引物设计的原理和程序
引物设计原理
引物设计原理引物设计原理是指利用一种叫做引物的化学物质来控制基因表达的原理。
引物是一种小分子化合物,它可以与DNA或RNA结合,以激活或阻止基因表达。
引物被用于多种应用,包括体外诊断、基因工程、生物技术和分子生物学等。
引物设计是基因工程中一个重要的步骤,它涉及到精心设计、合成和测试引物,以使其能够灵活地与待检测的目标片段结合,并发挥所需的功能。
引物设计的基本原理是:精心设计和合成一种特定的化合物,使其特异性地与感兴趣的目标片段结合,并发挥所需的功能。
引物的作用是将目标片段的复制过程定向激活或阻止,以便达到特定的研究目的。
精心设计引物的基本原理是合成一种适宜大小的化合物,使其能够与特定的目标片段特异性结合,从而激活或阻止特定的基因表达。
要做到这一点,需要考虑三个重要的指标:引物的长度、基序和热稳定性。
引物的长度是指引物的氨基酸数,也就是引物的序列长度。
一般来说,引物的长度应该在18-30个氨基酸之间,这样才能保证引物具有足够的灵敏度和特异性,从而达到最佳的表达效果。
引物的基序决定了它与目标片段的结合特异性。
引物的基序应该完全符合表达目标片段的基序,以确保引物能够特异性地与目标片段结合。
引物的热稳定性决定了它在高温环境中的稳定性,即它能够在高温环境中保持原来的结构和功能。
引物的热稳定性取决于其结构,如基序、碱基对等。
一般来说,引物的热稳定性越高,它在更高的温度下的稳定性就越好。
根据上述原理,引物设计的一般步骤如下:(1)确定目标片段的序列;(2)选择合适的引物长度;(3)设计和合成引物;(4)测试引物的活性和特异性;(5)测试引物的热稳定性;(6)测试引物的灵敏度。
综上所述,引物设计原理是指利用一种叫做引物的化学物质来控制基因表达的原理。
它包括精心设计、合成和测试引物,以使其能够灵活地与待检测的目标片段结合,并发挥所需的功能,从而实现特定的研究目的。
引物设计的原理和程序
1 引物的设计以及初步筛选引物的设计与初步筛选基本上通过一些分子生物学软件和相关网站来完成的,目前运用软件Primer Premier 5 或美国 whitehead 生物医学研究所基因组研究中心在因特网上提供的一款免费在线PCR引物设计程序 Primer 3来设计引物,再用软件Oligo 6进行引物评估,就可以初步获得一组比较满意的引物。
但是对于初学者来说,运用软件和程序来设计引物好象无从着手,其实只要我们掌握了引物设计的基本原则和注意事项,所有问题便迎刃而解。
因为无论是软件还是程序,都是以这些基本原则和注意事项为默认标准来进行引物设计的。
所以,我们在进行引物设计的时候大可不必在软件和程序的参数上花费过多的时间来思考,如果没有特殊要求我们完全可以把一些参数设为默认值。
下面我们主要讨论一下引物设计的原则和注意事项。
①引物的长度一般为15-30 bp,最好在18~24 bp,因为太短易形成错配(F alse priming) 降低特异性,而太长也会降低特异性,并且降低产量[21。
②引物在模板内最好具有单一性,也就是说在模板内部没有错配。
特别是3’端,一定要避免连续4个以上的碱基互补错配。
③引物序列的GC 含量最好在40%一60%,且上下游引物序列GC含量的差异不要太大,3’端最后5个碱基最好不要富含GC,特别是连续3个的G或C。
④DNA双链形成所需的自由能AG,应该以5’端向3’端递减,3’端AG最好不要高于9.0 keaf mol[31。
⑤避免形成稳定的引物二聚体(Dimer and Cross DimeO 和发夹结构(Hairp in),AG高于4.5 keal/mol时易引发上述两种结构的产生。
⑥引物所在的模板区域应该位于外显子区,最好跨越一个内含子区,这样便于对扩增出来的片段进行功能鉴定和表型分析。
⑦如果以DNA为模板设计引物,产物长度在100—600 bp比较理想。
而以m RNA为模板设计引物时,产物长度在150—300 bp比较理想。
PCR引物设计原理及原则
PCR引物设计原理及原则PCR引物设计是聚合酶链反应(Polymerase Chain Reaction,PCR)的关键步骤之一、PCR引物是指PCR扩增反应中作为起始材料的两个DNA片段,通常是20-30个碱基对长的寡核苷酸序列。
PCR引物设计的目的是选择合适的引物序列,以实现特定DNA序列的扩增。
1.特异性:PCR引物应该非常特异地与目标序列相互作用,不与其他非特异性的序列发生非特异性的扩增反应。
为了实现特异性,引物序列应该在目标序列上具有高度互补性,但是在非特异性序列上没有互补性。
2.合适的长度:PCR引物的长度在20-30个碱基对之间,较短的引物可能无法特异性地与目标序列结合,而较长的引物可能导致PCR反应的效率降低。
3.避免结构性:PCR引物设计中应避免引物之间或引物与模板之间的二级结构形成。
二级结构会干扰PCR反应的进行,降低扩增效率。
4.避免引物间杂交:在PCR反应中,通过引物间的相互作用引发的非特异性扩增会干扰特异性扩增的结果。
因此,在设计PCR引物时,需要避免引物间的互补性。
1.选择位于目标序列上的合适区域进行扩增,通常选择区域位于目标序列上游和下游的相对保守区域。
这样可以确保PCR引物的特异性和稳定性。
2.引物应具有一定的GC含量,一般在40%-60%之间,过低的GC含量会降低PCR反应的特异性和稳定性。
3.引物的两端不应含有重复序列,这样可以避免模板序列的间断扩增。
4.引物的两端应该有相对稳定的酮基或磷酸基,这样可以提高引物的稳定性,确保特异性扩增。
5.避免引物的自身互补性,以防止引物间的二级结构形成。
引物的互补性会干扰PCR反应的进行。
6.引物应避免在末端存在带有杂质的碱基,因为这可能会导致扩增产物的杂交和二级结构形成。
7.引物序列应尽量避开重复序列、富含AT或GC的序列、高度变异的区域和基因座之间的序列相似性较高的区域。
8.引物设计应考虑到引物长度、温度和浓度的相互配合,以保证对目标序列的特异性扩增。
引物设计的原理与方法
引物设计的原理与方法引物设计是指为了在PCR、荧光定量PCR、基因克隆、基因表达、基因测序等分子生物学实验中特异性地扩增DNA序列或检测特定DNA序列而设计的一对或多对寡核苷酸。
引物设计的原理是基于两个核心要素:特异性和效能性。
特异性指引物与目标DNA序列完全互补,没有或只有微小的不匹配,以确保扩增或检测的特异性;效能性指引物的长度、GC含量、无特异结构和互补等因素需要优化,以提高PCR的效率和产物的质量。
1.模板DNA序列分析:通过对目标DNA序列进行分析,选择合适的扩增区域。
可根据目标序列的功能域、暴露度、多样性等特点进行选择。
2.引物长度和GC含量的优化:引物的长度通常在18-25个核苷酸之间,GC含量一般在40%-60%之间。
过长或过短的引物可能导致特异性和效率下降。
3.引物间的特异性检测:使用基因组数据库进行BLAST或其他比对算法的分析,检测引物是否有特异性。
