三角函数图象的平移和伸缩(后面有高考题练习)
三角函数的平移及伸缩变换(含答案)
三角函数的平移及伸缩变换一、单选题(共8道,每道12分)1.将函数的图象上所有点的纵坐标不变,横坐标缩小到原来的,再把图象上各点向左平移个单位长度,则所得的图象的解析式是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换2.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数,则y =f(x)的表达式时( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换3.已知函数,若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则的最小值是( )A.2B.3C.4D.5答案:C解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换4.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于y轴对称,则的一个值是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换5.偶函数的图象向右平移个单位得到的图象关于原点对称,则的值可以是( )A.1B.2C.3D.4答案:B解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换6.已知函数的周期为π,若将其图象沿x轴向右平移a个单位(a >0),所得图象关于原点对称,则实数a的最小值是( )A.πB.C. D.答案:D解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换7.函数的图象如图所示,为了得到的图象,则只要将f(x)的图象( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度答案:C解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换8.将函数的图象向左平移个单位,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换。
三角函数图像平移与伸缩练习
三角函数图像平移与伸缩题组练习1.(2020·福建质检)将函数y =sin x 的图像向左平移π2个单位,得到函数y =f (x )的图像,则下列说法正确的是( )A .y =f (x )是奇函数B .y =f (x )的周期为πC .y =f (x )的图像关于直线x =π2对称D .y =f (x )的图像关于点⎝⎛⎭⎫-π2,0对称 答案 D解析 由题意知,f (x )=cos x ,所以它是偶函数,A 错;它的周期为2π,B 错;它的对称轴是直线x =k π,k ∈Z ,C 错;它的对称中心是点⎝⎛⎭⎫k π+π2,0,k ∈Z ,D 对. 2.要得到函数y =cos2x 的图像,只需把函数y =sin2x 的图像( ) A .向左平移π4个单位长度B .向右平移π4个单位长度C .向左平移π2个单位长度D .向右平移π2个单位长度答案 A解析 由于y =sin2x =cos(π2-2x )=cos(2x -π2)=cos[2(x -π4)],因此只需把函数y =sin2x 的图像向左平移π4个单位长度,就可以得到y =cos2x 的图像. 3.若把函数y =f (x )的图像沿x 轴向左平移π4个单位,沿y 轴向下平移1个单位,然后再把图像上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到函数y =sin x 的图像,则y =f (x )的解析式为( )A .y =sin(2x -π4)+1B .y =sin(2x -π2)+1C .y =sin(12x +π4)-1D .y =sin(12x +π2)-1答案 B解析 将y =sin x 的图像上每个点的横坐标变为原来的一半(纵坐标保持不变),得到y =sin2x 的图像,再将所得图像向上平移1个单位,得到y =sin2x +1的图像,再把函数y =sin2x +1的图像向右平移π4个单位,得到y =sin2(x -π4)+1的图像,即函数f (x )的图像,所以f (x )=sin2(x -π4)+1=sin(2x -π2)+1,故选B.4.函数y =cos(4x +π3)图像的两条相邻对称轴间的距离为( )A.π8B.π4C.π2 D .π答案 B解析 函数y =cos(4x +π3)图像的两条相邻对称轴间的距离为半个周期,即T 2=2π42=π4.5.将函数y =sin(2x +π4)的图像上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移π4个单位,所得到的图像解析式是( )A .f (x )=sin xB .f (x )=cos xC .f (x )=sin4xD .f (x )=cos4x答案 A解析 y =sin(2x +π4)→y =sin(x +π4)→y =sin(x -π4+π4)=sin x .6.(2019·山东理)将函数y =sin(2x +φ)的图像沿x 轴向左平移π8个单位后,得到一个偶函数的图像,则φ的一个可能取值为( )A.3π4B.π4 C .0 D .-π4答案 B解析 把函数y =sin(2x +φ)的图像向左平移π8个单位后,得到的图像的解析式是y =sin(2x +π4+φ),该函数是偶函数的充要条件是π4+φ=k π+π2,k ∈Z ,根据选项检验可知φ的一个可能取值为π4.7.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图像如右图所示,则当t=1100秒时,电流强度是( )A .-5 AB .5 AC .5 3 AD .10 A答案 A解析 由图像知A =10,T 2=4300-1300=1100.∴ω=2πT=100π.∴T =10sin(100πt +φ).(1300,10)为五点中的第二个点,∴100π×1300+φ=π2. ∴φ=π6.∴I =10sin(100πt +π6),当t =1100秒时,I =-5 A ,故选A.8.(2019·福建质检)将函数f (x )=sin(2x +θ)(-π2<θ<π2)的图像向右平移φ(φ>0)个单位长度后得到函数g (x )的图像,若f (x ),g (x )的图像都经过点P (0,32),则φ的值可以是( ) A.5π3 B.5π6 C.π2 D.π6 答案 B解析 因为函数f (x )的图像过点P ,所以θ=π3,所以f (x )=sin(2x +π3).又函数f (x )的图像向右平移φ个单位长度后,得到函数g (x )=sin[2(x -φ)+π3]的图像,所以sin(π3-2φ)=32,所以φ可以为5π6,故选B.9.已知函数y =sin ωx (ω>0)在一个周期内的图像如图所示,要得到函数y =sin(12x +π12)的图像,则需将函数y =sin ωx 的图像向________平移________个单位长度.答案 左,π6解析 由图像知函数y =sin ωx 的周期为T =3π-(-π)=4π, ∴ω=2πT =12,故y =sin 12x .又y =sin(x 2+π12)=sin 12(x +π6),∴将函数y =sin 12x 的图像向左平移π6个单位长度,即可得到函数y =sin(x 2+π12)的图像.10.(2019·重庆文)若将函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图像上每一个点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图像,则f ⎝⎛⎭⎫π6=________. 答案22解析 将y =sin x 的图像向左平移π6个单位长度可得y =sin ⎝⎛⎭⎫x +π6的图像,保持纵坐标不变,横坐标变为原来的2倍可得y =sin ⎝⎛⎭⎫12x +π6的图像,故f (x )=sin ⎝⎛⎭⎫12x +π6.所以f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫12×π6+π6=sin π4=22. 11.若y =A sin(ωx +θ)(A >0,ω>0,|θ|<π2)的图像如图所示,则y =________.答案 2sin(2x +π6)解析 由题图知周期T =1112π-(-π12)=π,∴ω=2ππ=2,且A =2.∴y =2sin(2x +θ).把x =0,y =1代入上式得2sin θ=1, 即sin θ=12.又|θ|<π2,∴θ=π6.即y =2sin(2x +π6).12.(2018·新课标全国Ⅱ文)若函数y =cos(2x +φ)(-π≤φ<π)的图像向右平移π2个单位后,与函数y =sin(2x +π3)的图像重合,则φ=________.答案5π6解析 将y =cos(2x +φ)的图像向右平移π2个单位后得到y =cos[2(x -π2)+φ]的图像,化简得y =-cos(2x+φ),又可变形为y =sin(2x +φ-π2).由题意可知φ-π2=π3+2k π(k ∈Z ),所以φ=5π6+2k π(k ∈Z ),结合-π≤φ<π知φ=5π6.13.若函数y =A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)在闭区间[-π,0]上的图像如图所示,则ω=________.答案 3解析 由函数y =A sin(ωx +φ)的图像可知: T 2=(-π3)-(-23π)=π3,∴T =23π. ∵T =2πω=23π,∴ω=3.14.若函数y =sin2x 的图像向右平移φ(φ>0)个单位,得到的图像恰好关于直线x =π6对称,则φ的最小值是________.答案5π12解析 y =sin2x 的图像向右平移φ(φ>0)个单位,得y =sin2(x -φ)=sin(2x -2φ).因其中一条对称轴方程为x =π6,则2·π6-2φ=k π+π2(k ∈Z ).因为φ>0,所以φ的最小值为5π12.15.设函数y =sin(ωx +φ)(ω>0,φ∈(-π2,π2))的最小正周期为π,且其图像关于直线x =π12对称,则在下面四个结论中:①图像关于点(π4,0)对称;②图像关于点(π3,0)对称;③在[0,π6]上是增函数;④在[-π6,0]上是增函数,所有正确结论的编号为________.答案 ②④解析 ∵y =sin(ωx +φ)的最小正周期为π,∴ω=2ππ=2.又其图像关于直线x =π12对称,得π6+φ=π2+k π(k∈Z ).令k =0,得φ=π3.∴y =sin(2x +π3).当x =π3时,f (π3)=0,∴函数图像关于点(π3,0)对称.所以②正确.解不等式-π2+2k π≤2x +π3≤π2+2k π,得-5π12+k π≤x ≤π12+k π(k ∈Z ),所以④正确.16.(2019·江西景德镇测试)已知函数f (x )=4cos x sin(x +π6)+a 的最大值为2.(1)求实数a 的值及f (x )的最小正周期; (2)在坐标纸上作出f (x )在[0,π]上的图像.答案 (1)a =-1,T =π (2)略解析 (1)f (x )=4cos x (sin x cos π6+cos x sin π6)+a=3sin2x +cos2x +1+a =2sin(2x +π6)+a +1,最大值为3+a =2,∴a =-1.T =2π2=π.(2)列表如下:画图如下:17.(2019·湖北重点中学联考)已知函数f (x )=A sin(ωx +φ)(x ∈R ,A >0,ω>0,|φ|<π2)的部分图像如图所示.(1)试确定函数f (x )的解析式; (2)若f (α2π)=13,求cos(2π3-α)的值.答案 (1)f (x )=2sin(πx +π6) (2)-1718解析 (1)由图像知,f (x )max =A =2,设函数f (x )的最小正周期为T ,则T 4=56-13=12,所以T =2,∴ω=2πT =2π2=π,故函数f (x )=2sin(πx +φ). 又∵f (13)=2sin(π3+φ)=2,∴sin(π3+φ)=1.∵|φ|<π2,即-π2<φ<π2,∴-π6<π3+φ<5π6.故π3+φ=π2,解得φ=π6,∴f (x )=2sin(πx +π6).(2)∵f (α2π)=13,即2sin(π·α2π+π6)=2sin(α2+π6)=13,∴sin(α2+π6)=16.∴cos(π3-α2)=cos[π2-(π6+α2)]=sin(π6+α2)=16.∴cos(2π3-α)=cos[2(π3-α2)]=2cos 2(π3-α2)-1=2×(16)2-1=-1718.。
(完整版)三角函数的平移伸缩变换练习题
