PLC控制电机正反转设计

合集下载

电动机正、反转控制电路的PLC程序设计举例

电动机正、反转控制电路的PLC程序设计举例

电动机知识电动机正、反转控制电路的PLC程序设计举例在例一的基础上,如果希望实现三相异步电动机的可逆运行,只需增加一个反转控制按钮和一个反转控制的接触器KM2即可。

其相对应的元件安排如下:在梯形图设计上可以考虑选两套起—保—停电路,一个用于正转,一个用于反转,考虑正反两个接触器不能同时接通,在两个接触器的驱动支路中分别串入对方的常闭触点来达到“互锁”的目的。

其相应的控制梯形图如图1所示:程序清单:图1 电动机正、反转控制电路的PLC梯形图程序——双重输出线圈〃电动机断相的一种自动保护方法〃济南钢铁晃电解决方案----FS/E防晃电系〃用PLC改进鼠笼式异步电动机的控制方案〃电气设计中低压交流接触器选用〃电气设备维修方法与实践〃施耐德LC1交流接触器选型*参数〃通过变频器操作面板控制电动机的启动、〃接触器联锁的正反转控制线路原理分析〃双华ZNB-S电动机正反转电路图_电路图〃电动机正反转实物接线图_电路图〃多台电机并联同步运行方案〃用接触器进行电机正反转控制_电路图〃电动机正反转控制电路图_电路图〃交流接触器接线图_电路图〃按钮接触器复合联锁的电动机正反转控制〃液压泵驱动电机的故障〃达尔文系统在汽车行业的应用----SmartWDomain: dnf辅助More:d2gs2f 〃什么是自锁电路.它的用途和原理_电路〃交流接触器接线图〃中低压交流接触器的选用〃交流接触器的使用类别及注意事项〃用三个接触器实现星三角启动原理图〃仿真三相异步电动机正反转运行状态的电〃ABBIORC型拍合式接触器在首钢二炼钢350〃晃电与自起动的区别〃印刷设备中交流接触器的选用〃台安SG2智能控制单元在自动扶梯上的应收录时间:1380248141 作者:匿名随着起重机的不断发展,传统控制技术难以满足起重机越来越高的调速和控制要求。

在电子技术飞速发展的今天,起重机与电子技术的结合越来越紧密,如采用PLC取代继电器进行逻辑控制,交流变频调速装置取代传统的电动机转子串电阻的调速方式等。

PLC实现步进电机的正反转及调整控制

PLC实现步进电机的正反转及调整控制

PLC实现步进电机的正反转及调整控制PLC是专门用于控制工程自动化系统的一种可编程逻辑控制器,其可以通过编程来实现对各种电气设备的控制。

在实际工程中,步进电机广泛应用于自动化设备中,如数控机床、包装机械、印刷设备等。

步进电机具有分辨率高、精度高、响应速度快等优点,因此被广泛应用于各种自动化控制系统中。

在PLC实现步进电机的正反转及调整控制中,需要考虑以下几个方面:1.步进电机驱动模块选型:步进电机需要配合驱动模块进行控制,通常采用的是脉冲信号驱动方式。

在PLC控制系统中,可以选择适合的驱动模块,如常见的2相、4相步进电机驱动模块。

2.步进电机控制程序设计:通过PLC软件编程,编写程序实现步进电机的正转、反转及调整控制功能。

在程序设计中,需要考虑步进电机的控制方式、驱动模块的接口信号、脉冲信号的频率等参数。

3.步进电机正反转控制:在程序设计中,通过PLC输出脉冲信号控制步进电机的正反转运动。

具体步骤包括设置脉冲信号的频率和方向,控制步进电机按设定的脉冲信号实现正反转运动。

4.步进电机调整控制:步进电机的位置调整控制通常通过调整脉冲信号的频率和数目来实现。

通过PLC编程,实现步进电机的位置调整功能,从而实现对步进电机位置的精准控制。

5.总体控制设计:在PLC控制系统中,可以将步进电机的正反转及调整控制与其它控制功能相结合,实现对整个自动化系统的精确控制。

通过PLC编程,可以灵活设计多种控制逻辑,满足不同工程项目的需求。

综上所述,通过PLC实现步进电机的正反转及调整控制主要涉及步进电机驱动模块选型、控制程序设计、正反转控制、调整控制和总体控制设计等方面。

通过精心设计和编程,可以实现对步进电机的精确控制,满足各种自动化控制系统的要求。

PLC技术的应用将有助于提高自动化生产设备的生产效率和稳定性,推动工业自动化技术的发展。

plc控制电机正反转教案

plc控制电机正反转教案

plc控制电机正反转教案【篇一:用plc实现三相异步电动机的正反转控制电路教学设计】用plc实现三相异步电动机的正反转控制电路一、学情分析学生上学期以开始学习电力拖动,因此对于简单的继电器接触器控制回路的分析基本无大碍。

但学习程度参差不齐,学习能力一般,虽然学生对plc技术的学习具有一定的兴趣,但这种兴趣不够稳定,需要教师创设适度的情境,适时地激发。

二、学习任务分析本节内容是中国劳动社会保障出版社瞿彩萍主编的《plc应用技术(三菱)》第三单元中任务二的内容,在教材的p58~p59中。

其主要内容包括继电器接触器控制系统转换到plc控制系统的方法、操作swopc-fxgp/win-c编程软件和对plc的读写、电路块串、并联指令、堆栈指令和程序的优化。