确保引物的特异性是避免非特异扩增或检测的重要因素。
4. 引物设计软件的应用:目前市场上有很多引物设计软件,如Primer3、Beacon Designer、OligoAnalyzer等。
这些软件通过输入目标序列,自动生成引物并进行特异性和效能性的评估和预测。
5.引物的互补性检测:引物间的互补性会导致多聚体的形成,降低PCR效率和特异性。
可以使用软件或实验方法,如熔解曲线分析、聚丙烯酰胺凝胶电泳等,来检测引物间的互补性。
6.实验证明和优化:设计好的引物需要经过实验证明,通过PCR或其他检测方法来验证引物的特异性和效能性。
如果引物不符合要求,可以进行引物的调整和优化。
综上所述,引物设计的原理是基于特异性和效能性,方法包括模板DNA序列分析、引物长度和GC含量的优化、引物间的特异性检测、引物设计软件的应用、引物的互补性检测和实验证明和优化。
这些方法可以帮助科研人员设计特异性和效能性较好的引物,以提高实验的成功率和准确性。
引物设计原理
引物设计原理概述引物设计是在分子生物学和遗传学研究中非常重要的一部分内容。
引物是用于PCR(聚合酶链式反应)、基因克隆和DNA测序等实验中的关键组成部分。
引物的设计必须精确合理,以确保实验的准确性和可重复性。
本文将介绍引物的设计原理以及一些常用的引物设计工具。
引物的定义引物是一段短的DNA或RNA序列,它们与待扩增或待测序的目标序列的两个特定位点相互作用。
在PCR反应中,引物与目标序列的两个末端结合,然后通过聚合酶的作用,在目标序列上合成新的DNA链。
在基因克隆和测序中,引物与目标序列特定区域结合,以实现目标序列的扩增或测序。
引物设计原则引物的设计需要考虑以下几个原则:1. 特异性引物应该具有高度的特异性,即只与目标序列的特定区域相互作用。
这可以通过选择具有较高GC含量的引物来实现,因为高GC含量使引物更稳定,并能够与目标序列更特异地结合。
同时,通过在引物的3’末端引入一些限制性内切酶位点,还可以进一步确保引物的特异性。
2. 避免组内和组间杂交在引物设计过程中,需要避免引物之间的互相杂交以及引物与非目标序列的互相杂交。
互相杂交可能导致非特异性扩增产物的产生,影响实验结果的准确性。
为了避免这种情况的发生,引物设计时需要借助生物信息学工具进行引物比对和引物间互相比对的分析,以确保引物之间没有相互重叠的区域。
3. 合适的长度和温度引物的长度和温度也是引物设计中需要考虑的因素。
通常,引物的长度在18-30个碱基对之间,过长或过短的引物都会导致不理想的扩增效果。
此外,引物的熔点温度(Tm)应该在50-65摄氏度之间,以保证PCR反应的成功进行。
4. 避免引物自身二聚体和非特异性扩增引物自身的二聚体和引物与非特异序列的互相作用可能会导致非特异性扩增,影响实验结果的准确性。
为了避免这种情况的发生,我们需要使用生物信息学工具进行引物序列的分析,确保引物本身不会发生相互结合以及与非特异序列发生结合的情况。
引物设计工具在引物设计中,有许多生物信息学工具可以帮助我们进行引物的选择和优化。
引物设计的详细步骤
引物设计的详细步骤详细步骤如下:步骤一:了解引物设计的基本原理引物设计是指为特定的DNA序列设计一对合适的引物,以便在PCR反应中扩增目标DNA序列。
引物是PCR反应的关键组成部分,引物的选择和设计对于PCR扩增的成功率和特异性非常重要。
因此,了解引物设计的基本原理对于有效设计合适的引物至关重要。
步骤二:确定PCR反应的目标序列在设计引物之前,我们需要确定PCR反应的目标序列,即我们需要扩增的DNA区域。
这个目标序列可以是已知的基因序列,也可以是未知的区域。
确定目标序列后,我们可以继续设计引物。
步骤三:确定引物的一些基本参数在设计引物之前,我们需要确定一些基本的参数,以便帮助我们选择合适的引物。
这些参数包括引物的长度、GC含量、Tm值以及避免二聚体形成等。
引物长度:通常来说,引物的长度应在18-25个核苷酸之间。
过长的引物可能导致不特异的扩增产物的形成,而过短的引物则可能导致低扩增效率。
GC含量:引物的GC含量对于引物的稳定性和特异性有影响。
在正常情况下,引物的GC含量应在40%-60%之间。
Tm值:引物的Tm值是指引物在PCR反应中的解离温度。
Tm值过低可能导致非特异的扩增产物的形成,而Tm值过高则可能导致低扩增效率。
避免二聚体形成:在设计引物时,我们还需要考虑引物之间的互补性以及避免引物形成二聚体。
引物之间的互补性可能导致引物形成二聚体,从而降低PCR反应的效率和特异性。
步骤四:选择合适的引物设计工具目前有很多在线引物设计工具可供选择,例如NCBI Primer-BLAST、OligoAnalyzer等。
这些工具可以根据输入的目标序列帮助我们快速选择合适的引物。
此外,还可以使用一些商业引物设计软件,如Primer Premier等。
步骤五:进行引物特异性分析设计好引物后,我们需要进行引物特异性分析,确保引物只扩增目标序列而不扩增其他非特异性产物。
这可以通过BLAST或其他相似性工具来完成。
特异性分析的目的是排除可能存在的非特异性扩增产物,以确保PCR反应的准确性和特异性。
设计引物的实验报告
一、实验目的1. 掌握引物设计的原理和方法。
2. 学习利用生物信息学工具进行引物设计。
3. 了解引物在PCR实验中的应用。
二、实验原理引物是一段单链DNA或RNA,作为PCR反应的起始模板,与模板DNA链互补结合,从而在PCR反应中引导DNA的复制。
引物设计是PCR实验成功的关键因素之一。
三、实验材料1. 生物信息学工具:Primer Premier 5.0、Primer BLAST、OligoCalc等。
2. 实验样品:待扩增的DNA模板。
3. 其他:PCR试剂、DNA序列、引物合成等。
四、实验步骤1. 选择目标基因序列根据实验目的,选择合适的基因序列。
在本实验中,以某基因的cDNA序列为模板。
2. 利用生物信息学工具进行引物设计(1)打开Primer Premier 5.0软件,输入基因序列。
(2)设置引物设计参数,如:引物长度、Tm值、GC含量、引物间距离等。
(3)进行引物设计,得到多个引物序列。
(4)利用Primer BLAST和OligoCalc等工具对设计出的引物进行筛选,排除同源序列和二级结构。
3. 引物合成将筛选出的引物序列提交给引物合成公司,合成引物。
4. PCR实验(1)配制PCR反应体系,包括:引物、模板DNA、dNTPs、DNA聚合酶等。
(2)设置PCR反应程序,如:预变性、变性、退火、延伸等。
(3)进行PCR反应,观察扩增结果。
五、实验结果与分析1. 引物设计结果根据实验目的,设计出以下引物:上游引物:5'-ATCGTACGCTAGGCTG-3'下游引物:5'-CGTCTGACGACGTCAGT-3'2. PCR扩增结果通过PCR实验,成功扩增出目标基因片段。