三角函数的平移伸缩变换题型一:已知开始和结果,求平移量ϕω【2016高考四川文科】为了得到函数sin()3y x π=+的图象,只需把函数y=sinx 的图象上所有的点( )(A )向左平行移动3π个单位长度 (B) 向右平行移动3π个单位长度 (C ) 向上平行移动3π个单位长度 (D ) 向下平行移动3π个单位长度【】为了得到函数sin(1)y x =+的图象,只需把函数sin y x =的图象上所有的点( ) A .向左平行移动1个单位长度 B .向右平行移动1个单位长度 C .向左平行移动π个单位长度 D .向右平行移动π个单位长度【】要得到函数cos y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( )(A ).向右平移π6个单位 (B ).向右平移π3个单位 (C ).向左平移π3个单位 (D ).向左平移π6个单位【】要得到函数(21)y cos x =+的图象,只要将函数2y cos x =的图象( ) A .向左平移1个单位 B .向右平移1个单位 C .向左平移12个单位 D .向右平移12个单位【】要得到sin(2)3y x π=-的图象,只需将sin 2y x =的图象 ( )(A )向左平移3π个单位 (B )向右平移3π个单位 (C )向左平移6π个单位 (D )向右平移6π个单位【】.将函数sin 2y x =的图象作平移变换,得到函数sin(2)6y x π=-的图象,则这个平移变换可以是 ( )A. 向左平移6π个单位长度 B. 向左平移12π个单位长度 C. 向右平移6π个单位长度 D. 向右平移12π个单位长度【】为了得到函数4sin(3)()4y x x R π=+∈的图象,只需把函数4sin()()4y x x R π=+∈的图象上所有点( )A 、横坐标伸长到原来的3倍,纵坐标不变B 、横坐标缩短到原来的13倍,纵坐标不变C 、纵坐标伸长到原来的3倍,横坐标不变D 、纵坐标缩短到原来的13倍,横坐标不变.【2015山东】要得到函数4y sin x =-(3π)的图象,只需要将函数4y sin x =的图象( ) (A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【】为了得到函数πsin 23y x ⎛⎫=- ⎪⎝⎭的图像,只需把函数πsin 26y x ⎛⎫=+ ⎪⎝⎭的图像A .向左平移π4个长度单位B .向右平移π4个长度单位C .向左平移π2个长度单位D .向右平移π2个长度单位【】要得到cos(2)4y x π=-的图像,只需将sin 2y x =的图像( )A 向左平移8π个单位B 向右平移8π个单位C 向左平移4π个单位D 向右平移4π个单位【】已知函数()sin 4πf x x ω⎛⎫=+ ⎪⎝⎭()R 0x ω∈>,的最小正周期为π,为了得到函数()cos g x x ω=的图象,只要将()y f x =的图象( )A .向左平移8π个单位长度 B .向右平移8π个单位长度 C .向左平移4π个单位长度D .向右平移4π个单位长度题型二:已知开始,平移量,求结果【】. 将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是 (A )sin(2)10y x π=-(B )sin(2)5y x π=-(C )1sin()210y x π=- (D )1sin()220y x π=-【】函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( ) (A )sin(2),3y x x R π=-∈ (B )sin(),26x y x R π=+∈(C )sin(2),3y x x R π=+∈ (D )2sin(2),3y x x R π=+∈【】函数3sin(2)3y x π=+的图象,可由y sinx =的图象经过下述哪种变换而得到 ( )(A )向右平移3π个单位,横坐标缩小到原来的21倍,纵坐标扩大到原来的3倍(B )向左平移3π个单位,横坐标缩小到原来的21倍,纵坐标扩大到原来的3倍(C )向右平移6π个单位,横坐标扩大到原来的2倍,纵坐标缩小到原来的31倍(D )向左平移6π个单位,横坐标缩小到原来的21倍,纵坐标缩小到原来的31倍【】.将函数sin y x =的图象上各点的横坐标扩大为原来的2倍,纵坐标不变,再把所得图象上所有点向左平移3π个单位,所得图象的解析式是 . 【】. 将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是____________▲________________ .【】把函数sin(2)4y x π=+的图像向左平移8π个单位长度,再将横坐标压缩到原来的12,所得函数的解析式为( )。
高考数学三角函数图像平移变换!高考必考内容!3种题型讲解!
⾼考数学三⾓函数图像平移变换!⾼考必考内容!3种题型讲解!题型⼀:函数y=A sin(ωx+φ)的图象及变
换
1.三⾓函数图象变换的思路
先平移后伸缩;先伸缩后平移.值得注意的是,对于三⾓函数图象的平移变换问题,其平移变
换规则是“左加、右减”,并且在变换过程中只变换其⾃变量x,如果x的系数不是1,则需把x的系
数提取后再确定平移的单位长度和⽅向.
题型⼆:由图象求y=A sin(ωx+φ)的解析
式
求函数y=A sin(ωx+φ)+b(A>0,ω>0)中参数的⽅法
(1)求A,b先确定函数的最⼤值M和最⼩值m,则A=(M-m)/2,b=(M+m)/2
(2)求ω先确定函数的周期T,则可得ω=T/2π
(3)求φ
代⼊法.把图象上的⼀个已知点代⼊(此时A,ω,b已知)或代⼊图象与直线y=b的交点求解(此
时要注意交点在上升区间上还是在下降区间上).
题型三:y=A sin(ωx+φ)的图象与性质
函数y=A sin(ωx+φ)的图象与性质是命题的热点,多将图象变换、解析式求法与性质综合⼀起
考查,属中低档题.
常见的命题⾓度有:
(1)图象变换与性质的综合;
(2)解析式的求法与性质的综合;。
三角函数图象求解析式及平移练习题
1. 图像的平移(1)y sin x y sin( x ) (2)y sin x y sin x (3)y sin x y sin x b (4)y sin x y A s in x 4. 图像平移的两种方法(1)先平移后伸缩y sin x y sin( x )y sin( x ) y A sin( x )y sin( x ) b(2)先伸缩后平移y sin x y sin xy sin( x ) y A sin( x )y sin( x ) b练习1下列函数中,图像的一部分如右图所示的是( )(A)sin( )y x (B)cos(2 )y x6 6(C)y cos(4x ) (D)sin(2 )y x3 62.已知函数y sin x 0, 的部分图象如右2上图所示,则()A. 1,B.6 1,61C. 2,D.6 2,62.下列函数中,图象的一部分如右图所示的是A. y sin xB. y sin 2x6 6C. y cos 4xD. cos 2y x364、函数y A sin x 的一个周期内的图象如下图,求y 的解析式。
(其中 A 0, 0, )5.已知函数y A sin( x )(A 0,0,| | )的一段图象如图所示,求函数的解析式;6、要得到函数)y 3sin(2 x 的图象,只需将函数y 3 s in 2x 的图象()4(A)向左平移个单位(B)向右平移个单位 4 4 (C)向左平移个单位(D)向右平移个单位8 8 7、将函数y=sin3x 的图象作下列平移可得y=sin(3x+ ) 的图象6(A) 向右平移个单位(B) 向左平移个单位 6 62(C)向右平移个单位(D)向左平移个单位18 188.将函数y sin x 的图象上每点的横坐标缩小为原来的12(纵坐标不变),再把所得图象向左平移个单位,得到的函数解析式为()6xA y sin 2x sin 2 D yB y xC y sin s i nB y xC y sin s i n6 3 2 6 x2 1 29、把函数y cosx 的图象上所有的点的横坐标缩小到原来的一半,纵坐标保持不变,然后把图象向左平移个单位长度,得到新的函数图象,那么这个新函数的解4 析式为x(A)y (B)y (C)y sin 2x(D)y sin 2x cos 2x cos4 2 43.为了得到函数y sin(2x )的图象,可以将函数y cos 2x 的图象()6个单位长度(B) 向右平移(A) 向右平移个单位长度6 3个单位长度(D)向左平移(C)向左平移个单位长度6 34.为得到函数πy x 的图像,只需将函数y sin 2x 的图像()cos 23A .向左平移5π个长度单位B.向右平移125π个长度单位12C.向左平移5π个长度单位D.向右平移65π个长度单位65.将函数y f (x) 的图象上各点的横坐标扩大为原来的 2 倍(纵坐标不变),再将整个图形沿x 轴正向平移,得到的新曲线与函数y 3sin x的图象重合,则f ( x) 3 ()xA. 3sin(2 x )B. 3sin( )3 2 3 C.23sin(2 x ) D.3x 23sin( )2 36.为了得到函数y sin( 2x ) 的图象,可以将函数y cos 2x的图象( )63个单位长度B.向右平移A.向右平移个单位长度6 3个单位长度D.向左平移C.向左平移个单位长度6 37.若将函数y tan x 0 的图像向右平移4 6个单位长度后,与函数y tan x 的图像重合,则的最小值为( )6A.16B.14C.13D.128.设函数 f (x) cos x( >0) ,将y f (x) 的图像向右平移个单位长度后,所得的图像3 与原图像重合,则的最小值等于( )(A )13 (B)3 (C)6 (D)9三角函数图像与性质练习题一.选择题(每小题5分,共100 分)6.将函数y sin x( 0) 的图象按向量 a ,0 平移,平6移后的图象如图所示,则平移后的图象所对应函数的解析式是( )A. y sin( x )B. y sin( x )6 6C. y sin(2 x )D. y sin(2 x )3 3x7.为得到函数y sin( ), x R2 的图像,只需把函数y 2 sin x, x R 的图像上所有的点( )3 6A. 向左平移6 个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变)B.向右平移6 个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变)个单位长度,再把所得各点的横坐标伸长到原来的 3 倍(纵坐标不变)C.向左平移6个单位长度,再把所得各点的横坐标伸长到原来的 3 倍(纵坐标不变)D.向右平移68.函数 f (x) 2sin x( 0) 在区间,上的最小值是2,则的最小值等于( )3 44A.2 3 B.3 2C.2D.39. 函数 y =sin(2x+)的图象由函数 y=sin2x 的图象经过平移而得到, 这一平移过程可以是 ( ) 3A. 向左平移B.向右平移C.向左平移D.向右平移66 121210. 要得到函数 y= s in(2x- )6的图像,只需将函数 y= c os 2x 的图像 ( )个单位B.向右平移A. 向右平移个单位63个单位D. 向左平移C. 向左平移个单位63 7. 若函数 f (x)sin ( x ) 的图象如图,则和 的取值是 ()yA.1,B.1,3 31C.1 2, 6D.1 2, x 6O29. 函数π y sin 2x 在区间3π ,π的简图是 ( )233y y 1123 xO1O 62361A. B.y y11xO 2631x26 O13xC.D.10.函数y sin(2 x ) cos(2 x ) 的最小正周期和最大值分别为( )6 3A. ,1B. , 2C. 2 ,1D. 2 , 211.已知函数 f (x) sin( x )( 0) 的最小正周期为,则该函数的图象( )35A. 关于点( ,0)3 对称 B.关于直线x对称4C.关于点( ,0)4 对称 D.关于直线x对称311.函数y sin( x )( x R, 0,0 2 ) 的部分图象如图,则( )A. , ,2 43 6B.C. D., ,4 4 45 412.要得到函数y sin x 的图象,只需将函数y cos x 的图象( )A. 向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位13.设函数 f x sin x 0,0 .若将 f x 的图象沿x 轴向右平移2 16个单位长度,得到的图象经过坐标原点;若将 f x 的图象上所有的点的横坐标缩短到原来的12倍(纵1坐标不变), 得到的图象经过点,16. 则( )A. ,B.6 2 , C.334,8D. 适合条件的, 不存在14.设函数 f (x) sin( x ) 1(0)的导数f (x) 的最大值为3,则f(x)的图象的一条对称轴的6 方程是( )A. xB.9 xC.6xD.3x212.已知函数y A s in( x ) m的最大值为4,最小值为0,最小正周期为,直2 线x是其图象的一条对称轴,则下面各式中符合条件的解析式是()3(A)y 4sin(4 x ) (B)2sin(2 ) 2y x6 3(C)y 2sin(4 x ) 2 (D)2sin(4 ) 2y x3 6π9 函数y=3sin(2 x+3 )的图象,可由y=sin x 的图象经过下述哪种变换而得到6( )(A)向右平移π3 个单位,横坐标缩小到原来的12 倍,纵坐标扩大到原来的3 倍(B)向左平移π3个单位,横坐标缩小到原来的12倍,纵坐标扩大到原来的 3 倍(C)向右平移π6个单位,横坐标扩大到原来的 2 倍,纵坐标缩小到原来的13倍(D)向左平移π6个单位,横坐标缩小到原来的12倍,纵坐标缩小到原来的13倍10 、函数)y s i n(x 在下列哪个区间为增函数. ()43 3(A)][ , (B)[ ,0] (C)[ , ] (D)[ , ]4 4 4 4 2 27、y sin x 的曲线最高点为2, 2 ,离它最近的一个最低点是10, 2 ,则它的解析式xA.f x 2 sin B. 2 sinf x x8 4 8 4xC.f x 2 sin D. 2 sinf x x8 4 8 4如果函数y A s in( x )(A>0,>0,0<<2 ) 的最小值为-2,周期为23,并且经过点(0,- 2 ),求此函数的解析式.7。
