

模糊控制的基本原理模糊控制是以模糊集合理论、模糊语言及模糊逻辑为基础的控制,它是模糊数学在控制系统中的应用,是一种非线性智能控制。

模糊控制是利用人的知识对控制对象进行控制的一种方法,通常用“if条件,then结果”的形式来表现,所以又通俗地称为语言控制。

一般用于无法以严密的数学表示的控制对象模型,即可利用人(熟练专家)的经验和知识来很好地控制。

因此,利用人的智力,模糊地进行系统控制的方法就是模糊控制。

模糊控制的基本原理如图所示:模糊控制系统原理框图它的核心部分为模糊控制器。

模糊控制器的控制规律由计算机的程序实现,实现一步模糊控制算法的过程是:微机采样获取被控制量的精确值,然后将此量与给定值比较得到误差信号E;一般选误差信号E作为模糊控制器的一个输入量,把E的精确量进行模糊量化变成模糊量,误差E的模糊量可用相应的模糊语言表示;从而得到误差E的模糊语言集合的一个子集e(e实际上是一个模糊向量)。

再由e和模糊控制规则R(模糊关系)根据推理的合成规则进行模糊决策,得到模糊控制量u为:式中u为一个模糊量;为了对被控对象施加精确的控制,还需要将模糊量u进行非模糊化处理转换为精确量:得到精确数字量后,经数模转换变为精确的模拟量送给执行机构,对被控对象进行一步控制;然后,进行第二次采样,完成第二步控制……。

这样循环下去,就实现了被控对象的模糊控制。

模糊控制(Fuzzy Control)是以模糊集合理论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制。

模糊控制同常规的控制方案相比,主要特点有:(1)模糊控制只要求掌握现场操作人员或有关专家的经验、知识或操作数据,不需要建立过程的数学模型,所以适用于不易获得精确数学模型的被控过程,或结构参数不很清楚等场合。

(2)模糊控制是一种语言变量控制器,其控制规则只用语言变量的形式定性的表达,不用传递函数与状态方程,只要对人们的经验加以总结,进而从中提炼出规则,直接给出语言变量,再应用推理方法进行观察与控制。

模糊推理方法与策略

模糊推理方法与策略

模糊推理方法与策略在处理复杂的问题时,模糊推理方法成为了一种非常有价值的工具,因为它可以帮助人们处理那些难以精确量化的信息。

本文将首先介绍模糊推理的基本概念,然后探讨其常用的方法和策略。

一、模糊推理基本概念模糊推理可以理解为一种通过对不确定或模糊信息进行建模的方式来进行推理的方法。

与传统的二值逻辑相比,模糊逻辑允许更加灵活、更加接近实际情况的推理方式。

模糊逻辑基于隶属度函数的概念,通过将一个事物与一组模糊集合相关联来进行表达。

在模糊推理过程中,首先需要将问题进行模糊化,然后建立模糊规则库。

模糊规则库中包含若干个模糊规则,每个模糊规则由一个条件部分和一个结论部分组成。

条件部分也可以被理解为一个模糊集合,而结论部分也可以被理解为另一个模糊集合。

当一个问题的条件部分与某个模糊规则的条件部分匹配时,就可以使用这个模糊规则的结论部分进行推理,得到一个模糊的结论。

最终的结论是在所有满足条件的模糊规则的结论之间进行综合得到的。

二、常用的模糊推理方法在模糊推理的过程中,有许多常用的方法和策略,其中一些主要思想如下:1. 模糊综合评价法模糊综合评价法是一种通过对不同指标进行模糊化、综合、评价的方法。

