山东省济南市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题
河北省保定市2024高三冲刺(高考数学)人教版考试(综合卷)完整试卷
河北省保定市2024高三冲刺(高考数学)人教版考试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题甲、乙等6人去三个不同的景区游览,每个人去一个景区,每个景区都有人游览,若甲、乙两人不去同一景区游览,则不同的游览方法的种数为()A.342B.390C.402D.462第(2)题设,是正数,曲线关于直线对称,若取得最小值,则该直线的方程为()A.B.C.D.第(3)题已知函数,在上有且仅有2个极小值点,则实数的取值范围()A.B.C.D.第(4)题已知函数,则()A.-6B.0C.4D.6第(5)题已知集合,,则中元素的个数为()A.3B.2C.1D.0第(6)题在复平面内,已知复数满足(为虚数单位),记对应的点为点对应的点为点,则点与点之间距离的最小值为()A.B.C.D.第(7)题若函数,则()A.的最小正周期为B.的图象关于点对称C.在上有最小值D.的图象关于直线对称第(8)题某公司为了解本公司的用电情况,统计了4天气温x(℃)与用电量y(度)之间的相关数据如下表所示:x9121518y60m3020若它们之间的线性回归方程为,则()A.48B.50C.52D.54二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数的定义域为R,满足,当时,.对,下列选项正确的是()A.,则m的最小值为B.,则m的值不存在C.,则D .时,函数所有极小值之和大于2e第(2)题已知,则函数的图象可能是()A.B.C.D.第(3)题据某地统计局发布的数据,现将8月份至12月份当地的人均月收入增长率数据制成如图所示的折线图,已知8月份当地的人均月收入为2000元,现给出如下信息,其中不正确的信息为()A.9月份当地人均月收入为1980元B.10月份当地人均月收入为2040元C.11月份当地人均月收入与8月份相同D.这四个月中.当地12月份人均月收入最低三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知角的顶点在原点,始边与x轴的非负半轴最合,终边与单位圆交于点,将角的终边绕原点逆时针方向旋转后与角的终边重合,则_________.第(2)题2022年11月29日,神舟十五号载人飞船成功发射升空,在飞船入轨后未来6个月里,空间站将逐步解锁、安装并测试15个科学实验机柜,开展涵盖空间科学研究与应用、航天医学、航天技术等领域的40余项空间科学实验和技术试验.已知此科学实验机柜在投入使用前会进行调试工作,现有8个科学实验机柜,其中包括5个A类型、3个B类型,两名调试员计划共抽取3个机柜进行调试,则至少有1人抽到B类型机柜进行调试的概率为______.第(3)题平面截半径为2的球O所得的截面圆的面积为,则球心O到平面的距离为___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(Ⅰ)当时,求在点处的切线方程;(Ⅱ)若,求函数的单调区间;(Ⅲ)若对任意的,在上恒成立,求实数的取值范围.第(2)题如图,是圆柱的一条母线,是底面的一条直径,是圆上一点,且,.(1)求直线与平面所成角的大小;(2)求点到平面的距离.第(3)题已知函数(1)当时,求曲线在点处曲线的切线方程;(2)求函数的单调区间.第(4)题在△ABC中,角A,B,C所对的边分别为,.(1)求的值;(2)若,求.第(5)题如图,在三棱柱中,平面平面.(1)若分别为的中点,证明:平面;(2)当直线与平面所成角的正弦值为时,求平面与平面夹角的余弦值.。
山东省烟台市高一数学上学期期末试题(含解析)-人教版高一全册数学试题
2015-2016学年某某省某某市高一(上)期末数学试卷一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.下列命题中正确的个数是()(1)空间中如果两个角的两边分别对应平行,那么这两个角相等(2)若直线l与平面α平行,则直线l与平面α内的直线平行或异面(3)夹在两个平行平面间的平行线段相等(4)垂直于同一直线的两条直线平行.A.0 B.1 C.2 D.32.如果两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,那么实数a等于()A.﹣1 B.2 C.2或﹣1 D.3.函数f(x)=e x+2x﹣3的零点所在的一个区间是()A.()B.()C.()D.()4.一个几何体的三视图如图所示,其中正视图和俯视图的都是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为()A.B.C.D.5.若函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则实数a的取值X围是()A.a>1 B.a<1 C.a<﹣1或a>1 D.﹣1<a<16.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.7.在坐标平面内,与点A(﹣2,﹣1)和点B(4,7)的距离均为5的直线共有()A.1条B.2条C.3条D.4条8.若圆锥的侧面展开图的圆心角为90°,半径为r,则该圆锥的全面积为()A.B.C.D.9.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M,N分别为线段PB,BC的中点,有以下三个命题:①OC∩平面PAC;②MO∥平面PAC;③平面PAC∥平面MON,其中正确的命题是()A.①②B.①③C.②③D.①②③10.定义在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.1﹣2a B.2a﹣1 C.1﹣2﹣a D.2﹣a﹣1二、填空题:本大题共5小题,每小题5分,共25分.11.通过市场调查知某商品每件的市场价y(单位:圆)与上市时间x(单位:天)的数据如下:上市时间x天 4 10 36市场价y元 90 51 90根据上表数据,当a≠0时,下列函数:①y=ax+k;②y=ax2+bx+c;③y=alog m x中能恰当的描述该商品的市场价y与上市时间x的变化关系的是(只需写出序号即可).12.如图所示,在直四棱柱ABCD﹣A1B1C1D1中,当底面四边形A1B1C1D1满足条件时,有A1C⊥B1D1(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况).13.若直线m被两条平行直线l1:x﹣y+1=0与l2:2x﹣2y+5=0所截得的线段长为,则直线m的倾斜角等于.14.已知函数f(x)对任意的x∈R满足f(﹣x)=f(x),且当x≥0时,f(x)=x2﹣x+1,若f(x)有4个零点,则实数a的取值X围是.15.如图,在棱长都相等的四面体SABC中,给出如下三个命题:①异面直线AB与SC所成角为60°;②BC与平面SAB所成角的余弦值为;③二面角S﹣BC﹣A的余弦值为,其中所有正确命题的序号为.三、解答题:本大题共6小题,满分75分,解答须写出文字说明、证明过程或演算步骤、16.如图,AA1B1B是圆柱的轴截面,C是底面圆周上异于A,B的一点,AA1=AB=2.(1)求证:平面AA1C⊥平面BA1C;(2)若AC=BC,求几何体A1﹣ABC的体积V.17.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,E是AA1的中点.(1)求证:A1C∥平面BDE;(2)求二面角E﹣BD﹣A的正切值.18.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);(2)要使工厂有盈利,求产量x的X围;(3)工厂生产多少台产品时,可使盈利最多?19.在△ABC中,A(2,﹣1),AB边上的中线CM所在直线方程为3x+2y+1=0.角B的平分线所在直线BT的方程为x﹣y+2=0.(1)求顶点B的坐标;(2)求直线BC的方程.20.如图,AB为圆O的直径,点E,F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O 所在的平面互相垂直,且AB=2,AD=EF=1.(1)设FC的中点为M,求证:OM∥面DAF;(2)求证:AF⊥面CBF.21.设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,某某数a的取值X围;(3)若l与x轴正半轴的交点为A,与y轴负半轴的交点为B,求△AOB(O为坐标原点)面积的最小值.2015-2016学年某某省某某市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.下列命题中正确的个数是()(1)空间中如果两个角的两边分别对应平行,那么这两个角相等(2)若直线l与平面α平行,则直线l与平面α内的直线平行或异面(3)夹在两个平行平面间的平行线段相等(4)垂直于同一直线的两条直线平行.A.0 B.1 C.2 D.3【分析】根据空间中的平行与垂直关系,得出命题A、B、C正确,命题D错误【解答】解:对于(1),空间中如果两个角的两边分别对应平行,那么这两个角相等或互补,∴命题(1)错误;对于(2),若直线l与平面α平行,则直线l与平面α内的直线平行或异面,根据线面平行的性质得到命题(2)正确;对于(3),夹在两个平行平面间的平行线段相等;命题(3)正确;对于(4),垂直于同一条直线的两个直线平行、相交或异面,∴命题(4)错误.故正确的命题有2个;故选:C.【点评】本题考查了空间中的平行与垂直关系的应用问题,是基础题目.2.如果两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,那么实数a等于()A.﹣1 B.2 C.2或﹣1 D.【分析】两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,直线l1的斜率存在,利用两条直线相互平行的充要条件即可得出.【解答】解:∵两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,直线l1的斜率存在,分别化为:y=﹣x﹣3,y=﹣,∴,﹣3≠﹣,解得a=﹣1.故选:A.【点评】本题考查了两条直线相互平行的充要条件,考查了推理能力与计算能力,属于中档题.3.函数f(x)=e x+2x﹣3的零点所在的一个区间是()A.()B.()C.()D.()【分析】将选项中各区间两端点值代入f(x),满足f(a)f(b)<0(a,b为区间两端点)的为答案.【解答】解:因为f()=<0,f(1)=e﹣1>0,所以零点在区间()上,故选C.【点评】本题考查了函数零点的概念与零点定理的应用,属于容易题.函数零点附近函数值的符号相反,这类选择题通常采用代入排除的方法求解.4.一个几何体的三视图如图所示,其中正视图和俯视图的都是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为()A.B.C.D.【分析】根据三视图知几何体为一直四棱锥,结合图中数据求出该四棱锥的体积.【解答】解:由三视图知几何体为一直四棱锥,其直观图如图所示;∵正视图和侧视图是腰长为1的两个全等的等腰直角三角形,∴四棱锥的底面是正方形,且边长为1,其中一条侧棱垂直于底面且侧棱长也为1,∴该四棱锥的体积为×12×1=.故选:B.【点评】本题考查了由三视图求几何体体积的应用问题,解题的关键是判断几何体的形状,是基础题.5.若函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则实数a的取值X围是()A.a>1 B.a<1 C.a<﹣1或a>1 D.﹣1<a<1【分析】由函数的零点的判定定理可得f(﹣1)f(1)<0,解不等式求得实数a的取值X 围.【解答】解:函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则f(﹣1)f(1)<0,即(1﹣a)(1+a)<0,解得a<﹣1或a>1.故选:C.【点评】本题主要考查函数的零点的判定定理的应用,属于基础题.6.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.【分析】由题意设出球的半径,圆M的半径,二者与OM构成直角三角形,求出圆M的半径,然后可求球的表面积,截面面积,再求二者之比.【解答】解:设球的半径为R,圆M的半径r,由图可知,R2=R2+r2,∴R2=r2,∴S球=4πR2,截面圆M的面积为:πr2=πR2,则所得截面的面积与球的表面积的比为:.故选A.【点评】本题是基础题,考查球的体积、表面积的计算,仔细体会,理解并能够应用小圆的半径、球的半径、以及球心与圆心的连线的关系,是本题的突破口.7.在坐标平面内,与点A(﹣2,﹣1)和点B(4,7)的距离均为5的直线共有()A.1条B.2条C.3条D.4条【分析】先求出线段AB的长度为10,等于5的2倍,故满足条件的直线有3条,其中有2条和线段AB平行,另一条是线段AB的中垂线.【解答】解:线段AB的长度为=10,故在坐标平面内,与点A(﹣2,﹣1)和点B(4,7)的距离均为5的直线共有3条,其中有2条在线段AB的两侧,且都和线段AB平行,另一条是线段AB的中垂线,故选 C.【点评】本题考查两点间的距离公式的应用,线段的中垂线的性质,体现了分类讨论的数学思想.8.若圆锥的侧面展开图的圆心角为90°,半径为r,则该圆锥的全面积为()A.B.C.D.【分析】根据扇形的弧长等于圆锥底面周长求出圆锥底面半径.【解答】解:圆锥的侧面积为,侧面展开图的弧长为=,设圆锥的底面半径为r′,则2πr′=,∴r′=.∴圆锥的全面积S=+=.故选:D.【点评】本题考查了圆锥的结构特征,面积计算,属于基础题.9.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M,N分别为线段PB,BC的中点,有以下三个命题:①OC∩平面PAC;②MO∥平面PAC;③平面PAC∥平面MON,其中正确的命题是()A.①②B.①③C.②③D.①②③【分析】利用线面平行,面面平行的判定定理即可.【解答】解:点M,N分别为线段PB,BC的中点,o为AB的中点,∴MO∥PA,ON∥AC,OM∩ON=O,∴MO∥平面PAC;平面PAC∥平面MON,②③故正确;故选:C.【点评】考查了线面平行,面面平行的判断,属于基础题型,应熟练掌握.10.定义在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.1﹣2a B.2a﹣1 C.1﹣2﹣a D.2﹣a﹣1【分析】函数F(x)=f(x)﹣a(0<a<1)的零点转化为:在同一坐标系内y=f(x),y=a 的图象交点的横坐标.作出两函数图象,考查交点个数,结合方程思想,及零点的对称性,根据奇函数f(x)在x ≥0时的解析式,作出函数的图象,结合图象及其对称性,求出答案.【解答】解:∵当x≥0时,f(x)=;即x∈[0,1)时,f(x)=(x+1)∈(﹣1,0];x∈[1,3]时,f(x)=x﹣2∈[﹣1,1];x∈(3,+∞)时,f(x)=4﹣x∈(﹣∞,﹣1);画出x≥0时f(x)的图象,再利用奇函数的对称性,画出x<0时f(x)的图象,如图所示;则直线y=a,与y=f(x)的图象有5个交点,则方程f(x)﹣a=0共有五个实根,最左边两根之和为﹣6,最右边两根之和为6,∵x∈(﹣1,0)时,﹣x∈(0,1),∴f(﹣x)=(﹣x+1),又f(﹣x)=﹣f(x),∴f(x)=﹣(﹣x+1)=(1﹣x)﹣1=log2(1﹣x),∴中间的一个根满足log2(1﹣x)=a,即1﹣x=2a,解得x=1﹣2a,∴所有根的和为1﹣2a.故选:A.【点评】本题考查分段函数的图象与性质的应用问题,也考查了利用函数零点与方程的应用问题,是综合性题目.二、填空题:本大题共5小题,每小题5分,共25分.11.通过市场调查知某商品每件的市场价y(单位:圆)与上市时间x(单位:天)的数据如下:上市时间x天 4 10 36市场价y元 90 51 90根据上表数据,当a≠0时,下列函数:①y=ax+k;②y=ax2+bx+c;③y=alog m x中能恰当的描述该商品的市场价y与上市时间x的变化关系的是(只需写出序号即可)②.【分析】随着时间x的增加,y的值先减后增,结合函数的单调性即可得出结论【解答】解:∵随着时间x的增加,y的值先减后增,而所给的三个函数中y=ax+k和y=alog m x 显然都是单调函数,不满足题意,∴y=ax2+bx+c.故答案为:②.【点评】本题考查函数模型的选择,考查学生利用数学知识解决实际问题的能力,确定函数模型是关键.12.如图所示,在直四棱柱ABCD﹣A1B1C1D1中,当底面四边形A1B1C1D1满足条件AC⊥BD或四边形ABCD为菱形时,有A1C⊥B1D1(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况).【分析】由假设A1C⊥B1D1,结合直四棱柱的性质及线面垂直的判定和性质定理,我们易得到A1C1⊥B1D1,即AC⊥BD,又由菱形的几何特征可判断出四边形ABCD为菱形,又由本题为开放型题目上,故答案可以不唯一.【解答】解:若A1C⊥B1D1,由四棱柱ABCD﹣A1B1C1D1为直四棱柱,AA1⊥B1D1,易得B1D1⊥平面AA1BB1,则A1C1⊥B1D1,即AC⊥BD,则四边形ABCD为菱形,故答案为:AC⊥BD或四边形ABCD为菱形.【点评】本题主要考查了空间中直线与直线之间的位置关系,属于知识的考查,属于中档题.13.若直线m被两条平行直线l1:x﹣y+1=0与l2:2x﹣2y+5=0所截得的线段长为,则直线m的倾斜角等于135°.【分析】由两平行线间的距离,得直线m和两平行线的夹角为90°.再根据两条平行线的倾斜角为45°,可得直线m的倾斜角的值.【解答】解:由两平行线间的距离为=,直线m被平行线截得线段的长为,可得直线m 和两平行线的夹角为90°.由于两条平行线的倾斜角为45°,故直线m的倾斜角为135°,故答案为:135°.【点评】本题考查两平行线间的距离公式,两条直线的夹角公式,本题属于基础题.14.已知函数f(x)对任意的x∈R满足f(﹣x)=f(x),且当x≥0时,f(x)=x2﹣x+1,若f(x)有4个零点,则实数a的取值X围是(4,+∞).【分析】根据条件可判断函数为偶函数,则要使(x)有4个零点,只需当x≥0时,f(x)=x2﹣x+1=0有两不等正根,根据二次方程的根的判定求解.【解答】解:对任意的x∈R满足f(﹣x)=f(x),∴函数为偶函数,若f(x)有4个零点,∴当x≥0时,f(x)=x2﹣x+1=0有两不等正根,∴△=a﹣4>0,∴a>4.【点评】考查了偶函数的应用和二次方程根的性质.15.如图,在棱长都相等的四面体SABC中,给出如下三个命题:①异面直线AB与SC所成角为60°;②BC与平面SAB所成角的余弦值为;③二面角S﹣BC﹣A的余弦值为,其中所有正确命题的序号为②③.【分析】①根据线面垂直性质可判断;②根据公式cosθ=cosθ1cosθ2求解即可;③找出二面角的平面角,利用余弦定理求解.【解答】解:①取AB中点M,易证AB垂直平面SMC,可得AB垂直SC,故错误;②易知BC在平面上的射影为∠ABC的角平分线,∴cos60°=cosθcos30°,∴cosθ=,故正确;③取BC中点N,∴二面角为∠ANC,不妨设棱长为1,∴cos∠ANC==,故正确,故答案为:②③.【点评】考查了线面垂直,线面角,二面角的求法.属于基础题型.三、解答题:本大题共6小题,满分75分,解答须写出文字说明、证明过程或演算步骤、16.如图,AA1B1B是圆柱的轴截面,C是底面圆周上异于A,B的一点,AA1=AB=2.(1)求证:平面AA1C⊥平面BA1C;(2)若AC=BC,求几何体A1﹣ABC的体积V.【分析】(1)证明BC⊥平面AA1C,即可证明平面AA1C⊥平面BA1C;(2)求出AC,直接利用体积公式求解即可.【解答】(1)证明:因为C是底面圆周上异于A,B的一点,AB是底面圆的直径,所以AC⊥BC.因为AA1⊥平面ABC,BC⊂平面ABC,所以AA1⊥BC,而AC∩AA1=A,所以BC⊥平面AA1C.又BC⊂平面BA1C,所以平面AA1C⊥平面BA1C.…(6分)(2)解:在Rt△ABC中,AB=2,则由AB2=AC2+BC2且AC=BC,得,所以.…(12分)【点评】本题考查线面垂直的判定,考查平面与平面垂直,考查几何体A1﹣ABC的体积,考查学生分析解决问题的能力,属于中档题.17.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,E是AA1的中点.(1)求证:A1C∥平面BDE;(2)求二面角E﹣BD﹣A的正切值.【分析】(1)连AC,设AC与BD交于点O,连EO,则A1C∥EO,由此能证明A1C∥平面BDE.(2)由BD⊥AC,BD⊥EO,得∠AOE是二面角E﹣BD﹣A的平面角,由此能求出二面角E﹣BD ﹣A的正切值.【解答】证明:(1)连AC,设AC与BD交于点O,连EO,∵E是AA1的中点,O是BD的中点,∴A1C∥EO,又EO⊂面BDE,AA1⊄面BDE,所以A1C∥平面BDE.…(6分)解:(2)由(1)知,BD⊥AC,BD⊥EO,∴∠AOE是二面角E﹣BD﹣A的平面角,在Rt△AOE中,tan∠AOE==.∴二面角E﹣BD﹣A的正切值为.…(12分)【点评】本题考查线面平行的证明,考查二面角的正切值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.18.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);(2)要使工厂有盈利,求产量x的X围;(3)工厂生产多少台产品时,可使盈利最多?【分析】(1)由题意得G(x)=2.8+x.由,f(x)=R (x)﹣G(x),能写出利润函数y=f(x)的解析式.(2)当0≤x≤5时,由f(x)=﹣0.4x2+3.2x﹣2.8>0,得1<x≤5;当x>5时,由f(x)=8.2﹣x>0,得5<x<8.2.由此能求出要使工厂有盈利,产量x的X围.(3)当x>5时,由函数f(x)递减,知f(x)<f(5)=3.2(万元).当0≤x≤5时,函数f(x)=﹣0.4(x﹣4)2+3.6,当x=4时,f(x)有最大值为3.6(万元).由此能求出工厂生产多少台产品时,可使盈利最多.【解答】解:(1)由题意得G(x)=2.8+x.…(2分)∵,…(4分)∴f(x)=R(x)﹣G(x)=.…(6分)(2)∵f(x)=,∴当0≤x≤5时,由f(x)=﹣0.4x2+3.2x﹣2.8>0,得1<x≤5;.…(7分)当x>5时,由f(x)=8.2﹣x>0,得5<x<8.2.∴要使工厂有盈利,求产量x的X围是(1,8.2)..…(8分)(3)∵f(x)=,∴当x>5时,函数f(x)递减,∴f(x)<f(5)=3.2(万元).…(10分)当0≤x≤5时,函数f(x)=﹣0.4(x﹣4)2+3.6,当x=4时,f(x)有最大值为3.6(万元).…(14分)所以当工厂生产4百台时,可使赢利最大为3.6万元.…(15分)【点评】本题考查函数知识在生产实际中的具体应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.19.在△ABC中,A(2,﹣1),AB边上的中线CM所在直线方程为3x+2y+1=0.角B的平分线所在直线BT的方程为x﹣y+2=0.(1)求顶点B的坐标;(2)求直线BC的方程.【分析】(1)设B(x0,y0),利用中点坐标公式可得:AB的中点M,代入直线CM.又点B在直线BT上,联立即可得出.(2)设点A(2,﹣1)关于直线BT的对称点的坐标为A′(a,b),则点A′在直线BC上,利用对称的性质即可得出.【解答】解:(1)设B(x0,y0),则AB的中点M在直线CM上,所以+1=0,即3x0+2y0+6=0 ①…(2分)又点B在直线BT上,所以x0﹣y0+2=0 ②…(4分)由①②得:x0=﹣2,y0=0,即顶点B(﹣2,0).…(6分)(2)设点A(2,﹣1)关于直线BT的对称点的坐标为A′(a,b),则点A′在直线BC上,由题意知,,解得a=﹣3,b=4,即A′(﹣3,4).…(9分)因为k BC===﹣4,…(11分)所以直线BC的方程为y=﹣4(x+2),即4x+y+8=0.…(12分)【点评】本题考查了角平分线的性质、相互垂直的直线斜率之间的关系、中点坐标公式,考查了推理能力与计算能力,属于中档题.20.如图,AB为圆O的直径,点E,F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O 所在的平面互相垂直,且AB=2,AD=EF=1.(1)设FC的中点为M,求证:OM∥面DAF;(2)求证:AF⊥面CBF.【分析】(1)先证明OM∥AN,根据线面平行的判定定理即可证明OM∥面DAF;(2)由题意可先证明AF⊥CB,由AB为圆O的直径,可证明AF⊥BF,根据线面垂直的判定定理或面面垂直的性质定理即可证明AF⊥面CBF.【解答】解:(1)设DF的中点为N,连接MN,则MN∥CD,MN=CD,又∵AO∥CD,AO=CD,∴MN∥AO,MN=AO,∴MNAO为平行四边形,∴OM∥AN.又∵AN⊂面DAF,OM⊄面DAF,∴OM∥面DAF.(2)∵面ABCD⊥面ABEF,CB⊥AB,CB⊂面ABCD,面ABCD∩面ABEF=AB,∴CB⊥面ABEF.∵AF⊂面ABEF,∴AF⊥CB.又∵AB为圆O的直径,∴AF⊥BF,又∵CB∩BF=B,CB,BF⊂面CBF.∴AF⊥面CBF.【点评】本题主要考查了平面与平面垂直的判定,直线与平面平行的判定,考查了空间想象能力和转化思想,属于中档题.21.设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,某某数a的取值X围;(3)若l与x轴正半轴的交点为A,与y轴负半轴的交点为B,求△AOB(O为坐标原点)面积的最小值.【分析】(1)对a分类讨论,利用截距式即可得出;(2)y=﹣(a+1)x+a﹣2,由于l不经过第二象限,可得,解出即可得出.(3)令x=0,解得y=a﹣2<0,解得aX围;令y=0,解得x=>0,解得aX围.求交集可得:a<﹣1.利用S△AOB= [﹣(a﹣2)]×,变形利用基本不等式的性质即可得出.【解答】解:(1)若2﹣a=0,解得a=2,化为3x+y=0.若a+1=0,解得a=﹣1,化为y+3=0,舍去.若a≠﹣1,2,化为: +=1,令=a﹣2,化为a+1=1,解得a=0,可得直线l的方程为:x+y+2=0.(2)y=﹣(a+1)x+a﹣2,∵l不经过第二象限,∴,解得:a≤﹣1.∴实数a的取值X围是(﹣∞,﹣1].(3)令x=0,解得y=a﹣2<0,解得a<2;令y=0,解得x=>0,解得a>2或a<﹣1.因此,解得a<﹣1.∴S△AOB=|a﹣2|||==3+≥3+=6,当且仅当a=﹣4时取等号.∴△AOB(O为坐标原点)面积的最小值是6.【点评】本题考查了直线的方程、不等式的性质、三角形的面积计算公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.。
河北省石家庄市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题
2016-2017学年某某省某某高一(下)期中数学试卷一、选择题(共11小题,每小题3分,满分33分)1.一图形的投影是一条线段,这个图形不可能是()A.线段 B.直线 C.圆D.梯形2.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A. B.C. D.3.如果两直线a∥b,且a∥平面α,则b与α的位置关系是()A.相交 B.b∥α或b⊂αC.b⊂αD.b∥α4.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交 D.任意一条直线不相交5.将正三棱柱截去三个角(如图1所示A,B,C分别是△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为()A.B.C.D.6.对于用“斜二侧画法”画平面图形的直观图,下列说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.梯形的直观图可能不是梯形C.正方形的直观图为平行四边形D.正三角形的直观图一定是等腰三角形7.如图所示,三视图的几何体是()A.六棱台B.六棱柱C.六棱锥D.六边形8.已知△ABC的平面直观图△A′B′C′,是边长为a的正三角形,那么原△ABC的面积为()A. a 2B. a 2C. a 2D. a 29.等腰三角形ABC的直观图是()A.①② B.②③ C.②④ D.③④10.两条相交直线的平行投影是()A.两条相交直线 B.一条直线C.一条折线 D.两条相交直线或一条直线11.下列命题中正确的是()A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段中点的平行投影仍是这条线段投影的中点二、(填空题)12.不重合的三个平面把空间分成n部分,则n的可能值为.13.已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,求原△ABC的面积.14.如图,在直三棱柱ABC﹣A1B1C1中,AB=BC=,BB1=2,∠ABC=90°,E、F分别为AA1、C1B1的中点,沿棱柱的表面从E到F两点的最短路径的长度为.15.如果一个几何体的俯视图中有圆,则这个几何体中可能有.16.已知两条不同直线m、l,两个不同平面α、β,给出下列命题:①若l垂直于α内的两条相交直线,则l⊥α;②若l∥α,则l平行于α内的所有直线;③若m⊂α,l⊂β且l⊥m,则α⊥β;④若l⊂β,l⊥α,则α⊥β;⑤若m⊂α,l⊂β且α∥β,则m∥l.其中正确命题的序号是.(把你认为正确命题的序号都填上)17.如图是一个空间几何体的三视图,则该几何体为.18.用斜二测画法画边长为2的正三角形的直观图时,如果在已知图形中取的x轴和正三角形的一边平行,则这个正三角形的直观图的面积是.19.设三棱锥P﹣ABC的顶点P在平面ABC上的射影是H,给出以下命题:①若PA⊥BC,PB⊥AC,则H是△ABC的垂心;②若PA,PB,PC两两互相垂直,则H是△ABC的垂心;③若∠ABC=90°,H是AC的中点,则PA=PB=PC;④若PA=PB=PC,则H是△ABC的外心,其中正确命题的命题是.20.等腰梯形ABCD中,上底CD=1,腰,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为.21.如图已知梯形ABCD的直观图A′B′C′D′的面积为10,则梯形ABCD的面积为.22.一个空间几何体的三视图如图所示,该几何体的表面积为.2016-2017学年某某省某某实验中学高一(下)期中数学试卷参考答案与试题解析一、选择题(共11小题,每小题3分,满分33分)1.一图形的投影是一条线段,这个图形不可能是()A.线段 B.直线 C.圆D.梯形【考点】LA:平行投影及平行投影作图法.【分析】本题考查投影的概念,由于图形的投影是一个线段,根据平行投影与中心投影的规则对选项中几何体的投影情况进行分析找出正确选项.【解答】解:线段、圆、梯形都是平面图形,且在有限X围内,投影都可能为线段.长方体是三维空间图形,其投影不可能是线段;直线的投影,只能是直线或点.故选:B.【点评】本题考查平行投影及平行投影作图法,解题的关键是熟练掌握并理解投影的规则,由投影的规则对选项作出判断,得出正确选项.2.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A. B. C. D.【考点】L7:简单空间图形的三视图.【分析】从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图形.【解答】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.3.如果两直线a∥b,且a∥平面α,则b与α的位置关系是()A.相交 B.b∥α或b⊂αC.b⊂αD.b∥α【考点】LP:空间中直线与平面之间的位置关系.【分析】若两直线a∥b,且a∥平面α,根据线面平行的性质定理及线面平行的判定定理,分b⊂α和b⊄α两种情况讨论,可得b与α的位置关系【解答】解:若a∥平面α,a⊂β,α∩β=b则直线a∥b,故两直线a∥b,且a∥平面α,则可能b⊂α若b⊄α,则由a∥平面α,令a⊂β,α∩β=c则直线a∥c,结合a∥b,可得b∥c,由线面平行的判定定理可得b∥α故两直线a∥b,且a∥平面α,则可能b∥α故选:B【点评】本题考查的知识点是空间中直线与平面之间的位置关系,熟练掌握空间直线与平面平行的判定定理和性质定理是解答的关键.4.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交 D.任意一条直线不相交【考点】LT:直线与平面平行的性质.【分析】根据直线与平面平行的定义可知直线与平面无交点,从而直线与平面内任意直线都无交点,从而得到结论.【解答】解:根据线面平行的定义可知直线与平面无交点∵直线a∥平面α,∴直线a与平面α没有公共点从而直线a与平面α内任意一直线都没有公共点,则不相交故选:D【点评】本题主要考查了直线与平面平行的性质,以及直线与平面平行的定义,同时考查了推理能力,属于基础题.5.