中考数学复习50个知识点专题专练:41 开放型问题

合集下载

中考数学复习专题-开放性问题(含详细参考答案)

中考数学复习专题-开放性问题(含详细参考答案)

中考数学复习专题-开放性问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。

三、中考考点精讲考点一:条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1 (义乌市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).考点:全等三角形的判定。

810360专题:开放型。

分析:由已知可证∠ECD﹦∠FBD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF 或∠DEC=∠DFB等);解答:解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).(2)证明:在△BDF和△CDE中∵∴△BDF≌△CDE.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2 (宁德)如图,点E、F分别是AD上的两点,AB∥CD,AB=CD,AF=DE.问:线段CE、BF有什么数量关系和位置关系?并加以证明.考点:全等三角形的判定与性质;平行线的性质;平行线的判定与性质。

初中数学专题复习开放性题

初中数学专题复习开放性题
特点
开放性题目具有条件不确定性、解题方法多样性、答案不唯一性和思维发散性 等特点。
特点
条件不确定性
开放性题目给出的条件往往是不确定的,需要学 生根据题意自行确定或补充条件,然后进行解答 。
答案不唯一性
由于开放性题目没有固定的解题模式和唯一的答 案,因此学生可以根据自己的理解和思考得出不 同的答案,这有助于培养学生的个性和创造力。
结论开放题的解题方法与技巧
总结词
详细描述
结论开放题要求解题者根据给定 的条件或问题,得出不同的结论 或答案。
在解决结论开放题时,需要全面 考虑各种可能性,得出不同的结 论或答案。可以通过分类讨论、 穷举法等方式进行探索。
示例
题目给出条件“一个四边形ABCD中 ,AB=CD且∠A=∠D”,要求我们得 出不同的结论或答案。我们可以根据 条件进行分类讨论,如考虑四边形 ABCD是平行四边形、等腰梯形等情 况,得出不同的结论或答案。
注重题目设计的多样性和层次性
设计多样化的题目
为了满足不同学生的需求,教师可以设计多样化的开放性题目,包括选择题、填空题、解答题等,以 满足不同层次学生的需求。
设计有层次的题目
教师可以根据学生的不同水平,设计不同难度的开放性题目,从简单到复杂,逐步提高学生的解题能 力。这样可以更好地满足学生的学习需求,提高他们的学习效果。
培养综合素质
解决开放性题目不仅需要 数学知识,还需要学生具 备一定的观察力、分析力 和表达能力等综合素质。
06 开放性题目的案例分析
条件开放题案例分析
总结词
条件开放题是指题目中的条件不完整或不明 确,需要学生根据题意自行补充或推导。
详细描述
条件开放题通常会给出一些已知条件,但这 些条件不足以直接得出结论,需要学生通过 观察、分析和推理来补充或推导条件,从而 解决问题。例如,给出一个三角形,但只给 出其中两条边的长度,让学生求出第三条边 的长度或判断三角形的形状。