三相异步电动机的正反转控制电路是简单的继电器控制系统,该系统可以反应plc梯形图转换的方法、规则和注意事项。

本节内容属于新授课,分为三课时完成,以下为第一课时内容。

要求学生会按照plc控制电路的设计顺序对继电器接触接器控制电路进行设计,并利用thplc可编程控制器完成调试。

同时,通过对本节内容的学习,让学生将逐步养成严谨求实,合作创新的科学态度,为继续学习和发展奠定方法基础。

三、教材目标依据维修电工类专业《plc应用技术(三菱)》的教学基本要求,结合教学内容的逻辑顺序和08机电班学生的认知水平和思维发展水平,从以下三方面制定本节课的教学目标:知识目标和能力目标(1)会列出i/0分配表、plc接线图、梯形图和指令表(2)能熟练操作swopc-fxgp/win-c编程软件和对plc的读写方法和过程(1) 会根据学习目标,阅读教材 (2) 会对简单继电接触控制电路进行plc控制电路转换 (3) 学会类比、比较和归纳总结学习方法情感态度和价值观(1)在学习过程中,感受学习plc的乐趣,激发学习兴趣;(2)在合作学习过程中,学会合作,形成合作精神和竞争意识;(3)通过规范解题步骤,帮助学生养成严谨求实的科学态度。

PLC控制步进电机正反转实验

PLC控制步进电机正反转实验

第 1 章PLC控制步进电机正反转实验1.1实验目的1、了解PLC的理论与原理;2、掌握PLC编程与操作方法。

3、了解接近传感器的使用方法1.2实验设备1、三菱PLC编程电缆及安装好三菱编程软件的计算机一台;2、模块化柔性制造系统一套。

1.3实验原理料库旋转台是依靠步进电机控制的,高精度旋转模块。

依靠PLC 自身含有的脉冲单元,发出驱动脉冲给步进电机驱动器。

驱动器接收到该脉冲以后,根据所发脉冲的频率和数量驱动步进电机向相应的方向旋转。

1、步进电机步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。

可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。

它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。

因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。

步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。

随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。

现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。

永磁式步进电机永磁式步进电机一般为两相,转矩和体积较小,步进角一般为7.5度或15度;反应式步进电机反应式步进电机一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。

基于PLC实现双重互锁控制电机正反转的应用设计

基于PLC实现双重互锁控制电机正反转的应用设计

基于PLC实现双重互锁控制电机正反转的应用设计双重互锁控制电机正反转是一种常见的应用设计,它通过使用PLC实现电机在正反转之间的切换控制,并保证在电机正转期间不会误操作导致电机反转,反之亦然。

本文将详细介绍如何基于PLC实现双重互锁控制电机正反转的应用设计。

1.硬件设计首先,我们需要准备相关的硬件设备,包括:PLC、电机驱动器、电机、按钮等。

PLC作为整个应用的核心控制设备,负责接收输入的信号并控制电机正反转。

电机驱动器用于控制电机的转向和转速。

电机作为执行器负责实际的运动。

按钮则用于操作电机的正反转。

2.软件设计在PLC的编程软件中,我们可以通过编写相应的程序来实现双重互锁控制电机正反转。

在此我们以Siemens的S7-1200 PLC为例,介绍具体的软件设计。

首先,我们需要定义输入信号,即按钮的状态,用来判断用户的操作。

在PLC中,可以将按钮状态定义为一个位,0表示按钮未按下,1表示按钮按下。

接下来,我们需要定义输出信号,即电机的正反转和停止控制信号。

同样,可以将电机的状态定义为一个位,0表示电机停止,1表示电机正转,2表示电机反转。

在PLC软件中,我们可以使用ladder图编程方式来实现双重互锁控制电机正反转。

以下为程序的主要逻辑:-当按钮1按下时,将电机状态设置为正转(1),并且将电机反转(2)和停止(0)状态清零;-当按钮2按下时,将电机状态设置为反转(2),并且将电机正转(1)和停止(0)状态清零;-当按钮1和按钮2均未按下时,将电机状态设置为停止(0),并且将电机正转(1)和反转(2)状态清零。

此外,为了保证双重互锁控制,我们还需要添加相关的条件判断。

例如,在电机强制正转时,如果按钮2按下,则不执行正转操作,并且将按钮1强制设置为未按下,在电机强制反转时,如果按钮1按下,则不执行反转操作,并且将按钮2强制设置为未按下。

3.调试和测试完成软件编程后,我们需要进行调试和测试,确保程序能够正常运行。

PLC控制三相异步电动机正反转设计

PLC控制三相异步电动机正反转设计

PLC控制三相异步电动机正反转设计摘要本论文文设计了三相异步电动机的PLC控制电路,就是三相异步电动机的正反转控制,与传统的继电器控制相比,具有控制速度快、可靠性高、灵活性强等优点。

非常实用。

三相异步电动机的应用非常广泛,具有机构简单,效率高,控制方便,运行可靠,易于维修成本低的有点,几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,三相异步电动机运行的环境不同,所以造成其故障的发生也很频繁,所以要正确合理的利用它。

本文研究的这个系统的控制是采用PLC的编程语言----梯形图,梯形语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能,使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路,可编程控制器是一种数字运算操作的电子系统,它是专为在恶劣工业环境下应用而设计,它采用可编程序的存储器,用来在内部存储执行逻辑运算,顺序控制,定时,计数和算术等操作的指令,并采用数字式,模拟式的输入和输出,控制各种的机械或生产过程。

关键词:PLC 三相异步电动机可编程控制梯形图武汉职业技术学院毕业设计(论文)引言 (1)第一章三相异步电动机基础 (2)1.1三相异步电动机的基本结构 (2)1.1.1 三相异步电动机定子 (2)1.1.2三相异步电动机转子 (3)1.2三相异步电动机的工作原理 (3)1.3三相异步电动机的正反转工作过程 (4)1.3.1 三相异步电动机的原理 (4)1.3.2 三相异步电动机的制动 (4)第二章 PLC基础的知识 (5)2.1关于PLC的定义 (5)2.2PLC与继电器控制的区别 (5)2.3PLC的工作原理 (5)第三章三相异步电动机的PLC控制 (7)3.1三相异步电机的正反转PLC控制 (7)3.2PLC定时器控制电动机正反转互锁的设计 (9)3.2.1 PLC定时器控制电动机正反转电路的主接线图 (9)3.2.2 PLC定时器控制三相异步电动机正反转的梯形图 (10)3.2.3定时器控制电动机正反转的指令表程序 (11)3.2.4 PLC的I/O分配 (11)3.2.5 实体框形图 (12)3.3三相异步电动机使用PLC控制优点 (13)结论 (13)参考文献 (14)致谢 (15)引言三相异步电动机的应用非常广泛,具有机构简单,效率高,控制方便,运行可靠,易于维修成本低的有点,几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,三相异步电动机运行的环境不同,所以造成其故障的发生也很频繁,所以要正确合理的利用它。