将正三棱柱截去三个角(如图1所示A,B,C分别是△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为()A.B.C.D.【考点】L7:简单空间图形的三视图.【分析】图2所示方向的侧视图,由于平面AED仍在平面HEDG上,故侧视图中仍然看到左侧的一条垂直下边线段的线段,易得选项.【解答】解:解题时在图2的右边放扇墙(心中有墙),图2所示方向的侧视图,由于平面AED仍在平面HEDG上,故侧视图中仍然看到左侧的一条垂直下边线段的线段,可得答案A.故选A.【点评】本题考查空间几何体的三视图,考查空间想象能力,是基础题.6.对于用“斜二侧画法”画平面图形的直观图,下列说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.梯形的直观图可能不是梯形C.正方形的直观图为平行四边形D.正三角形的直观图一定是等腰三角形【考点】LD:斜二测法画直观图.【分析】根据斜二侧画法画水平放置的平面图形时的画法原则,可得:等腰三角形的直观图不再是等腰三角形,梯形的直观图还是梯形,正方形的直观图是平行四边形,正三角形的直观图是一个钝角三角形,进而得到答案.【解答】解:根据斜二侧画法画水平放置的平面图形时的画法原则,可得:等腰三角形的直观图不再是等腰三角形,梯形的直观图还是梯形,正方形的直观图是平行四边形,正三角形的直观图是一个钝角三角形,故选:C【点评】本题考查的知识点是斜二侧画法,熟练掌握斜二侧画法的作图步骤及实质是解答的关键.7.如图所示,三视图的几何体是()A.六棱台B.六棱柱C.六棱锥D.六边形【考点】L7:简单空间图形的三视图.【分析】根据三视图的形状判断.【解答】解:由俯视图可知,底面为六边形,又正视图和侧视图j均为三角形,∴该几何体为六棱锥.故选:C【点评】本题考查了常见几何体的三视图,属于基础题.8.已知△ABC的平面直观图△A′B′C′,是边长为a的正三角形,那么原△ABC的面积为()A. a 2B. a 2C. a 2D. a 2【考点】LB:平面图形的直观图.【分析】根据斜二测画法原理作出△ABC的平面图,求出三角形的高即可得出三角形的面积.【解答】解:如图(1)所示的三角形A′B′C′为直观图,取B′C′所在的直线为x′轴,B′C′的中点为O′,且过O′与x′轴成45°的直线为y′轴,过A′点作M′A′∥O′y′,交x′轴于点M′,则在直角三角形A′M′O′中,O′A′=a,∠A′M′O′=45°,∴M′O′=O′A′=a,∴A′M′=a.在xOy坐标平面内,在x轴上取点B和C,使OB=OC=,又取OM=a,过点M作x轴的垂线,且在该直线上截取MA=a,连结AB,AC,则△ABC为直观图所对应的平面图形.显然,S △ABC=BC•MA=a•a= a 2.故选:C.【点评】本题考查了平面图形的直观图,斜二测画法原理,属于中档题.9.等腰三角形ABC的直观图是()A.①② B.②③ C.②④ D.③④【考点】LB:平面图形的直观图.【分析】根据斜二测画法,讨论∠x′O′y′=45°和∠x′O′y′=135°时,得出等腰三角形的直观图即可.【解答】解:由直观图画法可知,当∠x′O′y′=45°时,等腰三角形的直观图是④;当∠x′O′y′=135°时,等腰三角形的直观图是③,综上,等腰三角形ABC的直观图可能是③④.故选:D.【点评】本题考查了斜二测法画直观图的应用问题,也考查作图与识图能力,是基础题目.10.两条相交直线的平行投影是()A.两条相交直线 B.一条直线C.一条折线 D.两条相交直线或一条直线【考点】NE:平行投影.【分析】利用平行投影知识,判断选项即可.【解答】解:当两条直线所在平面与投影面垂直时,投影是一条直线,所在平面与投影面不垂直时,是两条相交直线.故选:D.【点评】本题考查空间平面与平面的位置关系,直线的投影,是基础题.11.下列命题中正确的是()A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段中点的平行投影仍是这条线段投影的中点【考点】LA:平行投影及平行投影作图法.【分析】利用平行投影的定义,确定图形平行投影的结论,即可得出结论.【解答】解:矩形的平行投影可以是线段、矩形或平行四边形,∴A错.梯形的平行投影是梯形或线段,∴B不对;平行投影把平行直线投射成平行直线或一条直线,把相交直线投射成相交直线或一条直线,把线段中点投射成投影的中点,∴C错,D对,故选:D.【点评】本题考查平行投影的定义,考查学生分析解决问题的能力,正确理解平行投影的定义是关键.二、(填空题)12.不重合的三个平面把空间分成n部分,则n的可能值为4,6,7或8 .【考点】LJ:平面的基本性质及推论.【分析】分别讨论三个平面的位置关系,根据它们位置关系的不同,确定平面把空间分成的部分数目.【解答】解:若三个平面互相平行,则可将空间分为4部分;若三个平面有两个平行,第三个平面与其它两个平面相交,则可将空间分为6部分;若三个平面交于一线,则可将空间分为6部分;若三个平面两两相交且三条交线平行(联想三棱柱三个侧面的关系),则可将空间分为7部分;若三个平面两两相交且三条交线交于一点(联想墙角三个墙面的关系),则可将空间分为8部分;故n等于4,6,7或8.故答案为4,6,7或8.【点评】本题考查平面的基本性质及推论,要讨论三个平面不同的位置关系.考查学生的空间想象能力.13.已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,求原△ABC的面积.【考点】LB:平面图形的直观图.【分析】由原图和直观图面积之间的关系=,求出直观图三角形的面积,再求原图的面积即可.【解答】解:直观图△A′B′C′是边长为a的正三角形,故面积为,而原图和直观图面积之间的关系=,那么原△ABC的面积为:.【点评】本题考查斜二测画法中原图和直观图面积之间的关系,属基本运算的考查.14.如图,在直三棱柱ABC﹣A1B1C1中,AB=BC=,BB1=2,∠ABC=90°,E、F分别为AA1、C1B1的中点,沿棱柱的表面从E到F两点的最短路径的长度为.【考点】LH:多面体和旋转体表面上的最短距离问题.【分析】分类讨论,若把面ABA1B1和面B1C1BC展开在同一个平面内,构造直角三角形,由勾股定理得 EF 的长度.若把把面ABA1B1和面A1B1C1展开在同一个平面内,构造直角三角形,由勾股定理得 EF 的长度若把把面ACC1A1和面A1B1C1展开在同一个面内,构造直角三角形,由勾股定理得 EF 的长度.以上求出的EF 的长度的最小值即为所求.【解答】解:直三棱柱底面为等腰直角三角形,①若把面ABA1B1和面B1C1CB展开在同一个平面内,线段EF就在直角三角形A1EF中,由勾股定理得EF===.②若把把面ABA1B1和面A1B1C1展开在同一个平面内,设BB1的中点为G,在直角三角形EFG中,由勾股定理得EF===.③若把把面ACC1A1和面A1B1C1展开在同一个面内,过F作与CC1行的直线,过E作与AC平行的直线,所作的两线交与点H,则EF就在直角三角形EFH中,由勾股定理得EF===,综上,从E到F两点的最短路径的长度为,故答案为:.【点评】本题考查把两个平面展开在同一个平面内的方法,利用勾股定理求线段的长度,体现了分类讨论的数学思想,属于中档题.15.如果一个几何体的俯视图中有圆,则这个几何体中可能有圆柱、圆台、圆锥、球.【考点】L!:由三视图求面积、体积.【分析】运用空间想象力并联系所学过的几何体列举得答案.【解答】解:一个几何体的俯视图中有圆,则这个几何体中可能有:圆柱、圆台、圆锥、球.故答案为:圆柱、圆台、圆锥、球.【点评】本题考查由三视图确定几何体的形状,考查学生的空间想象能力和思维能力,是基础题.16.已知两条不同直线m、l,两个不同平面α、β,给出下列命题:①若l垂直于α内的两条相交直线,则l⊥α;②若l∥α,则l平行于α内的所有直线;③若m⊂α,l⊂β且l⊥m,则α⊥β;④若l⊂β,l⊥α,则α⊥β;⑤若m⊂α,l⊂β且α∥β,则m∥l.其中正确命题的序号是①④.(把你认为正确命题的序号都填上)【考点】LP:空间中直线与平面之间的位置关系;2K:命题的真假判断与应用.【分析】对于①,由直线与平面垂直的判定定理能够判断真假;对于②,由直线平行于平面的性质知l与α内的直线平行或异面;对于③,由平面与平面垂直的判定定理知α与β不一定垂直;对于④,由平面与平面垂直的判定定理能够判断真假;对于⑤,由平面与平面平行的性质知m∥l或m与l异面.【解答】解:①l垂直于α内的两条相交直线,由直线与平面垂直的判定定理知l⊥α,故①正确;②若l∥α,则l与α内的直线平行或异面,故②不正确;③若m⊂α,l⊂β且l⊥m,则α与β不一定垂直.故③不正确;④若l⊂β,l⊥α,则由平面与平面垂直的判定定理知α⊥β,故④正确;⑤若m⊂α,l⊂β且α∥β,则m∥l或m与l异面,故⑤不正确.故答案为:①④.【点评】本题考查直线与直线、直线与平面、平面与平面间的位置关系的判断,是基础题.解题时要认真审题,注意空间思维能力的培养.17.如图是一个空间几何体的三视图,则该几何体为六棱台.【考点】L!:由三视图求面积、体积.【分析】根据正视图、侧视图得到几何体为台体,由俯视图得到的图形六棱台.【解答】解:正视图、侧视图得到几何体为台体,由俯视图得到的图形六棱台,故答案为:六棱台【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查18.用斜二测画法画边长为2的正三角形的直观图时,如果在已知图形中取的x轴和正三角形的一边平行,则这个正三角形的直观图的面积是.【考点】LB:平面图形的直观图.【分析】根据斜二测画法与平面直观图的关系进行求解即可.【解答】解:如图△A'B'C'是边长为2的正三角形ABC的直观图,则A'B'=2,C'D'为正三角形ABC的高CD的一半,即C'D'==,则高C'E=C'D'sin45°=,∴三角形△A'B'C'的面积为.故答案为:.【点评】本题主要考查斜二测画法的应用,要求熟练掌握斜二测对应边长的对应关系,比较基础.19.设三棱锥P﹣ABC的顶点P在平面ABC上的射影是H,给出以下命题:①若PA⊥BC,PB⊥AC,则H是△ABC的垂心;②若PA,PB,PC两两互相垂直,则H是△ABC的垂心;③若∠ABC=90°,H是AC的中点,则PA=PB=PC;④若PA=PB=PC,则H是△ABC的外心,其中正确命题的命题是①②③④.【考点】L3:棱锥的结构特征.【分析】根据题意画出图形,然后对应选项一一判定即可.【解答】解:①若PA⊥BC,PB⊥AC,因为PH⊥底面ABC,所以AH⊥BC,同理BH⊥AC,可得H 是△ABC的垂心,正确.②若PA,PB,PC两两互相垂直,容易推出AH⊥BC,同理BH⊥AC,可得H是△ABC的垂心,正确.③若∠ABC=90°,H是AC的中点,容易推出△PHA≌△PHB≌△PHC,则PA=PB=PC;正确.设三棱锥P﹣ABC的顶点P在平面ABC上的射影是H,给出以下命题:①若PA⊥BC,PB⊥AC,则H是△ABC的垂心;②若PA,PB,PC两两互相垂直,则H是△ABC的垂心;③若∠ABC=90°,H是AC的中点,则PA=PB=PC;④若PA=PB=PC,易得AH=BH=CH,则H是△ABC的外心,正确.故答案为:①②③④【点评】本题考查棱锥的结构特征,考查学生发现问题解决问题的能力,三垂线定理的应用,是中档题.20.等腰梯形ABCD中,上底CD=1,腰,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为.【考点】LD:斜二测法画直观图.【分析】根据斜二测画法的规则分别求出等腰梯形的直观图的上底和下底,以及高即可求出面积.【解答】解:在等腰梯形ABCD中,上底CD=1,腰,下底AB=3,∴高DE=1,根据斜二测画法的规则可知,A'B'=AB=3,D'C'=DC=1,O'D'=,直观图中的高D'F=O'D'sin45°═,∴直观图A′B′C′D′的面积为,故答案为:;【点评】本题主要考查斜二测画法的规则,注意平行于坐标轴的直线平行性不变,平行x轴的线段长度不变,平行于y轴的长度减半.21.如图已知梯形ABCD的直观图A′B′C′D′的面积为10,则梯形ABCD的面积为20.【考点】LB:平面图形的直观图.【分析】根据平面图形与它的直观图的面积比为定值,列出方程即可求出结果.【解答】解:设梯形ABCD的面积为S,直观图A′B′C′D′的面积为S′=10,则=sin45°=,解得S=2S′=20.答案:20.【点评】本题考查了平面图形的面积与它对应直观图的面积的应用问题,是基础题目.22.一个空间几何体的三视图如图所示,该几何体的表面积为152 .【考点】L!:由三视图求面积、体积.【分析】由已知中的三视图可知:该几何体是以侧视图为底面的三棱柱,求出棱柱的底面面积,底面周长及棱柱的高,代入可得答案.【解答】解:由已知中的三视图可知:该几何体是以侧视图为底面的三棱柱,底面面积S=×6×4=12,底面周长c=6+2=16,高h=8,故这个零件的表面积为2S+ch=152,故答案为:152【点评】本题考查的知识点是由三视图求表面积,其中根据已知分析出几何体的形状是解答的关键.。
人教版高一下学期期中考试数学试卷及答案解析(共五套)
人教版高一下学期期中考试数学试卷(一)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为312.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.【答案】D【分析】根据共线向量的定义即可得结论.【解答】解:由题,点C是线段AB靠近点B的三等分点,=3=﹣3,所以选项A错误;=2=﹣2,所以选项B和选项C错误,选项D正确.故选:D.【知识点】平行向量(共线)、向量数乘和线性运算2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.【答案】D【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z(3+i)=3+i2020,i2020=(i2)1010=(﹣1)1010=1,∴z(3+i)=4,∴z=,∴=,∴共轭复数的虚部为,故选:D.【知识点】复数的运算3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.【答案】C【分析】利用图形,求出数量积的向量,然后转化求解即可.【解答】解:由题意,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,可知=+=,=﹣=﹣2,所以•=()•(﹣2)=﹣2﹣2=1.故选:C.【知识点】平面向量数量积的性质及其运算4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i【答案】B【分析】利用错位相减法、等比数列的求和公式及其复数的周期性即可得出.【解答】解:设S=2i+3i2+4i3+ (2020i2019)∴iS=2i2+3i3+ (2020i2020)则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.==i+==﹣2021+i,∴S==.故选:B.【知识点】复数的运算5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°【答案】B【分析】易知∠ABA1即为所求,再由△ABA1为等腰直角三角形,得解.【解答】解:因为AB∥CD,所以∠ABA1即为异面直线A1B与CD所成的角,因为△ABA1为等腰直角三角形,所以∠ABA1=45°.故选:B.【知识点】异面直线及其所成的角6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.【答案】C【分析】先利用正弦定理将已知等式中的边化角,再结合两角和公式与三角形的内角和定理,可推出sin B=2sin A;然后利用三角形的面积公式、正弦定理,即可得解.【解答】解:由正弦定理知,==,∵(a﹣2b)cos C=c(2cos B﹣cos A),∴(sin A﹣2sin B)cos C=sin C(2cos B﹣cos A),即sin A cos C+sin C cos A=2(sin B cos C+cos B sin C),∴sin(A+C)=2sin(B+C),即sin B=2sin A.∵△ABC的面积为a2sin,∴S=bc sin A=a2sin,根据正弦定理得,sin B•sin C•sin A=sin2A•sin,化简得,sin B•sin cos=sin A•cos,∵∈(0,),∴cos>0,∴sin==,∴=,即C=.故选:C.【知识点】正弦定理、余弦定理7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°【答案】B【分析】连接AB1,求出∠ACB1可判断选项A;连接B1D1,找出点B1在平面AD1C上的投影O,设直线B1C与平面AD1C所成的角为θ,由cosθ=可判断选项B;利用平移法找出选项C和D涉及的异面直线夹角,再进行相关运算,即可得解.【解答】解:连接AB1,∵△AB1C为等边三角形,∴∠ACB1=60°,即直线B1C与AC所成的角为60°,故选项A正确;连接B1D1,∵AB1=B1C=CD1=AD1,∴四面体AB1CD1是正四面体,∴点B1在平面AD1C上的投影为△AD1C的中心,设为点O,连接B1O,OC,则OC=BC,设直线B1C与平面AD1C所成的角为θ,则cosθ===≠,故选项B错误;连接BC1,∵AD1∥BC1,且B1C⊥BC1,∴直线B1C与AD1所成的角为90°,故选项C正确;∵AB⊥平面BCC1B1,∴AB⊥B1C,即直线B1C与AB所成的角为90°,故选项D正确.故选:B.【知识点】直线与平面所成的角、异面直线及其所成的角8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π【答案】A【分析】由题意可得AC⊥面EFBD,可得V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD,再由多面体ABCDEF 的体积为,可得矩形EFBD的高与正方形ABCD的边长之间的关系,再由题意可得矩形EFBD的对角线的交点为外接球的球心,进而求出外接球的半径,再由均值不等式可得外接球的半径的最小值,进而求出外接球的表面积的最小值.【解答】解:设正方形ABCD的边长为a,矩形BDEF的高为b,因为正方形ABCD,所以AC⊥BD,设AC∩BD=O',由因为平面ABCD与平面EFBD互相垂直,AC⊂面ABCD,平面ABCD∩平面EFBD=BD,所以AC⊥面EFBD,所以V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD=2•S EFBD•CO'=•a•b•a =a2b,由题意可得V ABCDEF=,所以a2b=2;所以a2=,矩形EFBD的对角线的交点O,连接OO',可得OO'⊥BD,而OO'⊂面EFBD,而平面ABCD⊥平面EFBD,平面ABCD∩平面EFBD=BD,所以OO'⊥面EFBD,可得OA=OB=OE=OF都为外接球的半径R,所以R2=()2+(a)2=+=+=++≥3=3×,当且仅当=即b=时等号成立.所以外接球的表面积为S=4πR2≥4π•3×=6π.所以外接球的表面积最小值为6π.故选:A.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.【答案】BC【分析】由已知利用余弦定理整理可得cos A=,对于A,若A=,可得b=<0,错误;对于B,若A=,可得b=>0,对于C,若A=,可得b=>0,对于D,若A=,可得c=0,错误,即可得解.【解答】解:因为在△ABC中,a2=b2+bc,又由余弦定理可得:a2=b2+c2﹣2bc cos A,所以b2+bc=b2+c2﹣2bc cos A,整理可得:c=b(1+2cos A),可得:cos A=,对于A,若A=,可得:﹣=,整理可得:b=<0,错误;对于B,若A=,可得:=,整理可得:b=>0,对于C,若A=,可得:cos==,整理可得:b=>0,对于D,若A=,可得:cos=﹣=,整理可得:c=0,错误.故选:BC.【知识点】余弦定理10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.【答案】ABC【分析】由向量的加减法法则、平面向量基本定理解决【解答】解:由,知A正确;由知B正确;由知C正确;由N为线段DC的中点知知D错误;故选:ABC.【知识点】向量数乘和线性运算、平面向量的基本定理11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为3【答案】BD【分析】通过复数的基本性质,结合反例,以及复数的模,判断命题的真假即可.【解答】解:当两个复数都是实数时,可以比较大小,所以A不正确;复数的实部与虚部都是0时,复数是0,所以B正确;反例z1=1,z2=i,满足z12+z22=0,所以C不正确;复数z满足|z|=1,则|z+2i|的几何意义,是复数的对应点到(0,﹣2)的距离,它的最大值为3,所以D正确;故选:BD.【知识点】复数的模、复数的运算、虚数单位i、复数、命题的真假判断与应用12.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°【答案】ABD【分析】在正方体ABCD﹣A1B1C1D1中,建立合适的空间直角坐标系,设正方体的棱长为2,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断即可.【解答】解:在正方体ABCD﹣A1B1C1D1中,以点A为坐标原点,分别以AB,AD,AA1为x 轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为2,则A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C (2,2,0),D(0,2,0),D1(0,2,2),所以,故,故选项A正确;又,又,所以,,则,故选项B正确;,所以,因此与的夹角为120°,故选项C错误;因为E,F分别是BC,A1C的中点,所以E(2,1,0),F(1,1,1),则,所以,又异面直线的夹角大于0°小于等于90°,所以异面直线EF与DD1所成的角为45°,故选项D正确;故选:ABD.【知识点】异面直线及其所成的角三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.【答案】1【分析】设z1=a+bi,则z2=a﹣bi,(a,b∈R),根据两个复数相等的充要条件求出z1,z2,再由根与系数的关系求得p,q的值.【解答】解:由题意可知z1与z2为共轭复数,设z1=a+bi,则z2=a﹣bi,(a,b∈R 且b≠0),又,则a2﹣b2+2abi=a﹣bi,∴(2a+b)+(a+2b)i=1﹣i,∴,解得.∴z1=+i,z2=i,(或z2=+i,z1=i).由根与系数的关系,得p=﹣(z1+z2)=1,q=z1•z2=1,∴pq=1.故答案为:1.【知识点】复数的运算15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.【分析】由题意画出图形,找出三棱锥外接球的位置,求解三角形可得外接球的半径,再由棱锥体积公式求解.【解答】解:记BD的中点为M,连接A′M,CM,可得A′M2+CM2=A′C2,则∠A′MC=90°,则外接球的球心O在△A′MC的边A′C的中垂线上,且过正三角形BCD的中点F,且在与平面BCD垂直的直线m上,过点A′作A′E⊥m于点E,如图所示,设外接球的半径为R,则A′O=OC=R,,A′E=1,在Rt△A′EO中,A′O2=A′E2+OE2,解得R=.故三棱锥A﹣BCD的外接球的体积为.故答案为:.【知识点】球的体积和表面积16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a的最大值.【解答】解:依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球,设球心为P,球的半径为r,下底面半径为R,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图:则OA=OB=,因为SO=,故可得:SA=SB==3,所以:三角形SAB为等边三角形,故P是△SAB的中心,连接BP,则BP平分∠SBA,所以∠PBO=30°;所以tan30°=,即r=R=×=,即四面体的外接球的半径为r=.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a时,截得它的正方体的棱长为a,而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以2r=AA1=a=a,所以a=.即a的最大值为.故答案为:.【知识点】旋转体(圆柱、圆锥、圆台)四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.【分析】(1)直接利用余弦定理的应用求出结果;(2)利用余弦定理的应用建立等量关系式,进一步求出结果.【解答】解:(1)在四边形ABCD中,AD=BD=CD=1.若AB=,所以:cos∠ADB==,由于AB∥CD,所以∠BDC=∠ABD,即cos∠BDC=cos∠ABD=,所以BC2=BD2+CD2﹣2•BD•CD•cos∠BDC==,所以BC=.(2)设BC=x,则AB=2BC=2x,由余弦定理得:cos∠ADB==,cos∠BDC===,故,解得或﹣(负值舍去).所以.【知识点】余弦定理18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.【分析】(1)把z1,z2代入=+,利用复数代数形式的乘除运算化简求出,进一步求出z;(2)设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,可得,又ω==i,|ω|=5,可得,即可得出a,b,再代入可得ω.【解答】解:(1)由z1=1﹣2i,z2=3+4i,得=+==,则z=;(2)设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===i,|ω|=5,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±(i)=±(7﹣i).【知识点】复数的运算19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tan x在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.【知识点】解三角形20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.【分析】(I)利用复数的几何意义、向量的坐标运算性质、平行四边形的性质即可得出.(II)利用向量垂直与数量积的关系、模的计算公式、矩形的面积计算公式即可得出.【解答】解:(Ⅰ)依题点A对应的复数为﹣1,对应的复数为2+2i,得A(﹣1,0),=(2,2),可得B(1,2).又对应的复数为4﹣4i,得=(4,﹣4),可得C(5,﹣2).设D点对应的复数为x+yi,x,y∈R.得=(x﹣5,y+2),=(﹣2,﹣2).∵ABCD为平行四边形,∴=,解得x=3,y=﹣4,故D点对应的复数为3﹣4i.(Ⅱ)=(2,2),=(4,﹣4),可得:=0,∴.又||=2,=4.故平行四边形ABCD的面积==16.【知识点】复数的代数表示法及其几何意义21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.【分析】(1)推导出GC⊥BC,EC⊥BC,从而∠ECG=60°.连接DG,推导出DG⊥EF,由BC⊥EF,BC⊥CG,得BC⊥平面DEG,从而DG⊥BC,进而DG⊥平面ABCE,DG是四棱锥G ﹣ABCE的高,由此能求出四棱锥G﹣ABCE的体积.(2)取DE的中点H,连接BH、GH,则BH∥AE,∠GBH既是AE与BG所成角或其补角.由此能求出异面直线AE与BG所成角的大小.【解答】解:(1)由已知,有GC⊥BC,EC⊥BC,所以∠ECG=60°.连接DG,由CD=AB=1,CG=CF=2,∠ECG=60°,有DG⊥EF①,由BC⊥EF,BC⊥CG,有BC⊥平面DEG,所以,DG⊥BC②,由①②知,DG⊥平面ABCE,所以DG就是四棱锥G﹣ABCE的高,在Rt△CDG中,.故四棱锥G﹣ABCE的体积为:.(2)取DE的中点H,连接BH、GH,则BH∥AE,故∠GBH既是AE与BG所成角或其补角.在△BGH中,,,则.故异面直线AE与BG所成角的大小为.【知识点】异面直线及其所成的角、棱柱、棱锥、棱台的体积22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.【分析】(1)点F为BC的中点,设点D在平面ABC内的射影为O,连接OD,OC,取AC 的中点H,连接EH,由题意知EH⊥AC,EH⊥平面ABC,由题意知DO⊥平面ABC,得DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,从而OF∥平面EAC,平面DOF∥平面EAC,由此能证明DF∥平面EAC.(2)连接OH,由OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成角的余弦值.【解答】解:(1)点F为BC的中点,理由如下:设点D在平面ABC内的射影为O,连接OD,OC,∵AD=CD,∴OA=OC,∴在Rt△ABC中,O为AB的中点,取AC的中点H,连接EH,由题意知EH⊥AC,又平面EAC⊥平面ABC,平面EAC∩平面ABC=AC,∴EH⊥平面ABC,由题意知DO⊥平面ABC,∴DO∥EH,∴DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,又OF⊄平面EAC,AC⊂平面EAC,∴OF∥平面EAC,∵DO∩OF=O,∴平面DOF∥平面EAC,∵DF⊂平面DOF,∴DF∥平面EAC.(2)连接OH,由(1)可知OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则B(1,﹣1,0),A(﹣1,1,0),E(0,1,﹣),C(1,1,0),∴=(2,﹣2,0),=(0,2,0),=(﹣1,2,﹣),设平面EBC的法向量=(a,b,c),则,取a=,则=(,0,﹣1),设直线与平面EBC所成的角为θ,则sinθ===.∴直线AB与平面EBC所成角的余弦值为cosθ==.【知识点】直线与平面平行、直线与平面所成的角人教版高一下学期期中考试数学试卷(二)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.14.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.25.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.96.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R27.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π8.已知半球O与圆台OO'有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为()A.B.C.D.二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.下列有关向量命题,不正确的是()A.若||=||,则=B.已知≠,且•=•,则=C.若=,=,则=D.若=,则||=||且∥10.若复数z满足,则()A.z=﹣1+i B.z的实部为1 C.=1+i D.z2=2i11.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1,棱长为2,E为线段B1C上的动点,O为AC的中点,P 为棱CC1上的动点,Q为棱AA1的中点,则以下选项中正确的有()A.AE⊥B1CB.直线B1D⊥平面A1BC1C.异面直线AD1与OC1所成角为D.若直线m为平面BDP与平面B1D1P的交线,则m∥平面B1D1Q三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(m,1),=(m﹣6,m﹣4),若∥,则m的值为.14.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为的扇形,则该圆锥的轴截面的面积S=.15.如图,已知有两个以O为圆心的同心圆,小圆的半径为1,大圆的半径为2,点A 为小圆上的动点,点P,Q是大圆上的两个动点,且•=1,则||的最大值是.16.如图,在三棱锥A﹣BCD的平面展开图中,已知四边形BCED为菱形,BC=1,BF=,若二面角A﹣CD﹣B的余弦值为﹣,M为BD的中点,则CD=,直线AD与直线CM所成角的余弦值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知,.(1)若与同向,求;(2)若与的夹角为120°,求.18.已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4,b=6,cos A=﹣.(1)求c;(2)求cos2B的值.19.已知:复数z1与z2在复平面上所对应的点关于y轴对称,且z1(1﹣i)=z2(1+i)(i为虚数单位),|z1|=.(Ⅰ)求z1的值;(Ⅱ)若z1的虚部大于零,且(m,n∈R),求m,n的值.20.(Ⅰ)在复数范围内解方程|z|2+(z+)i=(i为虚数单位)(Ⅱ)设z是虚数,ω=z+是实数,且﹣1<ω<2.(1)求|z|的值及z的实部的取值范围;(2)设,求证:μ为纯虚数;(3)在(2)的条件下求ω﹣μ2的最小值.21.如图,直三棱柱A1B1C1﹣ABC中,AB=AC=1,,A1A=4,点M为线段A1A 的中点.(1)求直三棱柱A1B1C1﹣ABC的体积;(2)求异面直线BM与B1C1所成的角的大小.(结果用反三角表示)22.如图所示,在正方体ABCD﹣A1B1C1D1中,点G在棱D1C1上,且D1G=D1C1,点E、F、M分别是棱AA1、AB、BC的中点,P为线段B1D上一点,AB=4.(Ⅰ)若平面EFP交平面DCC1D1于直线l,求证:l∥A1B;(Ⅱ)若直线B1D⊥平面EFP.(i)求三棱锥B1﹣EFP的表面积;(ii)试作出平面EGM与正方体ABCD﹣A1B1C1D1各个面的交线,并写出作图步骤,保留作图痕迹.设平面EGM与棱A1D1交于点Q,求三棱锥Q﹣EFP的体积.答案解析一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【分析】直接利用复数的运算和几何意义的应用求出该点所表示的位置.【解答】解:设z=a+bi(a,b∈R),所以(2﹣i)(a+bi)=2a+b+(2b﹣a)i,由于对应的点在虚轴的正半轴上,所以,即,所以a<0,b>0.故该点在第二象限.故选:B.【知识点】复数的代数表示法及其几何意义2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.【答案】D【分析】利用平行四边形的性质以及向量相等的概念,再利用平面向量基本定理进行转化即可.【解答】解:因为ABCD为平行四边形,所以,故.故选:D.【知识点】平面向量的基本定理3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.1【答案】B【分析】根据平面向量的坐标表示和共线定理,列方程求出t的值.【解答】解:向量=(6t+3,9),=(4t+2,8),所以+=(6t+3,11),﹣=(4t+2,5).又(+)∥(﹣),所以5(6t+3)﹣11(4t+2)=0,解得t=﹣.故选:B.【知识点】平面向量共线(平行)的坐标表示4.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.2【答案】D【分析】先根据M,N满足的条件,将(+)•=0化成的表达式,从而判断出矩形ABCD为正方形;再将+=x+y,左边用表示出来,结合x+y =3,即可得NC+MC=4,最后借助于基本不等式求出MN的最小值.【解答】解:当M,N分别是边BC,DC的中点时,有(+)•===,所以AD=AB,则矩形ABCD为正方形,设,,则=.则x=2﹣λ,y=2﹣μ.又x+y=3,所以λ+μ=1.故NC+MC=4,则MN==(当且仅当MC=NC=2时取等号).故线段MN的最短长度为2.故选:D.【知识点】平面向量数量积的性质及其运算5.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.9【答案】B【分析】由题意画出图形,再由复数模的几何意义,数形结合得答案.【解答】解:由|z+3+4i|≤2,得z在复平面内对应的点在以Q(﹣3,﹣4)为圆心,以2为半径的圆及其内部.如图:|z﹣1﹣i|的几何意义为区域内的动点与定点P得距离,则M=|PQ|+2,m=|PQ|﹣2,则M﹣m=4.故选:B.【知识点】复数的运算6.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R2【答案】B【分析】设圆锥的底面半径为r,求得圆锥的高,由球的截面性质,运用勾股定理可得r,由圆锥的表面积公式可得所求.【解答】解:如图,设圆锥的底面半径为r,则圆锥的高为r,则R2=r2+(r﹣R)2,解得r=R,则圆锥的表面积为S=πr2+πr•2r=3πr2=3π(R)2=πR2,故选:B.【知识点】球内接多面体、旋转体(圆柱、圆锥、圆台)7.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π【答案】A【分析】先根据题意求得正四面体的体积,进而得到六面体的体积,再由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,设丸子的半径为R,则,由此求得R,进而得到答案.【解答】解:由题意可得每个三角形面积为,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为,故四面体的体积为,∵该六面体的体积是正四面体的2倍,。