2023备考-三角函数专题高频考点《三角函数的平移与伸缩》原卷版
2023备考-三角函数专题高频考点《三角函数的平移与伸缩》(原卷版)三角函数的图象及其变换由函数sin y x =的图象通过变换得到sin()y A x ωϕ=+的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.在进行图像变换时,提倡先平移后伸缩(先相位后周期),但先伸缩后平移(先周期后相位)在题目中也经常出现,所以必须熟练掌握,无论哪种变化,切记每一个变换总是对变量x 而言的,即图像变换要看“变量x ”发生多大变化,而不是“角”变化多少.真题回顾1.(2022·全国·高考真题(文))将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( ) A .16B .14C .13D .122.(2021·全国(理))把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =( )A .7sin 212x x ⎛⎫- ⎪⎝⎭B .sin 212x π⎛⎫+ ⎪⎝⎭C .7sin 212x π⎛⎫- ⎪⎝⎭D .sin 212x π⎛⎫+ ⎪⎝⎭练习挑战1.将函数π()2sin 216f x x ⎛⎫=-- ⎪⎝⎭的图象向左平移π6个单位长度得到函数()g x 的图象,则下列说法错误的是( ) A.函数()g x 的最小正周期是πB.函数()g x 的图象关于点π,112⎛⎫-- ⎪⎝⎭对称C.函数()g x 在ππ,62⎛⎫⎪⎝⎭内单调递减D.函数()g x 在π0,6⎛⎫⎪⎝⎭内的最大值是12.如图是函数sin()()y A x x ωϕ=+∈R 在区间π5π,66⎡⎤-⎢⎥⎣⎦上的图像,为了得到这个函数的图像,需将sin ()y x x =∈R 的图像上所有点( )A.向左平移π3个单位,再把所得图像上各点的横坐标变为原来的12,纵坐标不变 B.向左平移π3个单位,再把所得图像上各点的横坐标变为原来的2倍,纵坐标不变 C.向右平移π6个单位,再把所得图像上各点的横坐标变为原来的12,纵坐标不变 D.向右平移π6个单位,再把所得图像上各点的横坐标变为原来的2倍,纵坐标不变3.要得到函数y =sin 2x 的图象,只需要将函数y =cos ⎝⎛⎭⎫2x -π3的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度C .向右平移π12个单位长度 D .向左平移π12个单位长度4.为得到函数)32cos(π+=x y 的图像,只需将函数x y 2sin =的图像( ). A .向左平移125π个单位 B . 向右平移125π个单位 C .向左平移65π个单位 D . 向右平移65π个单位5. 已知)2sin()(π+=x x f ,)2cos()(π-=x x g ,则)(x f 的图像( ). A .与)(x g 图像相同B .与)(x g 图像关于y 轴对称C .是由)(x g 的图像向左平移2π个单位得到 D .是由)(x g 的图像向右平移2π个单位得到6. 已知曲线1cos C y x =:,22πsin 23C y x ⎛⎫=+⎪⎝⎭:,则下面结正确的是( ). A.把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB.把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC.把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD.把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C7.已知函数)0)(2sin(21cos cos sin 2sin 21)(2πϕϕπϕϕ<<+-+=x x x f ,其图像过点)21,6(π.(1)求ϕ的值(2)将)(x f 图像上各点的横坐标缩短为原来的21,纵坐标不变,得到函数)(x g y =的图像,求函数)(x g 在]4,0[π上的最大值和最小值。
三角函数的图像和变换以及经典习题和答案
3.4函数sin()y A x ωϕ=+的图象与变换【知识网络】1.函数sin()y A x ωϕ=+的实际意义;2.函数sin()y A x ωϕ=+图象的变换(平移平换与伸缩变换) 【典型例题】 [例1](1)函数3sin()226x y π=+的振幅是 ;周期是 ;频率是 ;相位是 ;初相是 .(1)32; 14π;26x π+;6π (2)函数2sin(2)3y x π=-的对称中心是 ;对称轴方程是;单调增区间是 . (2)(,0),26k k Z ππ+∈;5,212k x k Z ππ=+∈; ()5,1212k k k z ππππ⎡⎤-++∈⎢⎥⎣⎦(3) 将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )A .sin()6y x π=+ B .sin()6y x π=- C .sin(2)3y x π=+D .sin(2)3y x π=- (3)C 提示:将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象所对应的解析式为sin ()6y x πω=+,由图象知,73()1262πππω+=,所以2ω=. (4) 为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点 ( )(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (4)C 先将R x x y ∈=,sin 2的图象向左平移6π个单位长度,得到函数2sin(),6y x x R π=+∈的图象,再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标不变)得到函数R x x y ∈+=),63sin(2π的图像(5)将函数x x f y sin )(= 的图象向右平移4π个单位后再作关于x 轴对称的曲线,得到函数x y 2sin 21-=的图象,则)(x f 的表达式是 ( )(A )x cos (B )x cos 2 (C )x sin (D )x sin 2 (5)B 提示: 212sin cos 2y x x =-=的图象关于x 轴对称的曲线是cos 2y x =-,向左平移4π得cos 2()sin 24y x x π=-+=2sin cos x x =[例2]已知函数2()2cos 2,(01)f x x x ωωω=+<<其中,若直线3x π=为其一条对称轴。
三角函数的平移与伸缩变换
三角函数的平移与伸缩变换1、为了得到函数)32sin(π-=x y 的图象,只需把函数)62sin(π+=x y 的图象向____平移_____个单位长度.2、设,0>ω函数2)3sin(++=πωx y 的图象向右平移34π个单位后与原图象重合则ω的最小值是__________.3、将函数x y sin =的图象上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式是_____________.4、将函数x x x f cos sin 3)(-=的图象向左平移m 个单位(m>0),若得到图象对应的函数为偶函数,则m 的最小值是_____________.5、把函数)2||,0)(sin(πϑωϑω<>+=x y 的图象向左平移3π个单位长度,所得曲线的一部分图象如图所示,则( ) A. 6,1πϑω== B. 6,1πϑω-==C. 6,2πϑω== D. 6,2πϑω-==6、已知函数)0,0(2cos )(2>>+=ϖωA x A x f 的最大值为6,其相邻两条对称轴间的距离为4,求.________)20()6()4()2(=+⋅⋅⋅+++f f f f7、右图是函数))(sin(R x x A y ∈+=ϑω在区间)65,6(ππ-上的图象,只要将(1)x y sin =的图象经过怎样的变换? (2)x y 2cos =的图象经过怎样的变换? 8、把x y sin =作何变换可得.1)63sin(8-+=πx y17π12π3xy o1-15π6-π6y x o9、把1)42sin(3+-=πx y 作何变换可得到.sin x y =10、把2)2143sin(21++=x y 作何变换可得到.1)351sin(23++=πx y11、将2)542sin(2++=πx y 做下列变换:(1)向右平移2π个单位长度;(2)横坐标缩短为原来的一半,纵坐标不变; (3)纵坐标伸长为原来的4倍,横坐标不变;(4)沿y 轴正方向平移1个单位,最后得到的函数._________)(==x f y 12、把)(x f y =作如下变换:(1)横坐标伸长为原来的1.5倍,纵坐标不变; (2)向左平移3π个单位长度;(3)纵坐标变为原来的53,横坐标不变;(4)沿y 轴负方向平移2个单位,最后得到函数),423sin(43π+=x y 求).(x f y =13、将)48sin(4ππ+-=x y 作何变换可以得到.sin x y =14、对于)536sin(3x y -=π作何变换可以得到.sin x y =15、把)342cos(3π+=x y 作如下变换:(1)向右平移2π个单位长度;(2)纵坐标不变,横坐标变为原来的31;(3)横坐标不变,纵坐标变为原来的43;(4)向上平移1.5个单位长度,则所得函数解析式为________.16、将x x y cos sin 1+=作何变换可得到.cos sin 2x x y -=17、将x x x y cos sin 3sin 2+=作何变换可得到.sin x y =18、将函数x y sin =的图象向左平移)20(πψψ<≤个单位后,得到函数)6sin(π-=x y 的图象,则._____=ψ19、为了得到函数103lg +=x y 的图象,只需把函数x y lg =的图象作何变换?。
三角函数图象的平移和伸缩(后面有高考题练习)
三角函数图象的平移和伸缩函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.sin y x =2sin 214y x =++ ⎪⎝⎭解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原1π⎛⎫π⎛⎫x+)﹣sin2x+、向左平移个单位个单位个单位个单位按向量A 、B 、C 、D 、3、将函数的图象按向量平移,得到y=f (x )的图象,则f (x )=( )A 、B 、C 、D 、sin (2x )+34、把函数y=(cos3x﹣sin3x)的图象适当变化就可以得到y=﹣sin3x的图象,这个变化可以是()A、沿x轴方向向右平移B、沿x轴方向向左平移C、沿x轴方向向右平移D、沿x轴方向向左平移5、为了得到函数y=的图象,可以将函数y=sin2x的图象()A、向右平移个单位长度B、向右平移个单位长度倍(纵坐标不变),然后个单位,则所得到图象对应的函数解析式为(、、、。
高中数学平移伸缩变换例题
高中数学平移伸缩变换例题
高中数学平移伸缩变换例题指的是涉及平移和伸缩变换的数学问题,通常出现在高中数学课程中。
平移和伸缩是两种基本的几何变换,平移是将图形在平面内沿某一方向移动一定的距离,而伸缩则是改变图形的大小但不改变其形状。
下面提供三道涉及平移和伸缩变换的例题:
1.题目:将函数 y = sin(x) 的图像上所有点向右平移π/6 个单位长度,再把
所得图像上点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是 ___.