六、实验结论1. 通过生物信息学工具进行引物设计,可提高引物设计的准确性和效率。
2. 合适的引物是PCR实验成功的关键,设计引物时需考虑多种因素。
3. 本实验成功设计并合成引物,为后续的PCR实验奠定了基础。
引物设计的原理与程序
引物设计的原理与程序引物设计是一项用于DNA或RNA扩增的关键技术,它在分子生物学和遗传学的研究中起着重要作用。
引物设计的原理是通过合成、设计一对互补序列的引物,在PCR(聚合酶链式反应)等技术中,使其能够高度特异地结合到目标DNA/RNA的特定区域,从而引导扩增反应的发生。
为了实现引物的高精确性和特异性,人们依据一些特定的规则和算法来设计引物,其中最常用的是吉布斯自由能最小化法和龙格-库塔法(Runge-Kutta algorithm)等。
引物设计程序可以粗略地分为以下几个步骤:1.目标序列选择:首先,根据实验需求和研究目的选择一个适当的目标序列,该序列通常来自于已知序列数据库或文献报道。
2.引物长度和Tm值的设定:确定所需的引物长度以及Tm值(熔解温度),Tm值通常在50-60℃之间。
引物长度的选择可以考虑到特定的实验条件,如扩增反应中的嵌合效应和引物的特异性。
3.引物序列设计:根据目标序列,设计一对能够互补结合到目标DNA/RNA特定片段的引物。
引物的设计一般应满足以下几个条件:a.引物长度一般为18-25个核苷酸,长度相似,所取的GC含量相似;b.引物之间的互补碱基序列长度差异不大,理想情况下应相同,差异尽量不超过2个碱基;c.引物的GC含量应在40%-60%之间,根据需要可以适量调整;d.引物不能含有重复序列、空白区域、内部多聚物等;e. 引物的3'端应尽可能避免GCgc和ATat碱基对的设计。
4. 引物的特异性分析:在引物设计过程中,需要进行特异性分析,确保引物与非目标序列无法结合。
利用生物信息学工具,如BLAST(Basic Local Alignment Search Tool)可以进行引物与已知序列数据库的比对,评估引物的特异性。
需要注意的是,引物设计的复杂性和准确性会受到许多因素的影响,如目标序列的长度、目标序列中的GC含量、所选择的引物长度和Tm值等。
因此,在引物设计过程中需要结合多个因素综合考虑,进行合理的设计。
设计引物实验报告
一、实验目的1. 掌握PCR(聚合酶链反应)引物设计的基本原则和流程。
2. 学习如何利用引物设计软件进行引物设计和优化。
3. 熟悉引物序列的验证和合成方法。
4. 通过实验验证引物的特异性和扩增效率。
二、实验原理PCR引物是一对短的单链DNA分子,它们在DNA模板上与互补序列结合,引导DNA 聚合酶从引物的3'端开始合成新的DNA链。
引物设计是PCR技术成功的关键因素之一,它直接影响到PCR反应的特异性和效率。
三、实验材料1. 软件工具:Oligo 6.0、Primer Premier 5.0等引物设计软件。
2. 目标基因序列:从GenBank、NCBI等数据库中获取。
3. 引物合成:使用引物合成仪或引物合成服务。
4. PCR反应体系:包括DNA模板、dNTPs、DNA聚合酶、引物等。
5. PCR仪器:PCR扩增仪。
四、实验步骤1. 目标基因序列获取:从GenBank、NCBI等数据库中获取目标基因序列。
2. 引物设计:- 使用Oligo 6.0或Primer Premier 5.0等引物设计软件进行引物设计。
- 根据软件推荐的参数,选择合适的引物序列。
- 检查引物序列的Tm值、GC含量、引物长度、引物二聚体等参数,确保引物质量。
3. 引物验证:- 使用Primer BLAST等在线工具,验证引物序列的特异性,确保引物不会扩增非目标基因。
- 使用DNA分析软件,分析引物序列的二级结构,避免形成引物二聚体。
4. 引物合成:将设计的引物序列发送给引物合成服务,合成引物。
5. PCR反应:- 配制PCR反应体系,包括DNA模板、dNTPs、DNA聚合酶、引物等。
- 设置PCR反应程序,包括预变性、变性、退火、延伸等步骤。
- 将PCR反应体系放入PCR扩增仪,进行扩增。
6. PCR产物分析:- 使用琼脂糖凝胶电泳检测PCR产物,观察扩增条带。
- 使用DNA测序仪对PCR产物进行测序,验证扩增片段的准确性。
引物设计的原理和程序
引物设计的原理和程序一、设计原理1、择合适的靶序列:设计引物之前,必须分析待测靶序列的性质,选择高度保守、碱基分布均匀的区域进行引物设计。
2、长度:一般来说,寡核苷酸引物长度为15~30bp。
3、Tm值:引物的Tm值一般控制在55~60℃,尽可能保证上下游引物的Tm值一致,一般不超过2℃。
若引物中的G+C含量相对偏低,则可以使引物长度稍长,而保证一定的退火温度。
4、(G+C)含量:有效引物中(G+C)的比例一般为40~60%。
5、碱基的随机分布:引物中四种碱基的分布最好是随机的,不存在聚嘌呤和聚嘧啶,尤其在引物的3’端不应超过3个连续的G或C。
6、引物自身:引物自身不存在连续4个碱基以上的互补序列,如回文结构,发夹结构等,否则会影响到引物与模板之间的复性结合,尤其避免3’末端的互补。
二、引物设计操作流程序列下载引物设计筛选1、 序列查找根据所需检测的病原体或者待检特定基因,在/pubmed 网址查询有关序列。
2、同源性比较 主要有两种方法A、在/blast/blast.cgi 网址进行在线的两两比较。
B、采用OMIGA, PCGENE 等软件进行两两或多序列比较。
1、打开OMIGA 软件,导入(import)下载存盘的纯文本序列文件:2、选择待比较的多条序列,右键点击“align sequences”命令;3、等待计算机处理,直至状态显示排列结束,点击“alignment”显示结果;4、“alignment”结果,相同碱基以同色标记三、引物设计与筛选 Primer Premier 5.0软件为例,进行引物设计和筛选的操作示范1、 打开软件,调入序列2、选择路径,选择序列文件名,加入右框3、序列文件显示如图,点击“primer”;4、按照引物设计的原理,设定引物的各种参数,点击“确定”进行引物搜寻5、等待引物搜寻,显示结束后,点击“确定”,进入下一页;6、按照搜寻结果显示,逐条分析,在主窗口中检查该引物对的二级结构情况,依次筛选。
引物设计原理及详细步骤
引物设计原理及详细步骤引物设计是⼀⼩段单链DNA或RNA,在核酸合成反应时,作为每个多核苷酸链进⾏延伸的出发点⽽起作⽤的多核苷酸链。
引物设计原理及详细步骤:1、引物最好在模板cDNA的保守区内设计。
DNA序列的保守区是通过物种间相似序列的⽐较确定的。
在NCBI上搜索不同物种的同⼀基因,通过序列分析软件(⽐如DNAman)⽐对(Alignment),各基因相同的序列就是该基因的保守区。
2、引物长度⼀般在15-30碱基之间。
引物长度(primer length)常⽤的是18-27bp,但不应⼤于38bp,因为过长会导致其延伸温度⼤于74℃,不适于Taq DNA 聚合酶进⾏反应。