高一数学下学期第一次月考试卷(含解析)-人教版高一全册数学试题
2015-2016学年某某鄂尔多斯市准格尔旗世纪中学高一(下)第一次月考数学试卷一.选择题(每题5分,共60分)1.tan 300°+sin 450°的值为()A.1+B.1﹣C.﹣1﹣ D.﹣1+2.以下命题正确的是()A.小于90°的角是锐角B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},则A⊆BC.﹣950°12′是第三象限角D.α,β终边相同,则α=β3.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,﹣b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,﹣b,﹣c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,﹣b,c);④点P(a,b,c)关于坐标原点的对称点为P4(﹣a,﹣b,﹣c).其中正确叙述的个数为()A.3 B.2 C.1 D.04.已知α是第二象限的角,其终边上一点为P(a,),且cosα=a,则sinα的值等于()A.B.C.D.5.函数y=2sin(﹣2x)(x∈[0,π])为增函数的区间是()A.[0,] B.[] C.[,] D.[,π]6.已知,且,则tanφ=()A.B.C.﹣D.7.已知点A(1,2,﹣1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为()A.2 B.4 C.2 D.28.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C. D.与a有关的值9.函数的图象()A.关于原点成中心对称B.关于y轴成轴对称C.关于成中心对称D.关于直线成轴对称10.已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值X围是()A.B.C.D.11.化简cosα+sinα(π<α<)得()A.sinα+cosα﹣2 B.2﹣sinα﹣cosαC.sinα﹣cosα D.cosα﹣sinα12.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为()A.2 B.C.1 D.二、填空题(每题5分,共20分,把答案填在题中横线上)13.函数的定义域为.14.函数y=2cos(ωx)的最小正周期是4π,则ω=.15.已知tanα=2,则tan2α的值为.16.已知sin(﹣x)=,则cos(﹣x)=.三.解答题(共70分)17.已知sinα+cosα=,α∈(0,π),求的值.18.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.19.sin θ和cos θ为方程2x2﹣mx+1=0的两根,求+.20.已知函数y=2acos(2x﹣)+b的定义域是[0,],值域是[﹣5,1],求a、b的值.21.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.22.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?2015-2016学年某某鄂尔多斯市准格尔旗世纪中学高一(下)第一次月考数学试卷参考答案与试题解析一.选择题(每题5分,共60分)1.tan 300°+sin 450°的值为()A.1+B.1﹣C.﹣1﹣ D.﹣1+【考点】诱导公式的作用.【分析】由诱导公式逐步化简可得原式等于﹣tan60°+sin90°,为可求值的特殊角,进而可得答案.【解答】解:由诱导公式可得:tan 300°+sin 450°=tan(360°﹣60°)+sin(360°+90°)=﹣tan60°+sin90°=﹣+1=1﹣,故选B2.以下命题正确的是()A.小于90°的角是锐角B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},则A⊆BC.﹣950°12′是第三象限角D.α,β终边相同,则α=β【考点】命题的真假判断与应用.【分析】根据角的X围以及终边相同角的关系分别进行判断即可.【解答】解:A.∵0°角满足小于90°,但0°角不是锐角,故A错误,B.当k=2n时,β=k•90°=n•180°,当k=2n+1时,β=k•90°=k•180°+90°,则A⊆B成立,C.﹣950°12′=﹣4×360°+129°48′,∵129°48′是第二象限角,∴﹣950°12′是第二象限角,故C错误,D.α,β终边相同,则α=β+k•360°,k∈Z,故D错误,故选:B3.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,﹣b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,﹣b,﹣c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,﹣b,c);④点P(a,b,c)关于坐标原点的对称点为P4(﹣a,﹣b,﹣c).其中正确叙述的个数为()A.3 B.2 C.1 D.0【考点】命题的真假判断与应用.【分析】根据空间点的对称性分别进行判断即可.【解答】解:①点P(a,b,c)关于横轴(x轴),则x不变,其余相反,即对称点是P1(a,﹣b,﹣c);故①错误,②点P(a,b,c)关于yOz坐标平面的对称,则y,z不变,x相反,即对称点P2(﹣a,b,c);故②错误③点P(a,b,c)关于纵轴(y轴)的对称,则y不变,x,z相反,即对称点是P3(﹣a,b,﹣c);故③错误,④点P(a,b,c)关于坐标原点的对称,则x,y,z都为相反数,即对称点为P4(﹣a,﹣b,﹣c).故④正确,故选:C4.已知α是第二象限的角,其终边上一点为P(a,),且cosα=a,则sinα的值等于()A.B.C.D.【考点】任意角的三角函数的定义.【分析】根据三角函数的大小建立方程求出a的值即可得到结论.【解答】解:∵α是第二象限的角,其终边上一点为P(a,),且cosα=a,∴a<0,且cosα=a=,平方得a=﹣,则sinα===,故选:A.5.函数y=2sin(﹣2x)(x∈[0,π])为增函数的区间是()A.[0,] B.[] C.[,] D.[,π]【考点】复合三角函数的单调性.【分析】利用正弦函数的单调性,确定单调区间,结合x的X围,可得结论.【解答】解:由正弦函数的单调性可得≤﹣2x≤(k∈Z)∴﹣﹣kπ≤x≤﹣﹣kπk=﹣1,则故选C.6.已知,且,则tanφ=()A.B.C.﹣D.【考点】同角三角函数间的基本关系.【分析】先由诱导公式化简cos(φ)=﹣sinφ=确定sinφ的值,再根据φ的X 围确定cosφ的值,最终得到答案.【解答】解:由,得,又,∴∴tanφ=﹣故选C.7.已知点A(1,2,﹣1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为()A.2 B.4 C.2 D.2【考点】空间中的点的坐标.【分析】求出对称点的坐标,然后求解距离.【解答】解:点A(1,2,﹣1),点C与点A关于平面xoy对称,可得C(1,2,1),点B与点A关于x轴对称,B(1,﹣2,1),∴|BC|==4故选:B.8.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C. D.与a有关的值【考点】三角函数的周期性及其求法.【分析】直线y=a与正切曲线y=tanωx两相邻交点间的距离,便是此正切曲线的最小正周期.【解答】解:因为直线y=a(a为常数)与正切曲线y=tanωx相交的相邻两点间的距离就是正切函数的周期,∵y=tanωx的周期是:,∴直线y=a(a为常数)与正切曲线y=tanωx相交的相邻两点间的距离是:.故选:B.9.函数的图象()A.关于原点成中心对称B.关于y轴成轴对称C.关于成中心对称D.关于直线成轴对称【考点】正弦函数的对称性.【分析】将x=0代入函数得到f(0)=2sin(﹣)=﹣1,从而可判断A、B;将代入函数f(x)中得到f()=0,即可判断C、D,从而可得到答案.【解答】解:令x=0代入函数得到f(0)=2sin(﹣)=﹣1,故A、B不对;将代入函数f(x)中得到f()=0,故是函数f(x)的对称中心,故C 对,D不对.故选C.10.已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值X围是()A.B.C.D.【考点】三角函数的化简求值.【分析】由已知的sinθ<tanθ,移项并利用同角三角函数间的基本关系变形后得到tanθ(1﹣cosθ)大于0,由余弦函数的值域得到1﹣cosθ大于0,从而得到tanθ大于0,可得出θ为第一或第三象限,若θ为第一象限角,得到sinθ和cosθ都大于0,化简|cosθ|<|sinθ|,并利用同角三角函数间的基本关系得到tanθ大于1,利用正切函数的图象与性质可得出此时θ的X围;若θ为第三象限角,得到sinθ和cosθ都小于0,化简|cosθ|<|sinθ|,并利用同角三角函数间的基本关系得到tanθ大于1,利用正切函数的图象与性质可得出此时θ的X围,综上,得到满足题意的θ的X围.【解答】解:∵sinθ<tanθ,即tanθ﹣sinθ>0,∴tanθ(1﹣cosθ)>0,由1﹣cosθ>0,得到tanθ>0,当θ属于第一象限时,sinθ>0,cosθ>0,∴|cosθ|<|sinθ|化为cosθ<sinθ,即tanθ>1,则θ∈(,);当θ属于第三象限时,sinθ<0,cosθ<0,∴|cosθ|<|sinθ|化为﹣cosθ<﹣sinθ,即tanθ>1,则θ∈(,),综上,θ的取值X围是.故选C11.化简cosα+sinα(π<α<)得()A.sinα+cosα﹣2 B.2﹣sinα﹣cosαC.sinα﹣cosα D.cosα﹣sinα【考点】三角函数的化简求值.【分析】利用同角三角函数基本关系式、三角函数值在各个象限的符号即可得出.【解答】解:∵π<α<,∴==,同理可得=,∴原式=﹣(1﹣sinα)﹣(1﹣cosα)=﹣2+cosα+sinα.故选:A.12.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为()A.2 B.C.1 D.【考点】圆的标准方程.【分析】设扇形和内切圆的半径分别为R,r.由弧长公式可得2π=R,解得R.再利用3r=R=6即可求得扇形的内切圆的半径.【解答】解:设扇形和内切圆的半径分别为R,r.由2π=R,解得R=6.由题意可得3r=R=6,即r=2.∴扇形的内切圆的半径为2.故选:A.二、填空题(每题5分,共20分,把答案填在题中横线上)13.函数的定义域为.【考点】正切函数的定义域.【分析】根据正弦函数的定义域,我们构造关于x的不等式,解不等式,求出自变量x的取值X围,即可得到函数的定义域.【解答】解:要使函数的解析式有意义自变量x须满足:≠kπ+,k∈Z解得:故函数的定义域为故答案为14.函数y=2cos(ωx)的最小正周期是4π,则ω=±.【考点】三角函数的周期性及其求法.【分析】利用周期公式列出关于ω的方程,求出方程的解即可得到ω的值.【解答】解:∵=4π,∴ω=±.故答案为:±15.已知tanα=2,则tan2α的值为﹣.【考点】二倍角的正切.【分析】由条件利用二倍角的正切公式求得tan2α的值.【解答】解:∵tanα=2,∴tan2α===﹣,故答案为:﹣.16.已知sin(﹣x)=,则cos(﹣x)= ﹣.【考点】运用诱导公式化简求值.【分析】原式中的角度变形后,利用诱导公式化简,将已知等式代入计算即可求出值.【解答】解:∵sin(﹣x)=,∴cos(﹣x)=cos[+(﹣x)]=﹣sin(﹣x)=﹣.故答案为:﹣三.解答题(共70分)17.已知sinα+cosα=,α∈(0,π),求的值.【考点】三角函数的化简求值.【分析】把已知等式两边平方,利用完全平方公式及同角三角函数间的基本关系变形求出2sinαcosα的值,进而判断出sinα﹣cosα的正负,利用完全平方公式及同角三角函数间的基本关系求出sinα﹣cosα的值,联立求出sinα与cosα的值,即可确定出的值.【解答】解:把sinα+cosα=①,两边平方得:(sinα+cosα)2=1+2sinαcosα=,∴2sinαcosα=﹣,∵α∈(0,π),∴sinα>0,cosα<0,即sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,即sinα﹣cosα=②,联立①②,解得:sinα=,cosα=﹣,则==﹣.18.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的定义域和值域.【分析】(1)根据最低点M可求得A;由x轴上相邻的两个交点之间的距离可求得ω;进而把点M代入f(x)即可求得φ,把A,ω,φ代入f(x)即可得到函数的解析式.(2)根据x的X围进而可确定当的X围,根据正弦函数的单调性可求得函数的最大值和最小值.确定函数的值域.【解答】解:(1)由最低点为得A=2.由x轴上相邻的两个交点之间的距离为得=,即T=π,由点在图象上的故∴又,∴(2)∵,∴当=,即时,f(x)取得最大值2;当即时,f(x)取得最小值﹣1,故f(x)的值域为[﹣1,2]19.sin θ和cos θ为方程2x2﹣mx+1=0的两根,求+.【考点】三角函数的化简求值.【分析】利用韦达定理可求得sinθ+cosθ=,sinθ•cosθ=,利用同角三角函数基本关系式即可解得m,将所求的关系式化简为sinθ+cosθ,即可求得答案.【解答】解:∵sinθ和cosθ为方程2x2﹣mx+1=0的两根,∴sinθ+cosθ=,sinθ•cosθ=,∵(sinθ+cosθ)2=sin2θ+2sinθcosθ+cos2θ=1+2sinθcosθ,∴m2=1+2×,解得:m=±2,∴+=+=sinθ+cosθ=.20.已知函数y=2acos(2x﹣)+b的定义域是[0,],值域是[﹣5,1],求a、b的值.【考点】余弦函数的定义域和值域.【分析】由求出的X围,由余弦函数的性质求出cos(2x﹣)的值域,根据解析式对a分类讨论,由原函数的值域分别列出方程组,求出a、b的值.【解答】解:由得,,∴cos(2x﹣),当a>0时,∵函数的值域是[﹣5,1],∴,解得,当a<0时,∵函数的值域是[﹣5,1],∴,解得,综上可得,或.21.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.【考点】三角函数的周期性及其求法;正弦函数的定义域和值域.【分析】(Ⅰ)由题目所给的解析式和图象可得所求;(Ⅱ)由x∈[﹣,﹣]可得2x+∈[﹣,0],由三角函数的性质可得最值.【解答】解:(Ⅰ)∵f(x)=3sin(2x+),∴f(x)的最小正周期T==π,可知y0为函数的最大值3,x0=;(Ⅱ)∵x∈[﹣,﹣],∴2x+∈[﹣,0],∴当2x+=0,即x=时,f(x)取最大值0,当2x+=,即x=﹣时,f(x)取最小值﹣322.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?【考点】函数y=Asin(ωx+φ)的图象变换;三角函数的周期性及其求法;正弦函数的单调性.【分析】(1)由函数的解析式求得周期,由求得x的X围,即可得到函数的单调增区间(2)由条件可得,再根据函数y=Asin(ωx+∅)的图象变换规律得出结论.【解答】解:(1)由函数,可得周期等于 T==π.由求得,故函数的递增区间是.(2)由条件可得.故将y=sin2x的图象向左平移个单位,再向上平移个单位,即可得到f(x)的图象.。
吉林省长春十一中高一数学下学期期中试卷 理(含解析)-人教版高一全册数学试题
某某省某某十一中2014-2015学年高一下学期期中数学试卷(理科)一、选择题(每小题4分,共48分)1.下列不等式中成立的是()A.若a>b,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则>2.数列1,3,6,10,…的一个通项公式是()A.a n=n2﹣(n﹣1)B.a n=n2﹣1 C.a n=D.3.已知A,B是以O为圆心的单位圆上的动点,且||=,则•=()A.﹣1 B.1 C.﹣D.4.已知平面向量与的夹角为,且||=1,|+2|=2,则||=()A.1 B.C.2 D.35.已知数列{a n}为等比数列,若a4+a6=10,则a7(a1+2a3)+a3a9的值为()A.10 B.20 C.100 D.2006.等差数列{a n}中,已知a1=﹣12,S13=0,使得a n<0的最大正整数n为()A.6 B.7 C.8 D.97.给出下列图形:①角;②三角形;③平行四边形;④梯形;⑤四边形.其中表示平面图形的个数为()A.2 B.3 C.4 D.58.若两个等差数列{a n}、{b n}前n项和分别为A n,B n,且满足=,则的值为()A.B.C.D.9.设数列{a n}是以2为首项,1为公差的等差数列,{b n}是以1为首项,2为公比的等比数列,则=()A.1033 B.1034 C.2057 D.205810.在等比数列{a n}中,若a1=2,a2+a5=0,{a n}的n项和为S n,则S2015+S2016=()A.4032 B.2 C.﹣2 D.﹣403011.已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m、a n,使得a m a n=16a12,则+的最小值为()A.B.C.D.不存在12.已知数列{a n}中,a n>0,a1=1,a n+2=,a100=a96,则a2014+a3=()A.B.C.D.二、填空题(每小题4分,共16分)13.在等差数列{a n}中,a7=m,a14=n,则a28=.14.已知数列{a n}为等比数列,且a1a13+2a72=5π,则cos(a5a9)的值为.15.若函数f(x)=x+(x>2)在x=a处取最小值,则a=.16.数列{a n}中,a1=2,a2=7,a n+2是a n a n+1的个位数字,S n是{a n}的前n项和,则S242﹣10a6=.三.解答题:(本大题共5小题,共66分)17.已知向量、满足:||=1,||=4,且、的夹角为60°.(1)求(2﹣)•(+);(2)若(+)⊥(λ﹣2),求λ的值.18.在△ABC中,,BC=1,.(Ⅰ)求sinA的值;(Ⅱ)求的值.19.在三角形ABC中,∠A,∠B,∠C的对边分别为a、b、c且b2+c2=bc+a2(1)求∠A;(2)若,求b2+c2的取值X围.20.已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+log a n,S n=b1+b2+…+b n,求S n.21.数列{a n}的前n项和为S n, a n是S n和1的等差中项,等差数列{b n}满足b1+S4=0,b9=a1.(1)求数列{a n},{b n}的通项公式;(2)若=,求数列{}的前n项和W n.附加题(本小题满分10分,该题计入总分)22.已知数列{a n}的前n项和S n=,且a1=1.(1)求数列{a n}的通项公式;(2)令b n=lna n,是否存在k(k≥2,k∈N*),使得b k、b k+1、b k+2成等比数列.若存在,求出所有符合条件的k值;若不存在,请说明理由.某某省某某十一中2014-2015学年高一下学期期中数学试卷(理科)一、选择题(每小题4分,共48分)1.下列不等式中成立的是()A.若a>b,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则>考点:不等式的基本性质.专题:不等式的解法及应用.分析:运用列举法和不等式的性质,逐一进行判断,即可得到结论.解答:解:对于A,若a>b,c=0,则ac2=bc2,故A不成立;对于B,若a>b,比如a=2,b=﹣2,则a2=b2,故B不成立;对于C,若a<b<0,比如a=﹣3,b=﹣2,则a2>ab,故C不成立;对于D,若a<b<0,则a﹣b<0,ab>0,即有<0,即<,则>,故D成立.故选:D.点评:本题考查不等式的性质和运用,注意运用列举法和不等式的性质是解题的关键.2.数列1,3,6,10,…的一个通项公式是()A.a n=n2﹣(n﹣1)B.a n=n2﹣1 C.a n=D.考点:数列的概念及简单表示法.专题:点列、递归数列与数学归纳法.分析:仔细观察数列1,3,6,10,15…,便可发现其中的规律:第n项应该为1+2+3+4+…+n=,便可求出数列的通项公式.解答:解:设此数列为{ a n},则由题意可得 a1=1,a2=3,a3=6,a4=10,…仔细观察数列1,3,6,10,15,…可以发现:1=1,3=1+2,6=1+2+3,10=1+2+3+4,…∴第n项为1+2+3+4+…+n=,∴数列1,3,6,10,15…的通项公式为a n=,故选C.点评:本题考查了数列的基本知识,考查了学生的计算能力和观察能力,解题时要认真审题,仔细解答,避免错误,属于基础题.3.已知A,B是以O为圆心的单位圆上的动点,且||=,则•=()A.﹣1 B.1 C.﹣D.考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:运用勾股定理的逆定理,可得可得△OAB为等腰直角三角形,则,的夹角为45°,再由向量的数量积的定义计算即可得到.解答:解:由A,B是以O为圆心的单位圆上的动点,且||=,即有||2+||2=||2,可得△OAB为等腰直角三角形,则,的夹角为45°,即有•=||•||•cos45°=1××=1.故选:B.点评:本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键.4.已知平面向量与的夹角为,且||=1,|+2|=2,则||=()A.1 B.C.2 D.3考点:平面向量数量积的运算;向量的模.专题:计算题;平面向量及应用.分析:利用|+2|22+4•+42=12,根据向量数量积的运算,化简得出关于||的方程,求解即可.解答:解:∵|+2|=2,∴|+2|2=12,即2+4•+42=12,∴||2+4||×1×cos60°+4×12=12,化简得||2+2||﹣8=0,解得||=2,故选:C.点评:本题考查向量模的计算,向量数量积的计算,属于基础题.5.已知数列{a n}为等比数列,若a4+a6=10,则a7(a1+2a3)+a3a9的值为()A.10 B.20 C.100 D.200考点:等比数列的通项公式.专题:等差数列与等比数列.分析:利用等比数列的性质即可得出.解答:解:∵数列{a n}为等比数列,∴a7(a1+2a3)+a3a9=a7a1+2a7a3+a3a9===102=100,故选:C.点评:本题考查了等比数列的性质,属于基础题.6.等差数列{a n}中,已知a1=﹣12,S13=0,使得a n<0的最大正整数n为()A.6 B.7 C.8 D.9考点:等差数列的前n项和.专题:等差数列与等比数列.分析:设等差数列{a n}的公差为d,由于a1=﹣12,S13=0,利用等差数列的前n项和公式可得,解得a13=12.利用通项公式解得d.进而得到a n,解出a n≤0即可.解答:解:设等差数列{a n}的公差为d,∵a1=﹣12,S13=0,∴,解得a13=12.∴12=a13=a1+12d=﹣12+12d,解得d=2.∴a n=﹣12+2(n﹣1)=2n﹣14,令a n=0,解得n=7.∴使得a n<0的最大正整数n=6.故选:A.点评:本题考查了等差数列的通项公式和前n项和公式,属于基础题.7.给出下列图形:①角;②三角形;③平行四边形;④梯形;⑤四边形.其中表示平面图形的个数为()A.2 B.3 C.4 D.5考点:平面的基本性质及推论.专题:空间位置关系与距离.分析:根据平面图形的定义,图形的所有部分都在同一平面内,由此得出正确的结论.解答:解:根据平面图形的定义,知①角,②三角形,③平行四边形,④梯形,都是平面图形;⑤四边形,不一定是平面图形.所以,以上表示平面图形的个数为4.故选:C.点评:本题考查了平面图形的概念与应用问题,是基础题目.8.若两个等差数列{a n}、{b n}前n项和分别为A n,B n,且满足=,则的值为()A.B.C.D.考点:等差数列的前n项和.专题:等差数列与等比数列.分析:把转化为,然后借助于已知得答案.解答:解:等差数列{a n}、{b n}前n项和分别为A n,B n,且=,得=.故选:B.点评:本题考查等差数列的性质,考查等差数列的前n项和,考查数学转化思想方法,是中档题.9.设数列{a n}是以2为首项,1为公差的等差数列,{b n}是以1为首项,2为公比的等比数列,则=()A.1033 B.1034 C.2057 D.2058考点:数列的求和.专题:计算题.分析:首先根据数列{a n}是以2为首项,1为公差的等差数列,{b n}是以1为首项,2为公比的等比数列,求出等差数列和等比数列的通项公式,然后根据=1+2+23+25+…+29+10进行求和.解答:解:∵数列{a n}是以2为首项,1为公差的等差数列,∴a n=2+(n﹣1)×1=n+1,∵{b n}是以1为首项,2为公比的等比数列,∴b n=1×2n﹣1,依题意有:=1+2+23+25+…+29+10=1033,故选A.点评:本题主要考查数列求和的知识点,解答本题的关键是要求出数列{a n}和{b n}的通项公式,熟练掌握等比数列求和公式.10.在等比数列{a n}中,若a1=2,a2+a5=0,{a n}的n项和为S n,则S2015+S2016=()A.4032 B.2 C.﹣2 D.﹣4030考点:等比数列的前n项和.专题:等差数列与等比数列.分析:由题意可得公比q=﹣1,可得S2015=2,S2016=0,相加可得.解答:解:设等比数列{a n}的公比为q,∵a1=2,a2+a5=0,∴2q(1+q3)=0,解得q=﹣1,∴S2015=2,S2016=0∴S2015+S2016=2故选:B点评:本题考查等比数列的求和公式,求出公比是解决问题的关键,属基础题.11.已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m、a n,使得a m a n=16a12,则+的最小值为()A.B.C.D.不存在考点:等比数列的通项公式;基本不等式.专题:等差数列与等比数列.分析:正项等比数列{a n}的公比为q,且q>0,利用等比数列的通项公式化简a7=a6+2a5,求出公比q,代入a m a n=16a12化简得m,n的关系式,再利用“1”的代换和基本不等式求出式子的最大值.解答:解:设正项等比数列{a n}的公比为q,且q>0,由a7=a6+2a5得:a6q=a6+,化简得,q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),因为a m a n=16a12,所以=16a12,则q m+n﹣2=16,解得m+n=6,所以=(m+n)()=(10+)≥=,当且仅当时取等号,所以的最小值是,故选:B.点评:本题考查等比数列的通项公式,利用“1”的代换和基本不等式求最值问题,考查化简、计算能力.12.已知数列{a n}中,a n>0,a1=1,a n+2=,a100=a96,则a2014+a3=()A.B.C.D.考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:由数列递推式求出a3,结合a100=a96求得a96,然后由a n+2=可得a2014=a96,则答案可求.解答:解:∵a1=1,a n+2=,∴,由a100=a96,得,即,解得(a n>0).∴.则a2014+a3=.故选:C.点评:本题考查了数列递推式,解答此题的关键是对数列规律性的发现,是中档题.二、填空题(每小题4分,共16分)13.在等差数列{a n}中,a7=m,a14=n,则a28=3n﹣2m.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:由等差数列的性质可得a28=3a14﹣2a7,代入已知的值可求.解答:解:等差数列{a n}中,由性质可得:a28=a1+27d,3a14﹣2a7=3(a1+13d)﹣2(a1+6d)=a1+27d,∴a28=3a14﹣2a7,∵a7=m,a14=n,∴a28=3n﹣2m.故答案为:3n﹣2m.点评:本题为等差数列性质的应用,熟练利用性质是解决问题的关键,属基础题.14.已知数列{a n}为等比数列,且a1a13+2a72=5π,则cos(a5a9)的值为.考点:等比数列的性质;等比数列的通项公式.专题:等差数列与等比数列;三角函数的求值.分析:根据等比数列的性质进行求解即可.