九年级数学中考专题系列-开放型专题辅导全国通用

九年级数学中考专题系列-开放型专题辅导全国通用

开放性问题数学开放性问题是指那些条件不完备、结论不确定(或不明确)、方法不惟一的数学问题.此类试题是能使学生展开思维去发散、去发现、去创新的数学问题.中考将开放性问题作为命题创新的突破口,是近几年中考数学命题的一大特点,而且考查力度逐年加大.一、数学开放性问题的类型数学开放性问题的具体表现形式多种多样,依据不同的标准有不同的分类.一般有以下几种分类方法. 1、按问题要求的发散倾向来分,有情境开放、条件开放、策略开放、结论开放、综合开放等; 2、按解题目标的操作模式来分,有探索类,讨论、迁移类等;3、按学习过程中价值取向来分,有知识巩固、技能考查、能力检测、信息迁移等. 二、数学开放性问题的特点1、强调过程的探究性,指数学开放性问题给学生提供了广阔的思维空间,能够激发学生创新意识,可使学生积极参与创造性活动,开发学生创造潜能;2、突出情境模拟的新颖性,指数学开放性问题所附设的材料新、条件复杂、结论多样、解决问题的思路和方法新颖而独特;3、展示问题形式的生动性,指数学开放性问题的开放,可能在于条件、结论、解法驰可能在于问题的设问角度、方式的变化;4、注重问题解决的发散性,指解题者在解决问题过程中,一方面需要动用多种思维方法,另一方面需要多角度、多侧面地进行分析研究,以获取解决问题的方法,并从中选择最佳的解题途径.三、数学开放性问题的解题策略 1、执因索果,直接探求【例1】(1)写出一个两实数根符号相反的一元二次方程:__________________.(2)请你写一个能先提公因式、再运用公式来分解因式的三项式,并写出分解因式的结果. (3)请写出一个图象在第二、四象限的反比例函数关系式_____________ (4)如图,将一X 等腰直角三角形纸片沿中位线剪开可以拼成不同形状的四边形,请写出其中一种四边形的名称. 【解析】(1)答案不唯一:如2230x x +-= (2)答案不唯一,如2x x 42++2=2(x +1)2第(4)题图(3)答案不唯一,如:y =-2x(4)平行四边形、矩形、等腰梯形(三种中任选一种即可)【点评】 这几道小的开放性填空题都是由因索果,根据所给的限制条件,可以探究出很多开放的结果.我们在处理此类题时注意的是所写的答案尽量简洁、贴近题意,不提倡过分的标新立异.【例2】在市区内,我市乘坐出租车的价格y (元)与路 程x (km )的函数关系图象如图1所示. 请你根据图象写出两条信息.【解析】在0到2km 内都是5元;2km 后,每增加加1元. (答案不唯一)【点评】这类识图写信息的开放性问题近年来是命题热点,解决的关键是,认真看准图形中的关键点所对应的横坐标与纵坐标的意义.【例3】某校八年级共有150名男生,从中随机抽取30名男生在“阳光体育活动”启动日进行“引体向上”测试,下表是测试成绩记录(单位:个):(1)我们已经会列频数分布表、画条形统计图、折线统计图和扇形统计图.为了能让体育老师一目了然知道整个测试情况,请你选择一种..合适的统计表或统计图整理表示上述数据; (2)观察分析(1)中的统计表或统计图,请你写出两条从中获得的信息: ①______________________________________________________ ②______________________________________________________ 【解析】(1)选择条形统计图图1绘图略.(2)获得的信息如:成绩为五个的有3人,占10%等等.【点评】从统计图表中获取相关的信息也是我们识图的一个重要能力,解决此类问题的技巧是,抓住特征数据进行描述,描述时注意结合题目的问题背景展开.【例4】如图1,线段PB 过圆心O ,交圆O 于A B ,两点,PC 切圆O 于点C ,作AD PC ⊥,垂足为D ,连结AC BC ,.(1)写出图1中所有相等的角(直角除外),并给出证明;(2)若图1中的切线PC 变为图2中割线PCE 的情形,PCE 与圆O 交于C E ,两点,AE 与BC 交于点M ,AD PE ⊥,写出图2中相等的角(写出三组即可,直角除外);【解析】(1)图1中相等的角有:ACD ABC BAC CAD ∠=∠∠=∠,.证明:连结OC ,则OC PC ⊥,AD PC ⊥,AD OC ∴∥,CAD OCA ∴∠=∠,又OA OC =,BAC OCA ∠=∠, BAC CAD ∴∠=∠.又AB 为直径,9090ACB BAC B ∠=∴∠+∠=,, 90CAD ACD ACD ABC ∠+∠=∴∠=∠,.(2)ACD ABE ABC AEC BAE BCE BEA BCA CBE CAE ∠=∠∠=∠∠=∠∠=∠∠=∠,,,,(三组即可)【点评】第(1)问寻找所有相等的角这种问题的解决一定要注意分类思想和有序化的处理方法,不少同学图1图2总是漏解或重解,其原因就是没有一种有序的思路,比如从某字母为顶点有序的出发依次寻找.第(2)问探究相等的角时,主要知识运用是圆中角的关系、相似三角形性质及直角三角形锐角关系的应用.2、执果索因,反溯探求【例5】(1)如果一个立体图形的主视图为矩形,则这个立体图形可能是(•只需填上一个立体图形).(2)(2007年某某市)如图,点D E ,分别在线段AB AC ,上,BE CD ,相交于点O AE AD =,,要使ABE ACD △≌△,需添加一个条件是(只要写一个条件).【解析】(1)答案不唯一如:长方体、圆柱等;(2)B C ∠=∠,AEB ADC ∠=∠,CEO BDO ∠=∠,AB AC BD CE ==,(任选一个即可) 【点评】 由所给的结果出发,找寻适合的条件,这种逆向思维方式在这种开放性问题中得好较好的考查.当然,准确而快速地得到合适的条件还要靠我们对具体知识或某数学模型的熟练程度.【例6】已知点()P x y ,位于第二象限,并且4y x +≤,x y ,为整数,写出一个..符合上述条件的点P 的坐标:.【解析】(13)-,,(12)-,,(11)-,,(21)-,,(22)-,,(31)-,六个中任意写出一个即可.【点评】这道题要求我们根据所给的要求,探究符合条件的点P 的坐标,结果开放,在寻找过程 中,我们注意严格按照所限制的要求去寻找,不能顾此失彼,得到一个符合条件的坐标后再代入题中逐个验证,确保不出差错.【例7】X 强同学为了调查全市初中生人数,他对自己所在城区人口和城区初中生人数作了调查:城区人口约3万,初中生人数约1200.全等人口实际约300万,为此他推断全市初中生人数为12万.但市教育局提供的全市初中生人数约8万,与估计数据有很大偏差.请你用所学的统计知识,找出其中错误的原因______________.【解析】本题是一道开放性试题,既然推断存在偏差,说明问题是出在估计的可靠性上,进而言之,在样本选取上出现了问题.原因可能如下:样本选取过少;或样本不具代表性、广泛性、随机性等等(只要答对其中一项即可)样本在总体中所占比例太小;或样本不具代表性、广泛性、随机性;(只要答对其中一项均可得分)【点评】近年来对统计内容的考查已经摆脱了单纯的数据运算,而是注重考查统计知识的理解和统计思想OC EA DB图在现实生活中的应用,重要引导学生树立统计意识、形成统计观念,学会分析、学会明理、学会应用. 【例8】如图①,在平面直角坐标系中,点A 的坐标为(12),,点B 的坐标为(31),,二次函数2y x =的图象记为抛物线1l .平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的一个抛物线的函数表达式:(任写一个即可).【解析】有多种答案,符合条件即可.例如21y x =+,2y x x =+,2(1)2y x =-+或223y x x =-+,2(1)y x =,2(1y x =-.【点评】本题有多种探究思路,如从抛物线向上平移一定会经过点A ,而不会经过点B 可以探究到相应的解析式,再如假设抛物线的顶点平移到A 处,也可得到解析式2(1)2y x =-+等.只有不过分的标新立异,解答本题难度不大.3、关注过程,考查方法【例9】(1)学习和研究《反比例函数的图象与性质》《一次函数的图象与性质》时,用到的数学思想方法有、(填2个即可).(2)学数学不仅仅是听课和解题,三年初中数学学习期间,教材中给你留下深刻印象的选学内容、数学活动、课题学习有、、(填3个即可).【解析】(1)填数形结合、分类讨论、类比、从特殊到一般、化归、函数方程思想等中的2个即可; (2)填教材中的选学内容(如阅读与思考、观察与猜想、实验与探究、信息技术应用等)、数学活动、课x图①题学习等的标题,只要意思对即可.【点评】此题针对学习过程中对数学思想方法重视不够、体会和落实不到位等现象,希望考查学生学习函数学习时对所用到的数学思想方法是否清楚,增强从数学思想方法的角度看待问题,当然为了降低难度,答题时设置成了开放题,只要求答出其中2个即可.“学数学不仅仅是听课和解题”引导学生正确处理课内学习与课外学习的关系,重视有用的、学生能接受的、生动活泼的数学知识和学生数学素养提提高.体现了对整个数学学习过程的关注.4、探索结论,自选解答 【例10】给出三个多项式:2221111,31,,222x x x x x x +-++- 请你选择其中两个进行加法运算,并把结果因式分解.【解析】如选择多项式:22111,3122x x x x +-++, 则:22211(1)(31)4(4)22x x x x x x x x +-+++=+=+.【点评】观察所给的三个多项式,选择两个进行加法运算后再进行因式分解,结论开放,有效的考查了整式的加减及因式分解,能充分还学习主动权给学生,是一道设置新颖的中考试题.【例11】甲、乙两人骑自行车前往A 地,他们距A 地的路程(km)s 与行驶时间(h)t 之间的关系如图13所示,请根据图象所提供的信息解答下列问题: (1)甲、乙两人的速度各是多少?(2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个,并展示求解思路).图13【解析】(1)5020(km /h)2.5V ==甲,6030(km /h)2V ==乙; (2)5020S t =-甲(0 2.5t ≤≤)或6030S t =-乙(02t ≤≤)(答对一个即可).如,求解甲距A 地的路程s 与行驶时间t 之间的函数关系式时,我们考虑到甲的图象是一条线段,是一次函数图象一部分,可以选取上面两点坐标应用二元一次方程组来确定待定系数. 把(2.5,0)(0,50)代入.S kt b =+解得5020S t =-甲(0 2.5t ≤≤).【点评】 本题也是一道识图问题,在确定一个函数解析式时给了学生以选择权,这在紧X 的考试中,让学生稍稍轻松,是一道值得提倡的命题设计.【例12】如图,在△ABC 中,AB =AC ,D 是BC 边上的一点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,添加一个条件,使DE = DF ,并说明理由. 解: 需添加条件是. 理由是:【解析】需添加的条件是:BD =CD ,或BE =CF .添加BD =CD 的理由:如图,∵ AB =AC ,∴∠B =∠C . 又∵ DE ⊥AB ,DF ⊥AC ,∴∠BDE =∠CDF . ∴ △BDE ≌△CDF (ASA). ∴ DE = DF . 添加BE =CF 的理由: 如图,∵ AB =AC , ∴ ∠B =∠C .∵ DE ⊥AB ,DF ⊥AC ,∴∠BED =∠CFD . 又∵ BE =CF , ∴ △BDE ≌△CDF (ASA). ∴DE = DF .【点评】本题考查了等腰三角形底边上哪一点到两腰距离相等,熟悉等腰三角形性质就能很快知道,只要D 为底边中点即可,这是从等腰三角形性质出发的一种思路;也可以从全等三角形的性质入手,如果我们知道BE=CF ,也可以根据直角三角形全等的来获得问题的解决.5、特例引路,探究说明【例13】按右图所示的流程,输入一个数据x ,根据y 与x 的关系式就输出一个数据y ,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大. (1)若y 与x 的关系是y =x +p (100-x ),请说明:当p =12时,这种变换满足上述两个要求; (2)若按关系式y =a (x -h )2+k (a >0)将数据进行变换,请写出一个满足上述要求的这种关系式.(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)【解析】(1)当P=12时,y=x +()11002x -,即y=1502x +. ∴y 随着x 的增大而增大,即P=12时,满足条件(Ⅱ)又当x=20时,y=1100502⨯+=100.而原数据都在20~100之间,所以新数据都在60~100之间,即满足条件(Ⅰ),综上可知,当P=12时,这种变换满足要求;(2)本题是开放性问题,答案不唯一.