3、引物GC含量在40%~60%之间,Tm值最好接近72℃。
GC含量(composition)过⾼或过低都不利于引发反应。
上下游引物的GC含量不能相差太⼤。
另外,上下游引物的Tm值(melting temperature)是寡核苷酸的解链温度,即在⼀定盐浓度条件下,50%寡核苷酸双链解链的温度。
有效启动温度,⼀般⾼于Tm值5-10℃。
若按公式Tm=4(G+C+2(A+T)估计引物的Tm值,则有效引物的Tm为55-80℃,其Tm值最好接近72℃以使复性条件最佳。
4、引物3'端要避开密码⼦的第3位。
如扩增编码区域,引物3'端不要终⽌于密码⼦的第3位,因密码⼦的第3位易发⽣简并,会影响扩增的特异性与效率。
5、引物3'端不能选择A,最好选择T。
引物3'端错配时,不同碱基引发效率存在着很⼤的差异,当末位的碱基为A时,即使在错配的情况下,也能有引发链的合成,⽽当末位链为T时,错配的引发效率⼤⼤降低,G、C错配的引发效率介于A、T之间,所以3'端最好选择T。
6、碱基要随机分布。
引物序列在模板内应当没有相似性较⾼,尤其是3’端相似性较⾼的序列,否则容易导致错误引发(False priming)。
降低引物与模板相似性的⼀种⽅法是,引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。
PCR引物设计原理及原则
PCR引物设计原理及原则PCR引物设计是指在聚合酶链反应(PCR)中使用的引物的设计过程。
PCR引物起到了在PCR扩增过程中特异性识别和引导DNA复制反应的作用。
因此,PCR引物的设计直接影响PCR反应的成功与否。
以下是PCR引物设计的原理及原则。
一、PCR引物设计的原理1.引物长度:引物的长度通常为18-25个碱基对。
引物过短可能导致非特异性引物结合,引物过长可能导致反应条件不佳。
较长引物(20-25个碱基对)通常用于扩增目标DNA较长的片段,而较短引物(18-20个碱基对)通常用于扩增较短的目标DNA片段。
2.引物序列:引物的序列应与目标DNA序列互补,以确保引物与模板DNA的特异性结合。
引物序列应尽量避免重复序列或序列中的碱基。
此外,引物序列的催化部位(3'端)应该具有高度的特异性与模板DNA序列匹配,以确保PCR反应的特异性。
3.引物的Tm值:引物的Tm值是指反应温度下引物和目标DNA序列的熔解温度。
引物的Tm值应相似,通常在56-64℃之间,以保证引物与目标DNA序列结合的特异性和稳定性。
4.引物的GC含量:引物的GC含量对PCR反应的效率和特异性有重要影响。
引物的GC含量应控制在40-60%之间,过高或过低的GC含量可能导致引物结合能力不佳。
二、PCR引物设计的原则1.引物特异性:引物应与目标DNA序列的特异区域互补,以确保特异性扩增。
在设计引物时,应避免引物与非目标序列互补或有任何交叉杂交现象。
2.引物长度:引物长度通常为18-25个碱基对,过短或过长的引物可能导致PCR反应效果不佳。
3.引物序列中避免重复序列:引物序列中避免过多的重复序列,以免引发非特异性引物结合。
4.引物催化部位特异性:引物的催化部位(3'端)应具有高度的特异性与模板DNA序列匹配,以确保PCR反应的特异性。
5.引物的Tm值匹配:引物的Tm值应相似,通常在56-64℃之间,以确保引物在反应温度下与模板DNA序列结合的稳定性。
PCR引物设计方法和原理
获得目标片段 DNA测序 基因克隆 体外转录 突变 探针设计 分子标记
二、引物设计的类型
常规PCR引物 PCR同源引物和简并引物 探针
引物设计的步骤
下载DNA模板或蛋白质序列 进行同源比较,找到保守同源序列 设计引物(primer length): 18-27 bp GC钳(GC clamp}: 引物3’端出现3 个以上的连 续碱基,如GGG 或CCC,也会使错误引发机 率增加 3’末端碱基(3’End Sequence): GCT Tm 值(melting temperature) :52~60℃ GC 含量(composition) :40-60%
Breslauer,邻近法的相邻核苷酸的动 力学数值(自由能)来预测双链稳定 性
五、简并引物的设计
五、同源引物设计
六、网络免费在线引物设计软件
六、引物设计常用商业软件包
常有引物设计软件的引物的自动搜索和评价分析 软件的引物设计功能主要体现在两个方面:首先是 引物分析评价功能,该功能只有少数商业版软件能够做 到,其中以“Oligo 6”最优秀;其次是引物的自动搜索功 能,各种软件在这方面的侧重点不同,因此自动搜索的 结果也不尽相同。据笔者的经验,自动搜索功能以 “Premier Primer”为最强且方便使用,“Oligo 6”其次, 其他软件如“Vector NTI Suit”、“Dnasis”、“Omiga”和 “Dnastar”都带有引物自动搜索功能,但搜索结果不是十 分理想。要想得到效果很好的引物,在自动搜索的基础 上还要辅以人工分析。笔者认为引物设计软件的最佳搭 配是“Oligo”和“Premier”软件合并使用,以“Premier” 进行自动搜索,“Oligo”进行分析评价,如此可快速设计 出成功率很高的引物。
引物设计步骤与要点
引物设计步骤与要点引物(primer)是在 DNA 或 RNA 聚合酶链式反应(PCR)或逆转录聚合酶链式反应(RT-PCR)中使用的短的 DNA 或 RNA 片段。
引物通过与目标序列的互补配对,为 PCR 或 RT-PCR 提供起始点,使得复制过程能够在目标序列上进行。
引物的设计是 PCR 或 RT-PCR 的关键步骤,影响其特异性和效率。
下面将介绍引物设计的步骤与要点。
引物设计的步骤如下:1.确定目标序列:首先要明确所需扩增的目标DNA或RNA序列。
例如,目标序列可以是特定基因的编码区域,或者是需要检测的病原体的DNA片段。
2. 引物长度:引物的长度通常在 18-30 bp 之间。
长度较长的引物可能会导致非特异性扩增,而较短的引物可能会导致不够稳定,产生非特异性扩增产物。
在设计引物时,应注意避免引物间或引物与模板间的互相互补性。
3.GC含量:引物的GC含量应在40-60%之间。
GC含量过高可能导致引物之间的二聚体形成,而GC含量过低可能导致引物的稳定性不足。
4.特异性:引物应与目标序列的特定部分互补配对,以确保特异性扩增。
在设计引物时,通常选择序列中的保守区域作为互补匹配的区域,以确保其在各物种或基因型中的适用性。
此外,可以通过使用在线工具,如NCBIBLAST,对引物进行特异性检测,以避免与非目标序列互补匹配。
5. 引物之间的互补配对:在 PCR 扩增中,引物通常成对使用,所以引物之间不应存在互补配对,以避免二聚体形成。
另外,引物对之间的距离应合适,通常在 100-300 bp 之间。