解答:解:∵a1a13+2a72=5π,∴a72+2a72=5π,即3a72=5π,则a72=,则cos(a5a9)=cos(a72)=cos=cos(2π)=cos=,故答案为:.点评:本题主要考查三角函数值的计算,利用等比数列的运算性质是解决本题的关键.15.若函数f(x)=x+(x>2)在x=a处取最小值,则a=3.考点:基本不等式.专题:计算题.分析:将f(x)=x+化成x﹣2++2,使x﹣2>0,然后利用基本不等式可求出最小值,注意等号成立的条件,可求出a的值.解答:解:f(x)=x+=x﹣2++2≥4当x﹣2=1时,即x=3时等号成立.∵x=a处取最小值,∴a=3故答案为:3点评:本题主要考查了基本不等式在最值问题中的应用,注意“一正、二定、三相等”,属于基础题.16.数列{a n}中,a1=2,a2=7,a n+2是a n a n+1的个位数字,S n是{a n}的前n项和,则S242﹣10a6=909.考点:数列的求和.专题:点列、递归数列与数学归纳法.分析:通过题意可得a1a2=14、a3=4,同理可得:a4=8,a5=2,a6=6,a7=2,a8=2,a9=4,a10=8,以此类推可得:a6n+k=a k(k∈N*,k≥3),进而可得结论.解答:解:∵a1=2,a2=7,a n+2是a n a n+1的个位数字,∴a1a2=14,∴a3=4.∴a2a3=28,∴a4=8,a3a4=32,∴a5=2,a4a5=16,∴a6=6,a5a6=12,∴a7=2,a6a7=12,∴a8=2,a7a8=4,∴a9=4,a8a9=8,∴a10=8,…以此类推可得:a6n+k=a k(k∈N*,k≥3).∴S242=a1+a2+40(a3+a4+a5+a6+a7+a8)=2+7+40×(4+8+2+6+2+2)=969,∴S242﹣10a6=969﹣10×6=909.故答案为:909.点评:本题考查数列的周期性,考查推理能力与计算能力,考查运算求解能力,注意解题方法的积累,属于难题.三.解答题:(本大题共5小题,共66分)17.已知向量、满足:||=1,||=4,且、的夹角为60°.(1)求(2﹣)•(+);(2)若(+)⊥(λ﹣2),求λ的值.考点:平面向量数量积的运算.专题:平面向量及应用.分析:(1)由条件利用两个向量的数量积的定义,求得的值,可得(2﹣)•(+)的值.(2)由条件利用两个向量垂直的性质,可得,由此求得λ的值.解答:解:(1)由题意得,∴.(2)∵,∴,∴,∴λ+2(λ﹣2)﹣32=0,∴λ=12.点评:本题主要考查两个向量的数量积的定义,两个向量垂直的性质,属于基础题.18.在△ABC中,,BC=1,.(Ⅰ)求sinA的值;(Ⅱ)求的值.考点:正弦定理;平面向量数量积的运算.专题:计算题.分析:(1)利用同角三角函数基本关系,根据cosC,求得sinC,进而利用正弦定理求得sinA.(2)先根据余弦定理求得b,进而根据=BC•CA•cos(π﹣C)求得答案.解答:解:(1)在△ABC中,由,得,又由正弦定理:得:.(2)由余弦定理:AB2=AC2+BC2﹣2AC•BC•cosC得:,即,解得b=2或(舍去),所以AC=2.所以,=BC•CA•cos(π﹣C)=即.点评:本题主要考查了正弦定理的应用,平面向量数量积的计算.考查了学生综合运用所学知识的能力.19.在三角形ABC中,∠A,∠B,∠C的对边分别为a、b、c且b2+c2=bc+a2(1)求∠A;(2)若,求b2+c2的取值X围.考点:解三角形;正弦定理的应用;余弦定理的应用.专题:计算题.分析:(1)由余弦定理表示出cosA,把已知的等式代入即可求出cosA的值,由A的X 围,利用特殊角的三角函数值即可求出A的度数;(2)由a和sinA的值,根据正弦定理表示出b和c,代入所求的式子中,利用二倍角的余弦函数公式及两角差的余弦函数公式化简,去括号合并后再利用两角差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,根据角度的X围求出正弦函数的值域,进而得到所求式子的X围.解答:解:(1)由余弦定理知:cosA==,又A∈(0,π)∴∠A=(2)由正弦定理得:∴b=2sinB,c=2sinC∴b2+c2=4(sin2B+sin2C)=2(1﹣cos2B+1﹣cos2C)=4﹣2cos2B﹣2cos2(﹣B)=4﹣2cos2B﹣2cos(﹣2B)=4﹣2cos2B﹣2(﹣cos2B﹣sin2B)=4﹣cos2B+sin2B=4+2sin(2B﹣),又∵0<∠B<,∴<2B﹣<∴﹣1<2sin(2B﹣)≤2∴3<b2+c2≤6.点评:此题考查学生灵活运用正弦、余弦定理化简求值,灵活运用两角和与差的正弦、余弦函数公式及二倍角的余弦函数公式化简求值,掌握正弦函数的值域,是一道中档题.20.已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+log a n,S n=b1+b2+…+b n,求S n.考点:数列的求和;等比数列的性质.专题:综合题;等差数列与等比数列.分析:(I)根据a3+2是a2,a4的等差中项和a2+a3+a4=28,求出a3、a2+a4的值,进而得出首项和a1,即可求得通项公式;(II)先求出数列{b n}的通项公式,然后分组求和,即可得出结论.解答:解:(I)设等比数列{a n}的首项为a1,公比为q∵a3+2是a2,a4的等差中项∴2(a3+2)=a2+a4代入a2+a3+a4=28,得a3=8∴a2+a4=20解得或∵数列{a n}单调递增∴a n=2n(II)∵a n=2n,∴b n=a n+log a n=a n﹣n,∴S n=﹣=2n+1﹣2﹣,点评:本题考查了等比数列的通项公式以及数列的前n项和,考查学生的计算能力,属于中档题.21.数列{a n}的前n项和为S n,a n是S n和1的等差中项,等差数列{b n}满足b1+S4=0,b9=a1.(1)求数列{a n},{b n}的通项公式;(2)若=,求数列{}的前n项和W n.考点:数列的求和;等差数列的性质.专题:计算题;等差数列与等比数列.分析:(1)由a n是S n和1的等差中项,可得S n=2a n﹣1,再写一式,可得数列{a n}是以1为首项,2为公比的等比数列,可求数列{a n}的通项公式,求出等差数列{b n}的首项与公差,可得{b n}的通项公式;(2)利用裂项求和,可得数列{}的前n项和W n.解答:解:(1)∵a n是S n和1的等差中项,∴S n=2a n﹣1,当n≥2时,a n=S n﹣S n﹣1=(2a n﹣1)﹣(2a n﹣1﹣1)=2a n﹣2a n﹣1,∴a n=2a n﹣1,当n=1时,a1=1,∴数列{a n}是以1为首项,2为公比的等比数列,∴a n=2n﹣1∴S n=2n﹣1;设{b n}的公差为d,b1=﹣S4=﹣15,b9=a1=﹣15+8d=1,∴d=2,∴b n=2n﹣17;(2)==(﹣),∴W n=[(1﹣)+(﹣)+…+(﹣)]=(1﹣)=点评:本题考查数列的通项与求和,考查裂项法,考查学生分析解决问题的能力,难度中等.附加题(本小题满分10分,该题计入总分)22.已知数列{a n}的前n项和S n=,且a1=1.(1)求数列{a n}的通项公式;(2)令b n=lna n,是否存在k(k≥2,k∈N*),使得b k、b k+1、b k+2成等比数列.若存在,求出所有符合条件的k值;若不存在,请说明理由.考点:等比关系的确定;等差数列的通项公式.专题:计算题.分析:(1)直接利用a n=S n﹣S n﹣1(n≥2)求解数列的通项公式即可(注意要验证n=1时通项是否成立).(2)先利用(1)的结论求出数列{b n}的通项,再求出b k b k+2的表达式,利用基本不等式得出不存在k(k≥2,k∈N*),使得b k、b k+1、b k+2成等比数列.解答:解:(1)当n≥2时,,即(n≥2).所以数列是首项为的常数列.所以,即a n=n(n∈N*).所以数列{a n}的通项公式为a n=n(n∈N*).(2)假设存在k(k≥2,m,k∈N*),使得b k、b k+1、b k+2成等比数列,则b k b k+2=b k+12.因为b n=lna n=lnn(n≥2),所以.这与b k b k+2=b k+12矛盾.故不存在k(k≥2,k∈N*),使得b k、b k+1、b k+2成等比数列.点评:本题考查了已知前n项和为S n求数列{a n}的通项公式,根据a n和S n的关系:a n=S n ﹣S n﹣1(n≥2)求解数列的通项公式.另外,须注意公式成立的前提是n≥2,所以要验证n=1时通项是否成立,若成立则:a n=S n﹣S n﹣1(n≥1);若不成立,则通项公式为分段函数.。
高一数学上学期期末考试试卷(含解析)-人教版高一全册数学试题
某某省某某第一中学2015-2016学年高一上学期期末考试数学一、选择题:共10题1.下列说法中,正确的是A.幂函数的图象都经过点(1,1)和点(0,0)B.当a=0时,函数y=xα的图象是一条直线C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大D.幂函数y=xα,当a<0时,在第一象限内函数值随x值的增大而减小【答案】D【解析】本题主要考查幂函数的图象与性质.由幂函数的图象与性质可知,A错误;当x=0时,y=0,故B错误;令a=-1,则y=x-1,显然C错误;故D正确.2.如图所示,则这个几何体的体积等于A.4B.6C.8D.12【答案】A【解析】由三视图可知所求几何体为四棱锥,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且四边形ABCD为直角梯形,∠DAB=90°,∴V=SA×(AB+CD)×AD=×2××(2+4)×2=4,故选A.3.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,f(x)=0的根也一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是根的近似值.A.0B.1C.3D.4【答案】B【解析】本题主要考查方程与根、二分法.由零点的定义知,零点是曲线与x轴交点的横坐标,故①错误;当f(a)=0时,无法用二分法求解,故②错误;显然,③正确;若f(x)=2x-x-1,在区间(-1,1)上的零点,用二分法,可得f(0)=0,显然,④错误.4.如图,在三棱锥S-ABC中,E为棱SC的中点,若AC=,SA=SB=SC=AB=BC=2,则异面直线AC与BE所成的角为A.30°B.45°C.60°D.90°【答案】C【解析】本题主要考查异面直线所成的角.取SA的中点D,连接BD、DE,则,是异面直线AC与BE所成的角或补角,由题意可得BD=BE=,DE=,即三角形BDE是等边三角形,所以5.如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是A.AC⊥BEB.EF∥平面ABCDC.直线AB与平面BEF所成的角为定值D.异面直线AE、BF所成的角为定值【答案】D【解析】本题主要考查线面平行与垂直的判定定理、线面所成的角、异面直线所成的角,考查了空间想象能力.易证AC⊥平面BDD1B1,则AC⊥BE,A正确,不选;易知平面A1B1C1D1∥平面ABCD,则EF∥平面ABCD,B正确,不选;因为平面BEF即是平面BDD1B1,所以直线AB 与平面BEF所成的角为定值,故C正确,不选;故选D.6.若函数且)有两个零点,则实数a的取值X围是A. B. C. D.【答案】B【解析】本题主要考查函数的性质与零点.当时,函数是减函数,最多只有1个零点,不符合题意,故排除A、D;令,易判断函数在区间上分别有一个零点,故排除C,所以B正确.7.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D【解析】本题涉及直线与平面的基本知识,意在考查考生的空间想象能力、分析思考能力,难度中等偏下.由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l ,故选D.8.已知直线(1+k)x+y-k-2=0过定点P,则点P关于直线x-y-2=0的对称点的坐标是A.(3,﹣2)B.(2,﹣3)C.(3,﹣1)D.(1,﹣3)【答案】C【解析】本题主要考查直线方程、两条直线的位置关系.将(1+k)x+y-k-2=0整理为:k(x-1)+x+y-2=0,则x-1=0且x+y-2=0,可得P(1,1),设点P的对称点坐标为(a,b),则,则x=3,y=-1,故答案:C.9.如图,平面⊥平面与两平面所成的角分别为和.过分别作两平面交线的垂线,垂足为,则=A. B. C. D.【答案】A【解析】本题主要考查线面与面面垂直的判定与性质、直线与平面所成的角,考查了空间想象能力.根据题意,由面面垂直的性质定理可得,,则,则AB=2,则10.经过点P(1,4)的直线在两坐标轴上的截距都是正值,若截距之和最小,则直线的方程为A.x+2y-6=0 B.2x+y-6=0 C.x-2y+7=0 D.x-2y-7=0【答案】B【解析】本题主要考查直线方程、基本不等式.由直线的斜率为k(k<0),则y-4=k(x-1),分别令x=0、y=0求出直线在两坐标轴上的截距为:4-k,1-,则4-k+1-,当且仅当-k=-,即k=-2时,等号成立,则直线的方程为2x+y-6=0二、填空题:共5题11.已知直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,则经过点A(3,2)且与直线垂直的直线方程为________.【答案】2x-y-4=0【解析】本题主要考查直线方程、两条直线的位置关系.因为直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,所以(m+1)m-2=0,且8-(m-2),则m=1,直线: x+2y-1=0,根据题意,设所求直线方程为2x-y+t=0,将点A(3,2)代入可得t=-4,即:2x-y-4=012.用斜二测画法得到的四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是________.【答案】8【解析】本题主要考查平面直观图.根据题意,直观图中,梯形的下底长为5,一腰长为,则易求上底为3,高为1,面积为,所以原四边形的面积是13.已知三棱锥A-BCD的所有棱长都为,则该三棱锥的外接球的表面积为________.【答案】3π【解析】本题主要考查空间几何体的表面积与体积,考查了空间想象能力.将正方体截去四个角可得到一个正四面体,由题意,可将该三棱锥补成一个棱长为1的正方体,所以该三棱锥的外接球的直径即为正方体的对角线,所以2r=,则该三棱锥的外接球的表面积为S=14.已知关于x的方程有两根,其中一根在区间内,另一根在区间内,则m的取值X围是________.【答案】【解析】本题主要考查二次函数的性质与二元一次方程的根.设,由题意可知:,求解可得15.甲、乙、丙、丁四个物体同时以某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为_________(把正确结论的序号都填上,多填或少填均不得分).【答案】③④⑤【解析】①错误.因为,,所以,所以时,乙在甲的前面.②错误.因为,,所以,所以时,甲在乙的前面.③正确.当时,,的图象在图象的上方.④正确.当时,丙在甲乙前面,在丁后面,时,丙在丁前面,在甲、乙后面,时,甲、乙、丙、丁四人并驾齐驱.⑤正确.指数函数增长速度越来越快,x充分大时,的图象必定在,,上方,所以最终走在最前面的是甲.三、解答题:共5题16.如图(1)所示,在直角梯形中,BC AP,AB BC,CD AP,又分别为线段的中点,现将△折起,使平面平面(图(2)).(1)求证:平面平面;(2)求三棱锥的体积.【答案】证明:(1)分别是的中点,∵平面,AB平面.∴平面.同理,平面,∵,EF平面平面∴平面平面.(2)=.【解析】本题主要考查面面与线面平行与垂直的判定与性质、空间几何体的表面积与体积,考查了空间想象能力与等价转化.(1)根据题意,证明、,再利用线面与面面平行的判定定理即可证明;(2)由题意易知,则结果易得.17.已知两点,直线,求一点使,且点到直线的距离等于2.【答案】设点的坐标为.∵.∴的中点的坐标为.又的斜率.∴的垂直平分线方程为,即.而在直线上.∴.①又已知点到的距离为2.∴点必在于平行且距离为2的直线上,设直线方程为,由两条平行直线之间的距离公式得:∴或.∴点在直线或上.∴或②∴①②得:或.∴点或为所求的点.【解析】本题主要考查直线方程与斜率、两条直线的位置关系、中点坐标公式.设点的坐标为,求出统一线段AB的垂直平分线,即可求出a、b的一个关系式;由题意知,点必在于平行且距离为2的直线上, 设直线方程为,由两条平行直线之间的距离公式得:,求出m的值,又得到a、b的一个关系式,两个关系式联立求解即可.18.(1)已知圆C经过两点,且被直线y=1截得的线段长为.求圆C的方程;(2)已知点P(1,1)和圆过点P的动直线与圆交于A,B两点,求线段AB的中点M的轨迹方程.【答案】(1)设圆方程为.因为点O,Q在圆上,代入:又由已知,联立:解得:由韦达定理知:.所以:.即即:.即:.则.所以所求圆方程为:.(2)设点M (x ,y ), 圆的圆心坐标为C (0,2). 由题意:,又.所以: 化简:所以M 点的轨迹方程为【解析】本题主要考查圆的方程、直线与圆的位置关系、圆的性质、直线的斜率公式、方程思想.(1)设圆方程为,将y =1代入圆的方程,利用韦达定理,求出D 、E 、F 的一个关系式,再由点O 、Q 在圆上,联立求出D 、E 、F 的值,即可得到圆的方程;(2) 设点M (x ,y ), 圆的圆心坐标为C (0,2),由题意:,又,化简求解即可得到结论.19.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD , AB ⊥AD , AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.C A PB D E(1)求PB 和平面PAD 所成的角的大小;(2)证明:AE ⊥平面PCD ;(3)求二面角A-PD-C的正弦值.【答案】(1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥A B.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD,∴PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)证明:在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.由条件CD⊥AC,PA∩AC=A∵CD⊥平面PA C.又AE⊂平面PAC,∴AE⊥C D.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥P C.又PC∩CD=C,综上得AE⊥平面PCD.(3)过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD.因此∠AME是二面角A—PD—C的平面角.由已知,可得∠CAD=30°.设AC=a,可得PA=a,AD=a,PD=a,AE=在Rt△ADP中,∵AM⊥PD,∴AM·PD=PA·AD,则AM==.在Rt△AEM中,sin∠AME==.所以二面角A—PD—C的正弦值为.【解析】本题主要考查线面垂直的判定定理与性质定理、线面角与二面角,考查了空间想象能力.(1)根据题意,证明AB⊥平面PAD,即可得证∠APB为PB和平面PAD所成的角,则易求结果;(2)由题意,易证CD⊥平面PA C,可得AE⊥C D,由题意易知AC=PA,又因为E是PC 的中点,所以AE⊥P C,则结论易证;(3) 过点E作EM⊥PD,垂足为M,连接AM,如图所示,由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD,因此∠AME是二面角A—PD—C的平面角,则结论易求.20.诺贝尔奖的奖金发放方式为:每年一发,把奖金总额平均分成6份,分别奖励给在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半;另一半利息计入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔发放后基金总额约为19 800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推)(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29≈1.32)【答案】(1)由题意知:f(2)=f(1)(1+6.24%)-f(1)·6.24%=f(1)×(1+3.12%),f(3)=f(2)×(1+6.24%)-f(2)×6.24%=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,故2009年度诺贝尔奖各项奖金为·f(10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.【解析】本题主要考查指数函数、函数的解析式与求值,考查了分析问题与解决问题的能力、计算能力.(1)由题意知: f(2)=f(1)(1+6.24%)-f(1)·6.24%,f(3)=f(2)×(1+6.24%)-f(2)×6.24%,化简,即可归纳出函数f(x)的解析式;(2)根据题意,求出2008年诺贝尔奖发放后基金总额为f(10),再求出2009年度诺贝尔奖各项奖金为·f(10)·6.24%,即可判断出结论.。
山东省日照市2023-2024学年高一下学期期中校际联合考试数学试题(含解析)
山东省日照市2023-2024学年高一下学期期中校际联合考试数学试题一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)在0°~360°的范围内,与﹣520°终边相同的角是( )A.310°B.200°C.140°D.20°2.(5分)半径为2的圆中,弧长为的圆弧所对的圆心角的大小为( )A.B.C.D.3.(5分)函数的最小正周期是( )A.πB.2πC.1D.24.(5分)已知向量和不共线,向量=+m,=5+3,=﹣3+3,若A、B、D三点共线,则m=( )A.3B.2C.1D.﹣25.(5分)函数的定义域为( )A.B.C.D.6.(5分)已知平面向量=(10sinθ,1),,若,则tanθ=( )A.或﹣3B.或﹣3C.或3D.或37.(5分)△ABC的外接圆的圆心为O,半径为1,,且,则向量在向量方向上的投影的数量为( )A.B.C.D.8.(5分)已知函数f(x)=2sin x,若存在x1,x2,…,x n,满足0≤x1<x2<…<x n≤nπ,n∈N+,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=2024,(m≥2,m∈N+),则满足条件的实数m的最小值为( )A.506B.507C.508D.509二、选择题:本题共3小题,每小题6分,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得部分分,有选错的得0分。
(多选)9.(6分)已知向量,,则下列命题正确的是( )A.B.可以作为平面向量的一组基底C.D.(多选)10.(6分)已知函数的部分图象如图所示,则下列说法正确的是( )A.ω=2B.函数f(x)的图象关于直线对称C.函数是偶函数D.将函数f(x)图象上所有点的横坐标变为原来的2倍,得到函数的图象(多选)11.(6分)已知函数,则下列说法正确的是( )A.f(x)是以π为周期的函数B.函数f(x)存在无穷多个零点C.D.至少存在三个不同的实数a∈(﹣1,4),使得f(x+a)为偶函数三、填空题:本题共3小题,每小题5分,共15分。
江西省南昌十九中高一数学下学期期中试卷(含解析)-人教版高一全册数学试题
某某省某某十九中2014-2015学年高一下学期期中数学试卷一、选择题:(本大题共12个小题,每题5分,共60分.每题只有一个正确答案)1.已知数列{a n}的通项,则a4•a3=()A.12 B.32 C.﹣32 D.482.已知△ABC中,a=4,b=4,A=30°,则B等于()A.30°B.30°或150°C.60°D.60°或120°3.如果a<b<0,那么下面一定成立的是()A.a﹣b>0 B.ac<bc C.D.a2>b24.△A BC中,若sin2A+sin2B>sin2C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定5.由正数组成的等比数列{a n}满足:a4a8=9,则a5,a7的等比中项为()A.±3B.3 C.±9D.96.等差数列{a n}中,a1>0,S n是前n项和且S9=S18,则当n=()时,S n最大.A.12 B.13 C.12或13 D.13或147.不等式的解集是()A.(﹣2,1)B.(2,+∞)C.(﹣2,1)∪(2,+∞)D.(﹣∞,﹣2)∪(1,+∞)8.以下选项中正确的是()A.a=7,b=14,A=30°△ABC有两解B.a=9,c=10,A=60°△ABC无解C.a=6,b=9,A=45°△ABC有两解D.a=30,b=25,A=150°△ABC有一解9.△ABC各角的对应边分别为a,b,c,满足+≥1,则角A的X围是()A.(0,] B.(0,] C.[,π)D.[,π)10.在数列{a n}中,a1=3,a n+1=a n+ln(1+),则a n=()A.3+lnn B.3+(n﹣1)lnn C.3+nlnn D.1+n+lnn11.已知两个等差数列{a n}和{b n}的前n项和分别为A n和B n,且=,则使得为正偶数时,n的值可以是()A.1 B.2 C.5 D.3或1112.在锐角三角形ABC中,a,b,c分别为内角A,B,C的对边,若A=2B,给出下列命题:①<B<;②∈(,];③a2=b2+bc.其中正确的个数是()A.0 B.1 C.2 D.3二、填空题:(本大题共4个小题,每题5分,共20分.请将答案填在横线上)13.已知等差数列{a n}的前n项和为S n,若a4=8﹣a6,则S9=.14.若不等式2kx2+kx﹣≥0的解集为空集,则实数k的取值X围是.15.△ABC中,角A,B,C的对边分别为a,b,c,已知b=8,c=6,A=,∠BAC的角平分线交边BC于点D,则|AD|=.16.数列{a n}的通项为a n=(﹣1)n•n•sin+1,前n项和为S n,则S100=.三、解答题:(本大题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤)17.已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.18.在△ABC中,A、B、C的对边分别是a,b,c,且bcosB是acosC,ccosA的等差中项.(1)求∠B的大小;(2)若a+c=,求△ABC的面积.19.已知数列{a n}的前n项和S n=10n﹣n2(n∈N*),又b n=|a n|(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{b n}的前n项和T n.20.在△ABC中,a,b,c分别是内角A,B,C的对边,AB=5,cos∠ABC=.(Ⅰ)若BC=2,求sin∠ACB的值;(Ⅱ)若D是边AC中点,且BD=,求边AC的长.21.已知等比数列{a n}中各项均为正,有a1=2,a n+12﹣a n+1a n﹣2a n2=0,等差数列{b n}中,b1=1,点P(b n,b n+1)在直线y=x+2上.(1)求a2和a3的值;(2)求数列{a n},{b n}的通项a n和b n;(3)设=a n•b n,求数列{}的前n项和T n.22.已知数列{a n}的相邻两项a n,a n+1是关于x方程x2﹣2n x+b n=0的两根,且a1=1.(1)求证:数列是等比数列;(2)求数列{a n}的前n项和S n;(3)设函数f(n)=b n﹣t•S n(n∈N*),若f(n)>0对任意的n∈N*都成立,某某数t的X 围.某某省某某十九中2014-2015学年高一下学期期中数学试卷一、选择题:(本大题共12个小题,每题5分,共60分.每题只有一个正确答案)1.已知数列{a n}的通项,则a4•a3=()A.12 B.32 C.﹣32 D.48考点:数列的概念及简单表示法.专题:点列、递归数列与数学归纳法.分析:根据数列的通项公式,进行求解即可.解答:解:由通项公式得a4=4,a3=(﹣2)3=﹣8,则a4•a3=4×(﹣8)=﹣32,故选:C.点评:本题主要考查数列通项公式的应用,比较基础.2.已知△ABC中,a=4,b=4,A=30°,则B等于()A.30°B.30°或150°C.60°D.60°或120°考点:正弦定理.专题:解三角形.分析:△ABC中由条件利用正弦定理求得sinB的值,再根据及大边对大角求得B的值.解答:解:△ABC中,a=4,b=4,A=30°,由正弦定理可得,即=,解得sinB=.再由b>a,大边对大角可得B>A,∴B=60°或120°,故选D.点评:本题主要考查正弦定理的应用,以及大边对大角、根据三角函数的值求角,属于中档题.3.如果a<b<0,那么下面一定成立的是()A.a﹣b>0 B.ac<bc C.D.a2>b2考点:不等式比较大小.专题:不等式的解法及应用.分析:利用不等式的性质即可得出.解答:解:∵a<b<0,∴﹣a>﹣b>0,∴a2>b2.故选:D.点评:本题考查了不等式的性质,属于基础题.4.△ABC中,若sin2A+sin2B>sin2C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定考点:三角形的形状判断.专题:解三角形.分析:由正余弦定理结合已知条件可得角C为锐角,但A、B两角不确定,无法判断三角形的形状.解答:解:∵sin2A+sin2B>sin2C,∴由正弦定理可得a2+b2>c2,∴co sC=>0,∴角C为锐角,但A、B两角不确定,故无法判断三角形的形状,故选:D点评:本题考查三角形形状的判断,属基础题.5.由正数组成的等比数列{a n}满足:a4a8=9,则a5,a7的等比中项为()A.±3B.3 C.±9D.9考点:等比数列的性质.专题:等差数列与等比数列.分析:由等比数列{a n}的性质可得:a5•a7=a4a8=9,设a5,a7的等比中项为x,可得x2=9,解得x即可.解答:解:由正数组成的等比数列{a n}满足:a4a8=9,∴a5•a7=a4a8=9,设a5,a7的等比中项为x,则x2=9,解得x=±3.故选:A.点评:本题考查了等比数列的性质、等比中项,属于基础题.6.等差数列{a n}中,a1>0,S n是前n项和且S9=S18,则当n=()时,S n最大.A.12 B.13 C.12或13 D.13或14考点:等差数列的通项公式.专题:等差数列与等比数列.分析:由等差数列的前n项和公式化简S9=S18,求出a1与d的关系式,利用二次函数的性质求出S n最大时n的值.解答:解:设等差数列{a n}的公差是d,由S9=S18得,=,解得d=,∴S n=na1+=,∵a1>0,∴当n=时,即n=13或14时,S n最大,故选:D.点评:本题考查等差数列的前n项和公式,以及利用二次函数的性质求出S n最大,属于中档题.7.不等式的解集是()A.(﹣2,1)B.(2,+∞)C.(﹣2,1)∪(2,+∞)D.(﹣∞,﹣2)∪(1,+∞)考点:其他不等式的解法.专题:不等式的解法及应用.分析:不等式即>0,再用穿根法求得它的解集.解答:解:不等式,即>0,用穿根法求得它的解集为(﹣2,1)∪(2,+∞),故选:C.点评:本题主要考查用穿根法解分式不等式,体现了等价转化的数学思想,属于基础题.8.以下选项中正确的是()A.a=7,b=14,A=30°△ABC有两解B.a=9,c=10,A=60°△ABC无解C.a=6,b=9,A=45°△ABC有两解D.a=30,b=25,A=150°△ABC有一解考点:正弦定理.专题:解三角形.分析:根据正弦定理以及三角形的边角关系分别进行判断即可得到结论.解答:解:A.若△ABC中,a=7,b=14,A=30°,则sinB===1,可得B=90°,因此三角形有一解,得A错误;B.根据余弦定理得:b2=81+100﹣180cos60°=91,解得b=,能构成三角形,所以B错误;C.若△ABC中,a=6,b=9,A=45°,则sinB===,当B为锐角时满足sinB=的角B要小于45°,∴由a<b得A<B,可得B为钝角,三角形只有一解,故C错误;D.若△ABC中,a=30,b=25,A=150°,则sinB===,而B为锐角,可得角B只有一个解,因此三角形只有一解,得D正确;故选:D.点评:本题主要考查求三角形的解的个数.着重考查利用正弦定理解三角形、三角形大边对大角等知识,属于中档题.9.△ABC各角的对应边分别为a,b,c,满足+≥1,则角A的X围是()A.(0,] B.(0,] C.[,π)D.[,π)考点:余弦定理.专题:三角函数的求值.分析:已知不等式去分母后,整理得到关系式,两边除以2bc,利用余弦定理变形求出cosA 的X围,即可确定出A的X围.解答:解:由+≥1得:b(a+b)+c(a+c)≥(a+c)(a+b),化简得:b2+c2﹣a2≥bc,同除以2bc得,≥,即cosA≥,∵A为三角形内角,∴0<A≤,故选:A.点评:此题考查了余弦定理,以及余弦函数的性质,熟练掌握余弦定理是解本题的关键.10.在数列{a n}中,a1=3,a n+1=a n+ln(1+),则a n=()A.3+lnn B.3+(n﹣1)lnn C.3+nlnn D.1+n+lnn考点:数列递推式.