若所给出的关系式满足:(a )h ≤20;(b )若x=20,100时,y 的对应值m ,n 能落在60~100之间,则这样的关系式都符合要求. 如取h=20,y=()220a x k -+,∵a >0,∴当20≤x ≤100时,y 随着x 的增大, 令x=20,y=60,得k=60 ①令x=100,y=100,得a ×802+k=100 ②由①②解得116060a k ⎧=⎪⎨⎪=⎩, ∴()212060160y x =-+. 【点评】 本题以程序问题为背景,第(1)问以一次函数为引子,拓展到第(2)问中的开放性问题,这种特例引路,探究说明问题,要认真阅读特例,再去探究新问题是否符合题意,类比意识很重要.6、有效探究,细心求证【例14】已知:如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E ,(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE【解析】(1)证明:在△A BC 中, AB =AC ,AD ⊥BC .∴∠BAD =∠DAC .∵ AN 是△ABC 外角∠CAM 的平分线, ∴ MAE CAE ∠=∠.∴∠DAE =∠DAC +∠CAE =⨯21180°=90°.又∵AD ⊥BC ,CE ⊥AN , ∴ADC CEA ∠=∠=90°, ∴ 四边形ADCE 为矩形.(2)例如,当AD=12BC 时,四边形ADCE 是正方形.证明:∵AB=AC ,AD ⊥BC 于D .∴DC=12BC .又 AD=12BC ,∴DC=AD .由(1)四边形ADCE 为矩形,∴矩形ADCE 是正方形.【点评】 第(1)问已证得矩形的基础上,添加一个适当的条件推证出正方形,没有多大的难度.这样的题型,只要充分分析矩形与正方形之间还差什么有效的条件即可,即添加邻边相等就可以证明了,这样我N(例14)们结合等腰三角形ABC 的性质,只要AD=12BC 时,四边形ADCE 是正方形.【例15】如图,把一副三角板如图甲放置,其中90ACB DEC ==∠∠,45A =∠,30D =∠,斜边6cm AB =,7cm DC =,把三角板DCE 绕点C 顺时针旋转15得到D CE ''△如图乙.这时AB 与CD '相交于点O ,D E ''与AB 相交于点F . (1)求OFE '∠的度数; (2)求线段AD '的长.(3)若把三角形D CE ''绕着点C 顺时针再旋转30得D CE ''''△,这时点B 在D CE ''''△的内部、外部、还是边上?证明你的判断.【解析】(1)315∠=,90E '∠=,12∠=∠,175∴∠=.又45B ∠=,14575120OFE B '∴∠=∠+∠=+=.(2)连结AD '.120OFE '∠=,60D FO '∴∠=,又30CD E ''∠=,490∴∠=.又AC BC =,6AB =,3OA OB ∴==,90ACB ∠=,116322CO AB ∴==⨯=. 又7CD '=, A C B ED(甲) E 'A CB OFD ' (乙)C '24题答图734OD CD OC ''∴=-=-=.在Rt AD O '△中,5AD '==. (3)点B 在D CE ''''△内部.理由如下:设BC (或延长线)交D E ''''于点B '.153045B CE '''∠=+=,在Rt B CE '''△中,2CB '''==,又32CB =<,即CB CB '<, ∴点B 在D CE ''''△内部.【点评】本题中,主要变化经过程是把三角板CDE 绕点C 顺时针旋转.边操作,边设置问题,从而,实施了图形变换与问题探究的有机结合.动手练一练1.用同一种正多边形地板砖密铺地面,为铺满地面而不重叠,那么这种正多边形的地板砖可以是正边形.(只需写出一种即可)1.三(或四,或六)2.小敏中午放学回家自己煮面条吃.有下面几道工序:①洗锅盛水2分钟;②洗菜3分钟;③准备面条及佐料2分钟;④用锅把水烧开7分钟;⑤用烧开的水煮面条和菜要3分钟.以上各道工序,除④外,一次只能进行一道工序.小敏要将面条煮好,最少用 __分钟.2.经分析,安排工序为①、(④②③)、⑤共计12分钟. 3.如图,在ABC △和DCB △中,AB DC =,若不添加任何字母与辅助线,要使ABC DCB △≌△,则还需增加的一个条件是.4.如图,在ABCD 中,点E F ,分别在BC AD ,上,在不添加辅助线的情况下,请你添加一个..适当的条件,使ABE △和CDF △全等,你添加的条件是,并给出你的证明.3.ABC DCB ∠=∠或AC DB =均可. 4.解:①DE DF CG +=证明:连结AD ,则ABC ABD ACD S S S =+△△△,B即111222AB CG AB DE AC DF =+ 因为AB AC =,所以CG DE DF =+②当点D 在BC 延长线上时,①中的结论不成立,有DE DF CG -=. 理由:连结AD ,则ABD ABC ACD S S S =+△△△,即有,111222AB DE AB CG AC DF =+ 因为AB AC =,所以DE CG DF =+,即DE DF CG -=. 当D 点在CB 的延长线上时,则有DF DE CG -=,说明方法同上.5.如图1,2所示,将一X 长方形的纸片对折两次后,沿图3中的虚线AB 剪下,将AOB △完全展开.(1)画出展开图形,判断其形状,并证明你的结论;(2)若按上述步骤操作,展开图形是正方形时,请写出AOB △应满足的条件.AG E BDFAG BFDC EC图1图2图3ABO5.(1)展开图如图所示,它是菱形.(展开图只要求画出示意图即可.) 证明:由操作过程可知OA OC =,OB OD =,∴四边形ABCD 是平行四边形.又OA OB ⊥,即AC BD ⊥,∴四边形ABCD 是菱形.(2)AOB △中,45ABO =∠(或45BAO =∠或OA OB =).6.将图(1)中的矩形ABCD 沿对角线AC 剪开,再把ABC △沿着AD 方向平移,得到图(2)中的A BC ''△,除ADC △与C BA ''△全等外,你还可以指出哪几对...全等的三角形(不能添加辅助线和字母)?请选择其中一对加以证明.6.有两对全等三角形,分别为:AA E C CF ''△≌△分 A DF CBE '△≌△解法一:求证:AA E C CF ''△≌△ 证明:由平移的性质可知:AA CC ''=,又A C '∠=∠∵,90AA E C CF ''∠=∠=AA E C CF ''∴△≌△解法二:求证:A DF CBE '△≌△证明:由平移的性质可知:A E CF '∥,A F CE '∥∴四边形A ECF '是平行四边形D CBE FA '图(2)A F CE '=∴,A E CF '= AB CD '=∵DF BE =∴又90B D ∠=∠=∵A DF CBE '∴△≌△7.如图,ABC △中,90ACB =∠,AC BC =,CO 为中线.现将一直角三角板的直角顶点放在点O 上并绕点O 旋转,若三角板的两直角边分别交AC CB ,的延长线于点G H ,.(1)试写出图中除AC BC OA OB OC ===,外其他所有相等的线段; (2)请任选一组你写出的相等线段给予证明. 我选择证明=.7.(1)CG BH AG CH OG OH ===,, (2)90ACB AC BC AO BO ===∠,,,45CO OB CO AB ABC ∴=⊥=,,∠. 9090COG GOB BOH GOB +=+=∠∠,∠∠,COG BOH ∴=∠∠.又4518045135ABC OCB OBH ==∴=-=∠∠,∠,9045135GCO =+=∠, GCO OBH ∴=∠∠. (利用等角的补角相等证GCO OBH =∠∠亦可) GCO HBO ∴△≌△ CG BH ∴=.8.为了配合“八荣八耻”宣传教育,针对闯红灯的现象时有发生的实际情况,八年级某班开展一次题为“红灯与绿灯”的课题学习活动,它们将全班学生分成8个小组,其中第①~⑥组分别负责早、中、晚三个时段闯红灯违章现象的调查,第⑦小组负责查阅有关红绿灯的交通法规,第⑧小组负责收集有关的交通标志. 数据汇总如下:BC OHG部分时段车流量情况调查表回答下列问题:⑴请你写出2条交通法规:①. ②.⑵画出2枚交通标志并说明标志的含义.标志含义: 标志含义:⑶早晨、中午、晚上三个时段每分钟车流量的极差是,这三个时段的车流总量的中位数是. ⑷观察表中的数据及条形统计图,写出你发现的一个现象并分析其产生的原因. ⑸通过分析写一条合理化建议.8.(1)如:红灯停、红灯行;过马路要走人行横道线;不可酒后驾车等. (2)标志及标志含义只要解释合理即可. (3)74;2747.(4)现象:如果行人违章率最高,汽车违章率最低;产生原因是汽车驾驶员是专门培训过的,行人存在图方便的心理等. (5)建议:如:广泛宣传交通法规;增加值勤警力等.(只要建议合理均可)9.如图1,OP 是MON ∠的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图2,在ABC △中,ACB ∠是直角,60B ∠=,AD ,CE 分别是BAC ∠,BCA ∠的平分线,AD ,CE 相交于点F .请你判断并写出FE 与FD 之间的数量关系;(2)如图3,在ABC △中,如果ACB ∠不是直角,而(1)中的其他条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.9.图略.(1)FE 与FD 之间的数量关系为FEFD =. (2)答:(1)中的结论FE FD =仍然成立.证法一:如图4,在AC 上截取AG AE =,连结FG .因为12∠=∠,AF 为公共边, 可证AEF AGF △≌△.所以AFE AFG ∠=∠,FE FG =.由60B ∠=,ADCE ,分别是BAC BCA ∠∠,的平分线, 可得2360∠+∠=.所以60AFE CFD AFG ∠=∠=∠=. 所以60CFG ∠=.由34∠=∠及FC 为公共边,可得CFG CFD △≌△. 所以FG FD =. 所以FE FD =. 证法二:如图5,过点F 分别作FG AB ⊥于点G ,FH BC ⊥于点H .ONPM图3图1 图2图4因为60B ∠=,且AD ,CE 分别是BAC ∠,BCA ∠的平分线, 所以可得2360∠+∠=,F 是ABC △的内心. 所以601GEF ∠=+∠,FG FH =. 又因为1HDF B ∠=∠+∠, 所以GEF HDF ∠=∠. 因此可证EGF DHF △≌△. 所以FE FD =.10.如图(8-1),四边形ABCD 是O 的内接四边形,点C 是BD 的中点,过点C 的切线与AD 的延长线交于点E .(1)求证:AB DE CD BC =. (2)如果四边形ABCD 仍是O 的内接四边形,点C 在劣弧BD 上运动,点E 在AD 的延长线上运动,切线CE 变为割线EFC ,请问要使(1)的结论成立还需要具备什么条件?请你在图(8-2)上画出示意图,标明有关字母,不要求进行证明.10.证明:(1)连结AC .C 是BD 的中点BC DC BAC DAC ∴==,∠∠CE 切O 于点C ,点C 在O 上 DCE DAC BAC ∴==∠∠∠图8-1图8-2四边形ABCD 是O 的内接四边形,EDC B ∴=∠∠ EDC CBA ∴△∽△AB BCCD DE∴=AB DE CD BC ∴=(2)条件为:DF BC =(或DF BC =或DAF BAC =∠∠ 或DCF BAC =∠∠或FC BD ∥等) 如右图,(图中虚线为可能画的线)11.如图(a ),两个不全等的等腰直角三角形OAB 和OCD 叠放在一起,并且有公共的直角顶点O . (1)将图14(a )中的OAB △绕点O 顺时针旋转90角,在图14(b )中作出旋转后的OAB △(保留作图痕迹,不写作法,不证明).(2)在图14(a )中,你发现线段AC ,BD 的数量关系是,直线AC ,BD 相交成度角. (3)将图14(a )中的OAB △绕点O 顺时针旋转一个锐角,得到图14(c ),这时(2)中的两个结论是否成立?作出判断并说明理由.若OAB △绕点O 继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由.11.(1)如图(a )(请注意一些问题,AB ,字母位置不能互换,加弧线,连结AB ) (2)AC BD =;90(90)图(a )图(b )图(c )(3)成立.如图(90COD AOB ∠=∠=∵COA AOD AOD DOB ∠+∠=∠+∠∴即:COA DOB ∠=∠(或由旋转得COA DOB ∠=∠)CO OD =∵OA OB =COA DOB ∴△≌△ AC BD =∴延长CA 交OD 于E ,交BD 于F (下面的证法较多)COA DOB ∵△≌△,ACO ODB ∠=∠∴CEO DEF ∠=∠∵90COE EFD ∠=∠=∴AC BD ∴⊥旋转更大角时,结论仍然成立.图(a )图(b )。