在模糊综合评价法中,需要构建指标集合,将指标集合进行隶属度函数化,然后采用不同的综合方法,如加权平均法、乘积平均法等,得到一个综合评价结果。

最后,通过将综合评价结果进行反模糊化处理,得到一个具体的评价值。

2. 模糊控制模糊控制是一种通过对模糊规则进行组合,以达到控制系统状态的目的。

在模糊控制中,将控制系统的输入(如温度、压力等)进行模糊化,然后利用一组模糊规则来推理出控制系统的输出。

最后,将输出进行反模糊化处理,得到控制系统的具体输出值。

3. 模糊聚类模糊聚类是一种基于相似性度量的数据聚类方法。

与传统的聚类方法不同,模糊聚类将一个数据点与不同聚类中心之间的距离看作是一个模糊的概念。

对于一个数据点,它同时会属于多个不同的聚类,每个属于度的大小可以看作是这个数据点与不同聚类的相似程度。

模糊控制原理

模糊控制原理

模糊控制原理模糊控制是一种基于模糊集合理论的控制方法,它利用模糊集合的概念来描述系统的输入、输出和控制规则,以实现对系统的精确控制。

模糊控制原理的核心是模糊推理和模糊逻辑运算,通过对模糊集合的模糊化、规则的模糊化和解模糊化等操作,实现对系统的控制。

本文将介绍模糊控制原理的基本概念、模糊集合的表示和运算、模糊推理方法以及模糊控制系统的设计与应用。

首先,模糊控制原理是建立在模糊集合理论的基础上的。

模糊集合是一种介于传统集合和随机集合之间的数学概念,它用来描述那些难以用精确的数学语言来描述的事物。

模糊集合的表示采用隶属度函数来描述元素与集合之间的隶属关系,而模糊集合的运算则采用模糊交和模糊并运算来实现。

通过模糊集合的表示和运算,可以更加灵活地描述系统的输入、输出和控制规则。

其次,模糊推理是模糊控制原理的核心。

模糊推理是指根据模糊规则和模糊事实进行推理,得出模糊结论的过程。

在模糊推理过程中,需要进行模糊化、规则的模糊化、模糊推理和解模糊化等步骤,以得出系统的控制策略。

模糊推理方法有基于规则的模糊推理、基于模糊关系的模糊推理和基于模糊逻辑的模糊推理等多种形式,可以根据具体的系统需求进行选择。

最后,模糊控制系统的设计与应用是模糊控制原理的重要内容。

模糊控制系统的设计包括模糊控制器的设计、模糊规则的确定和模糊集合的选择等内容,而模糊控制系统的应用涉及到各个领域,如工业控制、机器人控制、交通控制、电力系统控制等。

模糊控制系统的设计与应用需要充分考虑系统的动态特性、非线性特性和不确定性,以实现对系统的精确控制。

总之,模糊控制原理是一种基于模糊集合理论的控制方法,它利用模糊推理和模糊逻辑运算来实现对系统的精确控制。

模糊控制原理的核心是模糊推理和模糊逻辑运算,通过对模糊集合的模糊化、规则的模糊化和解模糊化等操作,实现对系统的控制。

模糊控制系统的设计与应用涉及到各个领域,需要充分考虑系统的动态特性、非线性特性和不确定性,以实现对系统的精确控制。

模糊控制介绍

模糊控制介绍

模糊控制介绍附件:一、模糊控制概况模糊逻辑控制(Fuzzy Logic Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。

1965年,美国的L.A.Zadeh创立了模糊集合论;1973年他给出了模糊逻辑控制的定义和相关的定理。

1974年,英国的E.H.Mamdani 首先用模糊控制语句组成模糊控制器,并把它应用于锅炉和蒸汽机的控制,在实验室获得成功。

这一开拓性的工作标志着模糊控制论的诞生。

模糊控制实质上是一种非线性控制,从属于智能控制的范畴。

模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。

模糊控制的发展最初在西方遇到了较大的阻力;然而在东方尤其是在日本,却得到了迅速而广泛的推广应用。

近20多年来,模糊控制不论从理论上还是技术上都有了长足的进步,成为自动控制领域中一个非常活跃而又硕果累累的分支。

其典型应用的例子涉及生产和生活的许多方面,例如在家用电器设备中有模糊洗衣机、空调、微波炉、吸尘器、照相机和摄录机等;在工业控制领域中有水净化处理、发酵过程、化学反应釜、水泥窑炉等的模糊控制;在专用系统和其它方面有地铁靠站停车、汽车驾驶、电梯、自动扶梯、蒸汽引擎以及机器人的模糊控制等。