6.引物的末端设计:引物的末端设计直接影响PCR的效率和特异性。
在设计引物时,应注意避免末端的一些特定的串扰序列,如GGGG、CCCC、AAAA、TTTT等。
此外,引物的末端可以添加一些特定的序列,如引物标记和引物序列的识别序列,以便进一步的实验操作。
引物设计的要点如下:1.使用专业软件或在线工具进行辅助设计:可以使用一些专业的引物设计软件或在线工具来辅助引物的设计。
引物设计知识点总结图
引物设计知识点总结图引物设计是在分子生物学研究中常用的实验技术之一,用于扩增目标DNA序列。
本文将就引物设计的相关知识点进行总结和图示,以帮助读者更好地理解和应用该技术。
一、引物设计的基本原理在引物设计之前,我们需要了解PCR(聚合酶链式反应)的基本原理。
PCR是一种快速扩增DNA的方法,其关键在于引物的选择和设计。
引物是PCR反应中的两段寡核苷酸序列,分别与目标DNA序列的起始点和终止点互补配对。
通过PCR反应,引物与目标DNA序列结合,聚合酶随后从引物的3'端开始合成新链,形成所需扩增的DNA。
二、引物设计的关键要点1. 引物长度:引物长度通常为18-30个碱基,过短的引物可能无法特异性地结合目标DNA,而过长的引物则可能导致不必要的非特异扩增产物。
2. 引物序列:引物的序列应与目标DNA的互补序列相匹配,确保引物能够特异性地结合目标DNA并进行扩增。
3. 引物峰值温度(Tm值):Tm值是引物设计中非常重要的参数,它表示引物与目标DNA的解链温度。
引物的Tm值应相似,以确保二者能够在相同的温度下扩增。
4. 引物GC含量:引物的GC含量直接影响其Tm值,较高的GC 含量通常意味着较高的Tm值。
适当调整GC含量可以帮助优化引物的扩增效率。
5. 引物间的相互作用:在引物设计过程中,需要避免引物之间的互补性,以免引物间发生二次结合导致非特异性扩增。
三、引物设计的步骤示意图[图示]四、引物设计的实际应用引物设计广泛应用于分子生物学领域中的DNA克隆、基因表达分析、突变检测等实验中。
具体应用包括:1. DNA克隆:通过引物设计扩增目标DNA序列,可用于获得目标基因的全长序列或特定片段。
2. 基因表达分析:通过引物设计扩增特定基因的编码区域,可用于研究该基因的表达水平和调控机制。
3. 突变检测:通过引物设计扩增包含突变位点的DNA片段,可用于检测目标基因的突变类型和频率。
五、引物设计的常见问题及解决方法1. 引物的Tm值差异较大:可通过调整引物的长度和GC含量来优化Tm值,使其相似。
pcr引物设计原理
pcr引物设计原理
PCR(聚合酶链式反应)是一种常用的分子生物学技术,用于复制和扩增特定的DNA序列。
PCR引物是在PCR反应中使
用的两个短的单链DNA分子,它们与目标DNA序列的两端
相互互补。
引物的设计是PCR的关键步骤之一。
引物设计的原理考虑了目标DNA序列的多个因素,包括长度、GC含量、互补性和特异性等。
以下是PCR引物设计的一般原理:
1. 引物长度:引物通常由18-30个碱基对组成,这个长度范围
有助于在PCR反应中实现高效的扩增。
过短的引物可能无法
准确地与目标DNA序列的特定区域结合,而过长的引物可能
导致PCR反应较低的产物产量。
2. GC含量:为了确保引物的稳定性和特异性结合,引物的
GC含量应在40-60%之间。
这是因为GC碱基对比AT碱基对
具有更高的结合能力,能够增加引物与目标DNA序列的互补性。
3. 互补性:PCR引物的两个引物应该互补,并形成稳定的引
物-模板DNA复合物。
引物之间的相互互补性可以通过计算引物序列之间的互补碱基数来评估,以确保引物之间没有太多的自身互补性或与其他引物的互补性。
4. 特异性:引物设计还需要确保引物与目标DNA序列具有高
度特异性的互补性。
这意味着引物与目标DNA序列的其他非
目标区域不应该有太多的互补性,以避免非特异性扩增。
引物设计可以使用基因组和引物设计软件来辅助完成。
这些软件基于目标DNA序列的输入,在计算上述因素的基础上,为PCR反应提供最佳的引物设计。
一旦引物设计完毕,它们可以被合成和纯化,并用于PCR扩增特定的DNA序列。
引物设计流程
2010级动科2班杨教童2220103282101511.引物设计的原理和步骤PCR引物设计的目的是为了找到一对合适的寡核苷酸片段,其中在扩增的DNA片断5'端的引物对应于有意链DNA序列,3'端的引物对应于无意链DNA序列,使其能有效地扩增模板DNA序列。
因此,引物的优劣直接关系到PCR的特异性与成功与否。
要设计引物首先要找到DNA序列的保守区。
同时应预测将要扩增的片段单链是否形成二级结构。
如这个区域单链能形成二级结构,就要避开它。
如这一段不能形成二级结构,那就可以在这一区域设计引物。
现在可以在这一保守区域里设计一对引物。
一般引物长度为15~30碱基,扩增片段长度为100~600碱基对。
1.引物设计的原则(1)碱基组成:GC含量应在40%-60%(45%-55% )之间,4中碱基在引物中分配均匀。
没有多聚嘌呤或多聚嘧啶序列,如AAAAA等,没有二核苷酸重复序列,如GCGCGC等;(2)引物长度:引物中与模板互补的区应为18-25个核苷酸长度,上下引物长度差别不能大于3bp,如上游引物为19bp,下游引物为24bp等。
(3)重复或自身互补序列:形成发夹结构,会阻止引物和模板之间的复性。
(4)上下引物的互补性:一个引物的3'末端序列不允许结合到另一个引物的任何位点上,因为PCR中引物浓度较高,会形成引物二聚体。
当一个PCR有多对引物时,注意检查任何一个3'末端都不能和其他任何引物互补。
(5)解链温度(Tm 值):计算出来的两个引物的Tm 值相差不能大于5 ℃,扩增产物的Tm 值与引物的Tm 值相差不能大于10 ℃;引物的Tm 值一般为50-70℃。
这些特性保证了扩增产物在每一个PCR 循环可有效变性。
(6)3’末端3’末端的性质非常关键。