中考数学专题复习题:开放性问题

中考数学专题复习题:开放性问题

2019-2020年中考数学专题复习题:开放性问题开放性试题是相对于条件和结论明确的封闭题而言的,是能引起同学们产生联想,并会自然而然地往深处想的一种数学问题.简单来说就是答案不唯一,解题的方向不确定,条件(或结论)不止一种情况的试题.解答这类题目时,需要对问题全方位、多层次、多角度思考审视,尽量找到解决问题的方法.根据开放题的特点主要有如下三种题型:(1)条件开放型;(2)结论开放型;(3)综合开放型.题型之一条件开放型例1 (xx·巴中)如图,在四边形ABCD中,点H是边BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连接BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.【思路点拨】(1)根据已知条件和图形可知,两个三角形有一组边和一组角相等,因此根据全等三角形的判定方法添加一个条件,然后加以证明即可;(2)由(1)中三角形的全等,易得四边形BFCE是平行四边形,然后根据矩形的判定方法,得出EH与BH应满足的条件.【解答】方法归纳:解这种类型的开放性问题的一般思路是:(1)由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻.(2)添加的条件,使证明过程越简单越好,且不可自己难为自己.1.(xx·湘潭)如图,直线a、b被直线c所截,若满足,则a、b 平行.2.(xx·内江)如图,在四边形ABCD中,对角线AC、BD交于点O,AD∥BC,请添加一个条件:,使四边形ABCD为平行四边形(不添加任何辅助线).3.(xx·六盘水)如图,添加一个条件:,使△ADE∽△ACB.(写出一个即可)4.(xx·娄底)先化简,再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.5.(xx·邵阳)如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,请添加一个条件,使得四边形ABCD为矩形,并说明理由.题型之二结论开放型例2 (xx·西安模拟)按图所示的流程,输入一个数据x,根据y与x的关系式输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大.(1)若y与x的关系是y=x+p(100-x),请说明:当p=时,这种变换满足上述两个要求;(2)若按关系式y=a(x-h)2+k(a>0)将数据进行变换,请写出一个满足上述要求的这种关系式.(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)【思路点拨】(1)要验证y=x+(100-x)是否满足题中的两个要求,就是①看y是否随x增大而增大;②看当20≤x≤100时,y的值是否满足60≤y≤100;(2)由于规定了a>0,要使抛物线y=a(x-h)2+k满足题中条件,必经过(20,60),(100,100)两点,且这两点在对称轴的右边,因此其中满足条件的抛物线可以是以(20,60)为顶点,且经过点(100,100).故该解析式不难求出.【解答】方法归纳:所谓结论性开放题就是给出问题的条件,让解题者根据条件寻找相应的结论,且符合条件的结论往往呈现多样化,这类问题就是结论开放型问题.其解题思路是:从已知条件出发,沿着不同方向、不同层次进行观察、分析、验证得到相应的结论.1.(xx·滨州)写出一个运算结果是a6的算式 .2.(xx·赤峰)请你写出一个大于0而小于1的无理数 .3.(xx·邵阳)如图,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.4.(xx·内蒙古)存在两个变量x与y,y是x的函数,该函数同时满足两个条件:①图象经过(1,1)点;②当x>0时,y随x的增大而减小,请各写出一个满足条件的一次函数、反比例函数和二次函数的解析式.5.(xx·台州)为了估计鱼塘中成品鱼(个体质量在0.5 kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼.称得它们的质量如下表:0.5 0.6 0.7 1.0 1.2 1.6 1.9质量/kg1 8 15 18 5 1 2数量/条然后做上记号再放回水库中,过几天又捕捞了100条成品鱼,发现其中2条带有记号. (1)请根据表中数据补全下面的直方图(各组中数据包括左端点不包括右端点).(2)根据图中数据分组.估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1 kg).题型之三综合开放型例3 (xx·绍兴有改动)看图说故事.请你编写一个故事,使故事情境中出现的一对变量x,y满足图示的函数关系,要求:(1)指出变量x和y的含义;(2)利用图中的数据和变化规律提出两个问题,并解答这两个问题.【思路点拨】根据情景说明函数关系,注意只有两个变量,涉及其他的量必须是常量.提出问题时要紧扣图象和(1)中实际意义来提出.【解答】、方法归纳:这是一道自编自解的综合开放型的问题,解题时要认真分析已给出的条件,经过适当的尝试,符合要求的答案定会产生.1.看图说故事.请你编写一个故事,使故事情境中出现的一对变量x、y满足图示的函数关系,要求:(1)指出变量x和y的含义;(2)利用图中的数据说明这对变量变化过程的实际意义,其中必须涉及“速度”这个量.2.A,B两地间的距离为15千米,甲从A地出发步行前往B地,20分钟后,乙从B地出发骑车前往A地,且乙骑车比甲步行每小时多走10千米.乙到达A地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B地.请你就“甲从A地到B地步行所用时间”或“甲步行的速度”提出一个用分式方程解决的问题,并写出解题过程.3.如图是一个反比例函数图象的一部分,点A(1,10),B(10,1)是它的两个端点.(1)求此函数的解析式,并写出自变量x的取值范围;(2)请你举出一个能用本题的函数关系描述的生活实例.33482 82CA 苊37332 91D4 釔/29826 7482 璂24021 5DD5 巕28933 7105 焅 34653 875D 蝝 20534 5036 倶32153 7D99 継 030090 758A 疊B。