二、模糊控制基础模糊控制的基本思想是利用计算机来实现人的控制经验,而这些经验多是用语言表达的具有相当模糊性的控制规则。

模糊控制器(Fuzzy Controller,即FC)获得巨大成功的主要原因在于它具有如下一些突出特点:模糊控制是一种基于规则的控制。

它直接采用语言型控制规则,出发点是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用。

由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对那些数学模型难以获取、动态特性不易掌握或变化非常显著的对象非常适用。

模糊PID控制算法

模糊PID控制算法

模糊PID控制算法模糊控制是一种基于模糊逻辑的控制策略,可以在一定程度上解决传统PID控制在复杂、非线性系统中的不足。

模糊PID控制算法是将传统PID控制与模糊控制相结合的一种控制方法。

模糊控制通过模糊集合、模糊规则和模糊推理等概念来进行控制决策,将模糊集合表示为隶属度函数的形式。

在模糊PID控制中,输入信号和输出信号被表示为模糊集合,以反映系统的模糊特性。

1.设计模糊控制器的输入和输出变量,以及它们的模糊集合。

输入变量常根据控制系统的误差、误差变化率和积分误差来选取,输出变量为控制器输出。

2.设计模糊规则库。

根据经验和专家知识,建立模糊规则库,其中规则的形式是:“如果...,那么...”。

规则库中的模糊规则由若干模糊规则组成,每条规则都包含一个模糊逻辑表达式。

3.构建模糊推理机制。

模糊推理是模糊控制的核心,它是根据输入信号的隶属度函数和模糊规则库来获得输出信号的过程。

常见的模糊推理方法有最大隶属度法、最小隶属度法和平均隶属度法。

4.确定模糊控制器的输出。

通过模糊推理机制计算出的输出隶属度函数,用去模糊化方法将其转化为实际的控制量。

5.将模糊控制器输出与系统输出进行比较,计算误差,并利用PID控制算法进行调整产生新的控制量。

1.能够处理非线性系统。

由于模糊控制具有非精确性和模糊性,可以更好地适应非线性系统的特性。

2.具有适应性。

模糊PID控制算法具有自适应调节的能力,可以针对不同的系统和工况进行自动调整。

3.具有鲁棒性。

模糊控制通过引入模糊集合和模糊规则来处理噪声和干扰,提高了控制系统的鲁棒性。

4.高效性能。

模糊PID控制算法结合了PID控制的优点,能够在快速响应和稳定控制之间找到一个平衡。

然而,模糊PID控制算法也存在一些不足之处:1.设计复杂度高。

模糊PID控制需要设计模糊集合、模糊规则库和模糊推理机制,设计过程较为复杂,需要专业的知识和经验。

2.性能依赖于模糊规则。

模糊控制的性能很大程度上依赖于模糊规则的设计和选择,不合理的规则设计可能导致控制性能下降。

先进控制算法与应用

先进控制算法与应用

先进控制算法与应用控制算法是现代自动化领域的重要研究方向之一,它可以帮助我们实现对系统的精确控制和优化。

随着科技的不断发展,越来越多的先进控制算法被提出并应用到各个领域,使得自动化系统的性能得到了极大的提升。

本文将就几种先进控制算法的原理和应用进行介绍。

一、模糊控制算法模糊控制算法是一种基于模糊逻辑的控制方法,它能够有效地处理模糊和不确定性的问题。

模糊控制算法以模糊规则为基础,将模糊量化的输入与先验知识进行匹配,从而生成系统的控制策略。