PLC控制电机正反转(课程设计)

PLC控制电机正反转(课程设计)

PLC课程设计(论文)题目:三相异步电机联锁正反转控制院(系):机械工程学院专业:机电一体化学生姓名:某某学号:401042009指导教师:王海珍职称:讲师2016年6月10日星期五摘要可编程控制器(PLC)是以微处理器为核心,将自动控制技术、计算机技术和通信技术融为一体而发展起来的崭新的工业自动控制装置。

目前PLC已基本替代了传统的继电器控制而广泛应用于工业控制的各个领域,PLC已跃居工业自动化三大支柱的首位。

生产机械往往要求运动部件可以实现正反两个方向的起动,这就要求拖动电动机能作正、反向旋转。

由电机原理可知,改变电动机三相电源的相序,就能改变电动机的转向。

按下正转启动按钮SB1,电动机正转运行,且KM1,KMY接通。

2s后KMY断开,KM 接通,即完成正转启动。

按下停止按钮SB2,电动机停止运行。

按下反转启动按钮SB3,电动机反转运行,且KM2,KMY接通。

2s后KMY断开,KM 接通,即完成反转启动。

目录第一章PLC概述 (1)1.1 PLC的产生 (1)1.2 PLC的定义 (1)1.3 PLC的特点及应用 (2)1.4 PLC的基本结构 (4)第二章三相异步电动机控制设计 (7)2.1 电动机可逆运行控制电路 (7)2.2 启动时就星型接法30秒后转为三角形运行直到停止反之亦然 (10)2.3. 三相异步电动机正反转PLC控制的梯形图、指令表 (13)2.4 三相异步电动机正反转PLC控制的工作原理 (14)2.5 指令的介绍 (15)结论 (17)致谢 (18)参考文献 (19)第一章PLC概述1.1 PLC的产生1969年,美国数字设备公司(DEC)研制出了世界上第一台可编程序控制器,并应用于通用汽车公司的生产线上。

当时叫可编程逻辑控制器PLC(Programmable Logic Controller),目的是用来取代继电器,以执行逻辑判断、计时、计数等顺序控制功能。

紧接着,美国MODICON公司也开发出同名的控制器,1971年,日本从美国引进了这项新技术,很快研制成了日本第一台可编程控制器。

Plc课程设计设计一个电机正反转控制电路

Plc课程设计设计一个电机正反转控制电路

目录一、电机正反转设计1、课程设计要求 (2)1.1 动作要求 (2)1.2 设计要求 (3)2、元器件选择 (3)3、元器件布局图 (3)4、原理图 (4)5、PLC程序 (5)6、设计中遇到的问题及解决办法 (7)7、收获 (7)二、PAC两位计算器程序设计1、题目要求分析 (8)1.1课题内容 (8)1.2课题要求 (8)2、设计思路分析 (8)3、控制系统的I/O及地址分配 (9)4、电器控制系统原理图 (10)4.1系统原理图 (10)5、项目模拟设计 (11)5.1项目梯形图设计 (11)5.2项目运行结果图: (18)6、总结 (23)7、参考文献 (23)一、可编程控制器设计1、课程设计要求1.1 动作要求(1)用以下工具和元器件设计一个电机正反转控制电路,要求用双向转换开关进行手动控制直流电机正反转和自动控制电机正反转的切换。

给定元器件如下:给定工具如下:(2)手动控制电机的正反转:当电机静止时,按下正向启动按钮时,电机正转;当电机静止时,按下反向启动按钮时,电机反转;当按下停止按钮时,电机停止旋转;当电机正在正转时,按下反向启动按钮,没有反映,必须先使电机停下来,按下反向启动按钮,电机才反转;反之亦然。

(3)使用PLC控制自动控制电机的正反转:(1)当电机静止时,接触第一个限位开关,电机正转;当接触第二个限位开关时,电机停止,3秒后电机开始反转;当再次接触第一个限位开关时,时机停止,3秒后电机开始正转;(2)当按下停止按钮时,无论电机正转还是反转,电机停止。

(3)当电机静止时,首先接触第二个限位开关时,电机首先反转,其它动作与(1)同。

1.2 设计要求(1)完成原理图的设计。

要求使用AutoCAD绘图;(2)在实验室中完成电路的搭建、编程和调试,要求3天内完成;2、元器件选择序号元件类型数量序号元件类型数量1 电源220VAC 1 10 PLC S7200 CPU226 12 开关电源220VAC--24VDC 2 10 电机24VDC 13 低压断路器两路一组 2 11 指示灯220VAC 24 按钮非自锁类型 4 12 指示灯24VDC 25 急停按钮自锁类型 2 13 导线 1.5m2若干6 双向转换开关 1 14 导线0.5m2若干7 限位开关 2 15 导轨若干8 电流继电器24VDC 2 169 接触器交-交 2 173、元器件布局图4、原理图5、PLC程序当按下正传按钮时(I0.0),中间继电器(M0.0)得电,最终M0.4始终得电。