专题:等差数列与等比数列.分析:把递推式整理,先整理对数的真数,通分变成,用迭代法整理出结果,约分后选出正确选项.解答:解:∵a1=3,a n+1=a n+ln(1+)=a n+ln,∴a2=a1+ln2,a3=a2+ln,a4=a3+ln,…,a n=a n﹣1+ln,累加可得:a n=3+ln2+ln+ln+…+ln=3+lnn,故选:A点评:数列的通项a n或前n项和S n中的n通常是对任意n∈N成立,因此可将其中的n换成n+1或n﹣1等,这种办法通常称迭代或递推.了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项.11.已知两个等差数列{a n}和{b n}的前n项和分别为A n和B n,且=,则使得为正偶数时,n的值可以是()A.1 B.2 C.5 D.3或11考点:等差数列的性质;等差数列的前n项和.专题:计算题.分析:根据等差数列的性质、等差中项的综合应用,化简=7+,要使得为正偶数,需 7+为正偶数,需为正奇数,由此求得正整数n的值.解答:解:由等差数列的前n项和公式可得=(n∈N*).要使得为正偶数,需 7+为正偶数,需为正奇数,故n=3,或11,故选D.点评:本题主要考查等差数列的性质、等差中项的综合应用以及分离常数法,数的整除性是传统问题的进一步深化,对教学研究有很好的启示作用.已知两个等差数列{a n}和{b n}的前n项和分别为A n和B n,则有如下关系=.12.在锐角三角形ABC中,a,b,c分别为内角A,B,C的对边,若A=2B,给出下列命题:①<B<;②∈(,];③a2=b2+bc.其中正确的个数是()A.0 B.1 C.2 D.3考点:基本不等式.专题:计算题.分析:锐角三角形ABC中三个角都是锐角,得到2B及π﹣3B都是锐角,求出角B的X 围,利用正弦定理即余弦定理得出,a2=b2+c2﹣2bccosA解答:解:∵锐角三角形ABC中,∴,,;∴解得<B<;∵,∵<B<;∴,∴,∵a2=b2+c2﹣2bccosA,∵b2+c2﹣2bccosA﹣(b2+bc)=c2﹣2bccosA﹣bc=c(c﹣2bcosA﹣b)=c2R(sinC﹣2sinBcosA﹣sinB)=2Rc(sin3B﹣2sinBcos2B﹣sinB)=2Rc(sinBcos2B+cosBsin2B﹣2sinBcos2B﹣sinB)=2Rc(cosBsin2B﹣sinBcos2B﹣sinB)=0∴a2=b2+bc.∴①③对.故选:C.点评:本题考查锐角三角形的特点;考查三角形的正弦定理、余弦定理;属于一道中档题.二、填空题:(本大题共4个小题,每题5分,共20分.请将答案填在横线上)13.已知等差数列{a n}的前n项和为S n,若a4=8﹣a6,则S9=36.考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由已知求得a5,代入S9=9a5得答案.解答:解:在等差数列{a n}中,由a4=8﹣a6,得a4+a6=8,即2a5=8,a5=4.则S9=9a5=9×4=36.故答案为:36.点评:本题考查了等差数列的前n项和,项数为奇数的等差数列的前n项和等于中间项乘以项数,是基础题.14.若不等式2kx2+kx﹣≥0的解集为空集,则实数k的取值X围是(﹣3,0].考点:一元二次不等式的解法.专题:分类讨论;不等式的解法及应用.分析:根据题意,讨论k=0与k≠0时,不等式解集为空集的k满足的条件是什么,求出k的取值X围即可.解答:解:根据题意,得;当k=0时,不等式化为﹣≥0,解集为空集,满足题意;当k≠0时,应满足,即,解得,∴﹣3<k<0;综上,k的取值X围是(﹣3,0].故答案为:(﹣3,0].点评:本题考查了不等式恒成立的应用问题,解题时应结合二次函数的图象与性质进行解答,是基础题目.15.△ABC中,角A,B,C的对边分别为a,b,c,已知b=8,c=6,A=,∠BAC的角平分线交边BC于点D,则|AD|=.考点:解三角形.专题:解三角形.分析:由题意和余弦定理可得BC,进而由角平分线性质定理可得BD,然后由余弦定理可得关于AD的一元二次方程,解方程验证可得.解答:解:由题意和余弦定理可得BC==2,由角平分线性质定理可得BD:DC=6:8,∴BD=BC=,再由余弦定理可得BD2=36+AD2﹣12AD×,∴()2=36+AD2﹣6AD,整理可得AD2﹣6AD+=0,解关于AD的一元二次方程可得AD=,∴AD=,或AD=(不满足三角形三边关系,舍去)故答案为:.点评:本题考查解三角形,涉及余弦定理和一元二次方程的解法,属中档题.16.数列{a n}的通项为a n=(﹣1)n•n•sin+1,前n项和为S n,则S100=150.考点:数列的求和.专题:等差数列与等比数列.分析:n为偶数时,sin=0;n=4k+1,k∈Z时,sin=1;n=4k+3,k∈Z时,sin=﹣1;由此利用数列的周期性能求出S100.解答:解:∵n为偶数时,sin=0∴a n=nsin+1=1,n为奇数时,若n=4k+1,k∈Z,则sin=sin(2kπ+)=1,∴a n=﹣n+1,若n=4k+3,k∈Z,则sin=sin(2kπ+)=﹣1,∴a n=n+1,∴不妨以四项为一个整体∴a4k+1+a4k+2+a4k+3+a4k+4=﹣(4k+1)+1+1+(4k+3)+1+1=6∴S100==150.故答案为:150.点评:本题考查数列的前100项和的求法,解题时要认真审题,注意三角函数的周期性的合理运用.三、解答题:(本大题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤)17.已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.考点:数列的求和;等比数列的通项公式.专题:等差数列与等比数列.分析:(Ⅰ)设出数列{a n}的公差,由已知条件列式求出公差,则数列{a n}的通项公式可求;(Ⅱ)把数列{a n}的通项公式代入b n=,整理后利用裂项相消法求数列{b n}的前n项和S n.解答:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2﹣(2+d)(3+3d),解得d=2,或d=﹣1,当d=﹣1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n﹣1)d=2+2(n﹣1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.点评:本题考查了等差数列的通项公式,考查了裂项相消法求数列的和,解答此题的关键是对数列{b n}的通项进行裂项,是中档题.18.在△ABC中,A、B、C的对边分别是a,b,c,且bcosB是acosC,ccosA的等差中项.(1)求∠B的大小;(2)若a+c=,求△ABC的面积.考点:数列与三角函数的综合;解三角形.专题:综合题.分析:(1)利用等差中项的性质,知acosC+ccosA=2bcosB,由正弦定理,得sinAcosC+cosAsinC=2sinBcosB,由此结合三角函数的性质能够求出∠B.(2)由(1)知B=,利用余弦定理得到=,再利用三角形面积公式,能求出△ABC的面积.解答:解:(1)∵bcosB是acosC,ccosA的等差中项,∴acosC+ccosA=2bcosB,由正弦定理,得sinAcosC+cosAsinC=2sinBcosB,即sin(A+C)=2sinBcosB,∵A+C=π﹣B,0<B<π,∴sin(A+C)=sinB≠0,∴cosB=,B=.(2)由B=,得=,即,∴ac=2,∴.点评:本题考查等差中项,正弦定理、余弦定理、三角形面积等公式的应用,解题时要认真审题,注意三角函数恒等变换的灵活运用.19.已知数列{a n}的前n项和S n=10n﹣n2(n∈N*),又b n=|a n|(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{b n}的前n项和T n.考点:数列的求和.专题:等差数列与等比数列.分析:(1)数列{a n}的前n项和S n=10n﹣n2(n∈N*),当n=1时,a1=S1=9,当n≥2时,a n=S n﹣S n﹣1,即可得出.(2)由a n=11﹣2n≥0,解得n≤5.可得b n=|a n|=.当n≤5时,T n=S n.当n≥6时,T n=2S5﹣S n,即可得出.解答:解:(1)∵数列{a n}的前n项和S n=10n﹣n2(n∈N*),∴当n=1时,a1=S1=9,当n≥2时,a n=S n﹣S n﹣1=10n﹣n2﹣[10(n﹣1)﹣(n﹣1)2]=11﹣2n.当n=1时上式也成立,∴a n=11﹣2n.(2)由a n=11﹣2n≥0,解得n≤5.∴b n=|a n|=.∴当n≤5时,T n=S n=10n﹣n2.当n≥6时,T n=2S5﹣S n=2×(10×5﹣52)﹣(10n﹣n2)=n2﹣10n+50.∴T n=.点评:本题考查了等差数列的通项公式及其前n项和公式、递推式的应用、含绝对值数列的求和,考查了分类讨论思想方法、推理能力与计算能力,属于中档题.20.在△ABC中,a,b,c分别是内角A,B,C的对边,AB=5,cos∠ABC=.(Ⅰ)若BC=2,求sin∠ACB的值;(Ⅱ)若D是边AC中点,且BD=,求边AC的长.考点:余弦定理的应用.专题:解三角形.分析:(Ⅰ)直接利用余弦定理求出AC,然后利用正弦定理求sin∠ACB的值;(Ⅱ)以BA,BC为邻边作如图所示的平行四边形ABCE,如图,若D是边AC中点,且BD=,在△BCE中,由余弦定理求出CB,在△ABC中,利用余弦定理求边AC的长.解答:解:(Ⅰ),BC=2,由余弦定理:AC2=BA2+BC2﹣2BA•BC•cos∠ABC=52+22﹣2×5×2×=25,∴AC=5.…又∠ABC∈(0,π),所以,由正弦定理:,得.…(Ⅱ)以BA,BC为邻边作如图所示的平行四边形ABCE,如图,则,BE=2BD=7,CE=AB=5,在△BCE中,由余弦定理:BE2=CB2+CE2﹣2CB•CE•cos∠BCE.即,解得:CB=4.…在△ABC中,,即.…点评:本题考查余弦定理以及正弦定理的应用,三角形的解法,考查计算能力.21.已知等比数列{a n}中各项均为正,有a1=2,a n+12﹣a n+1a n﹣2a n2=0,等差数列{b n}中,b1=1,点P(b n,b n+1)在直线y=x+2上.(1)求a2和a3的值;(2)求数列{a n},{b n}的通项a n和b n;(3)设=a n•b n,求数列{}的前n项和T n.考点:数列的求和.专题:等差数列与等比数列.分析:(1)由已知条件推导出,,由此能求出a2和a3的值.(2)由已知条件推导出数列{a n}是以2为首项、2为公比的等比数列,从而得到;数列{b n}是以1为首项,以2为公差的等差数列,从而得到b n=2n﹣1.(3)由(1)得,由此利用错位相减求和法能求出T n.解答:解:(1)∵,∴,又a1=2,解得a2=4,或a2=﹣2(舍)…,解得a3=8,或a3=﹣4(舍),…(2)∵,∴(a n+1+a n)(a n+1﹣2a n)=0,∵{a n}中各项均为正,∴,又a1=2,∴数列{a n}是以2为首项、2为公比的等比数列,∴,…∵点P(b n,b n+1)在直线y=x+2上,∴b n+1=b n+2,又b1=1,∴数列{b n}是以1为首项,以2为公差的等差数列,∴b n=2n﹣1.…(3)由(1)得∴T n=a1•b1+a2•b2+…+a n•b n=1×2+3×22+5×23+…+(2n﹣1)2n,∴2T n=1×22+3×23+…+(2n﹣3)2n+(2n﹣1)2n+1…∴﹣T n=1×2+(2×22+2×23+…+2×2n)﹣(2n﹣1)2n+1,…即:﹣T n=1×2+(23+24+…+2n+1)﹣(2n﹣1)2n+1,∴T n=(2n﹣3)2n+1+6…点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.22.已知数列{a n}的相邻两项a n,a n+1是关于x方程x2﹣2n x+b n=0的两根,且a1=1.(1)求证:数列是等比数列;(2)求数列{a n}的前n项和S n;(3)设函数f(n)=b n﹣t•S n(n∈N*),若f(n)>0对任意的n∈N*都成立,某某数t的X 围.考点:数列的求和;等比数列的通项公式;等比关系的确定.专题:等差数列与等比数列.分析:(1)由数列{a n}的相邻两项a n,a n+1是关于x方程x2﹣2n x+b n=0的两根,可得,变形为,即可证明;(2)对n分类讨论,利用等比数列的前n项和公式即可得出;(3)利用(1)的结论对n的奇偶情况分类讨论,利用数列的单调性即可得出.解答:(1)证明:∵数列{a n}的相邻两项a n,a n+1是关于x方程x2﹣2n x+b n=0的两根,∴,∴,∵,∴,∴是首项为,公比为﹣1的等比数列.∴.(2)解:由(1)得=.(3)解:∵b n=a n•a n+1,∴,∵b n﹣t•S n>0,∴.∴当n为奇数时,,∴对任意的n为奇数都成立,∴t<1.∴当n为偶数时,,∴,∴对任意的n为偶数都成立,∴.综上所述,实数t的取值X围为t<1.点评:本题考查了递推式的应用、等比数列的通项公式与前n项和公式,考查了分类讨论思想方法、推理能力与计算能力,属于难题.。
2024-2025学年河北省张家口市高一(上)期中数学试卷(含答案)
2024-2025学年河北省张家口市高一(上)期中数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A={−1,0,1},B={−2,0,1},则A∪B=( )A. {0,1}B. {−1,−2}C. {−2,−1,0,1}D. ⌀2.命题“∃x>1,x≤4”的否定是( )A. ∀x≤1,x≤4B. ∃x>1,x>4C. ∃x≤1,x>4D. ∀x>1,x>43.已知函数f(x)={f(x+2),x<1,x2−1,x≥1.则f(0)=( )A. 0B. 3C. 8D. 154.已知f(x+1)=2x−2,且f(a)=4,则a=( )A. 4B. 3C. 2D. 15.已知函数f(x+1)的定义域为[−2,3],则函数g(x)=f(x)x−1的定义域为( )A. (−2,2]B. (1,4]C. (1,3]D. (1,2]6.设0<a<b,c∈R,则下列不等式成立的是( )A. a2>b2B. 1a <1bC. 若c>0,则ab <a+cb+cD. (a−b)c2≥07.如图所示为函数f(x)=b|x|+a(a,b∈R)的图象,则a+b=( )A. −2B. 2C. −4D. 08.已知函数f(x)={x2−2ax+3,x≤1,(a−4)x+1,x>1,则“a<4”是“f(x)在R上单调递减”的( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( )A. y =1|x|B. y =x 2+2C. y =x−1xD. y =2−|x|10.已知x >0,y >0,x +4y =1,则下列结论正确的是( )A. y ∈(0,14)B. xy 的最小值为116C. x +2 y 的最大值为 2D. x 2+4y 2的最小值为1511.已知函数f(x)的定义域为R ,∀x ,y ∈R ,恒有f(x +y)+2=f(x)+f(y),且当x >0时,f(x)<2,则下列结论正确的是( )A. f(0)=2B. f(3)=3f(1)−2C. f(−2024)+f(2024)=4D. ∀x 1≠x 2,f(x 1)−f(x 2)x 1−x 2<0三、填空题:本题共3小题,每小题5分,共15分。
山东省菏泽市高一数学上学期期中试卷(a卷)(含解析)-人教版高一全册数学试题
2015-2016学年某某省某某市高一(上)期中数学试卷(A卷)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数f(x)=的定义域为M,g(x)=的定义域为N,则M∩N=()A.{x|x≥﹣1} B.{x|x<3} C.{x|﹣1<x<3} D.{x|﹣1≤x<3}2.函数f(x)=+1的图象关于()A.y轴对称B.直线y=﹣x对称C.坐标原点对称 D.直线y=x对称3.已知f(x﹣1)=x2+1,则f(x)的表达式为()A.f(x)=x2+1 B.f(x)=(x+1)2+1 C.f(x)=(x﹣1)2+1 D.f(x)=x24.下列图象是函数y=的图象的是()A.B.C.D.5.三个数a=0.36,b=60.7,c=log0.5的大小关系为()A.a>b>c B.a>c>b C.b>a>c D.c>a>b6.若偶函数f(x)在[1,2]上为增函数,且有最小值0,则它在[﹣2,﹣1]上()A.是减函数,有最小值0 B.是增函数,有最小值0C.是减函数,有最大值0 D.是增函数,有最大值07.函数的零点个数为()A.3 B.2 C.1 D.08.函数,若实数x0是函数f(x)的零点,且0<x1<x0,则f (x1)的值为()A.恒为正B.等于零C.恒为负D.不小于零9.下列函数中,随x的增大,其增大速度最快的是()A.y=0.001e x B.y=1000lnx C.y=x1000D.y=1000•2x10.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为()A.y=[] B.y=[] C.y=[] D.y=[]二、填空题(本大题共5小题,每小题5分,共25分,将答案填在题中的横线上)11.已知集合A={y|y=log2x,x>1},B={y|y=()x,x>1},则A∩B=.12.已知函数f(x)=x2﹣2kx+8在区间[5,20]上具有单调性,则实数k的取值X围是.13.现测得(x,y)的两组对应值分别为(1,2),(2,5),现有两个待选模型,甲:y=x2+1,乙:y=3x﹣1,若又测得(x,y)的一组对应值为(3,10.2),则应选用作为函数模型.14.已知函数f(x)=a x﹣2﹣2的图象恒过点P,且对数函数y=g(x)的图象过点P,则g(x)=.15.已知函数f(x)=,若函数y=f(x)﹣k有两个零点,则实数k的取值X围是.三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤)(2013秋•某某县校级期末)已知全集U=R,集合A={x|﹣1≤x<3},B={x|x﹣k≤0},16.(12分)(1)若k=1,求A∩∁U B(2)若A∩B≠∅,求k的取值X围.17.(12分)(2015秋•某某期中)已知函数.(1)在如图给定的直角坐标系内画出f(x)的图象;(直接画图,不需列表)(2)写出f(x)的单调递增区间及值域.18.(12分)(2015秋•某某期中)不用计算器求下列各式的值.(1)设=3,求x+x﹣1的值;(2)若xlog34=1,求4x+4﹣x的值;(3)[(1﹣log63)2+log62•log618]÷log64(4).19.(12分)(2011•封开县校级模拟)商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价是100元/件,商场以高于成本价的价格(标价)出售.问:(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?20.(13分)(2015秋•某某期中)已知函数f(x)=log a(1+x),g(x)=log a(1﹣x),(a >0,a≠1).(1)求F(x)=f(x)+g(x)的定义域,(2)设a=2,函数f(x)的定义域为[3,63],求f(x)的最值,(3)求使f(x)﹣g(x)>0的x的取值X围.21.(14分)(2009春•通州区期末)已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调增函数.(1)求证:函数f(x)在区间(﹣∞,0]上是单调减函数(2)若f(1)<f(lgx),求x的取值X围.2015-2016学年某某省某某市高一(上)期中数学试卷(A卷)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数f(x)=的定义域为M,g(x)=的定义域为N,则M∩N=()A.{x|x≥﹣1} B.{x|x<3} C.{x|﹣1<x<3} D.{x|﹣1≤x<3}【考点】函数的定义域及其求法;交集及其运算.【专题】计算题;函数思想;函数的性质及应用;集合.【分析】分别求解两函数的定义域得到M,N,取交集得答案.【解答】解:由3﹣x>0,得x<3,∴M=(﹣∞,﹣3);由x+1≥0,得x≥﹣1,∴N=[﹣1,+∞).∴M∩N=[﹣1,3).故选:D.【点评】本题考查函数的定义域及其求法,是基础的计算题.2.函数f(x)=+1的图象关于()A.y轴对称B.直线y=﹣x对称C.坐标原点对称 D.直线y=x对称【考点】奇偶函数图象的对称性.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】由函数f(x)=+1,观察知该函数是一个偶函数,解答本题要先证明其是偶函数再由偶函数的性质得出其对称轴是y轴.【解答】解:函数的定义域是R.∵f(﹣x)=+1=+1=f(x)∴f(x)=+1是一个偶函数由偶函数的性质知函数f(x)=+1的图象关于y轴对称.故选:A.【点评】本题考点是奇偶函数图象的对称性,考查了偶函数的证明以及偶函数的性质,属于一道基本题.3.已知f(x﹣1)=x2+1,则f(x)的表达式为()A.f(x)=x2+1 B.f(x)=(x+1)2+1 C.f(x)=(x﹣1)2+1 D.f(x)=x2【考点】函数解析式的求解及常用方法.【专题】转化思想;换元法;函数的性质及应用.【分析】利用换元法进行求解即可.【解答】解:设x﹣1=t,则x=1+t,则函数f(x﹣1)=x2+1等价为f(t)=(t+1)2+1,即f(x)=(x+1)2+1,故选:B.【点评】本题主要考查函数解析式的求解,利用换元法是解决本题的关键.4.下列图象是函数y=的图象的是()A.B.C.D.【考点】函数的图象.【专题】函数思想;综合法;函数的性质及应用.【分析】从单调性上分段判断函数图象,【解答】解:当x<0时,y=x2,为二次函数,对称轴为x=0,故y=x2在(﹣∞,0)上是减函数,当x≥0时,y=x﹣1,为一次函数,且是增函数,f(0)=﹣1,故选:C.【点评】本题考查了分段函数的图象,基本初等函数的图象与性质,是基础题.5.三个数a=0.36,b=60.7,c=log0.5的大小关系为()A.a>b>c B.a>c>b C.b>a>c D.c>a>b【考点】对数值大小的比较.【专题】数形结合;转化思想;函数的性质及应用.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵0<a=0.36<1,b=60.7>1,c=log0.5<0,∴b>a>c,故选:C.【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题.6.若偶函数f(x)在[1,2]上为增函数,且有最小值0,则它在[﹣2,﹣1]上()A.是减函数,有最小值0 B.是增函数,有最小值0C.是减函数,有最大值0 D.是增函数,有最大值0【考点】奇偶性与单调性的综合.【专题】计算题;转化思想;综合法.【分析】根据偶函数在关于原点对称的区间上单调性相反,可知f(x)在区间1,2]上的单调性,再由所给最小值为0,可求f(x)在[﹣2,﹣1]上的最值.【解答】解:因为f(x)在[1,2]上为增函数,且有最小值0,所以f(1)=0,又f(x)为偶函数,所以f(x)在[﹣2,﹣1]上单调递减,f(x)≥f(﹣1)=f(1)=0.即f(x)在区间[﹣2,﹣1]上的最小值为0,综上,f(x)在区间[﹣2,﹣1]上单调递减,且最小值为0.故选:A.【点评】本题考查函数的奇偶性、单调性及其应用,属基础题.7.函数的零点个数为()A.3 B.2 C.1 D.0【考点】分段函数的解析式求法及其图象的作法.【分析】分段解方程,直接求出该函数的所有零点.由所得的个数选出正确选项.【解答】解:当x≤0时,令x2+2x﹣3=0解得x=﹣3;当x>0时,令﹣2+lnx=0解得x=100,所以已知函数有两个零点,故选:B.【点评】本题考查函数零点的概念,以及数形结合解决问题的方法,只要画出该函数的图象不难解答此题.8.函数,若实数x0是函数f(x)的零点,且0<x1<x0,则f (x1)的值为()A.恒为正B.等于零C.恒为负D.不小于零【考点】函数的零点.【专题】计算题;函数思想;数学模型法;函数的性质及应用.【分析】易知函数在(0,+∞)上是增函数且连续,再由f(x0)=0且0<x1<x0判断即可.【解答】解:易知函数在(0,+∞)上是增函数且连续,∵实数x0是函数f(x)的零点,∴f(x0)=0,∵0<x1<x0,∴f(x1)<f(x0)=0,故选:C.【点评】本题考查了函数的单调性的判断与函数的连续性的判断,同时考查了函数的零点的应用.9.下列函数中,随x的增大,其增大速度最快的是()A.y=0.001e x B.y=1000lnx C.y=x1000D.y=1000•2x【考点】对数函数、指数函数与幂函数的增长差异.【专题】计算题;函数思想;函数的性质及应用.【分析】在对数函数,幂函数,指数函数中,指数函数的增长速度最快;在指数函数中,底数越大,增长速度越快.【解答】解:在对数函数,幂函数,指数函数中,指数函数的增长速度最快,故排除B,C;指数函数中,底数越大,增长速度越快,故选:A.【点评】本题考查了对数函数,幂函数,指数函数的增大速度的差异.10.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为()A.y=[] B.y=[] C.y=[] D.y=[]【考点】函数解析式的求解及常用方法.【专题】压轴题.【分析】根据规定10推选一名代表,当各班人数除以10的余数大于6时再增加一名代表,即余数分别为7,8,9时可以增选一名代表,也就是x要进一位,所以最小应该加3.进而得到解析式.代入特殊值56、57验证即可得到答案.【解答】解:根据规定10推选一名代表,当各班人数除以10的余数大于6时再增加一名代表,即余数分别为7,8,9时可以增选一名代表,也就是x要进一位,所以最小应该加3.因此利用取整函数可表示为y=[]也可以用特殊取值法若x=56,y=5,排除C、D,若x=57,y=6,排除A;故选:B.【点评】本题主要考查给定条件求函数解析式的问题,这里主要是要读懂题意,再根据数学知识即可得到答案.对于选择题要会选择最恰当的方法.二、填空题(本大题共5小题,每小题5分,共25分,将答案填在题中的横线上)11.已知集合A={y|y=log2x,x>1},B={y|y=()x,x>1},则A∩B=.【考点】对数函数的值域与最值;交集及其运算.【专题】规律型;函数的性质及应用.【分析】先求出集合A,B,利用集合的基本运算求A∩B.【解答】解:∵A={y|y=log2x,x>1}={y|y>0},B={y|y=()x,x>1}={y|0},∴A∩B={y|y>0}∩{y|0}={y|0},故答案为:【点评】本题主要考查指数函数和对数函数的性质以及集合的基本运算,比较基础.12.已知函数f(x)=x2﹣2kx+8在区间[5,20]上具有单调性,则实数k的取值X围是(﹣∞,5]∪[20,+∞).【考点】二次函数的性质.【专题】函数思想;综合法;函数的性质及应用.【分析】令对称轴不在区间[5,20]上即可.【解答】解:f(x)的对称轴为x=k,∵f(x)=x2﹣2kx+8在区间[5,20]上具有单调性,∴k≤5或k≥20.故答案为(﹣∞,5]∪[20,+∞).【点评】本题考查了二次函数的单调性与对称轴的关系,属于基础题.13.现测得(x,y)的两组对应值分别为(1,2),(2,5),现有两个待选模型,甲:y=x2+1,乙:y=3x﹣1,若又测得(x,y)的一组对应值为(3,10.2),则应选用甲作为函数模型.【考点】根据实际问题选择函数类型.【专题】函数的性质及应用.【分析】将点的坐标代入验证,即可得到结论.【解答】解:甲:y=x2+1,(1,2),(2,5)代入验证满足,x=3时,y=10;乙:y=3x﹣1,(1,2),(2,5)代入验证满足,x=3时,y=8∵测得(x,y)的一组对应值为(3,10.2),∴选甲.故答案为:甲【点评】本题考查函数模型的选择,考查学生的计算能力,属于基础题.14.已知函数f(x)=a x﹣2﹣2的图象恒过点P,且对数函数y=g(x)的图象过点P,则g(x)=log x.【考点】指数函数的单调性与特殊点.【专题】函数思想;综合法;函数的性质及应用.【分析】令x﹣2=0求出P点坐标,使用待定系数法求出g(x).【解答】解:令x﹣2=0得x=2,∴f(x)恒过点(2,﹣1).设g(x)=log a x,则log a2=﹣1.解得a=.∴g(x)=log x.故答案为:.【点评】本题考查了指数函数的性质及待定系数法求函数的解析式.是基础题.15.已知函数f(x)=,若函数y=f(x)﹣k有两个零点,则实数k的取值X围是(0,1).【考点】根的存在性及根的个数判断.【专题】计算题;数形结合;数形结合法;函数的性质及应用.【分析】作函数f(x)=与y=k的图象,从而可知当k∈(0,1)时,函数f(x)=与y=k的图象有两个交点;从而解得.【解答】解:作函数f(x)=与y=k的图象如下,,结合图象可知,当k∈(0,1)时,函数f(x)=与y=k的图象有两个交点,故答案为;(0,1).【点评】本题考查了数形结合的思想应用及函数的零点与函数的图象的交点的关系应用.三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤)(2013秋•某某县校级期末)已知全集U=R,集合A={x|﹣1≤x<3},B={x|x﹣k≤0},16.(12分)(1)若k=1,求A∩∁U B(2)若A∩B≠∅,求k的取值X围.【考点】交集及其运算;交、并、补集的混合运算.【专题】集合.【分析】(1)把k=1代入B中求出解集确定出B,进而确定出B的补集,找出A与B补集的交集即可;(2)由A与B的交集不为空集,求出k的X围即可.【解答】解:(1)把k=1代入B得:B={x|x≤1},∵全集U=R,∴∁U B={x|x>1},∵A={x|﹣1≤x<3},∴A∩∁U B={x|1<x<3};(2)∵A={x|﹣1≤x<3},B={x|x﹣k≤0}={x|x≤k},且A∩B≠∅,∴k≥﹣1.【点评】此题考查了交集及其运算,以及交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.17.(12分)(2015秋•某某期中)已知函数.(1)在如图给定的直角坐标系内画出f(x)的图象;(直接画图,不需列表)(2)写出f(x)的单调递增区间及值域.【考点】函数图象的作法;函数的值域;函数单调性的判断与证明.【专题】计算题;作图题.【分析】(1)利用函数的解析式直接求出函数的图象;(2)通过函数的图象直接写出函数的单调区间以及函数的值域.【解答】解:(1)图象如下图所示;…(5分)(2)由图可知f(x)的单调递增区间[﹣1,0],[2,5], (8)值域为[﹣1,3];…(12分)【点评】本题考查函数的图象的作法,函数的值域以及函数的单调区间,考查基本知识的应用.18.(12分)(2015秋•某某期中)不用计算器求下列各式的值.(1)设=3,求x+x﹣1的值;(2)若xlog34=1,求4x+4﹣x的值;(3)[(1﹣log63)2+log62•log618]÷log64(4).【考点】对数的运算性质.【专题】计算题;方程思想;转化法;函数的性质及应用.【分析】(1)通过平方化简求解即可.(2)利用对数运算法则化简求解即可.(3)利用对数运算法则化简求解即可.(4)利用有理指数幂的运算法则化简求解即可.【解答】解:(1)设=3,平方可得x+x﹣1+2=9,∴x+x﹣1=7,(2)xlog34=1,x=log43,4x+4﹣x=+==,(3)[(1﹣log63)2+log62•log618]÷log64====1.(4)=﹣1++e=.(每个结果3分)【点评】本题考查对数运算法则以及有理指数幂的运算法则的应用,考查计算能力.19.(12分)(2011•封开县校级模拟)商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价是100元/件,商场以高于成本价的价格(标价)出售.问:(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?【考点】函数模型的选择与应用;一元二次不等式的应用.【专题】应用题.【分析】(1)先设购买人数为n人,羊毛衫的标价为每件x元,利润为y元,列出函数y的解析式,最后利用二次函数的最值即可求得商场要获取最大利润,羊毛衫的标价应定为每件多少元即可;(2)由题意得出关于x的方程式,解得x值,从而即可解决商场要获取最大利润的75%,每件标价为多少元.【解答】解:(1)设购买人数为n人,羊毛衫的标价为每件x元,利润为y元,则x∈(100,300]n=kx+b(k<0),∵0=300k+b,即b=﹣300k,∴n=k(x﹣300)(3分)y=(x﹣100)k(x﹣300)=k(x﹣200)2﹣10000k(x∈(100,300])(6分)∵k<0,∴x=200时,y max=﹣10000k,即商场要获取最大利润,羊毛衫的标价应定为每件200元.(8分)(2)解:由题意得,k(x﹣100)(x﹣300)=﹣10000k•75%x2﹣400x+37500=0解得x=250或x=150所以,商场要获取最大利润的75%,每件标价为250元或150元(16分)【点评】本小题主要考查函数模型的选择与应用、二次函数的性质及函数的最值,考查运算求解能力与转化思想.属于基础题.20.(13分)(2015秋•某某期中)已知函数f(x)=log a(1+x),g(x)=log a(1﹣x),(a >0,a≠1).(1)求F(x)=f(x)+g(x)的定义域,(2)设a=2,函数f(x)的定义域为[3,63],求f(x)的最值,(3)求使f(x)﹣g(x)>0的x的取值X围.【考点】对数函数图象与性质的综合应用.【专题】计算题;分类讨论;综合法;函数的性质及应用.【分析】(1)利用对数函数有意义的条件,求F(x)=f(x)+g(x)的定义域,(2)当a=2时,f(x)=log a(1+x)在[3,63]上为增函数,即可求f(x)的最值,(3)f(x)﹣g(x)>0即f(x)>g(x,分类讨论,即可求使f(x)﹣g(x)>0的x 的取值X围.【解答】解:(1)要使F(x)有意义,须,∴﹣1<x<1,∴函数的定义域为(﹣1,1)…(3分)(2)当a=2时,f(x)=log a(1+x)在[3,63]上为增函数,因此当x=3时,f(x)有最小值为2,当x=63时,f(x)有最大值为6.…(7分)(3)f(x)﹣g(x)>0即f(x)>g(x),当a>1时,log a(1+x)>log a(1﹣x),满足,所以0<x<1,当0<a<1时,log a(1+x)>log a(1﹣x),满足,所以﹣1<x<0,综上,a>1时,解集为{x|0<x<1},0<a<1时,解集为{x|﹣1<x<0}.…(13分)【点评】本题考查对数函数的性质,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.21.(14分)(2009春•通州区期末)已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调增函数.(1)求证:函数f(x)在区间(﹣∞,0]上是单调减函数(2)若f(1)<f(lgx),求x的取值X围.【考点】奇偶性与单调性的综合;对数的运算性质;对数函数的单调性与特殊点.【专题】计算题;证明题.【分析】(1)设x1<x2≤0,则﹣x1>﹣x2≥0,利用f(x)在区间[0,+∞)上是单调增函数的性质得出不等式,再由偶函数的性质即可得出f(x1)>f(x2),再由定义即可得出单调性;(2)由于函数是一个偶函数,故可以分两类来解这个不等式,即lgx<0与lgx>0两类来讨论.【解答】解:(1)证明:设x1<x2≤0,则﹣x1>﹣x2≥0∵f(x)在区间[0,+∞)上是单调增函数.∴f(﹣x1)>f(﹣x2)又定义在实数集R上的偶函数f(x)∴f(﹣x1)=f(x1),f(﹣x2)=f(x2),f(x1)>f(x2)∴函数f(x)在区间(﹣∞,0]上是单调减函数(2)当0<x≤1时,lgx<0由f(1)<f(lgx)得f(﹣1)<f(lgx),函数f(x)在区间(﹣∞,0]上时单调减函数∴当x≥1时,lgx>0由f(1)<f(lgx),f(x)在区间[0,+∞)上是单调增函数∴lgx>1,x>10综上所述,x的取值X围是(0,)∪(10,+∞).【点评】本题考查函数的奇偶性与单调性的综合,求解问题的关键是正确理解函数的性质并能用这些性质进行灵活变形转化证明问题.本题中的函数是抽象函数,故证明问题时要注意依据题设灵活转化.本题中的易错点是第二问求解时易丢掉一部分解,做题时要注意考虑完善.。