如果可能的话,每个引物的3’末端碱基为G或C;最好不要A,或AA等多聚A;(7)5’端序列添加限制性酶切位点:2.用Primer Premier 5.0 软件设计两对引物(1)在网页上找到要制作引物的一段序列,最好在1000左右,比如:ORIGIN1 atgaatccaa atcaaaagat aataacaatt ggttctgttt ctctcatcat tgccacaata61 tgtttcctta tgcaaattgc tatcctagta actactgtaa cattacattt caagcagcat121 gactacaact cccccgcaaa caaccaagca atgctgtgta aaccaacaat aatagaaaga181 aacacaacag agattgtgta tttgaccaac accaccatag agaaagaaat atgccccaaa241 ctagtagaat atagaaactg gtcaaagccg caatgtaaca ttacagggtt tgcacctttt 301 tccaaggaca attcaattcg gctttctgct ggtggggaca tctgggtgac aagagaacct361 tatgtgtcat gcgatcctga caagtgttat caatttgccc ttgggcaggg aacaacatta421 aacaacggac attcaaataa cactgtacat gataggaccc cttatcgaac cctattgatg481 aatgaattgg gtgttccatt tcatttagga accaggcaag tgtgcatggc atggtccagc 541 tcaagttgtc acgatggaaa agcatggctg catgtttgta taactgggga tgatagcaat 601 gcaacagcta gcttcattta caatgggagg cttgtagata gtattggttc atggtccaaa 661 aatatactca gaacccagga gtcggaatgc gtctgtatca atggaacctg tacagtagta721 atgactgatg ggagcgcttc aggaaaagct gatactaaaa tactattcgt tgaggagggg781 aagatcgttc atgttagcac attgtcagga agtgctcagc atgttgagga gtgctcctgt 841 tatccacgat ttcctggtgt cagatgtgtc tgcagagaca actggaaagg ctccaatagg901 cccatcgtag atataaatgt aaagaattat agcattgttt ccagttatgt atgctcagga961 cttgttggag acacacccag aaaaggcgac agcgtcagca gtagttattg cctagatcct1021 aacaatgaga aaggtggtca tggggtgaaa ggctgggcct ttgatgatgg aaatgacgtg1081 tggatgggaa ggacaatcaa cgagacgtta cgcttaggtt atgaaacctt caaagtcatt1141 gaaggctggt ccaaagctaa ctccaaatta cagacaaata gacaagtcat agttgaaaag1201 ggcgacaggt ccggttattc tggtattttc tccgttgaag gcaaaagctg catcaatcgg 1261 tgcttttatg tggagttgat aaggggaagg aaagaggaaa ctaaagtctg gtggacctca1321 aacagtattg ttgtgttttg tggcacctca ggtacatatg gaacaggctc atggcctgat 1381 ggagcggata tcaatctcat gcctatataa(2)将序列粘贴到制作区域(3)点击Primer后点击Search开始搜索引物,如:上述设计得如下一对引物5’CCTAAGCGTAACGTCTCGT3’TGGGAG GCTTGTAGATAGT优点:转化率为80%,产物长度比较长,为495bp.能够很到限度的利用所选序列的,在5’端没有A或者多聚A结构,引物的Tm值的差距小于5,GC含量在45%到55%之间。
引物设计操作-常用软件
引物设计的原理和程序一、设计原理1、选择合适的靶序列:设计引物之前,必须分析待测靶序列的性质,选择高度保守、碱基分布均匀的区域进行引物设计。
2、长度:一般来说,寡核苷酸引物长度为15-25bp。
3、Tm值:引物的Tm值一般控制在55-65℃,尽可能保证上下游引物的Tm值一致。
若G+C含量相对偏低,则可以使引物长度稍长,而保证一定的退货温度。
4、G+C含量:有效引物中的G+C含量一般为40%-60%。
5、碱基的随机分布:引物中四种碱基的分布最好是随机的,不存在聚嘌呤和聚嘧啶,尤其在引物的3’端不应超过3个连续的G或C。
6、引物末端:只有引物的3’端与模板结合,PCR才能进行,所以3’端最好是G或C。
7、引物自身:引物自身不存在连续4个碱基以上的互补序列,否则会影响到引物与模板之间的结合,尤其避免3’端的互补。
8、引物之间:上下游引物之间尽量少的存在互补序列,否则上下游引物退火结合,将影响到PCR的扩增效率。
二、序列查找根据所需检测的待检定基因,在/entrez/query.fcgi?db=Nucleotide&itool=toolbar网址查询有关序列。
三、引物设计与筛选分别以Primer Premier 5.0和Beacon Designer 5.1软件为例,进行引物设计和筛选。
(一)、Primer Premier 5.0软件1、打开软件,调入序列2、选择序列文件名,加入右框3、序列显示如图,4、点击“Primer”,按照引物设计的原理,设定引物的各种参数,点击“OK”进行引物搜寻5、等待引物搜寻,显示结束后,点击“OK”,进入下一页,6、按照搜寻结果显示,逐条分析,在主窗口中检查该引物对的二级结构,依次筛选(二)、Beacon Designer 5.1软件1、打开软件,调入序列2、选择序列文件名,加入右框3、序列显示如图,4、选择引物设计方式5、点击“Primer Search(图标)”,按照引物设计的原理,设定引物的各种参数,点击“Search”进行引物搜寻6、等待引物搜寻,显示结束后,点击“OK”,进入下一页,7、按照搜寻结果显示,逐条分析,点击“All Structures”,检查该引物对的二级结构,依次筛选四、引物比对比对设计的引物是否满足需要和引物的特异性,在/BLAST/ 网址进行比对1、输入所需比对的序列,选择数据库“nr”2、点击“Blast”,进入下一页3、点击“Format”,进入比对结果引物和探针设计软件Primer Express操作步骤(2009-06-13 23:43:40)标签:杂谈分类:专业1. 软件登录双击Primer Express软件的图标,登录软件,显示主页面。
引物设计的原理和程序
引物设计的原理和程序引物设计是在分子生物学领域中非常重要的一项技术,用于在DNA或RNA序列中选择特定的区域进行放大、克隆或检测。
引物设计的目标是选择具有高度特异性和高效性的引物,以确保所需的目标序列可以准确地被扩增或检测到。
以下是引物设计的原理和程序的详细说明。
1.特异性:引物应该在目标区域具有高度特异性,即只与目标序列配对,并排除与非目标序列的配对。
这可以通过确保引物序列在目标区域的起始位置和长度与目标序列相匹配来实现。
2.合成效率:引物应该具有高合成效率,以确保引物在PCR或其他实验过程中可以被充分放大或扩增。