plc控制电机正反转课程设计

plc控制电机正反转课程设计

plc控制电机正反转课程设计一、课程目标知识目标:1. 学生能理解PLC(可编程逻辑控制器)的基本原理及其在电机控制中的应用。

2. 学生能掌握电机正反转控制电路的原理和接线方法。

3. 学生能解释PLC程序中涉及的逻辑运算和梯形图的表示方法。

技能目标:1. 学生能操作PLC编程软件,编写电机正反转的程序,并进行调试。

2. 学生能够独立完成电机正反转控制电路的接线工作,并确保安全可靠。

3. 学生能够运用已学知识解决实际工程问题,如分析并修正控制程序中的错误。

情感态度价值观目标:1. 学生能培养对自动化控制技术的兴趣和好奇心,认识到其在现代工业中的重要性。

2. 学生在学习过程中能够树立安全意识,遵循工程实践中的规范操作。

3. 学生通过小组合作,培养团队协作精神和沟通能力,尊重他人的意见和成果。

课程性质分析:本课程属于电气工程及其自动化专业的实践课程,旨在通过PLC控制电机正反转的教学,使学生将理论知识与实际操作相结合,提高解决实际问题的能力。

学生特点分析:学生处于大学二年级,已具备基础的电气工程知识和一定的实践能力,但对PLC控制系统的综合应用尚需加强。

教学要求:1. 理论联系实际,注重培养学生的动手能力和工程素养。

2. 教学过程中强调安全规范,提高学生的安全意识。

3. 采用任务驱动法,激发学生的主动学习兴趣,培养学生的创新思维。

二、教学内容1. 理论知识:- PLC工作原理及其在工业控制中的应用。

- 电机正反转控制电路设计原理。

- 梯形图编程方法及其在电机控制中的应用。

2. 实践操作:- PLC编程软件的使用与操作。

- 电机正反转控制程序的编写与调试。

- 控制电路的接线方法与安全操作规范。

3. 教学大纲:- 第一周:介绍PLC的基本原理,使学生了解其功能和在电机控制中的应用。

- 第二周:讲解电机正反转控制电路的设计原理,分析电路图。

- 第三周:学习梯形图编程方法,编写简单的电机控制程序。

- 第四周:实践操作,分组进行PLC编程和电机控制电路接线。

PLC控制三相异步电动机正反转设计毕业设计论文

PLC控制三相异步电动机正反转设计毕业设计论文

PLC控制三相异步电动机正反转设计毕业设计论文摘要:本文基于PLC控制技术,设计了一种三相异步电动机的正反转控制系统。

通过分析三相异步电动机的工作原理和控制方式,确定了系统的控制策略和硬件配置。

通过对PLC编程,实现了对电动机的正反转控制和过载保护功能。

实验结果表明,该系统可稳定、可靠地实现三相异步电动机的正反转控制,具有较好的应用前景。

关键词:PLC;三相异步电动机;正反转控制;过载保护1.引言三相异步电动机广泛应用于工业生产中,具有体积小、功率大、效率高等特点。

在实际应用过程中,正反转控制和过载保护是三相异步电动机控制系统中的重要功能,对于保证电机的正常运行和延长电机的使用寿命具有重要作用。

本文基于PLC技术,设计了一种三相异步电动机的正反转控制系统,旨在实现电动机的正反转控制和过载保护功能。

2.三相异步电动机的工作原理和控制方式三相异步电动机由定子和转子组成,在工作过程中,通过三相交流电源提供的电磁场与定子的电磁场产生转矩,从而驱动电动机的转子旋转。

三相异步电动机的控制方式主要包括定时控制和矢量控制两种。

定时控制是根据电动机运行的需要,通过调节电源的相位和频率实现对电动机的控制;矢量控制是基于电动机的数学模型和转子位置的反馈信息,通过控制电源的电压和频率,实现对电动机的精确调控。

3.设计方案基于PLC控制技术,本文设计了一种三相异步电动机的正反转控制系统。

系统由PLC控制器、三相交流电源、电动机和传感器组成。

通过PLC编程,实现了对电动机的正反转控制和过载保护功能。

具体的设计方案如下:3.1硬件配置系统的硬件配置包括PLC控制器、三相交流电源、电动机和传感器。

PLC控制器是系统的核心部件,负责电动机控制和过载保护的实现。

三相交流电源提供电动机的驱动能源。

电动机是执行器,根据PLC的控制信号,实现正反转和停止操作。

传感器用于检测电动机的工作状态和转速。

3.2PLC编程通过PLC编程,实现了对电动机的正反转控制和过载保护功能。

基于plc的变频电机正反转控制设计

基于plc的变频电机正反转控制设计

基于plc的变频电机正反转控制设计基于PLC的变频电机正反转控制设计一、引言随着工业自动化水平的不断提高,变频电机在工业生产中的应用越来越广泛。

变频电机可以通过改变电源频率来控制电机的转速和运行方向,具有节能、运行平稳等优点。

本文将以基于PLC的变频电机正反转控制设计为主题,介绍其工作原理和实现方式。

二、PLC控制系统简介PLC(Programmable Logic Controller,可编程逻辑控制器)是一种数字化、模块化的工业自动化控制系统。

它以其可编程性、稳定性和可靠性而被广泛应用于工业控制领域。

PLC控制系统由输入模块、输出模块、中央处理器和编程软件组成,通过输入模块接收外部信号,经过中央处理器处理后,通过输出模块控制执行器的动作。

三、变频电机正反转原理变频电机是通过改变电源频率来控制电机的转速和运行方向的。

当电源频率为正常工频(50Hz或60Hz)时,电机正常运行;当电源频率低于正常工频时,电机转速降低;当电源频率高于正常工频时,电机转速增加。

而通过改变电源相序,可以实现电机的正反转。

四、基于PLC的变频电机正反转控制设计1. 硬件设计在基于PLC的变频电机正反转控制系统中,需要准备以下硬件设备:- PLC控制器:负责接收信号和控制输出- 变频器:负责调节电源频率- 变频电机:接受变频器输出的电源频率信号,实现转速和方向的控制- 电源:提供电能供给2. 软件设计软件设计是PLC控制系统中非常重要的一部分。