高中高一数学上学期期中试卷(创新班,含解析)-人教版高一全册数学试题
2015-2016学年某某省某某市桐乡高中高一(上)期中数学试卷(创新班)一.选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若角600°的终边上有一点(﹣4,a),则a的值是()A.B.C.D.2.已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A.B.C.D.3.设向量=(cosα,),若的模长为,则cos2α等于()A.﹣B.﹣C.D.4.平面向量与的夹角为,若,,则=()A.B.C.4 D.125.函数y=xcosx+sinx的图象大致为()A.B.C.D.6.为了得到g(x)=cos2x的图象,则需将函数的图象()A.向右平移单位B.向左平移单位C.向右平移单位D.向左平移单位7.在△ABC中,∠A=90°,AB=1,AC=2.设点P,Q满足,,λ∈R.若=﹣2,则λ=()A.B.C.D.28.若sin2α=,sin(β﹣α)=,且α∈[,π],β∈[π,],则α+β的值是()A.B.C.或D.或二.填空题(本大题共7小题,第9-11小题每空3分,第12小题每空2分,第13-15小题每空4分,共36分).9.已知向量=(3,1),=(1,3),=(k,2),当∥时,k=;当(﹣)⊥,则k=.10.已知α为第二象限的角,sinα=,则=,tan2α=.11.E,F是等腰直角△ABC斜边AB上的三等分点,则tan∠ECF=,cos∠BCF=.12.函数y=的图象如图,则k=,ω=,φ=.13.设f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0.若对一切x∈R 恒成立,则①;②;③f(x)既不是奇函数也不是偶函数;④f(x)的单调递增区间是;⑤存在经过点(a,b)的直线与函数f(x)的图象不相交.以上结论正确的是(写出所有正确结论的编号).14.已知,, =,则在上的投影的取值X围.15.已知,∠APB=60°,则的取值X围是.三.解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.已知向量,(1)当∥时,求2cos2x﹣sin2x的值;(2)求在上的值域.17.已知函数f(x)=sin(ωx+ϕ)(ω>0,0≤ϕ≤π)为偶函数,其图象上相邻的两个最高点之间的距离为2π.(Ⅰ)求f(x)的解析式;(Ⅱ)若,求的值.18.已知函数f(x)=sin2(x+)﹣cos2x﹣(x∈R).(1)求函数f(x)最小值和最小正周期;(2)若A为锐角,且向量=(1,5)与向量=(1,f(﹣A))垂直,求cos2A.19.已知向量=(co sα,sinα),=(cosx,sinx),=(sinx+2sinα,cosx+2cosα),其中0<α<x<π.(1)若,求函数f(x)=•的最小值及相应x的值;(2)若与的夹角为,且⊥,求tan2α的值.20.定义向量的“相伴函数”为f(x)=asinx+bcosx;函数f(x)=asinx+bcosx 的“相伴向量”为(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设,试判断g(x)是否属于S,并说明理由;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)是函数的图象上一动点,向量的“相伴函数”f(x)在x=x0处取得最大值.当点M运动时,求tan2x0的取值X围.2015-2016学年某某省某某市桐乡高中高一(上)期中数学试卷(创新班)参考答案与试题解析一.选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若角600°的终边上有一点(﹣4,a),则a的值是()A.B.C.D.【考点】运用诱导公式化简求值;任意角的三角函数的定义.【专题】计算题.【分析】先利用诱导公式使tan600°=tan60°,进而根据求得答案.【解答】解:∵,∴.故选A【点评】本题主要考查了用诱导公式化简求值的问题.属基础题.2.已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A.B.C.D.【考点】平行向量与共线向量;单位向量.【专题】平面向量及应用.【分析】由条件求得=(3,﹣4),||=5,再根据与向量同方向的单位向量为求得结果.【解答】解:∵已知点A(1,3),B(4,﹣1),∴=(4,﹣1)﹣(1,3)=(3,﹣4),||==5,则与向量同方向的单位向量为=,故选A.【点评】本题主要考查单位向量的定义和求法,属于基础题.3.设向量=(cosα,),若的模长为,则cos2α等于()A.﹣B.﹣C.D.【考点】二倍角的余弦.【专题】三角函数的求值.【分析】由||==,求得cos2α=,再利用二倍角的余弦公式求得cos2α=2cos2α﹣1的值.【解答】解:由题意可得||==,∴cos2α=.∴cos2α=2cos2α﹣1=﹣,故选:A.【点评】本题主要考查求向量的模,二倍角的余弦公式的应用,属于基础题.4.平面向量与的夹角为,若,,则=()A.B.C.4 D.12【考点】向量的模;平面向量数量积的运算.【专题】平面向量及应用.【分析】分析由向量,求出向量,要求,先求其平方,展开后代入数量积公式,最后开方即可.【解答】解:由=(2,0),所以=,所以====12.所以.故选B.【点评】点评本题考查了向量的模及向量的数量积运算,考查了数学转化思想,解答此题的关键是运用.5.函数y=xcosx+sinx的图象大致为()A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除B,然后利用区特值排除A和C,则答案可求.【解答】解:因为函数y=xcosx+sinx为奇函数,所以排除选项B,由当x=时,,当x=π时,y=π×cosπ+sinπ=﹣π<0.由此可排除选项A和选项C.故正确的选项为D.故选D.【点评】本题考查了函数的图象,考查了函数的性质,考查了函数的值,是基础题.6.为了得到g(x)=cos2x的图象,则需将函数的图象()A.向右平移单位B.向左平移单位C.向右平移单位D.向左平移单位【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题;数形结合;分析法;三角函数的求值;三角函数的图像与性质.【分析】由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【解答】解:∵y=sin(﹣2x+)=cos[﹣(﹣2x+)]=cos(2x+)=cos[2(x+)],∴将函数y=sin(﹣2x+)图象上所有的点向右平移个单位,即可得到g(x)=cos2x的图象.故选:A.【点评】本题主要考查诱导公式、函数y=Asin(ωx+φ)的图象变换规律,属于基础题.7.在△ABC中,∠A=90°,AB=1,AC=2.设点P,Q满足,,λ∈R.若=﹣2,则λ=()A.B.C.D.2【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】由题意可得=0,根据=﹣(1﹣λ)﹣λ=(λ﹣1)4﹣λ×1=﹣2,求得λ的值.【解答】解:由题意可得=0,由于=()•()=[﹣]•[﹣]=0﹣(1﹣λ)﹣λ+0=(λ﹣1)4﹣λ×1=﹣2,解得λ=,故选B.【点评】本题主要考查两个向量垂直的性质,两个向量的加减法的法则,以及其几何意义,两个向量的数量积的运算,属于中档题.8.若sin2α=,sin(β﹣α)=,且α∈[,π],β∈[π,],则α+β的值是()A.B.C.或D.或【考点】两角和与差的正弦函数;二倍角的正弦.【专题】三角函数的求值.【分析】依题意,可求得α∈[,],2α∈[,π],进一步可知β﹣α∈[,π],于是可求得cos(β﹣α)与cos2α的值,再利用两角和的余弦及余弦函数的单调性即可求得答案.【解答】解:∵α∈[,π],β∈[π,],∴2α∈[,2π],又sin2α=>0,∴2α∈[,π],cos2α=﹣=﹣;又sin(β﹣α)=,β﹣α∈[,π],∴cos(β﹣α)=﹣=﹣,∴cos(α+β)=cos[2α+(β﹣α)]=cos2αcos(β﹣α)﹣s in2αsin(β﹣α)=﹣×(﹣)﹣×=.又α∈[,],β∈[π,],∴(α+β)∈[,2π],∴α+β=,故选:A.【点评】本题考查同角三角函数间的关系式的应用,着重考查两角和的余弦与二倍角的正弦,考查转化思想与综合运算能力,属于难题.二.填空题(本大题共7小题,第9-11小题每空3分,第12小题每空2分,第13-15小题每空4分,共36分).9.已知向量=(3,1),=(1,3),=(k,2),当∥时,k=;当(﹣)⊥,则k= 0 .【考点】数量积判断两个平面向量的垂直关系;平行向量与共线向量.【专题】计算题;转化思想;综合法;平面向量及应用.【分析】利用向量的坐标运算和向量平行、垂直的性质求解即可.【解答】解:∵向量=(3,1),=(1,3),=(k,2),∵∥,∴,解得k=.∵向量=(3,1),=(1,3),=(k,2),∴=(3﹣k,﹣1),∵(﹣)⊥,∴(3﹣k)•1+(﹣1)•3=0,解得k=0.故答案为:,0.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意向量平行和向量垂直的性质的合理运用.10.已知α为第二象限的角,sinα=,则= 3 ,tan2α=.【考点】二倍角的正切.【专题】计算题;转化思想;分析法;三角函数的求值.【分析】先由已知求得的X围,求出tanα的值,再由正切函数的二倍角公式可得答案.【解答】解:∵α为第二象限的角,∴可得:∈(kπ,k),k∈Z,∴tan>0,又∵sinα=,∴cosα=﹣,tanα==﹣,∴tanα=﹣=,整理可得:3tan2﹣8tan﹣3=0,解得:tan=3或﹣(舍去).tan2α==.故答案为:3,.【点评】本小题主要考查三角函数值符号的判断、同角三角函数关系、和角的正切公式,同时考查了基本运算能力及等价变换的解题技能.11.E,F是等腰直角△ABC斜边AB上的三等分点,则tan∠ECF=,cos∠BCF=.【考点】三角形中的几何计算.【专题】计算题;转化思想;综合法;解三角形.【分析】取AB中点D,连接CD,设AB=6,则AC=BC=3,由余弦定理求出CE=CF=,再由余弦定理得cos∠ECF,由此能求出tan∠ECF.由半角公式求出c os∠DCF,sin∠DCF,再由cos∠BCF=cos(45°﹣∠DCF),能求出结果.【解答】解:取AB中点D,连接CD,设AB=6,则AC=BC=3,由余弦定理可知cos45°===,解得CE=CF=,再由余弦定理得cos∠ECF===,∴sin,∴tan∠ECF==.cos∠DCF=cos==,sin∠DCF=sin==,cos∠BCF=cos(45°﹣∠DCF)=cos45°cos∠DCF+sin45°sin∠DCF=()=.故答案为:,.【点评】本题考查角的正切值、余弦值的求法,是中档题,解题时要认真审题,注意正弦定理、余弦定理、半角公式的合理运用.12.函数y=的图象如图,则k=,ω=,φ=.【考点】函数的图象.【专题】计算题;数形结合;函数的性质及应用.【分析】由直线y=kx+1过点(﹣2,0)得k=;可确定=﹣=π,从而确定ω=,再代入点求φ即可.【解答】解:∵直线y=kx+1过点(﹣2,0),∴k=;∵=﹣=π,∴T=4π,∴ω==,(,﹣2)代入y=2sin(x+φ)得,sin(+φ)=﹣1,解得,φ=;故答案为:,,.【点评】本题考查了分段函数及数形结合的思想应用.13.设f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0.若对一切x∈R 恒成立,则①;②;③f(x)既不是奇函数也不是偶函数;④f(x)的单调递增区间是;⑤存在经过点(a,b)的直线与函数f(x)的图象不相交.以上结论正确的是①②③(写出所有正确结论的编号).【考点】两角和与差的正弦函数;正弦函数的单调性.【专题】计算题.【分析】先化简f(x)的解析式,利用已知条件中的不等式恒成立,得到是三角函数的最大值,得到x=是三角函数的对称轴,将其代入整体角令整体角等于kπ+求出辅助角θ,再通过整体处理的思想研究函数的性质.【解答】解:∵f(x)=asin2x+bcos2x=sin(2x+θ)∵∴2×+θ=kπ+∴θ=kπ+∴f(x)═sin(2x+kπ+)=±sin(2x+)对于①=±sin(2×+)=0,故①对对于②,=sin(),|f()|=sin(),∴,故②正确.对于③,f(x)不是奇函数也不是偶函数对于④,由于f(x)的解析式中有±,故单调性分情况讨论,故④不对对于⑤∵要使经过点(a,b)的直线与函数f(x)的图象不相交,则此直线须与横轴平行,且|b|>,此时平方得b2>a2+b2这不可能,矛盾,∴不存在经过点(a,b)的直线于函数f(x)的图象不相交故⑤错故答案为:①②③.【点评】本题考查三角函数的对称轴过三角函数的最值点、考查研究三角函数的性质常用整体处理的思想方法.14.已知,, =,则在上的投影的取值X围.【考点】平面向量数量积的运算.【专题】综合题;分类讨论;转化思想;向量法;平面向量及应用.【分析】由已知求出,再求出,代入投影公式,转化为关于t的函数,利用换元法结合配方法求得在上的投影的取值X围.【解答】解:∵=,且,,∴===.==4﹣2t+t2.∴在上的投影等于=.令4﹣t=m,则t=4﹣m,t2=16﹣8m+m2.∴上式=f(m)=.当m=0时,f(m)=0;当m>0时,f(m)==∈(0,1];当m<0时,f(m)=﹣=﹣∈(,0).综上,在上的投影的X围为(﹣,1].故答案为:(﹣,1].【点评】本题考查向量在几何中的应用,综合考查向量的线性运算,向量的数量积的运算及数量积公式,熟练掌握向量在向量上的投影是解题的关键,是中档题.15.已知,∠APB=60°,则的取值X围是.【考点】平面向量数量积的运算.【专题】计算题;运动思想;数形结合法;平面向量及应用.【分析】由题意画出图形,取AB中点C,把问题转化为求的取值X围解决.【解答】解:如图,,∠APB=60°,取AB的中点C,连接PC,则===.由图可知,P为图中优弧上的点(不含A、B).∴(PC⊥AB时最大),∴的取值X围是(0,].故答案为:(0,].【点评】本题考查平面向量的数量积运算,由题意画出图形是解答该题的关键,是中档题.三.解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.已知向量,(1)当∥时,求2cos2x﹣sin2x的值;(2)求在上的值域.【考点】正弦函数的定义域和值域;三角函数的恒等变换及化简求值.【专题】计算题.【分析】(1)利用向量平行的坐标运算,同角三角函数间的关系,得到tanx的值,然后化简2cos2x﹣sin2x即可(2)先表示出在=(sin2x+),再根据x的X围求出函数f(x)的最大值及最小值.【解答】解:(1)∵∥,∴,∴,(3分)∴.(6分)(2)∵,∴,(8分)∵,∴,∴,(10分)∴,(12分)∴函数f(x)的值域为.(13分)【点评】本题主要考查平面向量的坐标运算.考查平面向量时经常和三角函数放到一起做小综合题.是高考的热点问题.17.已知函数f(x)=sin(ωx+ϕ)(ω>0,0≤ϕ≤π)为偶函数,其图象上相邻的两个最高点之间的距离为2π.(Ⅰ)求f(x)的解析式;(Ⅱ)若,求的值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】计算题.【分析】(Ⅰ)函数f(x)=sin(ωx+ϕ)(ω>0,0≤ϕ≤π)为偶函数,其图象上相邻的两个最高点之间的距离为2π,确定函数的周期,求出ω,确定ϕ的值,求出f(x)的解析式;(Ⅱ)若,求出,,利用诱导公式化简,然后再用二倍角公式求出它的值.【解答】解:(Ⅰ)∵图象上相邻的两个最高点之间的距离为2π,∴T=2π,则.∴f(x)=sin(x+ϕ).(2分)∵f(x)是偶函数,∴,又0≤ϕ≤π,∴.则 f(x)=cosx.(5分)(Ⅱ)由已知得,∴.则.(8分)∴.(12分)【点评】本题是中档题,考查函数解析式的求法,诱导公式和二倍角的应用,考查计算能力,根据角的X围求出三角函数值是本题的解题依据.18.已知函数f(x)=sin2(x+)﹣cos2x﹣(x∈R).(1)求函数f(x)最小值和最小正周期;(2)若A为锐角,且向量=(1,5)与向量=(1,f(﹣A))垂直,求cos2A.【考点】二倍角的余弦;平面向量的综合题.【专题】解三角形.【分析】(1)根据二倍角的余弦公式变形、两角差的正弦公式化简解析式,由正弦函数的周期、最值求出结果;(2)根据向量垂直的条件列出方程,代入f(x)由诱导公式化简求出,由三角函数值的符号、角A的X围求出的X围,由平方关系求出的值,利用两角差的余弦函数、特殊角的三角函数值求出cos2A的值.【解答】解:(1)由题意得,f(x)=﹣﹣=cos2x﹣1=,∴函数f(x)最小值是﹣2,最小正周期T==π;(2)∵向量=(1,5)与向量=(1,f(﹣A))垂直,∴1+5f(﹣A)=0,则1+5[]=0,∴=>0,∵A为锐角,∴,则,∴==,则cos2A=cos[()﹣]=+=×+=.【点评】本题考查二倍角的余弦公式变形,两角差的正弦、余弦公式,向量垂直的条件,以及正弦函数的性质等,注意角的X围,属于中档题.19.已知向量=(cosα,sinα),=(cosx,sinx),=(sinx+2sinα,cosx+2cosα),其中0<α<x<π.(1)若,求函数f(x)=•的最小值及相应x的值;(2)若与的夹角为,且⊥,求tan2α的值.【考点】平面向量的坐标运算.【分析】(1)根据向量点乘表示出函数f(x)的解析式后令t=sinx+cosx转化为二次函数解题.(2)根据向量a与b的夹角为确定,再由a⊥c可知向量a点乘向量c等于0整理可得sin(x+α)+2sin2α=0,再将代入即可得到答案.【解答】解:(1)∵=(cosx,sinx),=(sinx+2sinα,cosx+2cosα),,∴f(x)=•=cosxsinx+2cosxsinα+sinxcosx+2sinxcosα=.令t=sinx+cosx(0<x<π),则t=,则2sinxcosx=t2﹣1,且﹣1<t<.则,﹣1<t<.∴时,,此时.由于<x<π,故.所以函数f(x)的最小值为,相应x的值为;(2)∵与的夹角为,∴.∵0<α<x<π,∴0<x﹣α<π,∴.∵⊥,∴cosα(sinx+2sinα)+sinα(cosx+2cosα)=0.∴sin(x+α)+2sin2α=0,.∴,∴.【点评】本题主要考查平面向量的坐标运算和数量积运算.向量一般和三角函数放在一起进行考查,这种题型是高考的热点,每年必考.20.定义向量的“相伴函数”为f(x)=asinx+bcosx;函数f(x)=asinx+bcosx 的“相伴向量”为(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设,试判断g(x)是否属于S,并说明理由;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)是函数的图象上一动点,向量的“相伴函数”f(x)在x=x0处取得最大值.当点M运动时,求tan2x0的取值X围.【考点】两角和与差的正弦函数.【专题】计算题;压轴题;新定义;三角函数的求值;三角函数的图像与性质.【分析】(1)先利用诱导公式对其化简,再结合定义即可得到证明;(2)先根据定义求出其相伴向量,再代入模长计算公式即可;(3)先根据定义得到函数f(x)取得最大值时对应的自变量x0;再结合几何意义及基本不等式求出的X围,最后利用二倍角的正切公式及正切函数的单调性即可得到结论.【解答】(本题满分15分)解:(1)因为:,g(x)的相伴向量为(4,3),所以:g(x)∈S;(3分)(2)∵h(x)=cos(x+α)+2cosx=﹣sinαsinx+(cosα+2)cosx,∴h(x)的“相伴向量”为,.(7分)(3)的“相伴函数”,其中,当时,f(x)取得最大值,故,∴,∴,又M(a,b)是满足,所以,令,∴,m>2∵在(1,+∞)上单调递减,∴(15分)【点评】本体主要在新定义下考查平面向量的基本运算性质以及三角函数的有关知识.是对基础知识的综合考查,需要有比较扎实的基本功.。
山东省泰安一中高一数学下学期期中试卷(含解析)-人教版高一全册数学试题
某某省某某一中2014-2015学年高一下学期期中数学试卷一、选择题(每小题5分,共50分)1.计算sin(﹣960°)的值为()A.﹣B.C.D.﹣2.半径为1m的圆中,60°的圆心角所对的弧的长度为()m.A.B.C.60 D.13.若角α满足条件sin2α<0,cosα﹣sinα<0,则α在()A.第一象限B.第二象限C.第三象限D.第四象限4.设向量=(1,2),=(﹣2,1),则下列结论中不正确的是()A.|﹣|=|+| B.(﹣)⊥(+) C.||=|| D.∥5.将函数y=sin(2x﹣)的图象向右平移个单位,然后纵坐标不变横坐标伸长为原来的2倍,得到函数解析式为()A.y=sin(x﹣)B.y=cosx C.y=﹣cosx D.y=﹣sinx6.下列各式中,值为的是()A.sin15°cos15°B.cos2﹣sin2C.cos42°sin12°﹣sin42°cos12°D.7.在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点F.若=,=,则=()A.B.C.D.8.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1C.φ=D.B=49.对于,下列选项中正确的是()A.f(x)关于直线对称B.f(x)是偶函数C.f(x)的最小正周期为2πD.f(x)的最大值为110.在△ABC中,P是BC边中点,若,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形但不一定是等边三角形二、填空题(每小题5分,共25分,请在答题纸上作答)11.已知是夹角为的两个单位向量,向量,若,则实数k的值为.12.求值:=.13.若α∈(,π),cos2α=sin(﹣α),则sin2α的值为.14.有下列说法:①已知α为第二象限角,则为第一或第三象限角;②已知λ为实数,为平面内任一向量,则的模为;③△ABC中,若tanA•tanC>1,则△ABC为锐角三角形;④已知O为△ABC所在平面内一点,且,则点O是△ABC的重心.则正确的序号是.15.在平行四边形ABCD中,AD=2,∠BAD=60°,E为CD中点.若,则AB的长为.三、解答题(共75分,请在答题纸上作答)16.已知向量.(Ⅰ)若四边形ABCD为平行四边形,求D点坐标;(Ⅱ)若,某某数的值.17.已知,,.(Ⅰ)求向量与的夹角θ;(Ⅱ)求及向量在方向上的投影.18.已知,,且.求:(Ⅰ) cos(2α﹣β)的值.(Ⅱ)β的值.19.已知A,B,C是△ABC的三个内角.(Ⅰ)已知,,且,求∠C的大小;(Ⅱ)若向量,且||=,求证:tanAtanB为定值,并求这个定值.20.如图,已知OPQ是半径为圆心角为的扇形,C是该扇形弧上的动点,ABCD是扇形的内接矩形,记∠BOC为α.(Ⅰ)若Rt△CBO的周长为,求的值.(Ⅱ)求的最大值,并求此时α的值.21.已知函数ωx﹣2,(ω>0),其图象与x轴相邻两个交点的距离为.(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)求使得f(x)≥﹣的x的取值集合;(Ⅲ)若将f(x)的图象向左平移m(m>0)个长度单位得到函数g(x)的图象恰好经过点(﹣,0),当m取得最小值时,求g(x)在上的单调递增区间.某某省某某一中2014-2015学年高一下学期期中数学试卷一、选择题(每小题5分,共50分)1.计算sin(﹣960°)的值为()A.﹣B.C.D.﹣考点:运用诱导公式化简求值.专题:三角函数的求值.分析:把要求的式子利用诱导公式化为sin60°,从而求得结果.解答:解:sin(﹣960°)=﹣sin960°=﹣sin(360°×2+240°)=﹣sin240°=sin60°=;故选:C.点评:本题主要考查利用诱导公式进行化简求值,属于基础题.2.半径为1m的圆中,60°的圆心角所对的弧的长度为()m.A.B.C.60 D.1考点:弧长公式.专题:计算题.分析:根据题意可以利用扇形弧长公式l扇形直接计算.解答:解:根据题意得出:60°=l扇形=1×=,半径为1,60°的圆心角所对弧的长度为.故选A.点评:此题主要考查了扇形弧长的计算,注意掌握扇形的弧长公式是解题关键.3.若角α满足条件sin2α<0,cosα﹣sinα<0,则α在()A.第一象限B.第二象限C.第三象限D.第四象限考点:象限角、轴线角;二倍角的正弦.专题:计算题.分析:由sin2α<0,确定2α的象限,确定α的象限X围,根据cosα﹣sinα<0,判定α的具体象限.解答:解:∵sin2α<0,∴2α在第三、四象限或y的负半轴.2kπ+π<2α<2kπ+2π,k∈Z,∴kπ+<α<kπ+π,k∈Z∴α在第二、四象限.又∵cosα﹣sinα<0,∴α在第二象限.故选:B.点评:本题考查象限角、轴线角,二倍角的正弦,考查分析问题解决问题的能力,是基础题.4.设向量=(1,2),=(﹣2,1),则下列结论中不正确的是()A.|﹣|=|+| B.(﹣)⊥(+) C.||=|| D.∥考点:平面向量数量积的运算.专题:平面向量及应用.分析:由于已知给出了向量的坐标,所以可以利用坐标运算进行选择.解答:解:由已知﹣=(3,1),+=(﹣1,3),所以|﹣|=|+|=;故A正确;并且3×(﹣1)+1×3=0,所以(﹣)⊥(+)正确;||==||,故C正确;故:选D点评:本题考查了向量的坐标运算,包括加减运算、模的计算.5.将函数y=sin(2x﹣)的图象向右平移个单位,然后纵坐标不变横坐标伸长为原来的2倍,得到函数解析式为()A.y=sin(x﹣)B.y=cosx C.y=﹣cosx D.y=﹣sinx考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:根据三角函数图象变换的公式,结合诱导公式进行化简,可得两次变换后所得到的图象对应函数解析式.解答:解:设f(x)=sin(2x﹣),可得y=f(x)的图象向右平移,得到f(x﹣)=sin[2(x﹣)﹣]=sin(2x﹣)的图象,再将所得的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),可得f(x﹣)=sin (x﹣)=﹣cosx的图象.∴函数y=sin(2x﹣)的图象按题中的两步变换,最终得到的图象对应函数解析式为y=﹣cosx,故选:C.点评:本题给出三角函数图象的平移和伸缩变换,求得到的图象对应的函数解析式.着重考查了三角函数图象的变换公式和诱导公式等知识,属于基础题.6.下列各式中,值为的是()A.sin15°cos15°B.cos2﹣sin2C.cos42°sin12°﹣sin42°cos12°D.考点:两角和与差的正弦函数;二倍角的正弦;二倍角的余弦.专题:计算题;三角函数的求值.分析:利用两角和与差的三角函数公式,分别计算,即可得出结论.解答:解:sin15°cos15°=sin30°=;cos2﹣sin2=cos=;cos42°sin12°﹣sin42°cos12°=﹣sin30°=﹣;=tan45°=.故选:D.点评:本题考查两角和与差的三角函数公式,考查学生的计算能力,正确运用公式是关键.7.在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点F.若=,=,则=()A.B.C.D.考点:平面向量的基本定理及其意义.专题:计算题;压轴题.分析:根据两个三角形相似对应边成比例,得到DF与FC之比,做FG平行BD交AC于点G,使用已知向量表示出要求的向量,得到结果.解答:解:∵由题意可得△DEF∽△BEA,∴==,再由AB=CD可得=,∴=.作FG平行BD交AC于点G,∴=,∴===.∵=+=+=+==,∴=+=+,故选B.点评:本题主要考查两个向量的加减法的法则,以及其几何意义,向量是数形结合的典型例子,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的,本题属于中档题.8.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1C.φ=D.B=4考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:先根据函数的最大值和最小值求得A和B,然后利用图象中﹣求得函数的周期,求得ω,最后根据x=时取最大值,求得φ.解答:解:如图根据函数的最大值和最小值得求得A=2,B=2函数的周期为(﹣)×4=π,即π=,ω=2当x=时取最大值,即sin(2×+φ)=1,2×+φ=2kπ+φ=2kπ﹣∵∴φ=故选C.点评:本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式.考查了学生基础知识的运用和图象观察能力.9.对于,下列选项中正确的是()A.f(x)关于直线对称B.f(x)是偶函数C.f(x)的最小正周期为2πD.f(x)的最大值为1考点:三角函数的最值;余弦定理.专题:三角函数的求值.分析:利用三角恒等变换化简函数的解析式,再利用余弦函数的图象和性质,逐一判断各个选项是否正确,从而得出结论.解答:解:对于=+﹣1=cos(2x﹣)﹣cos(2x+)=cos(2x﹣)+cos(2x﹣)=cos(2x﹣),令x=,求得f(x)=0,不是最值,故f(x)的图象不关于直线对称,故A不正确.由于不满足f(﹣x)=f(x),故函数不是偶函数,故B不正确.函数的最小正周期为=π,故C不正确.函数的最大值为1,故D正确,故选:D.点评:本题主要考查三角恒等变换,余弦函数的图象和性质,属于基础题.10.在△A BC中,P是BC边中点,若,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形但不一定是等边三角形考点:三角形的形状判断.专题:解三角形;平面向量及应用.分析:将转化为以与为基底的关系,即可得到答案.解答:解:.