2.题目:把函数y = 3sin(2x + π/4) 的图象上各点的横坐标伸长到原来的2
倍(纵坐标不变),再向右平移π/6 个单位长度,所得函数图象的一个对称中心为 ( )
A.(5π/6, 0)
B.(π/6, 0)
C.(π/12, 0)
D. (π/3, 0)
3.题目:函数 f(x) = 3sin(2x - π/3) 的图像为 C,下列结论中正确的是 ___.
①函数 f(x) 的最小正周期为π;
②函数 f(x) 在区间 (-π/12, 5π/12) 内是增函数;
③由函数 f(x) 的图像向右平移π/3 个单位长度可以得到函数 g(x) = 3sin2x 的图像;
④由已知图像可作出的 y = 3sin(x - π/3) 的一个图像是:先作 y = 3sinx 的图像,然后将所得图像上所有点向左平移π/3 个单位长度.
这些例题涉及了平移和伸缩变换的基本概念和性质,通过解决这些问题,学生可以加深对平移和伸缩变换的理解,提高解决相关问题的能力。
高三数学三角函数图象变换试题
高三数学三角函数图象变换试题1.将函数的图象上的所有点向右平移个单位,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得的图象的函数解析式为.【答案】.【解析】将函数的图象上的所有点向右平移个单位,得到函数的图象,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,故所得的图象的函数解析式为.【考点】三角函数图象变换.2.将函数的图像向左平移个单位,再向上平移个单位后得到的函数对应的表达式为,则函数的表达式可以是()A.B.C.D.【答案】C【解析】由可化为.依题意等价于将函数向下平移一个单位得到,再向右平移个单位即可得到.【考点】1.三角函数的平移.2.三角函数诱导公式.3.将函数的图像向右平移个单位,再向上平移1个单位,所得到函数的图像对应的解析式为 ( )A.B.C.D.【答案】C【解析】因为将函数的图像向右平移个单位,可得到函数图像对应的函数解析式为.再向上平移1个单位,所得到函数的图像对应的解析式为.化简可得,即.故选C.【考点】1.函数图像的左右上下平移规则.2.三角形函数二倍角公式.4.把函数的图象向右平移个单位,再把所得图象上各点的横坐标伸长到原来的2倍,则所得图象对应的函数解析式是A.B.C.D.【答案】A【解析】把函数的图象向右平移个单位后,所得到函数为,再把所得图象上各点的横坐标伸长到原来的2倍,则所得图象对应的函数解析式是,选A.【考点】三角函数图像的平移、伸缩变换.5.以下命题正确的是_____________.①把函数的图象向右平移个单位,得到的图象;②的展开式中没有常数项;③已知随机变量~N(2,4),若P(>)= P(<),则;④若等差数列前n项和为,则三点,(),()共线.【答案】①②④【解析】把函数的图象向右平移个单位,得,即,①正确;的展开式的通项公式为(),令=0,无解,②正确;由题意正态曲线关于对称,且P(>)= P(<),则,③错误;因为等差数列的前n项和为,所以,故点在直线上,④正确.【考点】1、三角函数图像变换;2、二项式定理;3、等差数列前n项和的性质.6.如果函数的图像关于直线对称,则()A.B.C.D.【答案】D【解析】由的图像关于直线对称,则在处取得最值,所以,而,所以,故选D.【考点】1.三角函数的性质;2.函数的最值求解.7.要得到函数的图象,只需将函数的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【答案】B.【解析】函数,只需将函数向左平移个长度单位可得函数.【考点】三角函数的图像平移.8.将函数的图像向右平移个单位,那么所得的图像所对应的函数解析式是()A.B.C.D.【答案】D.【解析】由已知得平移后的图像所对应的函数解析式是,故选【考点】三角函数图像变换.9.将函数的图像向左平移个长度单位后,所得到的图像关于轴对称,则的最小值是___________________.【答案】【解析】,将其图像向左平移个长度单位后得到,图像关于轴对称,则有所以的最小值是.【考点】10.函数的部分图像如图所示,则将的图象向右平移个单位后,得到的图像解析式为________.【答案】【解析】,得周期,于是,图象易知,根据五点作图法有,解得,所以,将的图象向右平移个单位后,得到的图像解析式为【考点】函数的图象与性质.11.为了得到函数的图象,可以将函数的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【答案】B【解析】,由,只需向右平移个单位长度.【考点】函数图象的平移.12.为了得到函数的图象,可以将函数的图象( )A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【答案】B【解析】将函数向右平移个单位长度得;将函数向右平移个单位长度得;将函数向左平移个单位长度得;将函数向左平移个单位长度得【考点】三角函数图像平移点评:三角函数向左平移个单位得向右平移个单位得13.为了得到函数的图象,可以将函数的图象()A.向右平移个长度单位B.向左平移个长度单位C.向右平移个长度单位D.向左平移个长度单位【答案】A【解析】因为,=,所以,为了得到函数的图象,可以将函数的图象,向右平移个长度单位,选A。
压轴题03 三角函数压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)
压轴题03三角函数压轴题题型/考向一:三角函数的图像与性质题型/考向二:三角恒等变换题型/考向三:三角函数综合应用一、三角函数的图像与性质热点一三角函数图象的变换1.沿x轴平移:由y=f(x)变为y=f(x+φ)时,“左加右减”,即φ>0,左移;φ<0,右移.沿y轴平移:由y=f(x)变为y=f(x)+k时,“上加下减”,即k>0,上移;k<0,下移.2.沿x轴伸缩:若ω>0,A>0,由y=f(x)变为y=f(ωx)时,点的纵坐标不变,横坐标变为原来的1ω倍.沿y轴伸缩:由y=f(x)变为y=Af(x)时,点的横坐标不变,纵坐标变为原来的A 倍.热点二三角函数的图象与解析式已知图象求函数y =A sin(ωx +φ)+B (A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最高点、最低点或特殊点求A ,B ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.热点三三角函数的性质1.单调性:由-π2+2k π≤ωx +φ≤π2+2k π(k ∈Z )可得单调递增区间;由π2+2k π≤ωx+φ≤3π2+2k π(k ∈Z )可得单调递减区间.2.对称性:由ωx +φ=k π(k ∈Z )可得对称中心;由ωx +φ=k π+π2(k ∈Z )可得对称轴.3.奇偶性:φ=k π(k ∈Z )时,函数y =A sin(ωx +φ)为奇函数;φ=k π+π2(k ∈Z )时,函数y =A sin(ωx +φ)为偶函数.二、三角恒等变换热点一化简与求值(角)1.同角三角函数的基本关系:sin 2α+cos 2α=1,sin αcos α=tan ≠π2+k π,k ∈2.诱导公式的记忆口诀:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.3.熟记三角函数公式的两类变形:(1)和差角公式的变形;(2)倍角公式的变形.热点二三角函数恒等式的证明三角恒等式常从复杂一边向简单的一边转化,或者两边同时推出一个相同式子,有时要证等式先进行等价交换,进而证明其等价命题.○热○点○题○型一三角函数的图像与性质一、单选题1.将函数()sin cos f x x x =-的图象向左平移7π12个单位长度,得到函数()y g x =的图象,关于函数()y g x =的下列说法中错误的是()A .周期是2πB .非奇非偶函数C .图象关于点5π,03⎛⎫⎪⎝⎭中心对称D .在π0,2⎛⎫⎪⎝⎭内单调递增【答案】D【详解】()πsin cos 2sin 4f x x x x ⎛⎫=-=-⎪⎝⎭,则()7πππ2sin 2sin 1243g x x x ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭,则2πT =,故A 正确;因为()π2sin 3g x x ⎛⎫-=-+ ⎪⎝⎭,则()()()(),g x g x g x g x -≠-≠-,故函数()g x 是非奇非偶函数,故B 正确;2.数学与音乐有着紧密的关联,我们平时听到的乐音一般来说并不是纯音,而是由多种波叠加而成的复合音.如图为某段乐音的图象,则该段乐音对应的函数解析式可以为()A .11sin sin 2sin 323=++y x x xB .11sin 2sin 323y x x x=--C .11sin cos 2cos323y x x x=++D .11cos cos 2cos323y x x x=++3移()0ϕϕ>个单位长度,再向下平移1个单位长度得到函数()g x 的图象.若对于任意的1π0,4x ⎡⎤∈⎢⎥⎣⎦,总存在2π,04x ⎡⎤∈-⎢⎥⎣⎦,使得()()12f x g x =,则ϕ的值可能是()A .π6B .5π24C .π4D .2π3A.B.C .D .5.已知函数()()2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则满足()()5π605π12f x f f x f ⎛⎫- ⎪⎝⎭>⎛⎫- ⎪⎝⎭的正整数x 的最小值为()A .1B .2C .3D .4二、多选题6.已知函数2π()cos (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在ππ,2⎡⎤-⎢⎥⎣⎦上单调,且曲线()y f x =关于点π,03⎛⎫- ⎪⎝⎭对称,则()A .()f x 以2π为周期B .()f x 的图象关于直线2π3x =对称C .将()f x 的图象向右平移π3个单位长度后对应的函数为偶函数D .函数9()10y f x =+在[0,π]上有两个零点故选:BD.7.已知函数()()()sin 0,0π,f x A x b A b ωϕϕ=++><<∈R 的部分图像如图,则()A .5πb ωϕ=B .π23f ⎛⎫= ⎪⎝⎭C .将曲线()y f x =向右平移π9个单位长度得到曲线4cos 32y x =-+D .点11π,218⎛⎫-⎪⎝⎭为曲线()y f x =的一个对称中心8.已知函数()f x 的定义域为()1,1-,对任意的(),1,1x y ∈-,都有()()1f x f y f xy ⎛⎫--= ⎪-⎝⎭,且112f ⎛⎫= ⎪⎝⎭,当()0,1x ∈时,()0f x >,则()A .()f x 是偶函数B .()00f =C .当A ,B 是锐角ABC 的内角时,()()cos sin f B f A <D .当0n x >,且21112n n n x x x ++=,112x =时,()12n n f x -=【答案】BCD【详解】令0x y ==,得()00f =,故B 正确;9.