可以使用编程软件进行逻辑设计和编程,实现对变频电机的正反转控制。

具体步骤如下:- 设置输入模块:根据实际需要设置输入模块,接收外部信号,如启动信号、停止信号、转向信号等。

- 设置输出模块:根据实际需要设置输出模块,控制变频器的启停和转向。

- 编写逻辑程序:根据实际需求,编写逻辑程序,实现对输入信号和输出信号的处理和控制。

- 调试和测试:将编写好的程序下载到PLC控制器中,进行调试和测试,确保系统能够正常工作。

PLC实现步进电机的正反转和调整控制

PLC实现步进电机的正反转和调整控制

PLC实现步进电机的正反转和调整控制PLC(可编程逻辑控制器)是一种电子设备,用于控制工业自动化系统中的运动和操作。

步进电机是一种常用的驱动器,它的旋转运动是通过一步一步地前进来实现的。

本文将探讨如何使用PLC来实现步进电机的正反转和调整控制。

步进电机的正反转控制是通过改变电机绕组的相序来实现的。

在PLC 中,我们可以使用输出模块来控制电机的相序。

以下是步骤:1.配置PLC硬件:在PLC中插入输出模块,并与电机的各个相连接。

确保正确连接。

2.编程PLC:使用PLC编程软件,编写一个控制程序来实现电机的正反转。

首先,定义输出模块的输出信号来控制电机。

然后使用程序语言来编写逻辑控制指令,根据需要来改变输出信号的状态。

为了实现正反转,需要改变输出信号的相序。

3.实现正反转控制:在编程中,定义一个变量来控制步进电机的运动方向。

当变量为正值时,电机正转;当变量为负值时,电机反转。

根据变量的值来改变输出模块的输出信号,以改变电机的相序。

4.运行程序:将PLC连接到电源,并加载程序到PLC中。

启动PLC,程序将开始运行。

通过改变变量的值,我们可以控制电机的正反转。

除了控制步进电机的正反转,PLC还可以实现步进电机的调整控制。

调整控制是通过改变电机的步距和速度来实现的。

以下是步骤:1.配置PLC硬件:在PLC中插入输出模块,并与电机的各个相连接。

与正反转控制相同,确保正确连接。

2.编程PLC:使用PLC编程软件编写控制程序。

首先,定义输出模块的输出信号来控制电机的相序。

然后,使用程序语言来编写逻辑控制指令,根据需要改变输出信号的状态。

为了实现调整控制,需要改变输出信号的频率和占空比。

3.实现调整控制:在编程中,定义两个变量来控制电机的步距和速度。

步距变量控制电机每一步的距离,速度变量控制电机的旋转速度。

根据变量的值来改变输出模块的输出信号,以改变电机的相序,并控制步距和速度。

4.运行程序:将PLC连接到电源,并加载程序到PLC中。

09-用PLC进行三相异步电动机正、反转控制线路设计

09-用PLC进行三相异步电动机正、反转控制线路设计

实验九用PLC进行三相异步电动机正、反转控制线路设计一、实验目的掌握使用PLC实现三相异步电动机的正反转控制。

二、实验原理图a)主电路b)控制电路c)梯形图图1原理图三、控制要求开关QS作为总电源开关。

按下SB1,KM1吸合,电动机正向转动。

按下SB2,KM2吸合,电动机反向转动。

按下SB3,KM1(或KM2)释放,电动机停止。

开关S1与热继电器FR并接,可以用于模拟FR的动作。

四、梯形图并写出程序,实验梯形图参考图7-15步序指令器件号说明步序指令器件号说明0 LD X0 正转起动7 OR Y11 OR Y0 8 ANI X12 ANI X1 9 ANI X2 停止3 ANI X2 停止10 ANI X3 过载保护4 ANI X3 过载保护11 OUT Y1 反转5 OUT Y0 正转12 END6 LD X1 反转起动1.控制回路接线将PWD-41A挂件上PLC输出端的COM、COM0、COM1相接。

按照输入输出配置将PWD-43挂件三相鼠笼异步电动机控制模块的SB1、SB2、SB3、FR分别接到PWD-41A上PLC的输入端X0、X1、X2、X3;将S1接到FR;COM接到PLC输入端的COM。

KM1、K2接到PLC输出端的Y0、Y1;N接到PLC输出端的COM。

输入输出X0 正转(SB1)Y0 正转X1 反转(SB2)Y1 反转将QS的三个输入端(黄、绿、红)分别接到PWD02电源控制屏上的三相电源U、V、W,将N接到PWD02上的N。

将KM1黄色端与KM2的红色端子相接,KM1、KM2的绿色端子相接,KM1红色端子与KM2黄色端子相接,然后将FR的三个输出端(黄、绿、红)分别接到三相异步电动机(DJ24)接线盒上的A、B、C,将DJ24的X、Y、Z短接。

三、实验操作过程按实验接线接好连线,待老师检查无误后方可往下进行。

将程序输入PLC中并运行,按下PDC01A电源控制屏上的启动按钮将控制屏启动接通三相电源。

PLC的编程实例电机正反转控制

PLC的编程实例电机正反转控制
主电路
电机正反转控制需要使用接触器来控制电机的电源接入,同时需要使用热继电 器来保护电机过载。
控制电路
PLC通过输出信号来控制接触器的吸合和断开,从而实现电机的正反转控制。
正反转控制的逻辑关系
反转逻辑:当PLC输出信号使接触 器KM2吸合时,电机开始反转。
注意:在正反转控制中,为了避 免电机在正反转切换时产生较大 的电流冲击,通常需要在正反转 切换时加入一定的延时。
05
总结与展望
PLC在电机控制中的应用价值
01
02
03
提高自动化水平
PLC技术能够实现电机控 制的自动化,减少人工干 预,提高生产效率。
增强稳定性
PLC具有高度的可靠性和 稳定性,能够保证电机控 制系统的长期稳定运行。
灵活的扩展性
PLC具有丰富的输入输出 接口,方便后期扩展和升 级,适应不同的电机控制 需求。
电机正转接触器(Q0.0)、电机反转 接触器(Q0.1)
编写正反转控制程序
程序结构
使用梯形图编程语言,通过串联和并联的逻辑关系,实现电机正反转控制。
正转控制逻辑
当按下正转启动按钮时,PLC接收到信号,输出正转接触器线圈得电,电机正转。
反转控制逻辑
当按下反转启动按钮时,PLC接收到信号,输出反转接触器线圈得电,电机反转。
反应。
04
实际应用中的问题与解决方 案
常见故障与排除方法
故障1
电机无法启动
排除方法
检查PLC输入输出接线是否正确,确保电机接 线良好,无短路或断路。
故障2
电机正反转切换不顺畅
排除方法
检查PLC程序逻辑,确保正反转切换条件设置正确, 无逻辑错误。
电机过载停机