设||=c,||=a,||=b,则,即有:c+a+b=,∵=﹣,=﹣,∴c+a+b=c﹣a+b(﹣)=即c+b﹣(a+b)=,∵P是BC边中点,∴=(+),∴c+b﹣(a+b)(+)=,∴c﹣(a+b)=0且b﹣(a+b)=0,∴a=b=c.故选:A.点评:本题考查三角形的形状判断,突出考查向量的运算,考查化归思想与分析能力,属于中档题.二、填空题(每小题5分,共25分,请在答题纸上作答)11.已知是夹角为的两个单位向量,向量,若,则实数k的值为.考点:数量积表示两个向量的夹角;平行向量与共线向量.专题:平面向量及应用.分析:由题意可得是平面向量的一个基底,再由平面内两个向量共线的条件可得,由此解得k的值.解答:解:由题意可得=0,且是平面向量的一个基底.∵向量,且,∴,解得 k=﹣,故答案为﹣.点评:本题主要考查平面内两个向量共线的条件,基底的定义,属于中档题.12.求值:=1.考点:两角和与差的正弦函数;三角函数的化简求值.专题:三角函数的求值.分析:由条件利用三角函数的恒等变换化简可得结果.解答:解:=sin40°•=sin40°•===1,故答案为:1.点评:本题主要考查三角函数的恒等变换及化简求值,属于基础题.13.若α∈(,π),cos2α=sin(﹣α),则sin2α的值为﹣.考点:二倍角的正弦;二倍角的余弦.专题:三角函数的求值.分析:由条件利用两角和的正弦公式、二倍角公式求得,cosα﹣sinα,或cosα+sinα的值,由此求得sin2α的值.解答:解:∵α∈(,π),且cos2α=sin(﹣α),∴cos2α﹣sin2α=(sinα﹣cosα),∴cosα+sinα=﹣,或者sinα﹣cosα=0(因α∈(,π),舍去)∴两边平方,可得:1+sin2α=,∴从而可解得:sin2α=﹣.故答案为:﹣.点评:本题主要考查两角和差的正弦、余弦公式的应用,二倍角公式的应用,属于中档题.14.有下列说法:①已知α为第二象限角,则为第一或第三象限角;②已知λ为实数,为平面内任一向量,则的模为;③△ABC中,若tanA•tanC>1,则△ABC为锐角三角形;④已知O为△ABC所在平面内一点,且,则点O是△ABC的重心.则正确的序号是①③.考点:命题的真假判断与应用.专题:综合题;简易逻辑.分析:对四个选项分别进行判断,即可得出结论.解答:解:①∵角α的终边在第二象限,∴2kπ+<α<2kπ+π,k∈Z,∴kπ+<<kπ+,当k为偶数时,2nπ+<<2nπ+,n∈Z,得是第一象限角;当k为奇数时,(2n+1)π+<<(2n+1)π+,n∈Z,得是第三象限角,故正确;②已知λ为实数,为平面内任一向量,则的模为||,故不正确;③△ABC中,若tanA•tanC>1,则cos(A+C)<0,∴B为锐角,tanA•tanC>1,∴A,C为锐角,∴△ABC为锐角三角形,故不正确;④已知O为△ABC所在平面内一点,且,则点O是△ABC的垂心,故不正确.故答案为:①③.点评:本题考查命题的真假判断,考查学生分析解决问题的能力,知识综合性强.15.在平行四边形ABCD中,AD=2,∠BAD=60°,E为CD中点.若,则AB的长为6.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由已知将所求利用平行四边形的边对应的向量表示,得到关于AB 的方程解之.解答:解:因为平行四边形ABCD中,AD=2,∠BAD=60°,E为CD中点.===4+=1,解得AB=6;故答案为:6.点评:本题考查了平面向量的平行四边形法则以及数量积的运算;注意向量的夹角与平行四边形内角关系;属于基础题三、解答题(共75分,请在答题纸上作答)16.已知向量.(Ⅰ)若四边形ABCD为平行四边形,求D点坐标;(Ⅱ)若,某某数的值.考点:向量在几何中的应用.专题:综合题;平面向量及应用.分析:(Ⅰ)设D(m,n),则由四边形ABCD为平行四边形,可得(6﹣3,﹣3+4)=(2﹣m,﹣6﹣n),求出m,n,可得D点坐标;(Ⅱ)利用,可得(3,﹣4)=x(6,﹣3)+y(2,﹣6),所以,求出x,y,即可某某数的值.解答:解:(Ⅰ)设D(m,n),则由四边形ABCD为平行四边形,可得(6﹣3,﹣3+4)=(2﹣m,﹣6﹣n),所以2﹣m=3,﹣6﹣n=1,所以m=﹣1,n=﹣7,所以D(﹣1,﹣7);(Ⅱ)因为,所以(3,﹣4)=x(6,﹣3)+y(2,﹣6),所以,所以x=,y=,所以=.点评:本题考查向量的线性运算,考查平面向量基本定理,考查学生分析解决问题的能力,属于中档题.17.已知,,.(Ⅰ)求向量与的夹角θ;(Ⅱ)求及向量在方向上的投影.考点:平面向量数量积的运算;数量积表示两个向量的夹角.专题:平面向量及应用.分析:(Ⅰ)将已知等式展开转化为两个向量的模压机数量积的计算问题,利用数量积公式求θ;(Ⅱ)根据投影的定义,利用数量积公式解答.解答:解:(Ⅰ)因为,,.所以,即16﹣8cosθ﹣3=9,所以cosθ=,因为θ∈[0,π],所以;(Ⅱ)由(Ⅰ)可知,所以==5,||=,所以向量在方向上的投影为:.点评:本题考查了平面向量的数量积公式的运用求向量的夹角以及一个向量在另一个向量的投影;关键是熟练掌握数量积公式以及几何意义.18.已知,,且.求:(Ⅰ) cos(2α﹣β)的值.(Ⅱ)β的值.考点:两角和与差的余弦函数.专题:三角函数的求值.分析:(Ⅰ)由α,β的X围求出α﹣β的X围,由题意和平方关系求出sinα和cos (α﹣β),由两角和的余弦公式求出cos(2α﹣β)=cos[(α﹣β)+α]的值;(Ⅱ)由两角差的余弦公式求出cosβ=cos[α﹣(α﹣β)]的值,再由β的X围求出β的值.解答:解:(Ⅰ)解:∵,∴α﹣β∈(,),∵,,∴sinα==,cos(α﹣β)==,∴cos(2α﹣β)=cos[(α﹣β)+α]=cos(α﹣β)cosα﹣sin(α﹣β)sinα=×﹣×=,(Ⅱ)由(Ⅰ)得,cosβ=cos[α﹣(α﹣β)]=cos(α﹣β)cosα+sin(α﹣β)sinα=×+×=,又∵,∴β=.点评:本题考查两角和与差的余弦公式,同角三角函数的基本关系的应用,注意角之间的关系以及三角函数值的符号,属于中档题.19.已知A,B,C是△ABC的三个内角.(Ⅰ)已知,,且,求∠C的大小;(Ⅱ)若向量,且||=,求证:tanAtanB为定值,并求这个定值.考点:三角形中的几何计算.专题:平面向量及应用.分析:(Ⅰ)由已知,,且,可得=0,进而由两角和的正切公式和诱导公式可得tanC=,进而得到∠C的大小;(Ⅱ)由向量,且||=,可得|2==,利用倍角公式和两角和与差的余弦公式,可得cosAcosB=3sinAsinB,再由同角三角函数的基本关系公式,可得tanAtanB=.解答:解:(Ⅰ)∵,,且,∴==0,即,即=tan(A+B)=﹣,即tanC=tan[π﹣(A+B)]=﹣tan(A+B)=,又由C为△ABC的内角.∴C=60°证明:(Ⅱ)∵向量,∴||2===1+cos(A+B)+﹣cos(A﹣B),即cos(A+B)﹣cos(A﹣B)=0,即2cos(A+B)=cos(A﹣B),即2(cosAcosB﹣sinAsinB)=cosAcosB+sinAsinB,即cosAcosB=3sinAsinB,即tanAtanB=点评:本题考查的知识点是向量的数量积公式,两角和与差三角函数公式,同角三角函数的基本关系公式,是三角函数与向量的综合应用,难度中档.20.如图,已知OPQ是半径为圆心角为的扇形,C是该扇形弧上的动点,ABCD是扇形的内接矩形,记∠BOC为α.(Ⅰ)若Rt△CBO的周长为,求的值.(Ⅱ)求的最大值,并求此时α的值.考点:扇形面积公式;平面向量数量积的运算.专题:三角函数的求值.分析:(Ⅰ)由条件利用直角三角形中的边角关系求出三角形的周长,利用三角函数的倍角公式进行化简进行求解.(Ⅱ)结合向量的数量积公式,结合三角函数的带动下进行求解.解答:解:(Ⅰ)BC=OCsinα=sinα,OB=OCcosα=cosα,则若Rt△CBO的周长为,则+sinα+cosα=,sinα+cosα=,平方得2sinαcosα=,即==,解得tanα=3(舍)或tanα=.则====.(Ⅱ)在Rt△OBC中,BC=OCsinα=sinα,OB=OCcosα=cosα,在Rt△ODA中,OA=DAtan=BC=si nα,∴AB=OB﹣OA=(cosα﹣cosα),则=(cosα﹣cosα)•sinα=∵,∴,∴当,即时,有最大值.点评:本题主要考查两个向量的数量积的定义,三角恒等变换,正弦函数的定义域和值域,考察学生的运算和推理能力.21.已知函数ωx﹣2,(ω>0),其图象与x轴相邻两个交点的距离为.(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)求使得f(x)≥﹣的x的取值集合;(Ⅲ)若将f(x)的图象向左平移m(m>0)个长度单位得到函数g(x)的图象恰好经过点(﹣,0),当m取得最小值时,求g(x)在上的单调递增区间.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数线;正弦函数的单调性.专题:计算题;三角函数的图像与性质.分析:(Ⅰ)由三角函数恒等变换化简函数解析式可得f(x)=sin(2ωx+),由题意可得函数y=f(x)的周期T,利用周期公式可求ω,即可得解.(Ⅱ)由已知求得sin(2x+),利用正弦函数的图象和性质可得2kπ≤2x+≤2kπ+,或2kπ+≤2x+≤2kπ+2π,k∈Z,从而解得x的取值集合.(Ⅲ)先由题意求得g(x)=sin(2x+2m+),由图象经过点(﹣,0),可得sin[2(﹣)+2m+]=0,求得当k=0时,m取得最小值,g(x)=sin(2x+),由﹣≤x≤,求得≤2x+≤,利用正弦函数的单调性即可得解.解答:(本题满分14分)解:(Ⅰ)由已知ωx﹣2=sin2ωx﹣cos2ωx﹣4×+2==sin(2ωx+),由题意可得函数y=f(x)的周期T=π=,解得:ω=1.∴f(x)=sin(2x+)…4分(Ⅱ)∵f(x)=sin(2x+)≥﹣,可得:sin(2x+),∴2kπ≤2x+≤2kπ+,或2kπ+≤2x+≤2kπ+2π,k∈Z,∴可解得x的取值集合为:{x/k≤x≤kπ}∪{x/k≤x≤k},k∈Z…6分(Ⅲ)将f(x)的图象向左平移m(m>0)个长度单位得到函数g(x)的图象,则g(x)=sin(2x+2m+),∵图象经过点(﹣,0),∴sin[2(﹣)+2m+]=0,即sin(2m﹣)=0,∴2m﹣=kπ(k∈Z),m=,∵m>0,∴当k=0时,m取得最小值,此时最小值为,此时g(x)=sin(2x+),若﹣≤x≤,则≤2x+≤,当≤2x+≤,即﹣≤x≤﹣时,g(x)单调递增;当≤2x+≤,即≤x≤时,g(x)单调递增;∴g(x)在上的单调递增区间为:[﹣,﹣]和[,]…12分点评:本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的单调性,三角函数恒等变换的应用,属于基本知识的考查.。
广西桂林市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题
2016-2017学年某某某某市高一(下)期中数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.如果cosθ<0,且tanθ<0,则θ是()A.第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角2.空间的点M(1,0,2)与点N(﹣1,2,0)的距离为()A. B.3 C. D.43.圆C1:x2+( y﹣1)2=1和圆C2:(x﹣3)2+(y﹣4)2=25的位置关系为()A.相交 B.内切 C.外切 D.内含4.函数y=tan()在一个周期内的图象是()A.B.C.D.5.要得到函数y=sin2x的图象,只需将函数的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位6.在△ABC中,∠C=90°,0°<A<45°,则下列各式中,正确的是()A.sinA>sinB B.tanA>tanB C.cosA<sinA D.cosB<sinB7.过点(1,﹣1)的圆x2+y2﹣2x﹣4y﹣20=0的最大弦长与最小弦长的和为()A.17 B.18 C.19 D.208.已知=,则sin2α的值为()A.B.﹣ C.D.﹣9.以圆C1:x2+y2+4x+1=0与圆C2:x2+y2+2x+2y+1=0的公共弦为直径的圆的方程为()A.(x﹣1)2+(y﹣1)2=1 B.(x﹣)2+(y﹣)2=2C.(x+1)2+(y+1)2=1 D.(x+)2+(y+)2=210.已知函数(x∈R),则下列结论正确的是()A.函数f(x)是最小正周期为π的奇函数B.函数f(x)的图象关于直线对称C.函数f(x)在区间上是增函数D.函数f(x)的图象关于点对称11.若实数x,y满足,则的取值X围为()A. B.C. D.12.过直线y=2x上一点P作圆M:的两条切线l1,l2,A,B为切点,当直线l1,l2关于直线y=2x对称时,则∠APB等于()A.30° B.45° C.60° D.90°二、填空题:本大题共4小题,每小题5分,共20分.13.化简=.14.点P(x,y)是﹣60°角终边与单位圆的交点,则的值为.15.已知圆O:x2+y2=4上到直线l:x+y=a的距离等于1的点恰有3个,则正实数a的值为.16.已知函数f(x)=2sinx,g(x)=2cosx,直线x=m与f(x),g(x)的图象分别交M,N两点,则|MN|的最大值为.三、解答题:本大题共6小题,共70分.解答应给出文字说明、证明过程及演算步骤.17.化简下列各式:(1)sin(3π+α)+tan(α﹣π)sin(+α)(2).18.求圆心在直线2x+y=0上,且与直线x+y﹣1=0相切于点P(2,﹣1)的圆的方程.19.已知α,β均为锐角,sinα=,cos(α+β)=,求(1)sinβ,(2)tan(2α+β)20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求f(x)的解析式;(2)求f(x)在[0,]上的最大、最小值及相应的x的值.21.已知f(x)=2cosx(sinx+cosx)﹣1(1)求函数f(x)的单调递减区间;(2)若y=f(x+φ)关于直线x=对称,求|φ|的最小值;(3)当x∈[0,]时,若方程|f(x)|﹣m=0有4个不同的实数解,某某数m的取值X 围.22.已知点M(﹣1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的倍.(1)求曲线E的方程;(2)已知m≠0,设直线l:x﹣my﹣1=0交曲线E于A,C两点,直线l2:mx+y﹣m=0交曲线E于B,D两点,若CD的斜率为﹣1时,求直线CD的方程.2016-2017学年某某某某中学高一(下)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.如果cosθ<0,且tanθ<0,则θ是()A.第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角【考点】GC:三角函数值的符号.【分析】根据cosθ<0,在二,三象限,且tanθ<0,在二,四象限,综合可得答案.【解答】解:∵cosθ<0,在二,三象限,且tanθ<0,在二,四象限,综合可得:θ在第二象限的角.故选:B.2.空间的点M(1,0,2)与点N(﹣1,2,0)的距离为()A. B.3 C. D.4【考点】JI:空间两点间的距离公式.【分析】直接利用空间两点间的距离公式,即可得出结论.【解答】解:∵M(1,0,2)与点N(﹣1,2,0),∴|MN|==2.故选C.3.圆C1:x2+( y﹣1)2=1和圆C2:(x﹣3)2+(y﹣4)2=25的位置关系为()A.相交 B.内切 C.外切 D.内含【考点】JA:圆与圆的位置关系及其判定.【分析】分别找出圆心坐标和半径,利用两点间的距离公式,求出两圆心的距离d,然后求出R﹣r和R+r的值,判断d与R﹣r及R+r的大小关系即可得到两圆的位置关系.【解答】解:圆C1:x2+( y﹣1)2=1和圆C2:(x﹣3)2+(y﹣4)2=25的圆心坐标分别为(0,1)和(3,4),半径分别为r=1和R=5,∵圆心之间的距离d=,R+r=6,R﹣r=4,∴R﹣r<d<R+r,则两圆的位置关系是相交.故选:A.4.函数y=tan()在一个周期内的图象是()A.B.C.D.【考点】HC:正切函数的图象.【分析】先令tan()=0求得函数的图象的中心,排除C,D;再根据函数y=tan ()的最小正周期为2π,排除B.【解答】解:令tan()=0,解得x=kπ+,可知函数y=tan()与x轴的一个交点不是,排除C,D∵y=tan()的周期T==2π,故排除B故选A5.要得到函数y=sin2x的图象,只需将函数的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】先把y=sin(2x+)整理为sin2(x+);再根据图象平移规律即可得到结论.(注意平移的是自变量本身,须提系数).【解答】解:因为:y=sin(2x+)=sin2(x+).根据函数图象的平移规律可得:须把函数y=sin2(x+)相右平移个单位得到函数y=sin2x的图象.故选:D.6.在△ABC中,∠C=90°,0°<A<45°,则下列各式中,正确的是()A.sinA>sinB B.tanA>tanB C.cosA<sinA D.cosB<sinB【考点】HP:正弦定理.【分析】先确定0°<A<B<90°,再利用正弦函数,正切函数的单调性,即可得到结论.【解答】解:∵△ABC中,∠C=90°,∴A=90°﹣B,∵0°<A<45°,∴0°<A<B<90°∴sinB>sinA,故A错误,tanB>tanA,故B错误,∴sinB>sin(90°﹣B),sinB>cosB,故D正确,∴sin(90°﹣A)>sinA,cosA>sinA,故C错误,故选:D.7.过点(1,﹣1)的圆x2+y2﹣2x﹣4y﹣20=0的最大弦长与最小弦长的和为()A.17 B.18 C.19 D.20【考点】J5:点与圆的位置关系.【分析】圆x2+y2﹣2x﹣4y﹣20=0的圆心C(1,2),半径r=5,设点A(1,﹣1),|AC|=3<r,从而点A在圆内,进而最大弦长为2r=10,最小弦长为:2.由此能求出结果.【解答】解:圆x2+y2﹣2x﹣4y﹣20=0的圆心C(1,2),半径r==5,设点A(1,﹣1),|AC|==3<r,∴点A在圆内,∴最大弦长为2r=10,最小弦长为:2=2=8.∴过点(1,﹣1)的圆x2+y2﹣2x﹣4y﹣20=0的最大弦长与最小弦长的和为:10+8=18.故选:B.8.已知=,则sin2α的值为()A.B.﹣ C.D.﹣【考点】GI:三角函数的化简求值.【分析】根据二倍角公式和根据同角三角函数关系式即可求解.【解答】解:由=,可得:2cos2α=cos()得:4cos22α=cos2()∵cos2()=2cos2()﹣1,即1﹣sin2α=2cos2()∴8cos22α=1﹣sin2α由cos22α+sin22α=1.∴8(1﹣sin22α)=1﹣sin2α解得:sin2α=.故选:B.9.以圆C1:x2+y2+4x+1=0与圆C2:x2+y2+2x+2y+1=0的公共弦为直径的圆的方程为()A.(x﹣1)2+(y﹣1)2=1 B.(x﹣)2+(y﹣)2=2C.(x+1)2+(y+1)2=1 D.(x+)2+(y+)2=2【考点】JA:圆与圆的位置关系及其判定.【分析】先确定公共弦的方程,再求出公共弦为直径的圆的圆心坐标、半径,即可得到公共弦为直径的圆的圆的方程.【解答】解:∵圆C1:x2+y2+4x+1=0与圆C2:x2+y2+2x+2y+1=0,∴两圆相减可得公共弦方程为l:2x﹣2y=0,即x﹣y=0又∵圆C1:x2+y2+4x+1=0的圆心坐标为(﹣2,0),半径为;圆C2:x2+y2+2x+2y+1=0的圆心坐标为(﹣1,﹣1),半径为1,∴C1C2的方程为x+y+2=0∴联立可得公共弦为直径的圆的圆心坐标为(﹣1,﹣1),∵(﹣2,0)到公共弦的距离为:,∴公共弦为直径的圆的半径为:1,∴公共弦为直径的圆的方程为(x+1)2+(y+1)2=1故选:C.10.已知函数(x∈R),则下列结论正确的是()A.函数f(x)是最小正周期为π的奇函数B.函数f(x)的图象关于直线对称C.函数f(x)在区间上是增函数D.函数f(x)的图象关于点对称【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】将函数f(x)化简,根据三角函数的图象和性质判断即可.【解答】解:函数=﹣cos2(x﹣)=﹣cos(2x﹣).最小正周期T=,f(﹣x)=﹣cos(﹣2x﹣)=﹣cos(2x+)≠﹣f(x),不是奇函数,A不对.当x=时,即f()=﹣cos(2×﹣)=﹣,不是最值,B不对.由f(x)在≤2x﹣是单调递减,可得:.∴函数f(x)在区间上是减函数,C不对.当x=﹣时,即f(﹣)=﹣cos(﹣2×﹣)=﹣cos=0.函数f(x)的图象关于点对称.D对.故选:D.11.若实数x,y满足,则的取值X围为()A. B.C. D.【考点】J9:直线与圆的位置关系.【分析】设过原点的右半个圆的切线方程为y=kx﹣2,再根据圆心(0,0)到切线的距离等于半径,求得k的值,可得的取值X围.【解答】解:由题意可得,表示右半个圆x2+y2=1上的点(x,y)与原点(0,﹣2)连线的斜率,设k=,故此圆的切线方程为y=kx﹣2,再根据圆心(0,0)到切线的距离等于半径,可得r==1,平方得k2=3求得k=±,故的取值X围是[,+∞),故选:D.12.过直线y=2x上一点P作圆M:的两条切线l1,l2,A,B为切点,当直线l1,l2关于直线y=2x对称时,则∠APB等于()A.30° B.45° C.60° D.90°【考点】J7:圆的切线方程.【分析】连接PM、AM,根据圆的性质和轴对称知识,得当切线l1,l2关于直线l对称时,直线l⊥PM,且PM平分∠APB.因此计算出圆的半径和点M到直线l的距离,在Rt△PAM中利用三角函数定义算出∠APM的度数,从而得到∠APB的度数.【解答】解:连接PM、AM,可得当切线l1,l2关于直线l对称时,直线l⊥PM,且射线PM恰好是∠APB的平分线,∵圆M的方程为(x﹣3)2+(y﹣2)2=,∴点M坐标为(3,2),半径r=,点M到直线l:2x﹣y=0的距离为PM==,由PA切圆M于A,得Rt△PAM中,sin∠APM==,得∠APM=30°,∴∠APB=2∠APM=60°.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.化简=.【考点】9B:向量加减混合运算及其几何意义.【分析】利用向量的减法运算即可得出.【解答】解:原式==.故答案为.14.点P(x,y)是﹣60°角终边与单位圆的交点,则的值为.【考点】G9:任意角的三角函数的定义.【分析】直接利用任意角的三角函数,求解即可.【解答】解:角﹣60°的终边为点P(x,y),可得:tan(﹣60°)=.故答案为:.15.已知圆O:x2+y2=4上到直线l:x+y=a的距离等于1的点恰有3个,则正实数a的值为.【考点】JE:直线和圆的方程的应用.【分析】由题意可得圆心(0,0)到直线l:x+y=a的距离d满足d=1,根据点到直线的距离公式求出d,再解绝对值方程求得实数a的值.【解答】解:因为圆上的点到直线l的距离等于1的点至少有2个,所以圆心到直线l的距离d=1,即d==1,解得a=±.(﹣舍去).故答案为:.16.已知函数f(x)=2sinx,g(x)=2cosx,直线x=m与f(x),g(x)的图象分别交M,N两点,则|MN|的最大值为 4 .【考点】H1:三角函数的周期性及其求法.【分析】依题意可设M(m,2sinm),N(m,2cosm),|MN|=|2sinm﹣2cosm|,利用辅助角公式即可.【解答】解:直线x=m与和f(x)=2sinx,g(x)=2cosx,的图象分别交于M,N两点,设M(m,2sinm ),N(m,2cosm),则|MN|=|2sinm﹣2cosm|=4|sin(m﹣)|当且仅当m=,k∈z时,等号成立,则|MN|的最大值4,故答案为:4.三、解答题:本大题共6小题,共70分.解答应给出文字说明、证明过程及演算步骤.17.化简下列各式:(1)sin(3π+α)+tan(α﹣π)sin(+α)(2).【考点】GI:三角函数的化简求值.【分析】(1)直接利用诱导公式化简即可;(2)把1=tan替换,根据正切的和与差公式可得答案.【解答】解:(1)sin(3π+α)+tan(α﹣π)sin(+α)原式=﹣sinα+tanα•cosα=﹣sinα+=0;(2).原式==tan(45°﹣15°)=tan30°=.18.求圆心在直线2x+y=0上,且与直线x+y﹣1=0相切于点P(2,﹣1)的圆的方程.【考点】J9:直线与圆的位置关系.【分析】根据圆心到直线2x+y=0上,设圆心Q为(a,﹣2a),由题意得到圆心到直线的距离等于|PQ|,列出关于a的方程,求出方程的解得到a的值,确定出圆心坐标与半径,写出圆的标准方程即可.【解答】解:设圆心Q为(a,﹣2a),根据题意得:圆心到直线x+y﹣1=0的距离d=|PQ|,即=,解得:a=1,∴圆心Q(1,﹣2),半径r=,则所求圆方程为(x﹣1)2+(y+2)2=2.19.已知α,β均为锐角,sinα=,cos(α+β)=,求(1)sinβ,(2)tan(2α+β)【考点】GR:两角和与差的正切函数;GL:三角函数中的恒等变换应用.【分析】(1)由已知利用同角三角函数基本关系式可求cosα,sin(α+β)的值,利用两角差的正弦函数公式即可计算得解.(2)由(1)可求tanα,tan(α+β),进而利用两角和的正切函数公式即可计算得解.【解答】(本题满分为12分)解:(1)∵α均为锐角,sinα=,得cosα=,又∵α+β∈(0,π),cos(α+β)=,可得:sin(α+β)=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴sinβ=sin(α+β﹣α)=sin(α+β)cosα﹣cos(α+β)sinα=﹣=…6分(2)∵tanα=,tan(α+β)=,…9分∴tan(2α+β)===…12分20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求f(x)的解析式;(2)求f(x)在[0,]上的最大、最小值及相应的x的值.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式;HW:三角函数的最值.【分析】(1)由题意求出A,T,利用周期公式求出ω,利用当x=时取得最大值2,求出φ,即可得到函数的解析式.(2)由x的X围,可求2x﹣的X围,利用正弦函数的图象和性质即可得解.【解答】(本小题满分12分)解:(1)由图象可知,A=2,…周期T= [﹣(﹣)]=π,∴=π,ω>0,则ω=2,…从而f(x)=2sin(2x+φ),代入点(,2),得sin(+φ)=1,则+φ=+2kπ,k∈Z,即φ=﹣+2kπ,k∈Z,…又|φ|<,则φ=﹣,…∴f(x)=2sin(2x﹣).…(2)∵x∈[0,],则 2x﹣∈[﹣,],…∴当2x﹣=,即x=时,f(x)max=2,…当2x﹣=﹣,即x=0时,f(x)min=﹣.…21.已知f(x)=2cosx(sinx+cosx)﹣1(1)求函数f(x)的单调递减区间;(2)若y=f(x+φ)关于直线x=对称,求|φ|的最小值;(3)当x∈[0,]时,若方程|f(x)|﹣m=0有4个不同的实数解,某某数m的取值X 围.【考点】H5:正弦函数的单调性;54:根的存在性及根的个数判断.【分析】(1)利用降幂公式与辅助角公式化简,再由复合函数的单调性求得函数f(x)的单调递减区间;(2)求出f(x+φ),由y=f(x+φ)关于直线x=对称,可得2φ+=kπ,k∈Z,得φ=,k∈Z.进一步求得|φ|的最小值;(3)画出|f(x)|在[0,]上的图象,数形结合得答案.【解答】解:(1)f(x)=2cosx(sinx+cosx)﹣1===.由,k∈Z,得,k∈Z.∴函数f(x)在R上的单调递减区间是[],k∈Z;(2)f(x+φ)=2sin[2(x+φ)+]=2sin(2x+2φ+),∵x=是f(x+φ)的对称轴,∴2φ+=kπ,k∈Z,即φ=,k∈Z.∴|φ|的最小值为;(3)|f(x)|在[0,]上的图象如下:当直线y=m与函数y=|f(x)|的图象有4个不同交点时,就是方程|f(x)|﹣m=0有4个不同的实数根,由图可知,m的取值X围是∅.22.已知点M(﹣1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的倍.(1)求曲线E的方程;(2)已知m≠0,设直线l:x﹣my﹣1=0交曲线E于A,C两点,直线l2:mx+y﹣m=0交曲线E于B,D两点,若CD的斜率为﹣1时,求直线CD的方程.【考点】JE:直线和圆的方程的应用.【分析】(1)设曲线E上任意一点坐标为(x,y),由题意,,由此能求出曲线E的方程.(2)由题知l1⊥l2,且两条直线均恒过点N(1,0),设曲线E的圆心为E,则E(2,0),线段CD的中点为P,则直线EP:y=x﹣2,设直线CD:y=﹣x+t,由此利用圆的几何性质,能求出线CD的方程.【解答】(1)解:设曲线E上任意一点坐标为(x,y),由题意,,…整理得x2+y2﹣4x+1=0,即(x﹣2)2+y2=3,∴曲线E的方程为(x﹣2)2+y2=3.…(2)解:由题知l1⊥l2,且两条直线均恒过点N(1,0),…设曲线E的圆心为E,则E(2,0),线段CD的中点为P,则直线EP:y=x﹣2,设直线CD:y=﹣x+t,由,解得点,…由圆的几何性质,,…而,|ED|2=3,,解之得t=0,或t=3,…∴直线CD的方程为y=﹣x,或y=﹣x+3.…。
人教版高一上学期数学期中(必修一)试卷(含答案解析,可下载)
高一数学期中(必修一)测试题(满分150分 时间:120分钟)一、单选题(共12小题,每题5分,共60分)1.若函数()y f x =的图象如图①所示,则图②对应函数的解析式可以表示为 ().A y f x =().B y f x = ().C y f x =- ().D y fx =- ①②2.已知函数()()21,01,0x x f x f x x -⎧-≤⎪=⎨->⎪⎩若方程()f x x a =+有且只有两个不相等的实数根,则实数a 的取值范围是().0,1A (].,1B -∞ [).0,C +∞ ().,1D -∞3.已知a 、b 、c 均为正数,且满足 ,()131log 3bb =,()31log 3cc =,则.A a b c << .B c a b << .C c b a << .D b a c <<4.代数式52log 100.5+=.0A .1B .2C .4D5.下列函数中,在其定义域是减函数的()2.1A f x x x =-++ ()1.B f x = ()()1.3xC f x = ()().ln 2D f x x =-6.若函数()y f x =的定义域为[]0,1,则下列函数中可能是偶函数的是().2A y f x =- ().2B y f x = ().2C y f x =-- ()2.D y f x = 7.函数()()1312xf x x =-零点的取值范围是()1.0,6A ()11.,63B ()11.,32C ()1.,12D8.已知函数 在()1,2上是增函数,则a 的取值范围是1.,22A ⎡⎤-⎢⎥⎣⎦ [).2,B +∞ ()1.,22C - (1.,22D ⎤-⎥⎦13log a a = ()()212log 5f x x ax =-++xx9.已知定义在R 上的奇函数()f x ,满足()()4f x f x -=-,且在区间[0,2]上是增函数,则 ()()().251180A f f f -<< ()()().801125B f f f <<- ()()().118025C f f f <<- ()()().258011D f f f -<<10.已知定义在R 上的函数()f x 满足()()()()()100,11,x f f x f x f f x =+-==且当1201x x ≤<≤时,()()12f x f x ≤,则()12007f等于1.2A 1.16B 1.32C 1.64D11.已知M 、N 为集合U 的非空真子集,且M 、N 不相等,若()I NC M =∅,则MN =.A M .B N .C U .D ∅12.设集合{}0,1,2,3U =,集合{}20A x U x mx =∈+=,若{}1,2u C A =,则实数m =.3A - .1B - .1C .3D 二、填空题(每小题5分,共20分) 13.设0a >且1a ≠,若函数()()2lg 23x x f x a -+=有最大值,则不等式()2log 550a x x -+≥的解集为 . 14.幂函数()23122p p y x p Z -++=∈为偶函数,且()()14f f <,则实数p =.15.用{}min ,,a b c 表示a 、b 、c 三个数中的最小值设(){}()min 2,2,100xf x x xx =+-≥,则()f x 的最大值为 . 16.已知函()121xf x a =-+,若()f x 为奇函数,则 a =_____. 三、解答题17.(10分)已知集合{}{}{}28,16,A x x B x x C x x a =≤≤=<<=>,U R =. (1)求A B ,()U C A B ;(2)若A C ≠∅,求实数a 的取值范围.18.(本小题满分12分)已知函数()()()4log 41xf x kx k R =++∈是偶函数.(1)证明:对任意实数b ,函数()y f x =的图象与直线32y x b =-+最多只有一个交点;(2)若方程()()44log 23x f x a a =-有且只有一个解,求实数a 的取值范围.19.(12分)某投资公司投资甲乙两个项目所获得的利润分别是M (亿元)和N (亿元),它们与投资额t (亿元)的关系有经验公式:16M N t==,今该公司将3亿元投资这个项目,若设甲项目投资x 亿元,投资这两个项目所获得的总利润为y 亿元. (1)写出y 关于x 的函数表达式; (2)求总利润y 的最大值.20.(12分)已知函数()()1f x a =≠.(1)若2a =,求()f x 的定义域;(2)若()f x 在区间(]0,1上是减函数,求实数a 的取值范围.- 4 -21.(12分)已知函数()()2143f x a x ax =++-.(1)当0a >时,若方程()0f x =有一根大于1,一根小于1,求a 的取值范围; (2)当[]0,2x ∈时,在2x =时取得最大值,求实数a 的取值范围.22.(12分)已知函数()11,0111,1x xf x x ⎧-<<⎪=⎨⎪->⎩.(1)当0a b <<,且()()f a f b =时,求11a b+的值;(2)若存在实数(),1a b a b <<,使得[],x a b ∈时,()f x 的取值范围是[](),0ma mb m ≠,求实数m 的取值范围.参考答案一、选择题 1.答案:.C解析: 设图②对应函数为()g x ,是偶函数;则0x ≤时,()()g x f x =;设0x >,则0x -<,()()g x f x -=-,于是0x >时,()()()g x g x f x =-=-,故选C . 2.答案:.D解析:当0,()(1)x f x f x >=-,所以f ()x 在()0,+∞上周期为1的函数。