已知某游乐场循环观光车路线近似为一个半径为1km 的圆,观光车从起始站点P 出发,沿图中顺时针方向行驶,记观光者从某次出发开始,行驶的时间为t 小时.A ,B 是沿途两个站点,C 是终点站,D 是该游乐场的观景点之一.已知该观光车绕行一圈的时间是固定的,且π,,6BOA OA OC OA OD ∠=⊥⊥.若要求起始站点P 无论位于站台B ,C 之间的任何位置(异于B ,C ),观光车在ππ,124t ⎛⎫∈ ⎪⎝⎭的时间内,都要至少经过两次终点站C ,则下列说法正确的是()A .该观光车绕行一周的时间小于π6B .该观光车在π0,12t ⎛⎫∈ ⎪⎝⎭内不一定会经过终点站C C .该观光车的行驶速度一定大于52km /h3D .该观光车在π0,12t ⎛⎫∈ ⎪⎝⎭内一定会经过一次观景点Ds t 于平衡位置的高度()cm h 可以田ππ2sin 24h t ⎛⎫=+ ⎪⎝⎭确定,则下列说法正确的是()A .小球运动的最高点与最低点的距离为2cmB .小球经过4s 往复运动一次C .()3,5t ∈时小球是自下往上运动D .当 6.5t =时,小球到达最低点【答案】BD【详解】小球运动的最高点与最低点的距离为()224cm --=,所以选项A 错误;因为2π4π2=,所以小球经过4s 往复运动一次,因此选项B 正确;当()3,5t ∈时,ππ7π11π,2444t ⎛⎫+∈ ⎪⎝⎭,所以是自下往上到最高点,再往下运动,因此选项C 错误;当 6.5t =时,ππ2sin 6.5224h ⎛⎫=⨯+=- ⎪⎝⎭,所以选项D 正确,故选:BD○热○点○题○型二三角恒等变换一、单选题1.已知π0,2α⎛⎫∈ ⎪⎝⎭,cos 22sin 21αα+=,则sin α=()A .15B 5C .45D 25【答案】D【详解】π0,2α⎛⎫∈ ⎪⎝⎭,cos 0,sin 0αα∴>>22cos 22sin 2cos sin 4sin cos 1αααααα+=-+= ①,又22sin cos 1αα+=②,由①②得25sin 5α=.故选:D.23,5,…,记BAC α∠=,DAC β∠=,则()cos αβ+=()A 24-B 36C 36D 24+【答案】B⎝⎭A.-B.C.9D.9 94.人脸识别技术应用在各行各业,改变着人类的生活,而所谓人脸识别,就是利用计算机分析人脸视频或者图像,并从中提取出有效的识别信息,最终判别人脸对象的身份.在人脸识别中为了检测样本之间的相似度主要应用距离的测试,常用的测量距离的方式有曼哈顿距离和余弦距离.假设二维空间中有两个点()()1122,,,A x y B x y ,O 为坐标原点,余弦相似度similarity 为向量,OA OB夹角的余弦值,记作()cos ,A B ,余弦距离为()1cos ,A B -.已知()sin ,cos P αα,()sin ,cos Q ββ,()sin ,cos R αα-,若P ,Q 的余弦距离为13,Q ,R 的余弦距离为12,则tan tan αβ⋅=()A .7B .17C .4D .145.已知函数()()*sin cos n n n f x x x n =+∈N ,函数()4324y f x =-在3π0,8⎡⎤⎢⎥⎣⎦上的零点的个数为()A .2B .3C .4D .56.已知函数())2sin 02f x x x ωω⎛⎫=-> ⎪⎝⎭的图像如图所示,则ω的值为()A .13B .43C .16D .76二、多选题7.已知函数2()sin cos f x x x x =-+,则下列说法正确的是()A .π()sin(2)3f x x =-B .函数()f x 的最小正周期为πC .函数()f x 的对称轴方程为()5ππZ 12x k k =+∈D .函数()f x 的图象可由sin 2y x =的图象向右平移π6个单位长度得到【答案】ABD中所示的建筑对应的黄金三角形,它的底角正好是顶角的两倍,且它的底与腰之比为黄金分割比(黄金分割比=).在顶角为BAC ∠的黄金ABC 中,D 为BC 边上的中点,则()A .cos 342AD AC︒=B .cos 27sin 27cos 27sin 27AD CD ︒+︒=︒-︒C .AB在ACACD .cos BAC ∠是方程324231x x x +-=的一个实根则AB在AC 上的投影向量为设cos x θ=,则()()222212121x x x x x -=--+-,整理得324231x x x +-=,D 正确.故选:ABD9.已知()cos 4cos 3f θθθ=+,且1θ,2θ,3θ是()f θ在()0,π内的三个不同零点,则()A .{}123π,,7∈θθθB .123π++=θθθC .1231cos cos cos 8θθθ=-D .1231cos cos cos 2θθθ++=民喜爱.古人曾有诗赞曰:“开合清风纸半张,随机舒卷岂寻常;金环并束龙腰细,玉栅齐编凤翅长”.荣昌折扇平面图为下图的扇形COD ,其中2π3COD ∠=,33OC OA ==,动点P 在 CD 上(含端点),连结OP 交扇形OAB 的弧 AB 于点Q ,且OQ xOC yOD =+,则下列说法正确的是()A .若y x =,则23x y +=B .若2y x =,则0OA OP ⋅=C .2AB PQ ⋅≥-D .112PA PB ⋅≥则13(1,0),(3,0),(,),(22A C B D --设()2πcos ,sin ,0,3Q θθθ⎡⎤∈⎢⎥⎣⎦,则由OQ xOC yOD =+ 可得cos θ=○热○点○题○型三三角函数综合应用1.已知函数2()cos 2cos 1f x x x x =-+.(1)求函数()f x 的最小正周期及单调递增区间;(2)求函数()f x 在区间5ππ[,]126-的值域;2.已知2,1,cos ,cos 2m x n x x ⎛⎫=-=+ ⎪⎝⎭,设函数()f x m n =⋅.(1)当π5π,1212x ⎡⎤∈-⎢⎥⎣⎦时,分别求函数()f x 取得最大值和最小值时x 的值;(2)设ABC 的内角,,A B C 的对应边分别是,,,a b c 且a =,6,12A b f ⎛⎫==- ⎪⎝⎭,求c 的值.3.已知函数()()21cos cos 02f x x x x ωωωω=+->.(1)若1ω=,求函数()f x 的最小正周期;(2)若()y f x =图象在0,4π⎛⎫ ⎪⎝⎭内有且仅有一条对称轴,求8f π⎛⎫⎪⎝⎭的取值范围.4.已知函数()()2sin f x x ωϕ=+(0ω>,2ϕ<)的部分图象如图所示.(1)求()f x 的解析式,并求()f x 的单调递增区间;(2)若对任意π,3x t ⎡⎤∈⎢⎥⎣⎦,都有()π116f x f x ⎛⎫--≤ ⎪⎝⎭,求实数t 的取值范围.结合图像可知:5ππ7π4666t ≤-<,解得所以实数t 的取值范围为ππ,43⎡⎫⎪⎢⎣⎭.5.若实数,,且满足,则称、是“余弦相关”的.(1)若2x π=,求出所有与之“余弦相关”的实数y ;(2)若实数x 、y 是“余弦相关”的,求x 的取值范围;(3)若不相等的两个实数x 、y 是“余弦相关”的,求证:存在实数z ,使得x 、z 为“余弦相关”的,y 、z 也为“余弦相关”的.【答案】(2)由()cos cos cos x y x y +=+得cos cos sin sin cos cos x y x y x y -=+,()1sin sin cos cos cos x y x y x +-=-,()cos y x ϕ+=-,故cos x -≤,222cos cos x x ≤-,11cos x -≤≤,))121arccos ,arccos x π⎡⎤∈-⎣⎦(3)证明:先证明3x y ππ≤+≤,反证法,假设x y π+<,则由余弦函数的单调性可知()cos cos x y x +≤,()0cos cos cos y x y x ∴=+-≤,2y π∴≥,同理2x π≥,相加得x y π+≥,与假设矛盾,故x y π+≥.[]2202,,x y πππ--∈Q ,且()()()()()2222cos cos cos cos cos cos x y x y x y x y ππππ⎡⎤-+-=+=+=-+-⎣⎦故22,x y ππ--也是余弦相关的,()()22x y πππ∴-+-≥,即3x y π+≤.记()3,z x y π=-+则[]02,z π∈.()()3cos cos cos x z y y π+=-=-,()()()3cos cos cos cos cos cos cos cos cos cos x z x x y x x y x x y y π+=+--=-+=-+=-()cos cos cos x z x z ∴+=+,故x 、z 为“余弦相关”的;同理y 、z 也为“余弦相关”的。
高二数学三角函数图象变换试题答案及解析
高二数学三角函数图象变换试题答案及解析1.函数的图象向左平移个单位, 再向上平移1个单位,所得图象的函数解析式是()A.B.C.D.【答案】D【解析】将函数的图象向左平移个单位, 得到再向上平移1个单位,得到,所得图象的函数解析式是,故选D.【考点】三角恒等变换.2.将函数的图像向左平移个单位,再向上平移1个单位,所得图像的函数解析式是()A.B.C.D.【答案】B【解析】函数y=sin2x的图象向左平移个单位得y=sin(2x+),再向上平移1个单位得y=sin(2x+)+1=1+cos2x=2cos2x,故答案为:y=2cos2x.【考点】函数y=Asin(ωx+φ)的图象变换.3.为了得到函数的图象,可以将函数的图象( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】B【解析】,所以为了得到函数的图象,可以将函数的图象向右平移个单位长度,故选B.【考点】函数y=Asin(ωx+φ)的图象变换.4.为了得到函数的图像,只需把函数的图像()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【答案】D【解析】三角函数的左右平移就是x的值的变化,相应y值的变化.所以要将函数中的x变为,就可得函数,所以图像是向右平移了个单位.即选D.【考点】三角函数图像的平移.5.已知为锐角,且,则=_________.【答案】【解析】因为,为锐角,且,所以,。
=。
【考点】三角函数诱导公式,两角和的三角函数,特殊角的三角函数值。
点评:简单题,利用三角函数公式,转化成特殊角的三角函数值。
关键是注意变角。
6.如图是函数在区间上的图像,为了得到这个函数的图象,只要将的图象上所有的点A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【答案】A【解析】观察函数的图象可知,A=1,T=π,即,将(,0)代入得,,取,,故只要将的图象上所有的点向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变。
三角函数的平移、伸缩变换(人教a版)(含答案)