它广泛应用于工业过程控制、机器人控制和交通管理等领域,可以有效地提高系统的鲁棒性和适应性。

二、自适应控制算法自适应控制算法是一种能够自动调整控制参数的方法,它能够根据系统的动态响应和外部环境的变化实时地更新控制策略。

自适应控制算法的核心思想是根据系统的误差信号和滞后信号来推导出适应性调整参数的规则,从而实现对系统的精确控制。

自适应控制算法广泛应用于飞行器、电力系统和化工过程等领域,能够有效地提高系统的控制性能和适应能力。

三、模型预测控制算法模型预测控制算法是一种基于系统模型的控制策略,它通过迭代地调整控制输入来使系统的输出与期望输出趋于一致。

模型预测控制算法的核心思想是将系统建模为一个离散时间动态模型,根据模型的预测结果来决定最优控制输入。

模型预测控制算法在化工过程控制、智能交通系统和机械控制等领域有着广泛的应用,并取得了显著的效果。

四、神经网络控制算法神经网络控制算法是一种基于人工神经网络的控制方法,它能够模拟人类大脑的学习和适应能力,实现对复杂系统的自适应控制。

神经网络控制算法通过大量的训练数据和反馈机制来不断优化神经网络的参数,从而实现对系统的控制。

神经网络控制算法在机器人控制、医疗诊断和金融市场预测等领域具有广泛的应用前景。

五、总结先进控制算法是自动化领域的研究热点,它能够帮助我们实现对系统的精确控制和优化。

模糊控制算法、自适应控制算法、模型预测控制算法和神经网络控制算法是目前应用最广泛的几种先进控制算法。

变流器控制策略

变流器控制策略

变流器控制策略一、引言变流器是一种将直流电能转换为交流电能或将交流电能转换为直流电能的装置。

它在电力系统中发挥着重要的作用,广泛应用于电力变换、电机控制等领域。

变流器的控制策略对其性能和效率具有重要影响,因此,研究和优化变流器的控制策略具有重要意义。

二、基本原理变流器的控制策略主要包括电压控制、电流控制和功率控制三种模式。

1. 电压控制模式电压控制模式是指通过调节变流器输出电压的大小来控制负载电压的模式。

在电压控制模式下,变流器根据负载电压的变化调整输出电压的大小,以保持负载电压的稳定性。

常见的电压控制策略有:电压串级控制、电流源控制和频率导向控制等。

2. 电流控制模式电流控制模式是指通过调节变流器输出电流的大小来控制负载电流的模式。

在电流控制模式下,变流器根据负载电流的变化调整输出电流的大小,以保持负载电流的稳定性。

常见的电流控制策略有:电流串级控制、电压源控制和功率导向控制等。

3. 功率控制模式功率控制模式是指通过调节变流器输出功率的大小来控制负载功率的模式。

在功率控制模式下,变流器根据负载功率的变化调整输出功率的大小,以保持负载功率的稳定性。

常见的功率控制策略有:功率串级控制、电压/电流源控制和频率/电压导向控制等。

三、控制策略优化为了提高变流器的性能和效率,需要对其控制策略进行优化。

1. 多级控制策略多级控制策略是指将多个控制策略组合起来,以实现更精确的控制效果。

例如,可以将电压控制和电流控制相结合,通过同时调节输出电压和电流来控制负载的电压和电流。

多级控制策略可以提高变流器的控制精度和响应速度,从而提高系统的稳定性和可靠性。

2. 模糊控制策略模糊控制策略是一种基于模糊逻辑的控制方法,它能够处理不确定性和模糊性问题。