北师大版中考数学开放性问题复习

北师大版中考数学开放性问题复习

O A 开放性问题一.知 识 要 点开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等.二.典型例题题 型 一 条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1:在四边形ABCD 中,AB=DC ,AD=BC .请再添加一个条件,使四边形ABCD 是矩形.你添加的条 件是 .(写出一种即可)分析:已知两组对边相等,如果其对角线相等可得到△ABD ≌△ABC ≌ADC ≌△BCD ,进而得到, ∠A=∠B=∠C=∠D=90°,使四边形ABCD 是矩形.题 型 二 结论开放型给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2:已知一次函数的图象经过点(0,1),且满足y 随x 的增大而增大,则该一次函数的解析式可以 . 分析:先设出一次函数的解析式,再根据一次函数的图象经过点(0,1)可确定出b 的值,再根据y 随x 的增大而增大确定出k 的符号即可.题 型 三 条件和结论都开放的问题此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,因此必须认真观察与思考,将已知的信息集中分析,挖掘问题成立的条件或特定条件下的结论,多方面、多角度、多层次探索条件和结论,并进行证明或判断.例3:如图,在平行四边形ABCD 中,E 是AD 的中点,请添加适当条件后,构造出一对全等的三角形,并说明理由.分析:先连接BE ,再过D 作DF ∥BE 交BC 于F ,可构造全等三角形△ABE和△CDF .利用ABCD 是平行四边形,可得出两个条件,再结合DE ∥BF ,BE∥DF ,又可得一个平行四边形,那么利用其性质,可得DE=BF ,结合AD=BC ,等量减等量差相等,可证AE=CF ,利用SAS 可证三角形全等.题 型 四 编制开放型:此类问题是指条件、结论、解题方法都不全或未知,而仅提供一种问题情境,需要我们补充条件,设计结论,寻求解法的一类题,它更具有开放性.例4:某校九年级两个班各为玉树地震灾区捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方...程.解决的问题,并写出解题过程. 分析:本题的等量关系是:两班捐款数之和为1800元;2班捐款数-1班捐款数=4元;1班人数=2班人数×90%,从而提问解答即可.三.基础巩固 1.一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当0x 时.y 随x 的增大而减小,这个函数解析式为_______________ (写出一个即可)2.如图,四边形ABCD 是平行四边形,添加一个..条件: _____________________,可使它成为矩形.3.“一根弹簧原长10cm ,在弹性限度内最多可挂质量为5kg 的物体,挂上物体后弹簧伸长的长度与所挂物体的质量成正比,,则弹簧的总长度y (cm )与所挂物体质量x (kg )之间的函数关系式为y=10+0.5x (0≤x≤5).”王刚同学在阅读上面材料时发现部分内容被墨迹污染,被污染的部分是确定函数关系式的一个条件,你认为该条件可以是: (只需写出1个). 4.已知矩形ABCD 的对角线相交于点O ,M 、N 分别是OD 、OC 上异于O 、C 、D 的点.⑴ 请你在下列条件①DM=CN,②OM=ON,③MN 是△OCD 的中位线,④MN∥AB 中任选一个添加条件(或添加一个你认为更满意的其他条件),使四边形ABNM 为等腰梯形,你添加的条件是 .⑵ 添加条件后,请证明四边形ABNM 是等腰梯形.四.提高拓展1.写出一个x 的值,使|x ﹣1|=x ﹣1成立,你写出的 x 的值是 .2.写一个比3大的整数是 .3.将正比例函数 y=﹣6x 的图象向上平移,则平移后所得图象对应的函数解析式可以是 (写出一个即可 ).4.请写出一个二元一次方程组 ,使它的解是⎩⎨⎧-==12y x .5.写出一个你喜欢的实数k 的值 ,使得反比例函数x k y 2-=的图象在每一个象限内,y 随 x 的增大而增大.6.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数 y=﹣2x+ 6的图象无公共点,则这个反比例函数的表达式是 (只写出符合条件的一个即可 ) .7.写出一个正比例函数,使其图象经过第二、四象限: .8.存在两个变量x 与y ,y 是x 的函数,该函数同时满足两个条件: ①图象经过(1,1)点;② 当 x >0时,y 随x 的增大而减小,这个函数的解析式是 (写出一个即可) .9. 如图,在△ABC 中,D 是BC 边上的中点,∠BDE=∠CDF,请你添加一个条件使DE=DF 成立.你添加的条件是 .(不再添加辅助线和字母)10.如图,在平行四边形ABCD 中,点E 、F 分别在边BC 、AD 上,请添加一个条件 ,使四边形AECF 是平行四边形(只填一个即可).11.如图,D 、E 分别是△ABC 的边AB 、AC 上的点,连接DE,要使△ADE ∽△ACB ,还需添加一个条件 (只需写一个).12.如图,∠B=∠D ,请在不增加辅助线的情况下,添加一个适当的条件,使△ABC ≌△ADE ,并证明.⑴ 添加的条件是 ;⑵ 证明:9题图 11题图 10题图。

中考数学专题复习 开放性问题

中考数学专题复习 开放性问题

开放性问题【专题点拨】开放探索问题是指已知条件、解题依据、解题方法、问题结论这四项要素中,缺少解题要素两个或两个以上,或者条件、结论有待探求、补充等.【解题策略】在解决开放探索问题的时候,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答.【典例解析】类型一:条件开放型问题例题1:(2016·山东省滨州市·14分)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题;函数及其图象.【分析】(1)分别令y=0,x=0,即可解决问题.(2)由图象可知AB只能为平行四边形的边,易知点E坐标(﹣7,﹣)或(5,﹣),由此不难解决问题.(3)分A、C、M为顶点三种情形讨论,分别求解即可解决问题.【解答】解:(1)令y=0得﹣x2﹣x+2=0,∴x2+2x﹣8=0,x=﹣4或2,∴点A坐标(2,0),点B坐标(﹣4,0),令x=0,得y=2,∴点C坐标(0,2).(2)由图象可知AB只能为平行四边形的边,∵AB=EF=6,对称轴x=﹣1,∴点E的横坐标为﹣7或5,∴点E坐标(﹣7,﹣)或(5,﹣),此时点F(﹣1,﹣),∴以A,B,E,F为顶点的平行四边形的面积=6×=.(3)如图所示,①当C为顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,在RT△CM1N中,CN==,∴点M1坐标(﹣1,2+),点M2坐标(﹣1,2﹣).②当M3为顶点时,∵直线AC解析式为y=﹣x+1,线段AC的垂直平分线为y=x,∴点M3坐标为(﹣1,﹣1).③当点A为顶点的等腰三角形不存在.综上所述点M坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1.2﹣).【点评】本题考查二次函数综合题、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握抛物线与坐标轴交点的求法,学会分类讨论的思想,属于中考压轴题.变式训练1:(2016·四川攀枝花)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P 的坐标和四边形ABPC的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.类型二:结论开放型问题例题2:(2016·湖北随州·3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个 B.3个 C.4个 D.5个【解析】二次函数图象与系数的关系.(1)正确.根据对称轴公式计算即可.(2)错误,利用x=﹣3时,y<0,即可判断.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),列出方程组求出a、b即可判断.(4)错误.利用函数图象即可判断.(5)正确.利用二次函数与二次不等式关系即可解决问题.【解答】解:(1)正确.∵﹣ =2,∴4a+b=0.故正确.(2)错误.∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,故(2)错误.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),∴解得,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵a<0,∴8a+7b=2c>0,故(3)正确.(4)错误,∵点A(﹣3,y1)、点B(﹣,y2)、点C(,y3),∵﹣2=,2﹣(﹣)=,∴<∴点C离对称轴的距离近,∴y3>y2,∵a<0,﹣3<﹣<2,∴y1<y2∴y1<y2<y3,故(4)错误.(5)正确.∵a<0,∴(x+1)(x﹣5)=﹣3/a>0,即(x+1)(x﹣5)>0,故x<﹣1或x>5,故(5)正确.∴正确的有三个,故选B.变式训练2:(2016·黑龙江齐齐哈尔·3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个类型三:解题策略开放型例题3:(2014 年湖北襄阳)如图 Z3-1,在△ABC 中,点 D,E 分别在边 AC,AB 上,BD 与 CE 交于点 O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC 是等腰三角形?(用序号写出所有成立的情形)(2)选择其中的成立条件进行证明。