三角函数的平移、伸缩变换(一)(人教A版)一、单选题(共15道,每道6分)1.为了得到函数的图象,只需把函数的图象上所有的点( )A.向左平移1个单位长度B.向右平移1个单位长度C.向左平移个单位长度D.向右平移个单位长度答案:A解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换2.为了得到函数的图象,只需把的图象上所有的点( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移1个单位长度D.向右平移1个单位长度|答案:B解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换3.把函数图象所有点的横坐标缩短为原来的,纵坐标不变,则新的函数为( )..答案:A解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换4.把函数图象所有点的横坐标伸长到原来的2倍,纵坐标不变,则新的函数为( )..`答案:B解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换5.将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标伸长到原来的2倍,纵坐标不变,则所得图象的解析式为( )..答案:B解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换6.由的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象,则为( )..%答案:D解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换7.将函数的图象向右平移个单位长度,再将所得图象的所有点的横坐标缩短为原来的,纵坐标不变,得到的函数解析式为( )..答案:D解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换8.将函数的图象上每点的横坐标缩短为原来的,再将所得图象向左平移个单位长度,得到的函数解析式为( )..$答案:B解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换9.将函数的图象上每点的横坐标伸长到原来的2倍,再将所得图象向右平移个单位长度,纵坐标不变,得到的函数解析式为( )..答案:C解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换10.将函数的图象向左平移个单位,再向上平移1个单位长度,所得图象的函数解析式是( )..~答案:D解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换11.将函数的图象上每点的横坐标缩小为原来的,再向下平移2个单位,所得图象的函数解析式是( )..答案:B解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换12.将函数的图象上每点的横坐标伸长到原来的倍,将所得图象向左平移2个单位,纵坐标不变,所得图象的函数解析式是( )..|答案:A解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换13.由函数的图象得到函数的图象,下列变换错误的是( )A.将函数的图象向左平移个单位,再将图象上所有点的横坐标伸长到原来的2倍B.将函数的图象上所有点的横坐标伸长到原来的2倍,再向左平移个单位长度C.将函数的图象向左平移个单位,再将图象上所有点的横坐标伸长到原来的2倍D.将函数的图象向左平移个单位,再将图象上所有点的横坐标缩短为原来的答案:D解题思路:根据三角函数变换的性质,选D.试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换14.由函数的图象得到函数的图象,下列变换正确的是( )A.将函数的图象向左平移个单位长度,再将图象上所有点的纵坐标伸长到原来的2倍B.将函数的图象上所有点的纵坐标缩短到原来的,再将图象向右平移个单位长度C.将函数的图象上所有点的纵坐标缩短到原来的,再将图象向左平移个单位长度D.将函数的图象向右平移个单位长度,再将图象上所有点的横坐标伸长到原来的2倍》答案:C解题思路:根据三角函数变换的性质,选C.试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换15.由函数的图象得到函数的图象,下列变换错误的是( )A.将函数的图象向左平移个单位,再将图象上所有点的横坐标缩短为原来的B.将函数的图象上所有点的横坐标缩短为原来的,再将图象向左平移个单位C.将函数的图象上所有点的横坐标缩短为原来的,再将图象向左平移个单位D.将函数的图象向右平移个单位,再将图象上所有点的横坐标缩短为原来的答案:C解题思路:根据三角函数变换的性质,选C.试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换。
高三数学三角函数图象变换试题
高三数学三角函数图象变换试题1.将函数的图象向左平移个单位长度,所得图象对应的函数()A.在区间上单调递减B.在区间上单调递增C.在区间上单调递减D.在区间上单调递增【答案】A【解析】将函数的图象向左平移个单位长度,所得图象对应的函数为,由得,故选A.【考点】1、三角函数图象的变换;2、三角函数的单调性.2.若把函数的图象向右平移m个单位(m>0)后,所得到的图象关于轴对称,则m的最小值是()A.B.C.D.【答案】D【解析】,图象向右平移m个单位(m>0)后,得到,其图象关于轴对称,即是偶函数,所以,解得m的最小值是,选D.【考点】三角函数辅助角公式,三角函数图象的变换.3.若将函数的图像向右平移个单位,所得图像关于轴对称,则的最小正值是________.【答案】【解析】由题意,将其图象向右平移个单位,得,要使图象关于轴对称,则,解得,当时,取最小正值.【考点】1.三角函数的平移;2.三角函数恒等变换与图象性质.4.要得到函数y=sin的图象,只需将函数y=sin 2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【答案】D【解析】要得到函数y=sin,只需将函数y=sin 2x中的x减去,即得到y=sin 2=sin.5.将函数的图像上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变)得到函数f(x)的图象,则f(-π)等于( )A.B.C.D.-【答案】D【解析】因为将函数的图像上所有的点向右平行移动个单位长度,得到的函数解析式为.再把函数各点的横坐标伸长到原来的2倍(纵坐标不变)得到.所以.【考点】1.三角函数的左右平移.2.三角函数的伸缩变换.6.将函数y=sin的图像上各点向右平移个单位,则得到新函数的解析式为()A.y=sin B.y=sin C.y=sin D.y=sin【答案】A【解析】y=sin的图像向右平移个单位后变为y=sin=sin7.已知函数(,c是实数常数)的图像上的一个最高点,与该最高点最近的一个最低点是,(1)求函数的解析式及其单调增区间;(2)在△ABC中,角A、B、C所对的边分别为,且,角A的取值范围是区间M,当时,试求函数的取值范围.【答案】(1),单调递增区间是;(2).【解析】(1)三角函数问题一般都要化为的一个三角函数的形式,然后才可利用正弦函数的性质解题,这个函数图象上相邻有最高点与最低点的横坐标之差的绝对值为半个周期,而周期,再加上最高(低)点在函数图象上,我们就可出这个函数的解析式了();(2)由,根据向量数量积定义我们可求出,那么三角形的另一内角的范围应该是,即函数中的范围是,然后我们把一个整体,得出,而正弦函数在时取值范围是,因此可求出的值域.试题解析:(1)∵,∴.∵和分别是函数图像上相邻的最高点和最低点,∴解得∴.由,解得.∴函数的单调递增区间是.(2)∵在中,,∴.∴,即.∴.当时,,考察正弦函数的图像,可知,.∴,即函数的取值范围是.【考点】(1)五点法与函数的图象;(2)三角函数在给定区间的值域.8.函数的部分图象如图所示,则函数对应的解析式为()A.B.C.D.【答案】A【解析】由图象知,,,,,因为,所以,所以,因此,故选A.【考点】1.三角函数的图象;2.三角函数的解析式9.为了得到函数的图像,只需将函数的图像()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位【答案】D【解析】由于,所以,为了得到函数的图像,只需将函数的图像,向左平移个单位,选D.【考点】三角函数图像的平移10.将函数的图像向右平移个单位,再将图像上每一点横坐标缩短到原来的倍,所得图像关于直线对称,则的最小正值为()A.B.C.D.【答案】D【解析】函数的图像向右平移个单位得的图象,将图像上每一点横坐标缩短到原来的倍得,将点代入得,故,所以的最小正值为.【考点】1,三角函数图象的变换;2、型函数的对称中心.11.已知函数,则下列结论正确的是()A.函数的图象关于直线对称B.函数的最大值为D.函数在区间上是增函数D.函数的最小正周期为【答案】C【解析】令得错误;函数的最大值为,故错误;函数的最小正周期为,故错误;当时,,故函数在区间上是增函数,所以选.【考点】考查三角函数的图像及其性质.12.把函数的图像上的每一点的横坐标伸长为原来的2倍,纵坐标不变,然后再向左平移个单位后得到一个最小正周期为的奇函数。
三角函数平移专项练习
三角函数平移专项练习引言本文档旨在提供一系列三角函数平移的专项练,以帮助学生巩固对三角函数平移概念的理解和应用能力。
通过完成这些练,学生将能够熟练地进行三角函数平移操作,并进一步掌握相关的数学技巧。
练题目1. 正弦函数的平移1. 将函数 $y = \sin(x)$ 向右平移 $\frac{\pi}{4}$ 个单位,写出平移后的函数表达式。
2. 将函数 $y = \sin(x)$ 向左平移 $\frac{3\pi}{4}$ 个单位,写出平移后的函数表达式。
2. 余弦函数的平移1. 将函数 $y = \cos(x)$ 向右平移 $\frac{\pi}{2}$ 个单位,写出平移后的函数表达式。
2. 将函数 $y = \cos(x)$ 向左平移 $\pi$ 个单位,写出平移后的函数表达式。
3. 正切函数的平移1. 将函数 $y = \tan(x)$ 向右平移 $\frac{\pi}{6}$ 个单位,写出平移后的函数表达式。
2. 将函数 $y = \tan(x)$ 向左平移 $\frac{\pi}{3}$ 个单位,写出平移后的函数表达式。
解答1. 正弦函数的平移1. 平移后的函数表达式为 $y = \sin(x - \frac{\pi}{4})$。
2. 平移后的函数表达式为 $y = \sin(x + \frac{3\pi}{4})$。
2. 余弦函数的平移1. 平移后的函数表达式为 $y = \cos(x - \frac{\pi}{2})$。
2. 平移后的函数表达式为 $y = \cos(x + \pi)$。
3. 正切函数的平移1. 平移后的函数表达式为 $y = \tan(x - \frac{\pi}{6})$。
2. 平移后的函数表达式为 $y = \tan(x + \frac{\pi}{3})$。