plc控制电动机正反转实验报告

plc控制电动机正反转实验报告

plc控制电动机正反转实验报告摘要:一、实验背景与目的1.实验背景2.实验目的二、实验原理1.电动机正反转原理2.PLC控制原理三、实验设备与材料1.实验设备2.实验材料四、实验步骤1.实验准备2.实验操作3.实验结果分析五、实验梯形图设计1.梯形图设计步骤2.梯形图解析六、实验总结与展望1.实验总结2.实验展望正文:一、实验背景与目的随着工业自动化技术的不断发展,可编程逻辑控制器(PLC)在各类设备控制中得到了广泛应用。

电动机作为工业生产中最常用的动力装置,其正反转控制功能是基础且重要的。

本文将围绕PLC控制电动机正反转实验,详细介绍实验过程、原理及结果分析,以期提高读者对PLC控制技术的理解和应用能力。

实验目的:通过PLC控制电动机实现正反转,掌握PLC控制电路设计及编程方法,培养实际操作能力和故障分析能力。

二、实验原理1.电动机正反转原理:电动机的正反转取决于定子绕组的相序。

通过改变接触器控制定子绕组相序,实现电动机正反转。

2.PLC控制原理:PLC通过编程实现对输入/输出信号的控制,完成逻辑判断、计时、计数等功能,实现对电动机正反转的控制。

三、实验设备与材料1.实验设备:PLC控制器、交流电动机、接触器、按钮、电线等。

2.实验材料:无特定材料要求。

四、实验步骤1.实验准备:搭建实验台,连接电路,检查设备运行正常。

2.实验操作:(1)将PLC编程软件编写好,设置输入/输出点;(2)连接PLC与实验设备,进行电路调试;(3)操作按钮,观察电动机正反转情况。

3.实验结果分析:根据实验现象,分析电动机正反转过程,检查电路运行是否正常。

五、实验梯形图设计1.梯形图设计步骤:(1)分析实验需求,确定控制逻辑;(2)设计梯形图,编写程序;(3)检查程序,确保无误。

2.梯形图解析:梯形图由上至下依次为:输入信号、逻辑判断、输出信号。

以图示为例,当SB1按下,KM1吸合,电动机正转;当SB2按下,KM1断开,KM2吸合,电动机反转。

用PLC控制三相异步电动机正反转

用PLC控制三相异步电动机正反转

用PLC控制三相异步电动机正、反转用PLC控制三相异步电动机正、反转:三相交流异步电动机是生产设备常用的动力元件,PLC控制电动机的转动,是生产设备自动控制的最常用,也是基本的控制。

PLC控制电动机,用PLC控制负载,编程是主要的任务,接线驱动负载是次要的任务,不要本末倒置,将接线当成首要任务,编程当成次要任务。

用PLC控制三相异步电动机正、反转设计步骤控制案例:给正转信号,电动机正转运行;给反转信号,电动机反转运行;给停止信号,无论电动机正转还是反转,都要停止运行。

即电动机的控制能实现正反停。

1.电动机正反转的主电路中,交流接触器KM1和KM2的主触点不能同时闭合,并且必须保证,一个接触器的主触点断开以后,另一个接触器的主触点才能闭合。

2.为了做到上面一点,梯形图中输出继电器Y0、Y1的线圈就不能同时带电,这样在梯形图中就要加程序互锁。

即在输出Y0线圈的一路中,加元件Y1的常闭触点;在输出Y1线圈的一路中,加元件Y0的常闭触点。

当Y0的线圈带电时,Y1的线圈因Y¬0的常闭触点断开而不能得电;同样的道理,当Y1的线圈带电时,Y0的线圈因Y¬1的常闭触点断开而不能得电。

3.为了保证电动机能从正转直接切换到反转,梯形图中必须加类似按钮机械互锁的程序互锁。

即在输出Y0线圈的一路中,加反转控制信号X1的常闭触点;在输出Y1线圈的一路中,加正转控制信号X0的常闭触点。

这样能做到电动机正反转的直接切换。

当电动机加正转控制信号时,输入继电器X0的常开触点闭合,常闭触点断开。

常闭触点断开反转输出Y1的线圈,交流接触器KM2的线圈失电,电动机停止反转,同时Y1的常闭触点闭合,正转输出继电器Y0的线圈带电,交流接触器KM1的线圈得电,电动机正转。

当电动机加反转控制信号时,输入继电器X1的常开触点闭合,常闭触点断开。

常闭触点断开正转输出Y0的线圈,交流接触器KM1的线圈失电,电动机停止正转,同时Y 0的常闭触点闭合,反转输出继电器Y1的线圈带电,交流接触器KM2的线圈得电,电动机正转。

用PLC实现三相异步电动机的正反转控制电路教学设计方案

用PLC实现三相异步电动机的正反转控制电路教学设计方案

用PLC实现三相异步电动机的正反转控制电路教学设计方案嘿,大家好!今天我来给大家分享一个实用的教学设计方案——用PLC实现三相异步电动机的正反转控制电路。

作为一名有着十年方案写作经验的大师,我会尽量让这个方案简单易懂,跟着我一起来探索吧!一、教学目标1.让学生掌握PLC的基本原理和编程方法。

2.培养学生运用PLC实现电动机正反转控制电路的能力。

3.提高学生的实际动手操作能力和创新思维。

二、教学内容1.PLC的基本原理和编程方法。

2.三相异步电动机的正反转控制电路原理。

3.PLC与电动机控制电路的连接方法。

三、教学重点与难点1.教学重点:PLC的编程方法和电动机正反转控制电路的设计。

2.教学难点:PLC与电动机控制电路的连接及编程技巧。

四、教学步骤1.理论讲解(1)介绍PLC的基本原理和编程方法。

PLC(可编程逻辑控制器)是一种以微处理器为核心,采用可编程存储器存储用户程序,实现各种逻辑、定时、计数、运算等功能的控制器。

它广泛应用于工业控制领域,具有可靠性高、编程简单、易于扩展等优点。

(2)讲解三相异步电动机的正反转控制电路原理。

三相异步电动机的正反转控制电路是指通过改变电动机的电源相序,实现电动机的正反转运行。

通常采用接触器来实现电源相序的改变,从而实现电动机的正反转控制。

2.实践操作(1)准备实验设备①PLC控制器②三相异步电动机③接触器④继电器⑤电源(2)连接PLC与电动机控制电路①将PLC的输入端与电动机控制电路的输入端相连。