【中考复习】中考数学 专题复习开放性问题复习教案(新版)新人教版

【中考复习】中考数学 专题复习开放性问题复习教案(新版)新人教版

开放性问题
运用
说明:考查了矩形的性质及三角形全等
的判定.
例2.如图,⊙O是等腰三角形ABC的外接圆,
AD、AE分别是顶角∠BAC及邻补角的平分
线,AD交⊙O于点D,交BC于F,由这些条
件请直接写出一个正确的结论:
(不再连结其他线段).
例3。

已知抛物线1
)
(2+
-
-
=m
x
y与x轴的
交点为A、B(B在A的右边),与y轴的交点
为C.(1)写出1
=
m时与抛物线有关的三
个正确结论;
(2)当点B在原点的右边,点C在原点的
下方时,是否存在△BOC为等腰三角形的情
形?若存在,求出m的值;若不存在,请说
明理由;
(3)请你提出一个对任意的m值都能成立
的正确命题.
【组内交流】
学生根据问题解决的思路和解题中所呈
现的问题进行组内交流,归纳出方法、规
律、技巧。

其成立的条

一生展示,其
它小组补充
完善,展示问
题解决的方
法、规律,注
重一题多解
及解题过程
中的共性问
题,教师注意
总结问题的
深度和广度.
可从对称轴、
顶点坐标、开
口方向、最
值、增减性等
多方面去写
出许多正确
结论,任写三
个就可;。

初中数学-中考复习(21):开放型问题

初中数学-中考复习(21):开放型问题

专题复习:开放型问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。

考点一:条件开放型例1:写出一个过点(0,3),且函数值y随自变量x的增大而减小的一次函数关系式:.(填上一个答案即可)练习:已知(x1,y1),(x2,y2)为反比例函数kyx图象上的点,当x1<x2<0时,y1<y2,则k的一个值可为.(只需写出符合条件的一个k的值)考点二:结论开放型例2:请写一个图象在第二、四象限的反比例函数解析式:.练习:四川雅安发生地震后,某校九(1)班学生开展献爱心活动,积极向灾区捐款.如图是该班同学捐款的条形统计图.写出一条你从图中所获得的信息:.(只要与统计图中所提供的信息相符即可得分)考点三:条件和结论都开放的问题例3:如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1S2+S3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明.练习:如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.【课堂讲解】1.如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,应添加的条件是______(只填写一个条件,不使用图形以外的字母和线段).2.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是_______(写出一个即可).3.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是___________.(只填一个即可)4.若反比例函数y=kx的图象在其每个象限内,y随x的增大而增大,则k的值可以是_______.(写出一个k的值)5.若函数y=1mx的图象在同一象限内,y随x增大而增大,则m的值可以是________(写出一个即可).6. 如图,梯形ABCD中,AD∥BC,点M是AD的中点,不添加辅助线,梯形满足条件时,有MB=MC(只填一个即可).7. 直线l过点M(-2,0),该直线的解析式可以写为________.(只写出一个即可)8. 如图,要使平行四边形ABCD是矩形,则应添加的条件是_______(添加一个条件即可).9. 请举反例说明命题“对于任意实数x,x2+5x+5的值总是整数”是假命题,你举的反例是(写出一个x的值即可)10.如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件,使△ABC≌△DEF.11.如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件,使得△EAB≌△BCD.12.如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是.13.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是(填一个即可)14.如图所示,弦AB、CD相交于点O,连结AD、BC,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是.15.如图,AB是⊙O的弦,OC⊥AB于点C,连接OA、OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是cm(写出一个符合条件的数值即可)16.如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当△BEF是直角三角形时,t (s)的值为.(填出一个正确的即可)17.已知(x1,y1),(x2,y2)为反比例函数kyx图象上的点,当x1<x2<0时,y1<y2,则k的一个值可为.(只需写出符合条件的一个k的值)18. 已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.19. 如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C.(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)答:结论一:;结论二:;结论三:.(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),①求CE的最大值;②若△ADE是等腰三角形,求此时BD的长.(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)20. 在菱形ABCD中,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)若E是线段AC的中点,如图1,易证:BE=EF(不需证明);(2)若E 是线段AC 或AC 延长线上的任意一点,其它条件不变,如图2、图3,线段BE 、EF 有怎样的数量关系,直接写出你的猜想;并选择一种情况给予证明.【课堂训练】1.如图,点D 在△ABC 的边AC 上,要判定△ADB 与△ABC 相似,添加一个条件,不正确的是( )A .∠ABD=∠CB .∠ADB=∠ABC C. CD CB BD AB = D. ACAB AB AD =2. 如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O 为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB 的两个交点之间的距离为23且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y 轴的抛物线条数是( )A .16B .15C .14D .133. 如图,在四边形ABCD 中,点H 是BC 的中点,作射线AH ,在线段AH 及其延长线上分别取点E ,F ,连结BE ,CF .(1)请你添加一个条件,使得△BEH ≌△CFH ,你添加的条件是 ,并证明.(2)在问题(1)中,当BH 与EH 满足什么关系时,四边形BFCE 是矩形,请说明理由.4. 复习课中,教师给出关于x 的函数y =2kx 2﹣(4kx +1)x ﹣k +1(k 是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.5. 猜想与证明:如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为DM=DE.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.6. 已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C 重合).以AD为边作正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;2对角线AE,DF相交于点O,连接OC.求OC的长度.②若正方形ADEF的边长为27. 在△ABC中,∠ACB=90°,∠A<45°,点O为AB中点,一个足够大的三角板的直角顶点与点O重合,一边OE经过点C,另一边OD与AC交于点M.(1)如图1,当∠A=30°时,求证:MC2=AM2+BC2;(2)如图2,当∠A≠30°时,(1)中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由;(3)将三角形ODE绕点O旋转,若直线OD与直线AC相交于点M,直线OE与直线BC相交于点N,连接MN,则MN2=AM2+BN2成立吗?答:(填“成立”或“不成立”)个性化教案(真题演练)1. (2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s 的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当△BEF是直角三角形时,t(s)的值为.(填出一个正确的即可)1对1出门考(_______年______月______日周_____)1. 写出一个你喜欢的实数k 的值 ,使得反比例函数xk y 2-=的图象在每一个象限内,y 随x 的增大而增大.2. 写出一个x 的值,使|x ﹣1|=x ﹣1成立,你写出的x 的值是 .3. 存在两个变量x 与y ,y 是x 的函数,该函数同时满足两个条件:①图象经过(1,1)点;②当x >0时,y 随x 的增大而减小,这个函数的解析式是 (写出一个即可).4. 如图,在△ABC 中,点D 是BC 的中点,作射线AD ,在线段AD及其延长线上分别取点E 、F ,连接CE 、BF .添加一个条件,使得△BDF ≌△CDE ,并加以证明.你添加的条件是 .(不添加辅助线).5. 先化简22)1111(2-÷+--x x x x ,然后从﹣2≤x≤2的范围内选择一个合适的整数作为x 的值代入求值.6. 在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a ,b 两个情境:情境a :小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b :小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a ,b 所对应的函数图象分别是 、 (填写序号);(2)请你为剩下的函数图象写出一个适合的情境.评语: 3A 作业:周一: 周二:周三: 周四:周五:作业要求在 月 日之前完成。