结论通过完成上述练习,学生可以更好地理解和应用三角函数的平移概念。
这些练习有助于巩固数学技巧,并加深对三角函数平移的理解。
(完整版)三角函数专题——函数图像的平移
三角函数专题——函数图像的平移(敖 东)三角函数图像的平移问题是高考考试中的一个重要考点,在历年高考中几乎都出现了,同样对于广大考生来说也是一个必须重点掌握的内容,那么我们要任何才能完全掌握这一类型的考题呢!下面我们把此类问题做归纳以下三种类型:类型一:简单→复杂 即由最基本的x A y sin =(或者x A y cos =)的函数图像,如何平移到b x A y ++=)sin(ϕω(或者b x A y ++=)cos(ϕω)的函数图像。
例1 1)32sin(+-=πx y 的函数图像,需要由x y sin =如何平移的到?解:(方法一)由x y sin =先向右平移6π得到)6sin(π-=x y ,再横向压缩到原来得到21倍得到)32sin(π-=x y ,再将图像向上平移1个单位,即得1)32sin(+-=πx y 。
(方法二)由x y sin =先横向压缩到原来的21倍得到x y 2sin =,再向右平移6π得到)32sin(π-=x y ,再将图像向上平移1个单位,即得1)32sin(+-=πx y 。
例2.(2009山东卷理)将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ). A.cos 2y x = B.22cos y x = C.)42sin(1π++=x y D.22sin y x =【解析】:将函数sin 2y x =的图象向左平移4π个单位,得到函数sin 2()4y x π=+即sin(2)cos 22y x x π=+=的图象,再向上平移1个单位,所得图象的函数解析式为21cos 22cos y x x =+=,故选B.类型二:复杂→简单即由b x A y ++=)sin(ϕω(或者b x A y ++=)cos(ϕω)的函数图像,如何平移到x A y sin =(或者x A y cos =)的函数图像。
例3、x y sin =的函数图像,需要由1)32sin(+-=πx y 如何平移的到?方法就是例1中反方向平移,其中左移、右移相应的改为右移、左移,向上平移改为向下平移,压缩改为伸长。
三角函数图象的平移和伸缩(后面有高考题练习)
三角函数图象的平移和伸缩函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. 例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭.对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.分析:应先通过诱导公式化为同名三角函数.解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭.根据题意,有ππ22224x a x --=-,得π8a =-.所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.练习1、要得到函数y=2cos (x+)sin (﹣x )﹣1的图象,只需将函数y=sin2x+cos2x 的图象( )A 、向左平移个单位B 、向右平移个单位C 、向右平移个单位 D 、向左平移个单位2、将函数y=3sin (2x+θ)的图象F 1按向量平移得到图象F 2,若图象F 2关于直线对称,则θ的一个可能取值是( )A 、B 、C 、D 、3、将函数的图象按向量平移,得到y=f(x)的图象,则f(x)=()A、B、C、D、sin(2x)+34、把函数y=(cos3x﹣sin3x)的图象适当变化就可以得到y=﹣sin3x的图象,这个变化可以是()A、沿x轴方向向右平移B、沿x轴方向向左平移C、沿x轴方向向右平移D、沿x轴方向向左平移5、为了得到函数y=的图象,可以将函数y=sin2x的图象()A、向右平移个单位长度B、向右平移个单位长度C、向左平移个单位长度D、向左平移个单位长度6、把函数y=sinx的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),然后把图象向左平移个单位,则所得到图象对应的函数解析式为()A、B、C、D、1、D2、A3、D.4、D.5、A.6、D。
高三数学三角函数图象变换试题答案及解析
高三数学三角函数图象变换试题答案及解析1.将函数的图象上的所有点向右平移个单位,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得的图象的函数解析式为.【答案】.【解析】将函数的图象上的所有点向右平移个单位,得到函数的图象,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,故所得的图象的函数解析式为.【考点】三角函数图象变换.2.将函数图象所有的点向右移动个单位长度,再将所得各点的横坐标缩短到原来的倍(纵坐标不变),所得图象的函数解析式为()A.B.C.D.【答案】C【解析】将函数图象所有的点向右移动个单位长度后所得图象的函数解析式为,再将所得各点的横坐标缩短到原来的倍(纵坐标不变),所得图象的函数解析式为.故C正确.【考点】三角函数的伸缩平移变换.3. (2014·大同模拟)为了得到函数y=3sin的图象,只要把函数y=3sin的图象上所有的点()A.向右平行移动个单位长度B.向左平行移动个单位长度C.向右平行移动个单位长度D.向左平行移动个单位长度【答案】C【解析】因为y=3sin=3sin,所以要得到函数y=3sin的图象,应把函数y=3sin的图象上所有点向右平行移动π个单位长度.4.将函数的图像向左平移个单位,再向上平移个单位后得到的函数对应的表达式为,则函数的表达式可以是()A.B.C.D.【答案】C【解析】由可化为.依题意等价于将函数向下平移一个单位得到,再向右平移个单位即可得到.【考点】1.三角函数的平移.2.三角函数诱导公式.5.要得到函数的图象,只需将函数的图象上所有的点()A.横坐标缩短到原来的倍(纵坐标不变),再向左平行移动个单位长度B.横坐标缩短到原来的倍(纵坐标不变),再向右平行移动个单位长度C.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动个单位长度D.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动个单位长度【答案】C【解析】将函数的图象上所有的点横坐标伸长到原来的2倍(纵坐标不变),得到,然后向左平移个单位得到函数,选C.6.为了得到函数的图象,只需把函数的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】C【解析】依题意,把函数左右平移各单位长得函数的图象,即函数的图象,∴,解得,故选C.7.如图是函数y=Asin(x+)(x∈R)在区间[-,]上的图象,为了得到这个函数图象,只要将y=sinx(x∈R)的图象上所有点( )A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【答案】A【解析】由图像可得: -+=0且+=="2," =∵函数的最大值为1,∴y=sin(2x+)8.设>0,函数y=sin(x+)+2的图像向右平移个单位后与原图像重合,则的最小值是()A.B.C.D.3【答案】C【解析】由题意可得最小正周期T=,所以===.故选C9.已知函数向左平移个单位后,得到函数,下列关于的说法正确的是( )A.图象关于点中心对称B.图象关于轴对称C.在区间单调递增D.在单调递减【答案】C【解析】函数向左平移个单位后,得到函数即令,得,不正确;令,得,不正确;由,得即函数的增区间为减区间为故选.【考点】三角函数图象的平移,三角函数的图象和性质.10.已知函数的图象经过点.(1)求实数的值;(2)设,求函数的最小正周期与单调递增区间.【答案】(1);(2)最小正周期为,单调递增区间为.【解析】(1)将点代入函数的解析式即可求出实数的值;(2)根据(1)中的结果,先将函数的解析式进行化简,化简为或,再根据周期公式计算函数的最小正周期,再利用整体法对施加相应的限制条件,解出的取值范围,即可求出函数的单调递增区间.试题解析:(1)由于函数的图象经过点,因此,解得,所以;(2),因此函数的最小正周期,由,解得,故函数的单调递增区间为.【考点】1.二倍角公式;2.三角函数的周期性与单调性11.将函数的图像上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变)得到函数f(x)的图象,则f(-π)等于( )A.B.C.D.-【答案】D【解析】因为将函数的图像上所有的点向右平行移动个单位长度,得到的函数解析式为.再把函数各点的横坐标伸长到原来的2倍(纵坐标不变)得到.所以.【考点】1.三角函数的左右平移.2.三角函数的伸缩变换.12.要得到函数y=cos(2x+1)的图像,只要将函数y=cos 2x的图像()A.向左平移1个单位B.向右平移1个单位C.向左平移个单位D.向右平移个单位【答案】C【解析】把函数y=cos 2x的图像向左平移个单位,得y=cos 2的图像,即y=cos(2x +1)的图像,因此选C.13.函数y=cos(2x+φ)(-π≤φ≤π)的图象向右平移个单位后,与函数y=sin的图象重合,则φ=________.【答案】π【解析】y=cos(2x+φ)的图象向右平移个单位,得函数y=cos(2x+φ-π)的图象.又y=sin=cos=cos,依题意,φ-π=2kπ-,k∈Z.由于-π≤φ≤π,因此φ=π.14.为了得到函数y=sin 的图象,只需把函数y=sin 的图象().A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】B【解析】注意到把y=sin 的图象向右平移个单位长度得到y=sin [2(x-)+]=sin 的图象,故选B.15.函数f(x)=A sin (ωx+φ)(其中A>0,|φ|<)的图象如图所示,为了得到g(x)=sin 3x的图象,只需将f(x)的图象().A.向右平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向左平移个单位长度【答案】C【解析】由图象可知A=1,,即T==,所以ω=3,所以f(x)=sin (3x+φ),又f=sin =sin =-1,所以+φ=+2kπ,k∈Z,即φ=+2kπ,k∈Z,又|φ|<所以φ=,即f(x)=sin,又g(x)=sin 3x=sin=sin ,所以只需将f(x)的图象向右平移个单位长度,即可得到g(x)=sin 3x的图象.16.把函数的图象按向量=(-,0)平移,所得曲线的一部分如图所示,则,的值分别是()A.1,B.2,-C.2,D.1,-【答案】B【解析】把函数的图象按向量=(-,0)平移,得.由图得函数的周期.又.选B.【考点】三角函数图象的变换.17.下列函数中,图像的一部分如右图所示的是()A.B.C.D.【答案】C.【解析】由函数图像知函数的周期为,则,排除A、D,当时,函数值为1,则C正确.