在变流器控制中,模糊控制策略可以根据实际工况和负载要求,调节变流器的输出电压、电流和功率,以实现最佳控制效果。

模糊控制策略具有较强的鲁棒性和适应性,能够适应不同工况和负载变化。

模糊控制与模糊策略PPT课件

模糊控制与模糊策略PPT课件
在xi与xj作对比时,用rij表示xi比xj的优先程度,并且要求rij满足 ① rii = 1(便于计算); ② 0≤rij≤1; ③ 当i≠j 时,rij + rji = 1. 这样的rij组成的矩阵R = (rij)n×n称为模糊优先矩阵, 由此矩阵确定的关系称为模糊优先关 系.
第40页/共76页
第1页/共76页
• 人的控制行为,遵循控制与反馈控制的思想, 人的手动控制决策可以用语言描述,形成一系 列条件语句,即控制规则,微机程序可以实现 这些控制规则,微机充当控制器,微机取代人 对对象实现控制。
• 描述控制规则的条件语句中的一些词,如“较 大”、“稍小”、“偏高”,等,都具有一定 的模糊性。因此用模糊集合来描述这些条件语 句,组成模糊控制器。
汽车 司 机: 通 过一 些 不精 确 的观 察 ,执 行 一些不精确的控制,达到准确停车的目的。
控制 论 的创 始 人维 纳 ,描 述 人与 外 部环 境 相互作用时的关系:人不断地从外界(对象) 获取信息,再存储和处理信息,并给出决策 反作用于外界(输出),从而达到预期目标。
5/27/2021
1
例2 设有6名运动员U ={u1, u2, u3, u4, u5, u6 }参加五项全能比赛, 已知他们每项比赛的成 绩如下:
200m跑 1500m跑 跳远 掷铁饼 掷标枪
u1, u2, u4, u3, u6, u5; u2, u3, u6, u5, u4, u1; u1, u2, u4, u3, u5, u6; u1, u2, u3, u4, u6, u5; u1, u2, u4, u5, u6, u3;
541/27/2021
模糊二元对比决策的方法与步骤是:
⑴ 建立模糊优先关系.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22
❖ 4.模糊推理和模糊量的非模糊化处理(模糊 决策,模糊判决) (1)MIN-MAX-重心法
考虑以下模糊 推理形式。
4/25/2020
^_^
23
由各模糊规则得的推理结果 最终结论由综合推理结果得到 模糊结论C’的“重心”计算如下
4/25/2020
^_^
24
4/25/2020
^_^
25
(2)代数积——加法——重心法 用代数积取代MIN,用加法取代MAX。
得到模糊控制量 。u~
❖ 模糊控制量清晰化,对对象进行一步控制,等到
第二次采样。
4/25/2020
^_^
6
❖ 范例:某电热炉用于对金属零件的热处理,要求保持炉 温600度恒定不变。
根据人工经验,控制规则可用语言描述如下。
若炉温低于600度则升压,低得越多升压越高;
若炉温高于600度则降压,高得越多降压越低;
4/25/2020
^_^
16
(2)定义各模糊变量的模糊子集:确定模糊子集 隶属函数曲线的形状
X={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}
4/25/2020
^_^
17
则模糊变量A的模糊子集为 A=0.2/2+0.7/3+1/4+0.7/5+0.2/6
当论域中元素总数为模糊子集总数二到三 倍时,模糊子集对论域的覆盖程度较好。