合成效率可以通过一些计算方法如GC 含量、引物长度和翻转重复等特征进行评估。
3.避免互补配对:引物设计时应避免两个引物之间或引物与DNA模板之间形成互补配对。
互补配对可能会导致引物之间的二聚体形成或降低引物与目标区域的结合能力。
引物设计通常分为两个主要步骤:目标序列选择和引物设计。
1.目标序列选择:选择目标序列是引物设计的第一步。
目标序列通常是想要扩增或检测的DNA或RNA片段。
这可以是已知序列的基因、intergenic区域、病毒或细菌的片段等。
目标序列的选择需要考虑研究的目的以及实验的具体要求。
2.引物设计:引物设计是根据目标序列选择适当的引物。
引物设计可以通过多种计算机程序或在线工具来实现。
a.引物长度选择:引物长度通常在18到30个碱基对之间,具体长度的选择取决于目标序列的特点和实验需求。
较长的引物可以提供更好的特异性,但可能会降低扩增效率。
b.GC含量计算:GC含量是引物设计中的一个重要参数,通常在40%到60%之间。
GC含量高的引物可以提供更好的热稳定性和特异性,但过高或过低的GC含量都可能影响引物的性能。
c.特异性评估:引物的特异性可以通过与非目标序列进行比对来评估。
在引物设计过程中,首先应排除与非目标序列存在高度相似度的区域,然后检查目标序列中引物能否与其他非目标序列配对。
PCR引物设计方法和原理
实验试错法是一种相对原始的引物设计方法,通过实验尝试和调整来找到最佳的引物序列。该方法适用于实验条 件不明确或缺乏先验知识的情况,通过反复实验和调整来获得最佳的引物组合。虽然实验试错法效率较低,但对 于探索新领域和未知情况具有一定的价值。
04 pcr引物设计的原理
引物的特异性原理
引物的特异性原理是指引物与模板DNA的结合具有严格的特 异性和专一性。在PCR扩增过程中,引物与模板DNA的结合 位点是特定的,只有当引物的序列与模板DNA完全互补时, 引物才能与模板结合,进行有效的扩增。
为确保引物的特异性,通常要求引物在3'端具有18-20个与模 板DNA互补的序列,以形成稳定的氢键,同时要求引物之间 不存在互补性,以避免形成引物二聚体。
引物的长度和浓度原理
引物的长度和浓度是影响PCR扩增的重要因素。引物的长 度通常在18-30个核苷酸之间,过短可能无法有效结合模 板,过长则可能导致结合不稳定。
引物的浓度也需进行优化,过高可能导致非特异性结合,过 低则可能影响扩增效率。根据经验,一般将引物浓度设定在 0.1-0.5μM之间,具体浓度根据引物的长度和序列特性进行 适当调整。
引物的温度和平衡原理
引物的温度和平衡原理是指在PCR扩增过程中,需要选择合适的温度使引物与模板DNA结合,并保持引物与模板之间的平衡 状态。
详细描述
计算机辅助设计法利用专业的引物设计软件,根据输入的目标序列和实验条件,自动筛 选出符合要求的引物序列。该方法能够大大提高引物设计的效率和准确性,减少人工误
差和实验时间。常用的引物设计软件包括Primer3、Oligo等。
实验试错法
总结词
通过实验尝试和调整来找到最佳引物的方法,适用于未知情况和新领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 引物的设计以及初步筛选引物的设计与初步筛选基本上通过一些分子生物学软件和相关网站来完成的,目前运用软件Primer Premier 5 或美国 whitehead 生物医学研究所基因组研究中心在因特网上提供的一款免费在线PCR引物设计程序 Primer 3来设计引物,再用软件Oligo 6进行引物评估,就可以初步获得一组比较满意的引物。
但是对于初学者来说,运用软件和程序来设计引物好象无从着手,其实只要我们掌握了引物设计的基本原则和注意事项,所有问题便迎刃而解。
因为无论是软件还是程序,都是以这些基本原则和注意事项为默认标准来进行引物设计的。
所以,我们在进行引物设计的时候大可不必在软件和程序的参数上花费过多的时间来思考,如果没有特殊要求我们完全可以把一些参数设为默认值。
下面我们主要讨论一下引物设计的原则和注意事项。
①引物的长度一般为15-30 bp,最好在18~24 bp,因为太短易形成错配(F alse priming) 降低特异性,而太长也会降低特异性,并且降低产量[21。
②引物在模板内最好具有单一性,也就是说在模板内部没有错配。
特别是3’端,一定要避免连续4个以上的碱基互补错配。
③引物序列的GC 含量最好在40%一60%,且上下游引物序列GC含量的差异不要太大,3’端最后5个碱基最好不要富含GC,特别是连续3个的G或C。
④DNA双链形成所需的自由能AG,应该以5’端向3’端递减,3’端AG最好不要高于9.0 keaf mol[31。
⑤避免形成稳定的引物二聚体(Dimer and Cross DimeO 和发夹结构(Hairp in),AG高于4.5 keal/mol时易引发上述两种结构的产生。
⑥引物所在的模板区域应该位于外显子区,最好跨越一个内含子区,这样便于对扩增出来的片段进行功能鉴定和表型分析。
⑦如果以DNA为模板设计引物,产物长度在100—600 bp比较理想。
而以m RNA为模板设计引物时,产物长度在150—300 bp比较理想。
⑧5’ 端对PCR影响不太大,可以引进修饰位点和标记物[2]。
只要掌握了以上原则和注意事项,我们可以在软件和程序设计的一组引物中筛选出几对我们需要的目标引物。
Primer Premier 5和Oligo 6可以在/soft/下载,primer3的主页位置在。
2 引物的二次筛选引物的二次筛选是指在初次筛选出的几对引物中进一步筛选出适合我们进行特异、高效PCR扩增的那对引物。
本步应注意以下两点,一是得到的一系列引物分别在Genebank中进行回检。
也就是把每条引物在比对工具(/blas t/) 的blastnr中进行同源性检索,弃掉与基因组其它部分同源性比较高的引物,也就是有可能形成错配的引物。
一般连续10 bp以上的同源有可能形成比较稳定的错配,特别是引物的3’端应避免连续5-6 bp的同源。
二是以mRNA为模板设计引物时要先利用生物信息学的知识大致判断外显子与内含子的剪接位点(例如/GENESCAN.html的GENESCAN工具或者GeneParser软,然后弃掉正好位于剪接位点的引物。
3 引物的最终评估当我们经过初次筛选和二次筛选后得到的那对引物便可以用于合成,合成后我们经过PCR扩增可以对引物进行最终的评估。
一是PCR扩增的特异性和效率。
经过PCR条件优化后能否获得特异性条带,即无目的条带之外的多余条带。
另外,PCR产物的量是否足够,即无不出带和条带很弱的现象。
二是以DNA为模板设计引物时,PCR扩增产物是否与预期PCR产物大小相当。
如果相差太大G 于100 b ,有可能是错配产物。
三是是否形成引物二聚体带。
我们结合引物最终评估和测序的结果可以对引物设计的成败做出鉴定,为我们以后进行引物设计积累宝贵经验。