2019-2020年中考数学复习 专题复习 开放性问题

2019-2020年中考数学复习 专题复习 开放性问题

2019-2020年中考数学复习 专题复习 开放性问题开放性试题是相对于条件和结论明确的封闭题而言的,是能引起同学们产生联想,并会自然而然地往深处想的一种数学问题.简单来说就是答案不唯一,解题的方向不确定,条件(或结论)不止一种情况的试题.解答这类题目时,需要对问题全方位、多层次、多角度思考审视,尽量找到解决问题的方法.根据开放题的特点主要有如下三种题型:(1)条件开放型;(2)结论开放型;(3)综合开放型.题型之一 条件开放型例1 (2014·巴中)如图,在四边形ABCD 中,点H 是边BC 的中点,作射线AH ,在线段AH 及其延长线上分别取点E,F ,连接BE,CF.(1)请你添加一个条件,使得△BEH ≌△CFH ,你添加的条件是 ,并证明. (2)在问题(1)中,当BH 与EH 满足什么关系时,四边形BFCE 是矩形,请说明理由.【思路点拨】(1)根据已知条件和图形可知,两个三角形有一组边和一组角相等,因此根据全等三角形的判定方法添加一个条件,然后加以证明即可;(2)由(1)中三角形的全等,易得四边形BFCE 是平行四边形,然后根据矩形的判定方法,得出EH 与BH 应满足的条件.【解答】(1)添加条件:答案不唯一,如:BE ∥CF 或EH=FH 或∠EBH=∠FCH 或∠BEH=∠CFH 等.选择EH=FH ,证明如下:证明:∵点H 是边BC 的中点,∴BH=CH. 在△BEH 和△CFH 中,,,BH CH EHB FHC EH FH =⎧⎪∠=∠⎨⎪=⎩,∴△BEH ≌△CFH(SAS).(2)如图,当BH=EH 时,四边形BFCE 是矩形.理由如下:∵BH=CH ,EH=FH,∴四边形BFCE 是平行四边形. 又∵BH=EH,∴EF=BC. ∴四边形BFCE 是矩形.方法归纳:解这种类型的开放性问题的一般思路是:(1)由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻.(2)添加的条件,使证明过程越简单越好,且不可自己难为自己.1.(2014·湘潭)如图,直线a 、b 被直线c 所截,若满足 ,则a 、b 平行.2.(2014·内江)如图,在四边形ABCD 中,对角线AC 、BD 交于点O ,AD ∥BC ,请添加一个条件: ,使四边形ABCD 为平行四边形(不添加任何辅助线).3.(2013·六盘水)如图,添加一个条件: ,使△ADE ∽△ACB.(写出一个即可)4.(2014·娄底)先化简241193x x x ⎛⎫⎪⎝-÷--⎭-,再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.5.(2013·邵阳)如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,请添加一个条件,使得四边形ABCD 为矩形,并说明理由.题型之二结论开放型例2 (2013·西安模拟)按图所示的流程,输入一个数据x,根据y与x的关系式输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大.(1)若y与x的关系是y=x+p(100-x),请说明:当p=12时,这种变换满足上述两个要求;(2)若按关系式y=a(x-h)2+k(a>0)将数据进行变换,请写出一个满足上述要求的这种关系式.(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)【思路点拨】(1)要验证y=x+12(100-x)是否满足题中的两个要求,就是①看y是否随x增大而增大;②看当20≤x≤100时,y的值是否满足60≤y≤100;(2)由于规定了a>0,要使抛物线y=a(x-h)2+k满足题中条件,必经过(20,60),(100,100)两点,且这两点在对称轴的右边,因此其中满足条件的抛物线可以是以(20,60)为顶点,且经过点(100,100).故该解析式不难求出.【解答】(1)当p=12时,y=x+12(100-x).即y=12x+50.∴y随着x的增大而增大,即p=12时,满足条件(Ⅱ);又当20≤x≤100时,12×20+50≤y≤12×100+50.即60≤y≤100.即满足条件(Ⅰ).综上可知,当p=12时,这种变换满足要求.(2)由题意可知,只要满足:①h≤20;②若x=20,100时,y的对应值m,n能落在60~100之间,则这样的关系式都符合要求.如取h=20,y=a(x-20)2+k.∵a>0,∴当20≤x≤100时,y随着x的增大而增大,令x=20,y=60,得k=60.令x=100,y=100,得a×802+k=100.则a=1 160.∴y=1160(x-20)2+60.方法归纳:所谓结论性开放题就是给出问题的条件,让解题者根据条件寻找相应的结论,且符合条件的结论往往呈现多样化,这类问题就是结论开放型问题.其解题思路是:从已知条件出发,沿着不同方向、不同层次进行观察、分析、验证得到相应的结论.1.(2014·滨州)写出一个运算结果是a6的算式 .2.(2013·赤峰)请你写出一个大于0而小于1的无理数 .3.(2014·邵阳)如图,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.4.(2013·内蒙古)存在两个变量x与y,y是x的函数,该函数同时满足两个条件:①图象经过(1,1)点;②当x>0时,y随x的增大而减小,请各写出一个满足条件的一次函数、反比例函数和二次函数的解析式.5.(2014·台州)为了估计鱼塘中成品鱼(个体质量在0.5 kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼.称得它们的质量如下表:(1)请根据表中数据补全下面的直方图(各组中数据包括左端点不包括右端点).(2)根据图中数据分组.估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1 kg).题型之三综合开放型例3 (2013·绍兴有改动)看图说故事.请你编写一个故事,使故事情境中出现的一对变量x,y满足图示的函数关系,要求:(1)指出变量x和y的含义;(2)利用图中的数据和变化规律提出两个问题,并解答这两个问题.【思路点拨】根据情景说明函数关系,注意只有两个变量,涉及其他的量必须是常量.提出问题时要紧扣图象和(1)中实际意义来提出.【解答】(1)本题答案不唯一,如下列解法:某市出租车计费方法是当载客行驶里程为x(千米),则车费为y(元).该函数图象就是表示y 随x的变化过程.(2)①出租车的起步价是多少元?当x>3时,求y关于x的函数关系式;②若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.解:①由图象得:出租车的起步价是8元.设当x>3时,y与x的函数关系式为y=kx+b,由函数图象,得83,125.k b k b =+⎧⎨=+⎩解得2,2.k b =⎧⎨=⎩ 故y 与x 的函数关系式为:y=2x+2.②当y=32时,32=2x+2.解得x=15. 答:这位乘客乘车的里程是15千米.方法归纳:这是一道自编自解的综合开放型的问题,解题时要认真分析已给出的条件,经过适当的尝试,符合要求的答案定会产生.1.看图说故事.请你编写一个故事,使故事情境中出现的一对变量x 、y 满足图示的函数关系,要求:(1)指出变量x 和y 的含义;(2)利用图中的数据说明这对变量变化过程的实际意义,其中必须涉及“速度”这个量.2.A ,B 两地间的距离为15千米,甲从A 地出发步行前往B 地,20分钟后,乙从B 地出发骑车前往A 地,且乙骑车比甲步行每小时多走10千米.乙到达A 地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B 地.请你就“甲从A 地到B 地步行所用时间”或“甲步行的速度”提出一个用分式方程解决的问题,并写出解题过程.3.如图是一个反比例函数图象的一部分,点A(1,10),B(10,1)是它的两个端点.(1)求此函数的解析式,并写出自变量x 的取值范围; (2)请你举出一个能用本题的函数关系描述的生活实例.参考答案题型之一 条件开放型1.答案不唯一,如∠1=∠22.(答案不唯一)AD =BC(或AB ∥DC)3.∠ADE=∠C(答案不唯一)4.原式=()()431333x x x x x ---÷+--=()()43·334x x x x x --+--=13x +. 解不等式2x-3<7得x<5. 取x=1时,原式=113+=14. 提示:本题最后答案不唯一,x 不能取±3,4.5.本题答案不唯一,如:∠B=90°或∠BAC+∠BCA=90°,或OB=OA=OC 或AB 2+BC 2=AC 2等. 以∠B=90°为例说明.理由: ∵AB=CD,AD=BC ,∴四边形ABCD 是平行四边形. 又∵∠B=90°,∴□ABCD 为矩形.题型之二 结论开放型1.答案不唯一,如:2a 6-a 6,a 2×a 4,(a 2)3,a 8÷a 2(a ≠0)2.4π 3.(1)△ABE ≌△CDF ,△ABC ≌△CDA.(2)∵AF =CE ,∴AE =CF. ∵AB ∥CD ,∴∠BAE =∠DCF.又∵∠ABE =∠CDF ,∴△ABE ≌△CDF.4.根据题意,函数可以是一次函数,反比例函数或二次函数.例如:此函数的解析式为y=kx(k >0), ∵此函数经过点(1,1),∴k=1.∴此函数可以为:y=1x;②设此函数的解析式为y=kx+b(k<0),∵此函数经过点(1,1),∴k+b=1,k<0.∴此函数可以为:y=-x+2,y=-2x+3,…;③设此函数的解析式为y=a(x-m)2+n(a<0,m≤0),∵此函数经过点(1,1),∴a(1-m)2+n=1(a<0,m≤0).∴此函数可以为:y=-x2+2,y=-2x2+3,y=-(x+1)2+5,….5.(1)如图所示.(2)其质量落在0.5 kg~0.8 kg范围内的可能性最大;(3)质量落在0.8~1.1 kg范围内;(4)方法一:用去尾平均数估计:去尾平均数x=0.680.715 1.018 1.25 1.6147⨯+⨯+⨯+⨯+⨯≈0.87(kg).50×50×0.87=2 175(kg).水库中成品鱼的总质量约为2 175 kg.方法二:平均数x=(0.5×1+0.6×8+0.7×15+1.0×18+1.2×5+1.6×1+1.9×2)×1 50=0.904(kg).50×50×0.904=2 260(kg).水库中成品鱼的总质量约为2 260 kg.方法三:利用组中值计算平均数:x=0.65240.9518 1.255 1.551 1.85250⨯+⨯+⨯+⨯+⨯=0.884(kg).50×50×0.884=2 210(kg).水库中成品鱼的总质量约为2 210 kg.方法四:用众数(中位数)估计水库中成品鱼的总质量:50×50×1.0=2 500(kg).水库中成品鱼的总质量约为2 500 kg.题型之三综合开放型1.答案不唯一,如:(1)该函数图象表示小明开车离出发地的路程y(单位:km)与他所用的时间x(单位:min)的关系;(2)小明以0.4 km/min的速度匀速开了5 min,在原地休息了6 min,然后以0.5 km/min 的速度匀速开车回出发地.2.答案不唯一,如:甲从A地到B地步行所用时间是多久?设甲从A地到B地步行所用时间为x小时,由题意得301x-=15x+10.化简得2x 2-5x-3=0,解得x 1=3,x 2=-12. 经检验知x=3符合题意,∴x=3.∴甲从A 地到B 地步行所用时间为3小时. 3.(1)设y=k x, ∵A(1,10)在图象上,∴10=1k.即k=10. ∴y=10x(1≤x ≤10). (2)答案不唯一.例如:小明家离县城10 km ,某天小明骑自行车以x km/h 的速度去县城,那么小明从家去县城所需的时间y=10x(h ).2019-2020年中考数学复习 专题复习 数学思想方法数学思想方法是把知识转化为能力的桥梁,是解题规律的总结,是达到以点带面、触类旁通、摆脱题海的有效之路.因此我们应抓住临近中考的这段时间,去研究、归纳、熟悉那些常用的解题方法与技巧,从而为夺取中考高分搭起灵感和智慧的平台.初中数学中的主要数学思想有整体思想、化归思想、分类讨论思想、数形结合思想、方程和函数思想等.由于我们前面各种思想方法均有渗透,故本专题只是侧重如下几个思想方法予以强化.类型之一 整体思想例1 (2014·内江)已知1a +12b =3,则代数式254436a ab bab a b-+--的值为 .【思路点拨】要求分式的值,必须要知道分式中所有字母的取值,从条件看无法解决;观察分式的结构发现分子与分母都是m(a+2b)+n(ab)的形式,所以从条件中找出(a+2b)与ab 之间的关系,即可解决问题. 【解答】∵1a +12b=3, ∴22a bab+=3,即a+2b=6ab. ∴254436a ab b ab a b -+--=225324a b ab a b ab +--++()()=125184ab abab ab --+=714ab ab -=-12. 方法归纳:整体思想就是在解决问题时,不是着眼于它的局部特征,而是把注意力和着眼点放在问题的整体结构上,通过对整体的把握和运用达到解决问题的目的.1.(2014·安徽)已知x 2-2x-3=0,则2x 2-4x 的值为( )A.-6B.6C.-2或6D.-2或302.(2014·乐山)若a=2,a-2b=3,则2a 2-4ab 的值为 .3.(2014·宿迁)已知实数a,b满足ab=3,a-b=2,则a2b-ab2的值是 .4.( 2014·菏泽)已知x2-4x+1=0,求()214xx---6xx+的值.类型之二分类思想例2 (2013·襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是 .【思路点拨】从图中看有两个直角,这两个直角都有可能是原直角三角形的直角,分两种情况将原图补充完整,即可求出原直角三角形的斜边长.【解答】如图1,以点B为直角顶点,BD为斜边上的中线,在Rt△ABD中,可得BD∴原直角三角形纸片的斜边EF的长是如图2,以点A为直角顶点,AC为斜边上的中线,在Rt△ABC中,可得AC=∴原直角三角形纸片的斜边EF的长是故填方法归纳:在几何问题中,当图形的形状不完整时,需要根据图形的已知边角及图形特征进行分类画出图形,特别注意涉及等腰三角形与直角三角形的边和角的分类讨论.1.(2014·凉山)已知⊙O的直径CD=10 cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8 cm,则AC的长为()cm或或cm2.(2014·凉山)已知一个直角三角形的两边的长分别是3和4,则第三边长为 .3.已知点D与点A(8,0),B(0,6),C(3,-3)是一平行四边形的顶点,则D点的坐标为 .4.(2014·株洲调研)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为 .5.射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2 cm,QM=4 cm.动点P从点Q出发,沿射线QN以每秒1 cm的速度向右移动,经过t秒,以点Pcm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒).6.(2013·呼和浩特)在平面直角坐标系中,已知点A(4,0)、B(-6,0),点C是y轴上的一个动点,当∠BCA=45°时,点C的坐标为 .7.(2014·襄阳)在□ABCD中,BC边上的高为4,AB=5,,则□ABCD的周长等于 .类型之三转化思想例3 (2014·滨州)如图,点C在⊙O的直径AB的延长线上,点D在⊙O上,AD=CD,∠ADC=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.【思路点拨】(1)因为D点在圆上,连接OD,证明OD与CD垂直即可;(2)连接OD,将图中不规则的阴影部分面积转化为三角形与扇形的面积之差.【解答】(1)证明:连接OD.∵AD=CD,∠ADC=120°,∴∠A=∠C=30°.∵OA=OD,∴∠ODA=∠A=30°,∴∠ODC=120°-30°=90°, ∴OD ⊥CD.又∵点D 在⊙O 上,∴CD 是⊙O 的切线. (2)∵∠ODC=90°,OD=2,∠C=30°,∴OC=4,∴S △COD =12OD ·CD=12×2×, S 扇形OCB =2602360π⨯⨯=23π,∴S 阴影=S △OCD -S 扇形OCB 23π. 方法归纳:化归意识是指在解决问题的过程中,对问题进行转化,将“未知”转化为“已知”、将“陌生”转化为“熟知”、将“复杂”转化为“简单”的解题方法,其核心就是将有待解决的问题转化为已有明确解决的问题,以便利用已有的结论来解决问题.1.(2014·泰安)如图,半径为2 cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为( ) A.(2π-1)cm 2 B.(2π+1)cm 2 C.1 cm 2 D. 2π cm 22.(2013·潍坊)对于实数x,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[410x +]=5,则x 的取值可以是( ) A.40 B.45 C.51 D.563.(2014·菏泽调考)将4个数a 、b 、c 、d 排成两行、两列,两边各加一条竖线段记成a bc d,定义a b c d =ad-bc ,上述记号就叫做二阶行列式,若11x x +- 11xx -+=8,则x= . 4.(2014·白银)如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为 .5.(2014·凉山)如图,圆柱形容器高为18 cm,底面周长为24 cm,在杯内壁离杯底 4 cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为 cm.6.(2014·枣庄)图1所示的正方体木块棱长为6 cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图2的几何体,一只蚂蚁沿着图2的几何体表面从顶点A爬行到顶点B 的最短距离为 cm.类型之四数形结合思想例4 (2014·黄州模拟)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1 cm/s,设P,Q出发t秒时,△BPQ的面积为y cm2,已知y与t的函数关系的图形如图2(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5 cm;②当0<t≤5时,y= 25t2;③直线NH的解析式为y=-52t+27;④若△ABE与△QBP相似,则t=294秒.其中正确的结论个数为( )A.4B.3C.2D.1【解答】①根据图2可得,当点P到达点E时点Q到达点C,BC=BE,故①小题正确;②当0<t≤5时,设y=at2,将t=5,y=10代入求得a=25,故②小题正确;③根据题意可得N(7,10),H(11,0),利用待定系数法可以求出一次函数解析式y=-52t+552,故③小题错误;④∵∠A=90°,而点P在运动过程中,∠BPQ≠90°,∠PBQ≠90°,∴△ABE与△QBP相似,Q点在C点处,P点运动到CD边上,∠PQB=90°.此时分△ABE∽△QBP和△ABE∽△QPB两种情况,当△ABE∽△QBP时,则ABQB=AEQP可知QP=154,可得t=294,符合题意;当△ABE∽△QPB时,ABQP=AEQB,可知QP=203>4,不符合题意,应舍去.故④小题正确.因此答案选B.方法归纳:数形结合主要有两种:①由数思形,数形结合,用形解决数的问题;②由形思数,数形结合,用数解决形的问题.1.(2014·菏泽)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D,F分别在AC,BC边上,设CD的长为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是( )2.(2014·内江)若关于x的方程m(x+h)2+k=0(m、h、k均为常数,m≠0)的解是x1=-3,x2=2,则方程m(x+h-3)2+k=0的解为( )A.x1=-6,x2=-1B.x1=0,x2=5C.x1=-3,x2=5D.x1=-6,x2=23.小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是( )A.①②③B.①②④C.①③④D.①②③④4.(2014·黄石调考)如图,两个正方形的面积分别为16、9,两阴影部分的面积分别为a ,b(a>b),则a-b 等于( )A.7B.6C.5D.45.(2014·枣庄)如图,在边长为2a 的正方形中央剪去一边长为(a+2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( )A.a 2+4B.2a 2+4aC.3a 2-4a-4D.4a 2-a-2类型之五 方程、函数思想例5 (2014·泰安调考)将半径为4 cm 的半圆围成一个圆锥,在圆锥内接一个圆柱(如图所示),当圆柱的侧面的面积最大时,圆柱的底面半径是 cm.【思路点拨】设圆柱的底面半径为r ,圆柱的侧面积为S ,建立S 与r 之间的函数关系式,利用函数的性质确定S 取最大值时r 的值.【解答】∵将半径为4 cm 的半圆围成一个圆锥,∴圆锥的母线长为4,底面圆的半径为2,高为设圆柱底面圆的半径为r,高为h ,侧面积为S ,根据题意,得2r =h=.∴S=2πr (-)(r-1)2.∴当r=1时, S取最大值为.方法归纳:在问题中涉及“最大值”或“最小值”时,一般要运用函数思想去解决问题,解决这里问题的关键是建立两个变量之间的函数关系.1.(2014·安徽)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC 的中点D重合,折痕为MN,则线段BN的长为( )A.53B.52C.4D.52.(2014·武汉)如图,若双曲线y=kx与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为 .3.(2014·广州)若关于x的方程x2+2mx+m2+3m-2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为 .4.(2014·鄂州)如图,正方形ABCD边长为1,当M、N分别在BC,CD上,使得△CMN的周长为2,则△AMN的面积的最小值为 .参考答案类型之一整体思想1.B2.123.64.原式=()()()()21464x x x xx x---+-=224244x xx x-+-.∵x2-4x+1=0,∴x2-4x=-1.∴原式=224244x xx x-+-=1241-+-=-23.类型之二分类思想1.C2.53.(5,9)或(11,-9)或(-5,3)4.(3,4)或(2,4)或(8,4)5.t=2或3≤t≤7或t=86.(0,12)或(0,-12)提示:当点C在y轴的上方时,如图,作BD⊥AC于D,与y轴交于点E.∵∠BCA=45°,∴∠CBD=∠BCA=45°,∴BD=CD.∵∠CDE=∠ADB=90°,∠CED=∠BEO,∴∠ECD=∠ABD,∴△CED≌△BAD,∴EC=AB=10.设OE=x,∵∠COA=∠BOE=90°,∴△BEO∽△CAO,∴104x+=6x,x=2或x=-12(舍去),∴OC=OE+CE=2+10=12,∴点C(0,12).当点C在y轴的下方时,同理可求得点C(0,-12).故答案为(0,12)或(0,-12).7.12或20提示:如图1所示.∵在□ABCD中,BC边上的高为4,AB=5,,∴,AB=CD=5,,∴AD=BC=5,∴□ABCD的周长等于20.如图2所示.∵在□ABCD中,BC边上的高为4,AB=5,,∴EC=AC2-AE2=2,AB=CD=5,BE=AB2-AE2=3, ∴BC=3-2=1,∴□ABCD 的周长等于1+1+5+5=12. 则□ABCD 的周长等于12或20. 故答案为:12或20.类型之三 转化思想1.A2.C3.24.125.206.( 提示:如图所示.△BCD 是等腰直角三角形,△ACD 是等边三角形,在Rt △BCD 中,cm ),∴BE=12,在Rt △ACE 中,cm ),∴从顶点A 爬行到顶点B 的最短距离为(故答案为:(类型之四 数形结合思想1.A2.B3.B4.A5.C类型之五 方程、函数思想1.C提示:设BN=x,则依据折叠原理可得DN=AN=9-x.又D 为BC 的中点,∴BD=3.在Rt △NBD 中,利用勾股定理,可得BN 2+BD 2=DN 2,则有32+x 2=(9-x)2,解得x=4,即BN=4.故选择C.2.4提示:过点C 作CE ⊥x 轴于点E ,过点D 作DF ⊥x 轴于点F ,设OC=3x ,则BD=x ,在Rt △OCE 中,∠COE=60°,则OE=32x ,CE=2x ,则点C 坐标为(32x ,2x),在Rt △BDF 中,BD=x ,∠DBF=60°,则BF=12x ,DF=2x ,则点D 的坐标为(5-12x ,将点C 的坐标代入反比例函数解析式可得x 2,将点D 的坐标代入反比例函数解析式可得k=2x-4x 2,则4x 2=2x-4x 2,解得x 1=1,x 2=0(舍去),故k=4×12=4. 3.54提示:由根与系数的关系得到:x 1+x 2=-2m ,x 1x 2=m 2+3m-2, 原式化简=3m 2-3m+2=3(m-12)2+54. ∵方程有实数根,∴Δ≥0,m ≤23. 当m=12时,3m 2-3m+2的最小值为54.提示:延长MB 至G 使GB=DN ,连接AG.∴△ADN ≌△ABG.∵CN+CM+MN=2,CN+CM+DN+BM=2, ∴MN=MG.∴△AMN ≌△AMG.要使△AMN的面积的最小,即△AGM的面积最小.∵AB=1,所以MG最小,即MN最小.在Rt△CMN中,周长一定,当△CMN为等腰直角三角形时,斜边MN最小.设CM=x,则,∴∴∴△AMN。