②将PLC的输出端与接触器的线圈相连。

③将接触器的触点与电动机的电源相连。

(3)编写PLC程序①分析电动机正反转控制电路的输入信号和输出信号。

②根据输入信号和输出信号,编写PLC程序。

//正转IF(按钮1按下)THEN输出1=1;//接触器1得电,电动机正转输出2=0;//接触器2失电,电动机不反转ENDIF//反转IF(按钮2按下)THEN输出1=0;//接触器1失电,电动机不反转输出2=1;//接触器2得电,电动机反转ENDIF(4)调试与优化(2)拓展学生的学习思路,引导学生思考如何将PLC应用于其他工业控制场景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PLC控制电机正反转设计专业班级:学生姓名:学号:指导老师姓名:指导老师职称:PLC控制电机正反转设计[摘要]电气控制技术是一门多学科交叉的技术,是实现工业生产自动化的重要技术手段,随着科学技术的不断发展, PLC技术越来越多的应用于机床电气,本文简述了PLC的发展和几种常用电气控制线路的PLC控制。

关键词: 继电器控制系统;基本电气控制线路;PLC控制;电动机前言通过学习,我们初步了解了电气控制技术的一些基本知识和组成,从中也知道了电气控制技术在机械行业的重要性,为了完成的任务,为了更好的掌握机电一体化,我们应该更深入的学习电气控制技术的知识,以满足综合型人才的培养要求,在学习中我们了解到,可编程系统与继电器的传统控制技术比较有以下优点:第一,反应速度快,噪音低,能耗小。

体积小。

第二,功能强大,编程方便,可以随时修改程序。

第三,控制精度高,可进行复杂的程序控制。

第四,能够对控制过程进行自动检测。

第五,系统稳定,安全可靠。

我们应该在继电器的基础上加强可编程控制技术的学习。

可编程控制器是在继电器控制和计算机控制的基础上发展而来的新型工业自动控制装置,可编程系统优于继电器的传统控制技术,我们应该在继电器的基础上加强可编程控制技术的学习。

目录第一章 PLC基础 (1)1.1 PLC的定义 (1)1.2 PLC的产生及发展 (1)1.3 PLC的特点及应用 (2)1.4 PLC的基本结构 (4)1.5 PLC的工作方式 (6)1.6 PLC的设计方法 (6)第二章三相异步电动机控制设计 (9)2.1 电动机可逆运行控制电路 (9)2.2 启动时就星型接法30秒后转为三角形运行直到停止反之亦然 (11)2.3 三相异步电动机正反转PLC控制的梯形图、指令表 (13)2.4 三相异步电动机正反转PLC控制的工作原理 (14)2.5 指令的介绍 (15)结论 (17)设计心得 (18)参考文献 (19)第一章 PLC基础1.1 PLC 的定义1985年,国际电工委员会(IEC)对PLC作出如下定义:可编程序控制器是一种数字运算操作电子系统,专为在工业环境下应用而设计。

它采用了可编程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字的,模拟的输入和输出,控制各种类型的机械或生产过程。

可编程序控制器及其有关的外围设备,都应按易于与工业控制系统形成一个整体、易于扩充其功能的原则设计。

由该定义可知:PLC是一种由“事先存贮的程序”来确定控制功能的工控类计算机。

PLC它是按照成熟而有效的继电器控制概念和设计思想,利用不断发展的新技术、新电子器件,逐步形成了具有特色的各种系列产品,是一种数字运算操作的专用电子计算机。

它是将逻辑运算,顺序控制,时序和计数以及算术运算等控制程序,用一串指令的形式存放到存储器中,然后根据存储的控制内容,经过模拟,数字等输入输出部件。

可编程序控制器是应用面最广、功能强大、使用方便的通用工业控制装置,自研制成功开始使用以来,它已经成为了当代工业自动化的主要支柱之一。

1.2 PLC 的产生在PLC诞生之前,继电器控制系统已广泛应用于工业生产的各个领域,起着不可替代的作用。

随着生产规模的逐步扩大,继电器控制系统已越来越难以适应现代工业生产的要求。

继电器控制系统通常是针对某一固定的动作顺序或生产工艺而设计,他的控制功能也局限于逻辑控制、定时、计数等一些简单的控制,一旦动作顺序或生产工艺发生变化,就必须重新进行设计、布线、装配和调试,造成时间和资金的严重浪费。

继电器控制系统体积大、耗电多、可靠性差、寿命短、运行速度慢、适应性差。

为了改变这一现状,1968年美国最大的汽车制造商通用汽车公司(GM),为了适应汽车型号不断更新的需求,并能在竞争激烈的汽车工业中占有优势,提出要研制一种新型的工业控制装置来取代继电器控制装置。

PLC英文全称Programmable Logic Controller ,中文全称为可编程逻辑控制器,定义是:一种数字运算操作的电子系统,专为在工业环境应用而设计的。

它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程.PLC是可编程逻辑电路,也是一种和硬件结合很紧密的语言,在半导体方面有很重要的应用,可以说有半导体的地方就有PLC。

PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。

它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。

PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。

20世纪70年代末至80年代初期,微处理器日趋成熟,使PLC的处理速度大大提高,增加了许多功能。

在软件方面,除了保持原有的逻缉运算、计时、计数等功能以外,还增加了算术运算、数据处理、网络通信、自诊断等功能。

在硬件方面,除了保持原有的开关模块以外,还增加了模拟量模块、远程I/O模块、各种特殊功能模块,并扩大了存储器的容量,而且还提供一定数量的数据寄存器。

为此,美国电气制造协会将可编程序逻辑控制器,正式命名为编程序控制器(Programmable Controller),简称PC。

但由于PC容易和个人计算机PC(Personal Computer)混淆,故人们仍习惯地用PLC作为可编程序控制器的简称。

1.3 PLC的特点及应用1) PLC特点(1)编程简单,使用方便梯形图是使用得最多的可编程序控制器的编程语言,其符号与继电器电路原理图相似。

有继电器电路基础的电气技术人员只要很短的时间就可以熟悉梯形图语言,并用来编制用户程序,梯形图语言形象直观,易学易懂。

(2)控制灵活,程序可变,具有很好的柔性可编程序控制器产品采用模块化形式,配备有品种齐全的各种硬件装置供用户选用,用户能灵活方便地进行系统配置,组成不同功能、不同规模的系统。

可编程序控制器用软件功能取代了继电器控制系统中大量的中间继电器、时间继电器、计数器等器件,硬件配置确定后,可以通过修改用户程序,不用改变硬件,方便快速地适应工艺条件的变化,具有很好的柔性。

(3)功能强,扩充方便,性能价格比高可编程序控制器内有成百上千个可供用户使用的编程元件,有很强的逻辑判断、数据处理、PID调节和数据通信功能,可以实现非常复杂的控制功能。

如果元件不够,只要加上需要的扩展单元即可,扩充非常方便。

与相同功能的继电器系统相比,具有很高的性能价格比。

(4)控制系统设计及施工的工作量少,维修方便可编程序控制器的配线与其它控制系统的配线比较少得多,故可以省下大量的配线,减少大量的安装接线时间,开关柜体积缩小,节省大量的费用。

可编程序控制器有较强的带负载能力、可以直接驱动一般的电磁阀和交流接触器。

一般可用接线端子连接外部接线。

可编程序控制器的故障率很低,且有完善的自诊断和显示功能,便于迅速地排除故障。

(5)可靠性高,抗干扰能力强可编程序控制器是为现场工作设计的,采取了一系列硬件和软件抗干扰措施,硬件措施如屏蔽、滤波、电源调整与保护、隔离、后备电池等,例如,西门子公司S7-200系列PLC 内部EEPROM中,储存用户原程序和预设值在一个较长时间段(190小时),所有中间数据可以通过一个超级电容器保持,如果选配电池模块,可以确保停电后中间数据能保存200天。

软件措施如故障检测、信息保护和恢复、警戒时钟,加强对程序的检测和校验。

从而提高了系统抗干扰能力,平均无故障时间达到数万小时以上,可以直接用于有强烈干扰的工业生产现场,可编程序控制器已被广大用户公认为最可靠的工业控制设备之一。

(6)体积小、重量轻、能耗低,是“机电一体化”特有的产品。

2) PLC应用目前,可编程序控制器已经广泛地应用在各个工业部门。

随着其性能价格比的不断提高,应用范围还在不断扩大,主要有以下几个方面:(1)逻辑控制可编程序控制器具有“与”、“或”、“非”等逻辑运算的能力,可以实现逻辑运算,用触点和电路的串、并联,代替继电器进行组合逻辑控制,定时控制与顺序逻辑控制。

数字量逻辑控制可以用于单台设备,也可以用于自动生产线,其应用领域最为普及,包括微电子、家电行业也有广泛的应用。

(2)运动控制可编程序控制器使用专用的运动控制模块,或灵活运用指令,使运动控制与顺序控制功能有机地结合在一起。

随着变频器、电动机启动器的普遍使用,可编程序控制器可以与变频器结合,运动控制功能更为强大,并广泛地用于各种机械,如金属切削机床、装配机械、机器人、电梯等场合。

(3)过程控制可编程序控制器可以接收温度、压力、流量等连续变化的模拟量,通过模拟量I/0模块,实现模拟量(Analog)和数字量(Digital)之间的A/D转换和D/A转换,并对被控模拟量实行闭环PID(比例-积分-微分)控制。

现代的大中型可编程序控制器一般都有PID闭环控制功能,此功能已经广泛地应用于工业生产、加热炉、锅炉等设备,以及轻工、化工、机械、冶金、电力、建材等行业。

(4)数据处理可编程序控制器具有数学运算、数据传送、转换、排序和查表、位操作等功能,可以完成数据的采集、分析和处理。

这些数据可以是运算的中间参考值,也可以通过通信功能传送到别的智能装置,或者将它们保存、打印。

数据处理一般用于大型控制系统,如无人柔性制造系统,也可以用于过程控制系统,如造纸、冶金、食品工业中的一些大型控制系统。

(5)构建网络控制可编程序控制器的通信包括主机与远程I/0之间的通信、多台可编程序控制器之间的通信、可编程序控制器和其他智能控制设备(如计算机、变频器)之间的通信。

可编程序控制器与其他智能控制设备一起,可以组成“集中管理、分散控制”的分布式控制系统。

当然,并非所有的可编程序控制器都具有上述功能,用户应根据系统的需要选择可编程序控制器,这样既能完成控制任务,又可节省资金。

1.4 PLC的基本结构可编程序控制器简称为PLC(Programmable Logic Controller)主要由CPU模块、输入模块、输出模块和编程器组成。

(如下图1-1所示)PLC基本结构图1-1 PLC结构示意图可编程序控制器实际上是一种工业控制计算机,它的硬件结构与一般微机控制系统相似,甚至与之无异。

可编程序控制器主要由CPU(中央处理单元)、存储器(RAM和EPROM)、输入/输出模块(简称I/O模块)、编程器和电源五大部分组成。

1) CPU模块CPU模块又叫中央处理单元或控制器,它主要由微机处理器(CPU)和存储器组成。

CPU 的作用类似于人类的大脑和心脏。

相关文档
最新文档