化处理
4/25/2020
^_^
5
❖ 一步模糊控制算法:微机经中断采样获取被控制 量的精确值,然后将此量与给定值比较得到误差 信号E,一般将误差信号E作为模糊控制器的一个 输入量。
❖ 将误差信号E模糊量化,用相应的模糊语言表示。
❖ 得到误差E的模糊语言集合的一个子集 e~,再和模
糊控制规则 R ~,根据推理的合成规则进行模糊决策,
4/25/2020
Байду номын сангаас
^_^
10
4/25/2020
^_^
11
❖ 5. 模糊决策 模糊控制器的控制作用取决于控制量,即
等于误差的模糊向量e和模糊关系的合成,假 设e=PS,则
4/25/2020
^_^
12
❖ 6. 控制量的模糊量转化为精确量 上面求得的控制量u为模糊向量,可写为:
u=(0.5/-3)+(0.5/-2)+(1/-1)
❖ 描述控制规则的条件语句中的一些词,如“较 大”、“稍小”、“偏高”,等,都具有一定 的模糊性。因此用模糊集合来描述这些条件语 句,组成模糊控制器。
4/25/2020
^_^
4
模糊控制的基本原理
A/D 模糊控制器 D/A
传感器 被控对象 执行机构
计算控 制变量
模糊量 模糊控 化处理 制规则
模糊推 非模糊
^_^
2
汽车司机:通过一些不精确的观察,执行一 些不精确的控制,达到准确停车的目的。
控制论的创始人维纳,描述人与外部环境相 互作用时的关系:人不断地从外界(对象) 获取信息,再存储和处理信息,并给出决策 反作用于外界(输出),从而达到预期目标。
4/25/2020
^_^
3
❖ 人的控制行为,遵循控制与反馈控制的思想, 人的手动控制决策可以用语言描述,形成一系 列条件语句,即控制规则,微机程序可以实现 这些控制规则,微机充当控制器,微机取代人 对对象实现控制。
4/25/2020
^_^
21
一般情况,如果把[a,b]区间的离散量x,转换为 [-n,+n]区间的离散量y—模糊量,其中,n不小于2, 则
Y=2n[x-(a+b)/2]/(b-a)
(2)将某一区间的精确量x模糊化成这样一个子集,在 点x处隶属度为1,其余各点的隶属度为0或小于1
4/25/2020
^_^
+(0.5/0)+(0.5/1)+(0/2)+(0/3) 对上式控制量的模糊子集按照隶属度最大 原则,取控制量为-1级,即当炉温偏高时,应 降一点电压。
4/25/2020
^_^
13
模糊控制器设计的基本方法
❖ 1. 模糊控制器的结构设计 确定模糊控制器的输入、输出变量
(1)人机系统中的信息量:误差、误差变化、 误差变化的变化,以及人控制动作的输出量 (2)模糊控制器的输入、输出变量
4/25/2020
模糊控制 与模糊决策
^_^
1
模糊控制的基本思想
范例:汽车停在拥挤的停车场上两辆车之间的 一个空 隙处
精确方法:车C上的一个固定参考点,车C的 方位,建立车的状态方程和运动方程;临近两 辆车为约束,停着的车之间的空隙为允许的终 端状态集合。
缺点:约束多,难于求解。
4/25/2020
4/25/2020
^_^
14
4/25/2020
^_^
15
❖ 2. 模糊控制规则的设计 (1)选择输入输出变量的词集 误差: {负大,负中,负小,零,正小,正中,正大} {NB,NM,NS,O,PS,PM,PB} 误差变化 {负大,负中,负小,负零,正零,正小,正中,正大} {NB,NM,NS,NO,PO,PS,PM,PB}
4/25/2020
^_^
26
4/25/2020
^_^
27
(3)模糊加权型推理法
4/25/2020
^_^
28
4/25/2020
^_^
29
(4)函数型推理法
4/25/2020
^_^
30
(5)加权函数型推理法
4/25/2020
4/25/2020
^_^
8
4/25/2020
^_^
9
❖ 3.模糊控制规则的语言描述 (1)若e负大,则u正大; (2)若e负小,则u正小; (3)若e为零,则u为零; (4)若e正小,则u负小; (5)若e正大,则u负大;
❖ 4.模糊控制规则的矩阵形式:模糊控制规则可以表 示为从误差论域X到控制量论域Y的模糊关系R
若炉温等于600度则维持不变
❖ 1.模糊控制器的输入输出变量:e(k)=t0-t(k)
输出为触发电压u的变化
❖ 2.输入输出变量的模糊语言描述
{NB,NS,O,PS,PB}
误差e的论域为X,u的论域为Y,把其量化为7个等级
X=Y={-3,-2,-1,0,1,2,3}
4/25/2020
^_^
7
假设语言变量的隶属函数曲线如下。
4/25/2020
^_^
18
(3).建立模糊控制器的控制规则:通过学习、试验以及 长期经验积累而逐渐形成的技术知识集合。 若A则B否则C
若A则B且若A则C
4/25/2020
^_^
19
❖ 模糊规则表
4/25/2020
^_^
20
❖ 3.精确量的模糊化处理
(1)把精确量离散化,如把[-6,+6]之间变化 的连续量分为7个档次,每一档对应一个模糊 集。
相关文档
最新文档