4 用比较基因组学分离新基因时引物设计的注意事项扩增已知基因时经过初次筛选和二次筛选后得到的引物基本上能够满足要求,但是当运用比较基因组学分离新基因时,设计引物还应注意以下两点:① 模板的选择。
如果以DNA为模板设计引物,首先在Genebank中找到与待分离新基因同源的其它物种的该基因。
利用/blast/的Blast工具和 /elustalw/的Clustalw工具把已检索到的基因进行同源性比较,根据比较基因组定位的原理,选择研究深入、标记稠密的人和哺乳动物(如小鼠)保守功能基因DNA序列设计引物[51,该引物区段要求在各物种间绝对保守,差异不要大于2 bp,特别是3’端必须完全同源。
如果以电脑克隆策略获得的待分离物种新基因的EST一重叠群为模板设计引物,要求ESTs与信息探针之间同源性大于80%,长度大于100 bp,并且避免在EST的并接部位和可能的外显子与内含子剪接位点处设计引物。
②引物序列最好位于相临的外显子区且至少距离外显子与内含子剪接处25 bD以上,这样便于对扩增出来的片段进行功能鉴定和表型分析。
PCR技术的基本原理⑴PCR技术的基本原理:该技术是在模板DNA、引物和四种脱氧核糖核苷酸存在下,依赖于DNA聚合酶的酶促合成反应。
DNA聚合酶以单链DNA为模板,借助一小段双链DNA来启动合成,通过一个或两个人工合成的寡核苷酸引物与单链DNA模板中的一段互补序列结合,形成部分双链。
在适宜的温度和环境下,DNA聚合酶将脱氧单核苷酸加到引物3´-OH末端,并以此为起始点,沿模板5´→3´方向延伸,合成一条新的DNA互补链。
PCR反应的基本成分包括:模板DNA(待扩增DNA)、引物、4种脱氧核苷酸(dNTPs)、DNA聚合酶和适宜的缓冲液。
类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。
PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的高温变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的低温退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的适温延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性-退火-延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。
每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。
⑵PCR的反应动力学:PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。
反应最终的DNA 扩增量可用Y=(1+X)n计算。
Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。
平均扩增效率的理论值为100%,但在实际反应中平均效率达不到理论值。
反应初期,靶序列DNA 片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA 片段不再呈指数增加,而进入线性增长期或静止期,即出现“停滞效应” ,这种效应称平台期数、PCR 扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素。
大多数情况下,平台期的到来是不可避免的。
⑶PCR扩增产物:可分为长产物片段和短产物片段两部分。
短产物片段的长度严格地限定在两个引物链5'端之间,是需要扩增的特定片段。
短产物片段和长产物片段是由于引物所结合的模板不一样而形成的,以一个原始模板为例,在第一个反应周期中,以两条互补的DNA为模板,引物是从3'端开始延伸,其5'端是固定的,3' 端则没有固定的止点,长短不一,这就是“长产物片段”。
进入第二周期后,引物除与原始模板结合外,还要同新合成的链(即“长产物片段”)结合。
引物在与新链结合时,由于新链模板的5'端序列是固定的,这就等于这次延伸的片段3'端被固定了止点,保证了新片段的起点和止点都限定于引物扩增序列以内、形成长短一致的“短产物片段”。
不难看出“短产物片段”是按指数倍数增加,而“长产物片段”则以算术倍数增加,几乎可以忽略不计,这使得PCR的反应产物不需要再纯化,就能保证足够纯DNA片段供分析与检测用。
引物设计的原理和程序(多图)一、设计原理1、择合适的靶序列:设计引物之前,必须分析待测靶序列的性质,选择高度保守,碱基分布均匀的区域进行引物设计。
2,、长度:一般来说,寡核苷酸引物长度为15~30bp.3、Tm值:引物的Tm值一般控制在55~60℃,尽可能保证上下游引物的Tm值一致,一般不超过2℃。
若引物中的G+C含量相对偏低,则可以使引物长度稍长,而保证一定的退火温度。
4、(G+C)含量:有效引物中(G+C)的比例一般为40~60%。
5、碱基的随机分布:引物中四种碱基的分布最好是随机的,不存在聚嘌呤和聚嘧啶,尤其在引物的3 '端不应超过3个连续的G或C.6、引物自身:引物自身不存在连续4个碱基以上的互补序列,如回文结构,发夹结构等,否则会影响到引物与模板之间的复性结合,尤其避免3'末端的互补。
二、引物设计操作流程序列下载↓同源性比较↓引物设计筛选1、序列查找根据所需检测的病原体或者待检特定基因,在/pubmed 网址查询有关序列。
2,同源性比较主要有两种方法1)在/blast/blast.cgi 网址进行在线的两两比较。
2)采用OMIGA, PCGENE等软件进行两两或多序列比较。
①打开OMIGA软件,导入(import)下载存盘的纯文本序列文件:②选择待比较的多条序列,右键点击"align sequences"命令;③等待计算机处理,直至状态显示排列结束,点击"alignment"显示结果;④"alignment"结果,相同碱基以同色标记三、引物设计与筛选Primer Premier 5.0软件为例,进行引物设计和筛选的操作示范1、打开软件,调入序列2、选择路径,选择序列文件名,加入右框3、序列文件显示如图,点击"primer";4、按照引物设计的原理,设定引物的各种参数,点击"确定"进行引物搜寻;5、等待引物搜寻,显示结束后,点击"确定",进入下一页;6、按照搜寻结果显示,逐条分析,在主窗口中检查该引物对的二级结构情况,依次筛选引物设计软件oligo应用图解[ 2008-04-24 22:44:11 | Author: colacat ]在专门的引物设计软件中,“Oligo”是最著名的。
它的使用并不十分复杂,但初学者容易被其复杂的图表吓倒。
Oligo 5.0的初始界面是两个图:Tm图和ΔG 图;Oligo 6.0的界面更复杂,出现三个图,加了个Frq图。