【考点】三角函数的图像及其性质.18.函数的部分图像如图,其中,且,则f(x)在下列哪个区间中是单调的()A.B.C.D.【答案】B【解析】当图像过原点时,即时,,在上为减函数,上为增函数当图像的最高点在轴上时,,在上是减函数,上为增函数,所以在上是单调的.【考点】1.三角函数的单调区间;2.三角函数图像.19.为了得到函数的图像,只需将函数的图像()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位【答案】D【解析】由于,所以,为了得到函数的图像,只需将函数的图像,向左平移个单位,选D.【考点】三角函数图像的平移20.已知向量,设函数的图象关于直线对称,其中常数(Ⅰ)求的最小正周期;(Ⅱ)将函数的图像向左平移个单位,得到函数的图像,用五点法作出函数在区间的图像.【答案】(Ⅰ);(Ⅱ)详见解析.【解析】(Ⅰ)由向量的数量积的坐标表示将表示出来,并利用正弦和余弦的二倍角公式将其表示为的形式,再由对称轴为,所以在处函数值取到最大值或最小值,从而得,代入并结合求的值,再利用和的关系,求;(Ⅱ)用代换得,先由,确定,从中取特殊点,,,,,再计算相应的自变量和函数值,列表,描点连线,即得在给定区间的图象.试题解析:(Ⅰ),;(Ⅱ)0-2020【考点】1、向量数量积的坐标表示;2、正弦和余弦的二倍角公式;3、五点作图法.21.已知函数(其中)的部分图象如图所示,为了得到的图象,则只需将的图象()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位【答案】A【解析】由图可知,则,,所以,而,所以,因而,要想得到,只需将向右平移个单位,故选择A.【考点】1.根据函数图像确定函数解析式;2.三角函数图像的平移.22.若函数的图象上每一点的纵坐标保持不变,横坐标缩小到原来的,再将整个图象向右平移个单位,沿轴向下平移个单位,得到函数的图象,则函数是()A.B.C.D.【答案】A【解析】将的图象向上平移1个单位得,再将整个图象向左平移个单位,得,然后将横坐标扩大到原来的2倍得,,选A.【考点】三角函数图象平移变换.23.将函数图象上所有点的横坐标伸长到原来的2倍,再向右平移个单位长度,得到函数的图象,则图象的解析式是()A.B.C.D.【答案】C【解析】将函数图象上所有点的横坐标伸长到原来的2倍得到函数的图像,将函数图象上所有点再向右平移个单位长度得到函数的图像.【考点】三角函数的周期变换和平移变换.24.将函数的图像上各点的横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心是 ( )A.B.C.D.【答案】A【解析】将函数的图像上各点的横坐标伸长到原来的3倍,得函数的图象;再向右平移个单位,得到的函数为.由得:.结合选项知,它的一个对称中心是,选 A.【考点】1、三角函数图象的变换;2、三角函数的对称中心.25.将函数的图像平移后所得的图像对应的函数为,则进行的平移是()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【答案】B【解析】,因此需将函数的图像向左平移个单位.【考点】三角函数的图像变换.26.将函数图像上所有的点向左平行移动个单位长度,再把图像上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图像的解析式为()A.B.C.D.【答案】B【解析】将函数的图像向左平移个单位长度,得到,横坐标扩大为原来的2倍,得,故选B.【考点】三角函数图像的平移.27.已知的图象与的图象的两相邻交点间的距离为,要得到的图象,只须把的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【答案】C【解析】,,由于函数的图象与的图象的两相邻交点的距离为,即函数的最小正周期为,,,故得到函数的图象,只需将函数的图象向左平移个单位.【考点】辅助角变换、三角函数周期、三角函数图象变换28.将函数的图像向左平移个单位,得到的图像,则的解析式为 () A.B.C.D.【答案】A【解析】将图像向左平移个单位,得到.【考点】三角函数图像的平移.29.设把的图象按向量 (>0)平移后,恰好得到函数=()的图象,则的值可以为()A.B.C.πD.【答案】D【解析】利用三角函数图象变换规律,以及利用函数求导得出 y=- sin(x-φ-)与f′(x)=-sinx-cosx=-sin(x+)为同一函数.再利用诱导公式求解.解:f(x)=cosx-sinx=-sin(x-),f′(x)=-sinx-cosx=-sin(x+),把y=f(x)的图象按向量(φ>0)平移,即是把f(x)=cosx-sinx的图象向右平移φ 个单位,得到图象的解析式为y=-sin(x-φ-),由已知,与f′(x)=-sinx-cosx=-sin(x+)为同一函数,所以-φ-=2kπ+,取k=-1,可得φ=故选D.【考点】三角函数图象变换点评:本题考查了三角函数图象变换,函数求导,三角函数的图象及性质.30.函数(其中A>0,)的图象如图所示,为了得到的图象,则只需将g(x)=sin2x的图象A.向右平移个长度单位B.向左平移个长度单位C.向右平移个长度单位D.向左平移个长度单位【答案】B【解析】由已知中函数f(x)=Asin(ωx+φ)的图象,我们易分析出函数的周期、最值,进而求出函数f(x)=Asin(ωx+φ)的解析式,设出平移量a后,根据平移法则,我们可以构造一个关于平移量a的方程,解方程即可得到结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数图象的平移和伸缩
函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.
既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩
sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)
平移个单位长度
得sin()y x ϕ=+的图象()ωωω
−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)
1
到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)
为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)
k k k ><−−−−−−−→向上或向下平移个单位长度
得sin()y A x k ϕ=++的图象. 先伸缩后平移
sin y x =的图象(1)(01)
A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)
得sin y A x =的图象(01)(1)
1
()
ωωω
<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象
(0)(0)
ϕϕϕω
><−−−−−−−→向左或向右平移
个单位
得sin ()y A x x ωϕ=+的图象(0)(0)
k k k ><−−−−−−−→向上或向下平移个单位长度
得sin()y A x k ωϕ=++的图象. 例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛
⎫=++ ⎪⎝
⎭的图象.
解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛
⎫=+ ⎪⎝
⎭的
图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛
⎫=+ ⎪⎝⎭的图象;③将所得图象的
纵坐标伸长到原来的2倍,得π2sin 24y x ⎛
⎫=+ ⎪⎝
⎭的图象;④最后把所得图象沿y 轴向上平移
1个单位长度得到π2sin 214y x ⎛
⎫=++ ⎪⎝
⎭的图象.
(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的
1
2
,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移
π8个单位长度得π2sin 28y x ⎛
⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到
π2sin 214y x ⎛
⎫=++ ⎪⎝
⎭的图象.
说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π
8
个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛
⎫=+ ⎪⎝
⎭的
图象的横坐标缩小到原来的
12,得到的函数图象的解析式是πsin 24y x ⎛
⎫=+ ⎪⎝
⎭而不是
πsin 24y x ⎛
⎫=+ ⎪⎝
⎭.
对于复杂的变换,可引进参数求解.
例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛
⎫=- ⎪⎝
⎭的图象.
分析:应先通过诱导公式化为同名三角函数.
解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛
⎫==-=- ⎪ ⎪⎝⎭⎝
⎭,
在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛
⎫=--=-- ⎪⎢⎥⎣⎦⎝
⎭.
根据题意,有ππ22224x a x --=-,得π
8
a =-.
所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛
⎫=- ⎪⎝
⎭的图象.
练习
1、要得到函数y=2cos (x+)sin (
﹣x )﹣1的图象,只需将函数
y=sin2x+
cos2x 的图象( )
A 、向左平移个单位
B 、向右平移个单位
C 、向右平移
个单位 D 、向左平移
个单位
2、将函数y=3sin (2x+θ)的图象F 1按向量平移得到图象F 2,
若图象F 2关于直线对称,则θ的一个可能取值是( )
A 、
B 、
C 、
D 、
3、将函数的图象按向量平移,得到y=f(x)的图象,则f(x)=()
A、B、
C、D、sin(2x)+3
4、把函数y=(cos3x﹣sin3x)的图象适当变化就可以得到y=﹣sin3x的图象,这个变化可以是()
A、沿x轴方向向右平移
B、沿x轴方向向左平移
C、沿x轴方向向右平移
D、沿x轴方向向左平移
5、为了得到函数y=的图象,可以将函数y=sin2x的图象()
A、向右平移个单位长度
B、向右平移个单位长度
C、向左平移个单位长度
D、向左平移个单位长度
6、把函数y=sinx的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),然后把图象向左平移个单位,则所得到图象对应的函数解析式为()A、B、
C、D、
1、D
2、A
3、D.
4、D.
5、A.
6、D。