中考数学二轮中考数学专题复习:开放性问题

中考数学二轮中考数学专题复习:开放性问题
A
D
2
B1
C
BCD中,AB∥CD,E,F,G,H分别
是梯形ABCD各边AB,BC,CD,DA的中点,当梯形
ABCD满足条件 (
) 时 ,四边形EFGH
是菱形。(填上你认为正确的一个条件即可)
D
G
C
H
F
A
B
E
编辑课件
11
3.已知(x1,y1),(x2,y2)为反比例函数 y k x
C
F
E
编辑课件
8
【例2】请先化简下式,再选一个你喜欢的数代入求值。
x2 1 1 x2 x 1 x 1
原式=2x 请 注 意 : x1,1
编辑课件
9
1. 如图:△ABC中,AB=AC,D为AC边上的一 点,要使 △ABC∽△BCD,还需要添加一个条件,这个条件可以 是__________________.(只需填一个即可).
2a
俯视图
4
一、“开放性问题”的含义及特点
条件或结论至少有一个不确定,通常 称为开放性问题。
特点是条件不完备、结论不确定、解 法不固定; 需要通过观察、比较、分析、 抽象、概括,甚至猜想,得出答案,从而 提高创新能力,增强数学素质。
编辑课件
5
二、开放性问题的一般类型
条件开放
结论开放
策略开放
综合开放
图象上的点,当x1<x2<0时,y1<y2,则 k
的值可以为___________。
(只需写出符合条件的一个即可)
编辑课件
12
4. 如图是4×4正方形网格.请在其中选 取一个蓝色的单位正方形并涂红,
使图中红色部分是一个轴对称图形.
编辑课件
13

中考数学 专题 开放型问题

中考数学 专题 开放型问题

轴的另一交点坐标为( 3,0), >0, 【答案】开口方向向下,与x轴的另一交点坐标为(-3,0),c>0,b<0 答案】开口方向向下, >0等 ,b2-4ac>0等.
90° 6.(2012中考预测题)如图所示,在Rt△ABC中,∠ACB=90°,∠BAC (2012中考预测题)如图所示, Rt△ 中考预测题 的中点, 的平分线AD交BC于点D,DE∥AC,DE交AB于点E,M为BE的中点,连接DM.在 不添加任何辅助线和字母的情况下,图中的等腰三角形是________. 不添加任何辅助线和字母的情况下,图中的等腰三角形是________.(写 ________ 出一个即可) 出一个即可)
开放型问题
训练时间:60分钟 训练时间:60分钟
分值:100分 分值:100分
一、选择题(每小题4分,共4分) 选择题(每小题4 1.(2010中考变式题)已知⊙O1、⊙O2的半径分别是r1=2、r2=4 (2010中考变式题)已知⊙ 中考变式题 可能取的值是( ,若两圆相交,则圆心距O1O2可能取的值是( 若两圆相交, A .2 C .6 B. B .4 D.8 D. )
通过对所给的具体的结论进行全面而细致的观察、分析、比较, 通过对所给的具体的结论进行全面而细致的观察、分析、比较,从 中发现其变化规律,并由此猜出一般性的结论, 中发现其变化规律,并由此猜出一般性的结论,然后再给出合理的证明或 加以运用. 加以运用. (3)解答决策型问题的一般思路 (3)解答决策型问题的一般思路 通过对题设信息进行全面的分析、综合比较、判断优劣, 通过对题设信息进行全面的分析、综合比较、判断优劣,从中寻得 适合题意的最佳方案. 适合题意的最佳方案.
答案不唯一,只写出一个即可) 【答案】△ADE或△DME或△BMD(答案不唯一,只写出一个即可) 答案】

中考数学中的开放性问题

中考数学中的开放性问题

(写出三个即可)
A
∠ BCA=∠ACD ∠BAC= ∠ CAD △ABC≌ △ACD …
O
B
D
C
例4 用三种不同方法把平行四边形面积四等分(在所 给的图形中画出你的设计方案,画图工具不限)
例5 见练习题解答题的第1题;
方法开放 图形开放
学科开放
条件结论均开放的问题:
例6 如图在△ABD与△ACE中,有下列四个论断①
学生练习:已知D是△ABC的边AB上的 一点,连结CD。问满足什么条件时, △ACD与△ABC相似?
(1)AD:AC=AC:AB
D
(2)∠ACD= ∠B
B
(3) ∠ADC= ∠ACB
A C
结论开放:
例3 如图,已知⊙O内切于四边形ABCD,AB=AD, 连结AC,BD,由这些条件你能推出哪些结 论? ∠ABD= ∠ADB, AC⊥BD, BC=CD。
AB= AC ② AD =AE ③ ∠B= ∠C ④ BD=CE,请以其
C
BD=AC
F
∠ A=∠B
B
;二次元类游戏 二次元类游戏

环境开始好转。 要求:全面理解材料,自选角度,自定文体,自拟题目,写一篇不少于800字的文章。不要套作,不得抄袭。 这是一道多材料作文题。三则材料共同构成作文的依据,那么,确定的写作生发点一定是三则材料公共的内容。这三则材料都说了动物:材料一说的是人吃动物 的不良后果,材料二讲述了动物对人的好处,材料三说环境好转,人与动物和谐相处的美好前景。选取公共部分,我们可以得出“人类如何与动物相处”这个话题。由此,我们可以确定写作生发点为:要与动物和谐相处//善待动物,创造美好生活。 那么,我们可以这样归纳审读分析材 料的方法: 单材料,多角度;多材料,求公共。 抓住材料关键

中考数学专题--开放性问题

中考数学专题--开放性问题

例1 (无锡)如图,四边形 ABCD 中,对角线 AC 与 BD 相交于点 O,在①AB∥CD;② AO=CO;③AD=BC 中任意选取两个作为条件,“四边形 ABCD 是平行四边形”为 结论构造命题. (1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例; (2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成 “如果……,那么……”的形式)
【解析】 以①②作为条件构成的命题是真命题.
AO BO 证明: ∵A B ∥C D , ∴△A O B ∽△C O D , ∴ OC OD .
∵A O = O C , ∴O B = O D , ∴四边形 A B C D 是平行四边形. ( 2) 根据①③作为条件构成的命题是假命题, 即如果有一组 对边平行, 而另一组对边相等的四边形时平行四边形, 如等 腰梯形符合, 但不是平行四边形; 根据②③作为条件构成的命题是假命题, 即如果一个四边 形 A B C D 的对角线交于 O , 且 O A= O C , AD = BC , 那么这个 四边形时平行四边形, 如图, 根据已知不能推出 O B = O D 或 A D ∥B C 或 A B = D C , 即四边形不是平行四边形.
3.(三明)在平面直角坐标系中,点 A 在第一象限,点 P 在 x 轴上,若以 P,O,A 为顶 点的三角形是等腰三角形,则满足条件的点共有( A.2 个 C.4 个 【答案】 C B.3 个 D.5 个 )
专题考点 0 3 条件和结论都开放问题
此类问题没有明确的条件和结论, 并且符合条件的结论具有多样性, 因此必 须认真观察与思考, 将已知的信息集中分析, 挖掘问题成立的条件或特定条件下 的结论, 通过设问方式多方面、多角度、多层次探索认定条件和结论. 组成一个 或多个新命题, 并进行证明或判断.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学50个知识点专练41 开放型问题
一、选择题
1.(2011·兰州)如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:(1)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误
..的个数有()
A.2个B.3个C.4个D.1个
2.(2010·南通)在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有()
A.5个B.4个C.3个D.2个
3.(2009·沈阳)如图,AC是矩形ABCD的对角线,E是边BC延长线上一点,AE与CD 交于点F,则图中相似三角形共有()
A.2对B.3对C.4对D.5对
4.如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,DE∥BC,则图中与△ABC相似的三角形的个数为()
A.4个B.3个C.2个D.1个
5.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边是()
A.7 B.11
C.7或11 D.7或10
二、填空题
6.(2011·邵阳)请写出一个解为x=2的一元一次方程:__________________.
7.(2010·毕节)请写出含有字母x、y的五次单项式____________(只要求写一个).
8.如图所示,E、F是矩形ABCD对角线AC上的两点,试添加一个条件:______________,
使得△ADF ≌△CBE .
9.(2009·白银)如图,四边形ABCD 是平行四边形,使它为矩形的条件可以是______________.
10.(2010·益阳)如图,反比例函数y =k
x
的图象位于第一、三象限,其中第一象限内的
图象经过点A (1,2),请在第三象限内的图象上找一个你喜欢的点P ,你选择的P 点坐标为________________.
三、解答题
11.如图,正方形OABC 的面积是4,点B 在反比例函数y =k
x
(k >0,x <0)的图象上,若
点R 是该反比例函数图象上异于点B 的任意一点,过点R 分别作x 轴,y 轴的垂线,垂足为M 、N .从矩形OMRN 的面积中减去其与正方形OABC 重合的面积,记剩余部分的面积为S ,则当S =m (m 为常数,且0<m <4)时,求点R 的坐标.(用含m 的代数式表示)
12.(2011·綦江)在如图的直角坐标系中,已知点A (1,0)、B (0,-2),将线段AB 绕点A 按逆时针方向旋转90°至AC .
(1)求点C 的坐标;
(2)若抛物线y =-1
2
x 2+ax +2经过点C .
①求抛物线的解析式;
②在抛物线上是否存在点P (点C 除外)使△ABP 是以AB 为直角边的等腰直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.
13.(2011·荆州)如图甲,分别以两个彼此相邻的正方形OABC 与CDEF 的边OC 、OA 所在直线为x 轴、y 轴建立平面直角坐标系(O 、C 、F 三点在x 轴正半轴上).若⊙P 过A 、B 、
E 三点(圆心在x 轴上),抛物线y =1
4
x 2+bx +c 经过A 、C 两点,与x 轴的另一交点为G ,M
是FG 的中点,正方形CDEF 的面积为1.
(1)求B 点的坐标;
(2)求证:ME 是⊙P 的切线;
(3)设直线AC 与抛物线对称轴交于N ,Q 点是此对称轴上不与N 点重合的一动点,①求△ACQ 周长的最小值;②若FQ =t ,S ΔACQ =S ,直接写出S 与t 之间的函数关系式.。

相关文档
最新文档