高一数学下学期期中试卷(实验班,含解析)-人教版高一全册数学试题
2015-2016学年某某省某某市余姚中学高一(下)期中数学试卷(实验班)一.选择题:本大题共8小题,每小题5分,共40分.1.关于直线l:x+1=0,以下说法正确的是()A.直线l倾斜角为0 B.直线l倾斜角不存在C.直线l斜率为0 D.直线l斜率不存在2.设a,b,c分别是△ABC中,∠A,∠B,∠C所对边的边长,则直线sinA•x+ay+c=0与bx﹣sinB•y+sinC=0的位置关系是()A.平行 B.重合 C.垂直 D.相交但不垂直3.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面4.在直角坐标系中,已知两点M(4,2),N(1,﹣3),沿x轴把直角坐标平面折成直二面角后,M,N两点的距离为()A. B. C. D.5.若动点A(x1,y1),B(x2,y2)分别在直线l1:x+y﹣7=0和l2:x+y﹣5=0上移动,则线段AB的中点M到原点的距离的最小值为()A.2 B.3 C.3 D.46.在△ABC中,a,b,c分别为A,B,C的对边,若sinA、sinB、sinC依次成等比数列,则()A.a,b,c依次成等差数列B.a,b,c依次成等比数列C.a,c,b依次成等差数列D.a,c,b依次成等比数列7.如图,三棱锥P﹣ABC,已知PA⊥面ABC,AD⊥BC于D,BC=CD=AD=1,设PD=x,∠BPC=θ,记函数f(x)=tanθ,则下列表述正确的是()A.f(x)是关于x的增函数B.f(x)是关于x的减函数C.f(x)关于x先递增后递减 D.关于x先递减后递增8.正四面体ABCD的棱长为2,棱AD与平面α所成的角θ∈[,],且顶点A在平面α内,B,C,D均在平面α外,则棱BC的中点E到平面α的距离的取值X围是()A.[,1] B.[,1] C.[,] D.[,]二.填空题:本大题共7小题,共36分9.已知圆C的方程为x2+y2﹣6x﹣8y=0,则圆心C的坐标为;过点(3,5)的最短弦的长度为.10.某几何体的三视图如图所示(单位:cm),则该几何体的体积为cm3,表面积为cm2.11.已知x,y∈R且满足不等式组,当k=1时,不等式组所表示的平面区域的面积为,若目标函数z=3x+y的最大值为7,则k的值为.12.若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于;点A坐标(p,q),曲线C方程:y=,直线l过A点,且和曲线C只有一个交点,则直线l的斜率取值X围为.13.已知三个球的半径R1,R2,R3满满足R1+R3=2R2,记它们的表面积分别为S1,S2,S3,若S1=1,S3=9,则S2=.14.已知函数f(x)=|x2﹣2x﹣3|,若a<b<1,且f(a)=f(b),则u=2a+b的最小值为.15.设直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π),对于下列四个命题:A.M中所有直线均经过一个定点B.存在定点P不在M中的任一条直线上C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上D.M中的直线所能围成的正三角形面积都相等其中真命题的代号是(写出所有真命题的代号).三.解答题:本大题共5小题,总共74分.16.已知圆M:(x﹣1)2+(y﹣1)2=4,直线l过点P(2,3)且与圆M交于A,B两点,且|AB|=2.(Ⅰ)求直线l方程;(Ⅱ)设Q(x0,y0)为圆M上的点,求x02+y02的取值X围.17.在△ABC中,设边a,b,c所对的角为A,B,C,且A,B,C都不是直角,(bc﹣8)cosA+accosB=a2﹣b2.(Ⅰ)若b+c=5,求b,c的值;(Ⅱ)若,求△ABC面积的最大值.18.设常数a∈R,函数f(x)=(a﹣x)|x|.(Ⅰ)若a=1,求f(x)的单调区间;(Ⅱ)若f(x)是奇函数,且关于x的不等式mx2+m>f[f(x)]对所有的x∈[﹣2,2]恒成立,某某数m的取值X围.19.如图,在四棱锥E﹣ABCD中,底面ABCD是矩形,AB=1,AE⊥平面CDE,,F 为线段DE上的一点.(Ⅰ)求证:平面AED⊥平面ABCD;(Ⅱ)若二面角E﹣BC﹣F与二面角F﹣BC﹣D的大小相等,求DF的长.20.已知数列{a n}中,a1=1,a2=,且a n+1=(n=2,3,4…).(1)求数列{a n}的通项公式;(2)求证:对一切n∈N*,有a k2<.2015-2016学年某某省某某市余姚中学高一(下)期中数学试卷(实验班)参考答案与试题解析一.选择题:本大题共8小题,每小题5分,共40分.1.关于直线l:x+1=0,以下说法正确的是()A.直线l倾斜角为0 B.直线l倾斜角不存在C.直线l斜率为0 D.直线l斜率不存在【考点】直线的斜率;直线的倾斜角.【分析】根据直线方程判断即可.【解答】解:直线l:x+1=0,即x=﹣1,直线和x轴垂直,故直线l的斜率不存在,故选:D.2.设a,b,c分别是△ABC中,∠A,∠B,∠C所对边的边长,则直线sinA•x+ay+c=0与bx﹣sinB•y+sinC=0的位置关系是()A.平行 B.重合 C.垂直 D.相交但不垂直【考点】正弦定理的应用;直线的一般式方程与直线的平行关系;直线的一般式方程与直线的垂直关系.【分析】要寻求直线sinA•x+ay+c=0与bx﹣sinB•y+sinC=0的位置关系,只要先求两直线的斜率,然后由斜率的关系判断直线的位置即可.【解答】解:由题意可得直线sinA•x+ay+c=0的斜率,bx﹣sinB•y+sinC=0的斜率∵k1k2===﹣1则直线sinA•x+ay+c=0与bx﹣sinB•y+sinC=0垂直故选C.3.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【考点】空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.【分析】利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.【解答】解:对于A,若α,β垂直于同一平面,则α与β不一定平行,例如墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选D.4.在直角坐标系中,已知两点M(4,2),N(1,﹣3),沿x轴把直角坐标平面折成直二面角后,M,N两点的距离为()A. B. C. D.【考点】点、线、面间的距离计算.【分析】设一、二象限所在的半平面为α,三、四象限所在的半平面为β,可得α⊥β.作MC⊥x轴于点C,连结NC、MN,可得MC⊥平面β,Rt△MNC中算出直角边CM、之长,再利用勾股定理算出MN长,即得M,N两点的距离.【解答】解:过点M作MC⊥x轴于点C,连结NC、MN设一、二象限所在的半平面为α,三、四象限所在的半平面为β,∵α﹣l﹣β是直二面角,α∩β=l,MC⊥l∴MC⊥平面β∵C的坐标(4,0),得MC==3∴Rt△MNC中,MN===故选:C5.若动点A(x1,y1),B(x2,y2)分别在直线l1:x+y﹣7=0和l2:x+y﹣5=0上移动,则线段AB的中点M到原点的距离的最小值为()A.2 B.3 C.3 D.4【考点】两点间的距离公式;中点坐标公式.【分析】根据题意可推断出M点的轨迹为平行于直线l1、l2且到l1、l2距离相等的直线l进而根据两直线方程求得M的轨迹方程,进而利用点到直线的距离求得原点到直线的距离为线段AB的中点M到原点的距离的最小值为,求得答案.【解答】解:由题意知,M点的轨迹为平行于直线l1、l2且到l1、l2距离相等的直线l,故其方程为x+y﹣6=0,∴M到原点的距离的最小值为d==3.故选C6.在△ABC中,a,b,c分别为A,B,C的对边,若sinA、sinB、sinC依次成等比数列,则()A.a,b,c依次成等差数列B.a,b,c依次成等比数列C.a,c,b依次成等差数列D.a,c,b依次成等比数列【考点】等比数列的性质.【分析】根据等比中项的性质得:sin2B=sinAsinC,由正弦定理得b2=ac,则三边a,b,c 成等比数列.【解答】解:因为sinA、sinB、sinC依次成等比数列,所以sin2B=sinAsinC,由正弦定理得,b2=ac,所以三边a,b,c依次成等比数列,故选:B.7.如图,三棱锥P﹣ABC,已知PA⊥面ABC,AD⊥BC于D,BC=CD=AD=1,设PD=x,∠BPC=θ,记函数f(x)=tanθ,则下列表述正确的是()A.f(x)是关于x的增函数B.f(x)是关于x的减函数C.f(x)关于x先递增后递减 D.关于x先递减后递增【考点】空间点、线、面的位置;棱锥的结构特征.【分析】由PA⊥平面ABC,AD⊥BC于D,BC=CD=AD=1,利用x表示PA,PB,PC,由余弦定理得到关于x的解析式,进一步利用x表示tanθ,利用基本不等式求最值;然后判断选项.【解答】解:∵PA⊥平面ABC,AD⊥BC于D,BC=CD=AD=1,PD=x,∠BPC=θ,∴可求得:AC=,AB=,PA=,PC=,BP=,∴在△PBC中,由余弦定理知:cosθ==∴tan2θ=﹣1=﹣1=,∴tanθ==≤=(当且仅当x=时取等号);所以f(x)关于x先递增后递减.故选:C.8.正四面体ABCD的棱长为2,棱AD与平面α所成的角θ∈[,],且顶点A在平面α内,B,C,D均在平面α外,则棱BC的中点E到平面α的距离的取值X围是()A.[,1] B.[,1] C.[,] D.[,]【考点】点、线、面间的距离计算.【分析】取平面DEA⊥平面α位置考虑,在△ADE中,求出cos∠DAE,再考虑特殊位置,可得结论.【解答】解:取平面DEA⊥平面α位置考虑即可.如图所示,在△ADE中,AD=2,DE=AE=,∴cos∠DAE==,棱AD与平面α所成的角为时,sin∠EAN=sin(﹣∠DAE)==,∴EN=()=或sin∠EAN=sin(+∠DAE)=∴EN=()=∴棱BC的中点E到平面α的距离的取值X围是[,].故选:C.二.填空题:本大题共7小题,共36分9.已知圆C的方程为x2+y2﹣6x﹣8y=0,则圆心C的坐标为(3,4);过点(3,5)的最短弦的长度为.【考点】直线与圆的位置关系.【分析】由圆C的方程为x2+y2﹣6x﹣8y=0,能求出圆C的圆心C的坐标和半径r,再求出(3,5),C(3,4)两点间的距离d,从而得到过点(3,5)的最短弦的长度为:2.【解答】解:∵圆C的方程为x2+y2﹣6x﹣8y=0,∴圆C的圆心C(3,4),圆心的半径r==5,∵过点(3,5)、C(3,4)的直线的斜率不存在,∴过点(3,5)的最短弦的斜率k=0,(3,5),C(3,4)两点间的距离d=1,∴过点(3,5)的最短弦的长度为:2=2=4.故答案为:(3,4),.10.某几何体的三视图如图所示(单位:cm),则该几何体的体积为cm3,表面积为cm2.【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体是由一个半球去掉后得到的几何体.【解答】解:由三视图可知:该几何体是由一个半球去掉后得到的几何体.∴该几何体的体积==cm3,表面积=++=cm2.故答案分别为:;.11.已知x,y∈R且满足不等式组,当k=1时,不等式组所表示的平面区域的面积为,若目标函数z=3x+y的最大值为7,则k的值为 2 .【考点】简单线性规划.【分析】作出不等式组对应的平面区域,根据z的几何意义,利用数形结合即可得到k的值.然后即可得到结论.【解答】解:若k=1,则不等式组对应的平面区域如图:则A(1,﹣1),B(1,3),由得,即C(,),不等式组所表示的平面区域的面积为S=×4×(﹣1)=2×=,由z=3x+y得y=﹣3x+z,平移直线y=﹣3x+z,则由图象可知当直线y=﹣3x+z经过点C时,直线y=﹣3x+z的截距最大,此时z最大,为3x+y=7由,解得,即A(2,1),此时A在kx﹣y﹣k﹣1=0上,则2k﹣1﹣k﹣1=0,得k=2.故答案为:;2;12.若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于9 ;点A 坐标(p,q),曲线C方程:y=,直线l过A点,且和曲线C只有一个交点,则直线l的斜率取值X围为{}∪(,1] .【考点】二次函数的性质.【分析】由一元二次方程根与系数的关系得到a+b=p,ab=q,再由a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列列关于a,b的方程组,求得a,b后得答案.求出直线与圆相切时,直线的斜率,过(﹣1,0)、(1,0)直线的斜率,即可得出结论.【解答】解:由题意可得:a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得①或②.解①得:a=4,b=1;解②得:a=1,b=4.∴p=a+b=5,q=1×4=4,则p+q=9.点A坐标(5,4),直线的方程设为y﹣4=k(x﹣5),即kx﹣y﹣5k+4=0曲线C方程:y=表示一个在x轴上方的圆的一半,圆心坐标为(0,0),圆的半径r=1.由圆心到直线的距离d==1,可得k=,过(﹣1,0)、(5,4)直线的斜率为=,过(1,0)、(5,4)直线的斜率为1,∴直线l的斜率取值X围为{}∪(,1].故答案为:9,{}∪(,1].13.已知三个球的半径R1,R2,R3满满足R1+R3=2R2,记它们的表面积分别为S1,S2,S3,若S1=1,S3=9,则S2= 4 .【考点】球的体积和表面积.【分析】表示出三个球的表面积,求出三个半径,利用R1+R3=2R2,得出+=2,代入计算可得结论.【解答】解:因为S1=4πR12,所以R1=,同理:R2=,R3=,由R1+R3=2R2,得+=2,因为S1=1,S3=9,所以2=1+3,所以S2=4.故答案为:4.14.已知函数f(x)=|x2﹣2x﹣3|,若a<b<1,且f(a)=f(b),则u=2a+b的最小值为3﹣2.【考点】分段函数的应用.【分析】作出函数f(x)的图象,由a<b<1且f(a)=f(b),可求得(a﹣1)2+(b﹣1)2=8,a<﹣1,0<b<1,利用直线和圆的位置关系,结合线性规划的知识进行求解即可.【解答】解:作出f(x)的图象如图,由图可知,f(x)的对称轴为:x=1.∵a<b<1且f(a)=f(b),∴a<﹣1,﹣1<b<1,则|a2﹣2a﹣3|=|b2﹣2b﹣3|,即a2﹣2a﹣3=﹣(b2﹣2b﹣3),则(a﹣1)2+(b﹣1)2=8,a<﹣1,﹣1<b<1,则(a,b)的轨迹是圆上的一个部分,(黑色部分),由u=2a+b得b=﹣2a+u,平移b=﹣2a+u,当直线b=﹣2a+u和圆在第三象限相切时,截距最小,此时u最小,此时圆心(1,1)到直线2a+b﹣u=0的距离d=,即|u﹣3|=2,得u=3﹣2或u=3+2(舍),故答案为:3﹣215.设直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π),对于下列四个命题:A.M中所有直线均经过一个定点B.存在定点P不在M中的任一条直线上C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上D.M中的直线所能围成的正三角形面积都相等其中真命题的代号是BC (写出所有真命题的代号).【考点】命题的真假判断与应用;过两条直线交点的直线系方程.【分析】验证发现,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.M中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B.存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标.C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,D.M中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出.【解答】解:因为点(0,2)到直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)中每条直线的距离d==1,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.由于直线系表示圆x2+(y﹣2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;B.存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;C.由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n≥3),存在正n 边形,其所有边均在M中的直线上,故C正确;D.如下图,M中的直线所能围成的正三角形有两类,其一是如△ABB′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC 型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,故本命题不正确.故答案为:BC.三.解答题:本大题共5小题,总共74分.16.已知圆M:(x﹣1)2+(y﹣1)2=4,直线l过点P(2,3)且与圆M交于A,B两点,且|AB|=2.(Ⅰ)求直线l方程;(Ⅱ)设Q(x0,y0)为圆M上的点,求x02+y02的取值X围.【考点】圆方程的综合应用;直线与圆的位置关系.【分析】(Ⅰ)分斜率存在和斜率不存在两种情况,分别由条件利用点到直线的距离公式,弦长公式求出斜率,可得直线l的方程.(Ⅱ)利用 x02+y02的几何意义.求解圆心与坐标原点的距离,转化求解即可.【解答】解:(Ⅰ)当直线L的斜率存在时,设直线L的方程为y﹣3=k(x﹣2),即kx﹣y+3﹣2k=0,作MC⊥AB于C,在直角三角形MBC中,BC=,MB=2,所以MC=1,又因为MC==1,解得k=,所以直线方程为3x﹣4y+6=0.当直线斜率不存在时,其方程为x=2,圆心到此直线的距离也为1,所以也符合题意,综上可知,直线L的方程为3x﹣4y+6=0或x=2.(Ⅱ)圆M:(x﹣1)2+(y﹣1)2=4,Q(x0,y0)为圆M上的点,x02+y02的几何意义是圆的上的点与坐标原点距离的平方,圆心到原点的距离为:,圆的半径为2,x02+y02的取值X围:[0,],即[0,6+4].17.在△ABC中,设边a,b,c所对的角为A,B,C,且A,B,C都不是直角,(bc﹣8)cosA+accosB=a2﹣b2.(Ⅰ)若b+c=5,求b,c的值;(Ⅱ)若,求△ABC面积的最大值.【考点】余弦定理;正弦定理.【分析】(Ⅰ)由已知利用余弦定理化简已知等式可得,又△ABC不是直角三角形,解得bc=4,又b+c=5,联立即可解得b,c的值.(Ⅱ)由余弦定理,基本不等式可得5=b2+c2﹣2bccosA≥2bc﹣2bccosA=8﹣8cosA,解得,可求,利用三角形面积公式即可得解三角形面积的最大值.【解答】(本题满分14分)解:(Ⅰ)∵,∴,∴,∵△ABC不是直角三角形,∴bc=4,又∵b+c=5,∴解得或…(Ⅱ)∵,由余弦定理可得5=b2+c2﹣2bccosA≥2bc﹣2bccosA=8﹣8cosA,∴,∴,所以.∴△ABC面积的最大值是,当时取到…18.设常数a∈R,函数f(x)=(a﹣x)|x|.(Ⅰ)若a=1,求f(x)的单调区间;(Ⅱ)若f(x)是奇函数,且关于x的不等式mx2+m>f[f(x)]对所有的x∈[﹣2,2]恒成立,某某数m的取值X围.【考点】函数单调性的判断与证明;函数的最值及其几何意义.【分析】(Ⅰ)a=1时,便可得出,从而可根据二次函数的单调性,即可分别求出x≥0和x<0时f(x)的单调区间,从而得出f(x)的单调区间;(Ⅱ)可由f(x)为奇函数得到a=0,从而得到f(x)=﹣x|x|,进一步求得f[f(x)]=x3|x|,从而可由mx2+m>f[f(x)]得到对于任意x∈[﹣2,2]恒成立,可由x∈[﹣2,2]得出,这样便可得出实数m的取值X围.【解答】解:(Ⅰ)当a=1时,;当x≥0时,,∴f(x)在内是增函数,在内是减函数;当x<0时,,∴f(x)在(﹣∞,0)内是减函数;综上可知,f(x)的单调增区间为,单调减区间为(﹣∞,0),;(Ⅱ)∵f(x)是奇函数,∴f(﹣1)=﹣f(1);即(a+1)•1=﹣(a﹣1)•1;解得a=0;∴f(x)=﹣x|x|,f[f(x)]=x3|x|;∴mx2+m>f[f(x)]=x3|x|,即对所有的x∈[﹣2,2]恒成立;∵x∈[﹣2,2],∴x2+1∈[1,5];∴;∴;∴实数m的取值X围为.19.如图,在四棱锥E﹣ABCD中,底面ABCD是矩形,AB=1,AE⊥平面CDE,,F 为线段DE上的一点.(Ⅰ)求证:平面AED⊥平面ABCD;(Ⅱ)若二面角E﹣BC﹣F与二面角F﹣BC﹣D的大小相等,求DF的长.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(Ⅰ)推导出AE⊥CD,AD⊥CD,从而CD⊥面AED,由此能证明平面AED⊥平面ABCD.(Ⅱ)取AD,BC的中点G,H,连结EG,GH,EH,过F作FM||EG交AD于M,过M作NM||HG 交BC于N,连结FN,推导出∠EHG就是二面角E﹣BC﹣D的平面角,∠FNM就是二面角F﹣BC﹣D的平面角,由此能求出DF的长.【解答】证明:(Ⅰ)∵AE⊥面CDE,CD⊂面CDE,∴AE⊥CD,又∴是矩形,∴AD⊥CD,∴CD⊥面AED,又∵CD⊂面ABCD,∴平面AED⊥平面ABCD.解:(Ⅱ)取AD,BC的中点G,H,连结EG,GH,EH,过F作FM||EG交AD于M,过M作NM||HG交BC于N,连结FN,∵,∴且EG⊥AD,∵平面AED⊥平面ABCD,∴EG⊥面ABCD,GH⊥BC,∴EH⊥BC,∴∠EHG就是二面角E﹣BC﹣D的平面角,同理∠FNM就是二面角F﹣BC﹣D的平面角,由题意得∠EHG=2∠FNM,而,∴,∴,∴.20.已知数列{a n}中,a1=1,a2=,且a n+1=(n=2,3,4…).(1)求数列{a n}的通项公式;(2)求证:对一切n∈N*,有a k2<.【考点】数列递推式;数列的求和.【分析】(1)当n≥2时, =,从而=﹣(),进而得到=﹣(1﹣),由此能求出a n=,n∈N*.(2)当k≥2时, =,由此利用裂项求和法能证明对一切n∈N*,有a k2<.【解答】(1)解:∵a1=1,a2=,且a n+1=(n=2,3,4…),∴当n≥2时, =,两边同时除以n,得,∴=﹣(),∴=﹣=﹣(1﹣)∴=﹣(1﹣),n≥2,∴,∴a n=,n≥2,当n=1时,上式成立,∴a n=,n∈N*.(2)证明:当k≥2时, =,∴当n≥2时,=1+<1+ [()+()+…+()]=1+<1+=,又n=1时,,∴对一切n∈N*,有a k2<.。
黑龙江省牡丹江市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题
某某省某某市2016-2017学年高一数学下学期期中试卷一、选择题(每小题5分共60分)1.已知数列{a n}是等差数列,a2=3,a6=7,则a11的值为()A.11 B.12 C.13 D.102.在等比数列{a n}中,a2=8,a5=64,则公比q为()A.2 B.3 C.4 D.83.在△ABC中,已知三边a=3,b=5,c=7,则三角形ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定4.△ABC的三个内角A,B,C所对的边分别为a,b,c,若A=45°,B=75°,c=3,则a=()A.2 B.2 C.2 D.35.数列{a n}中,a1=1,a n+1=2a n+2,则a7的值为()A.94 B.96 C.190 D.1926.已知数列{a n}满足a1>0, =,则数列{a n}是()A.递增数列 B.递减数列 C.摆动数列 D.不确定7.已知S n为等差数列{a n}的前n项和,若S1=1,,则的值为()A.B.C.D.48.根据下列情况,判断三角形解的情况,其中正确的是()A.a=8,b=16,A=30°,有两解B.b=18,c=20,B=60°,有一解C.a=5,c=2,A=90°,无解D.a=30,b=25,A=150°,有一解9.对于实数a,b,c,有以下命题:①若a>b,则ac<bc;②若ac2>bc2,则a>b;③若a<b<0,则a2>ab>b2;④若,则a>0,b<0.其中真命题的个数是()A.2 B.3 C.4 D.510.在△ABC中,有下列结论:①若a2=b2+c2+bc,则∠A为60°;②若a2+b2>c2,则△ABC为锐角三角形;③若A:B:C=1:2:3,则a:b:c=1:2:3,④在△ABC中,b=2,B=45°,若这样的三角形有两个,则边a的取值X围为(2,2)其中正确的个数为()A.1 B.2 C.3 D.411.不等式|2a﹣b|+|a+b|≥|a|(|x﹣1|+|x+1|)对于任意不为0的实数a,b恒成立,则实数x的X围为()A. B.C.D.12.若数列{a n}满足(n∈N*,d为常数),则称{a n}为“调和数列”,已知正项数列为“调和数列”,且x1+x2+…+x20=200,则的最小值为()A.B.10 C.D.5二、填空题(每小题5分共20分)13.已知正实数a,b满足ab=1,则2a+b的最小值为.14.函数x2+y2=2,则3x+4y的最大值是.15.已知数列{a n}的前n项和为S n,且a1=1,a n+1=3S n(n≥1,n∈N*)第k项满足750<a k<900,则k等于.16.如图所示,已知A、B、C是一条直路上的三点,AB与BC各等于2km,从三点分别遥望塔M,在A处看见塔在北偏东45°方向,在B处看塔在正东方向,在点C处看见塔在南偏东60°方向,则塔M到直路ABC的最短距离为.三、解答题17.解关于x的不等式x2﹣(a+1)x+a≥0(a∈R).18.已知x>0,y>0,求证:.19.设函数f(x)=|2x+1|﹣|x﹣2|.(1)求不等式f(x)>2的解集;(2)∀x∈R,使f(x)≥t2﹣t,某某数t的取值X围.20.已知数列{a n}为等差数列,且a1=1,a5=5,等比数列{b n}的前n项和.(1)求数列{a n},{b n}的通项公式;(2)若=a n b n(n=1,2,3,…),T n为数列{}的前n项和,求T n.21.在△ABC中,a,b,c分别为三个内角A,B,C的对边,若,(1)求A;(2)若b=2,求c边长;(3)若b+c=4,求△ABC的面积.22.已知数列{a n}的前n项和为S n,且(1)求数列{a n}的通项公式;(2)设,数列{}的前n项和为T n,求使不等式对一切n ∈N*都成立的正整数k的最大值;(3)设,是否存在m∈N*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,请说明理由.2016-2017学年某某省某某一中高一(下)期中数学试卷参考答案与试题解析一、选择题(每小题5分共60分)1.已知数列{a n}是等差数列,a2=3,a6=7,则a11的值为()A.11 B.12 C.13 D.10【考点】84:等差数列的通项公式.【分析】利用等差数列通项公式求出首项和公差,由此能求出a11的值.【解答】解:∵等差数列,a2=3,a6=7,∴,解得a1=2,d=1.∴a11=a1+10d=2+10=12.故选:B.2.在等比数列{a n}中,a2=8,a5=64,则公比q为()A.2 B.3 C.4 D.8【考点】88:等比数列的通项公式.【分析】题目给出了a2=8,a5=64,直接利用等比数列的通项公式求解q.【解答】解:在等比数列{a n}中,由,又a2=8,a5=64,所以,,所以,q=2.故选A.3.在△ABC中,已知三边a=3,b=5,c=7,则三角形ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定【考点】HR:余弦定理.【分析】由题意可得,c边为最大边,由于cosC==﹣,可得C=120°,可得三角形ABC是钝角三角形.【解答】解:△ABC中,∵已知三边a=3,b=5,c=7,∴c边为最大边,由于cosC===﹣,∴C=120°,故三角形ABC是钝角三角形,故选:C.4.△ABC的三个内角A,B,C所对的边分别为a,b,c,若A=45°,B=75°,c=3,则a=()A.2 B.2 C.2 D.3【考点】HP:正弦定理.【分析】先根据三角形的内角和定理求出C,再根据正弦定理代值计算即可.【解答】解:∵A=45°,B=75°,∴C=180°﹣A﹣B=120°由正弦定理可得=,即a===2,故选:B.5.数列{a n}中,a1=1,a n+1=2a n+2,则a7的值为()A.94 B.96 C.190 D.192【考点】8H:数列递推式.【分析】a n+1=2a n+2,变形为a n+1+2=2(a n+2),利用等比数列的通项公式即可得出.【解答】解:∵a n+1=2a n+2,∴a n+1+2=2(a n+2),∴数列{a n+2}是等比数列,首项为3,公比为2,∴a n+2=3•2n﹣1,∴a7=3×26﹣2=190.故选:C.6.已知数列{a n}满足a1>0, =,则数列{a n}是()A.递增数列 B.递减数列 C.摆动数列 D.不确定【考点】8H:数列递推式.【分析】先利用累乘法表示出数列{a n}的通项公式,再根据函数性质求出数列{a n}的通项公式,再判断即可.【解答】解:∵,∴.上面的n﹣1个式子相乘,得.∴.∵,∴由指数函数的性质知,数列{a n}是递减数列.故选B.7.已知S n为等差数列{a n}的前n项和,若S1=1,,则的值为()A.B.C.D.4【考点】8F:等差数列的性质.【分析】根据首项等于S1,得到首项的值,利用等差数列的前n项和公式化简,即可求出公差d的值,然后再利用等差数列的前n项和公式化简所求的式子,把求出的首项和公差代入即可求出值.【解答】解:由S1=a1=1,,得到=4,解得d=2,则===.故选A8.根据下列情况,判断三角形解的情况,其中正确的是()A.a=8,b=16,A=30°,有两解B.b=18,c=20,B=60°,有一解C.a=5,c=2,A=90°,无解D.a=30,b=25,A=150°,有一解【考点】HX:解三角形.【分析】利用正弦定理分别对A,B,C,D选项进行验证.【解答】解:A项中sinB=•sinA=1,∴B=,故三角形一个解,A项说法错误.B项中sinC=sinB=,∵0<C<π,故C有锐角和钝角两种解.C项中b==,故有解.D项中sinB=•sinA=,∵A=150°,∴B一定为锐角,有一个解.故选:D.9.对于实数a,b,c,有以下命题:①若a>b,则ac<bc;②若ac2>bc2,则a>b;③若a<b<0,则a2>ab>b2;④若,则a>0,b<0.其中真命题的个数是()A.2 B.3 C.4 D.5【考点】2K:命题的真假判断与应用.【分析】利用反例判断前2个命题的真假,利用不等式的性质说明后2个命题的真假即可.【解答】解:①若a>b,则ac<bc;当c>0时不成立;②若ac2>bc2,则a>b;不等式成立;③若a<b<0,可得a2>ab,ab>b2;所以a2>ab>b2;原命题是真命题;④若,则a>0,b<0.显然成立,因为a,b同号时,,不成立;原命题是真命题.故选:B.10.在△ABC中,有下列结论:①若a2=b2+c2+bc,则∠A为60°;②若a2+b2>c2,则△ABC为锐角三角形;③若A:B:C=1:2:3,则a:b:c=1:2:3,④在△ABC中,b=2,B=45°,若这样的三角形有两个,则边a的取值X围为(2,2)其中正确的个数为()A.1 B.2 C.3 D.4【考点】2K:命题的真假判断与应用.【分析】①,由余弦定理可得cosaA,即可判定;②,若a2+b2>c2,只能判定C为锐角,不能判定△ABC为锐角三角形;③,由正弦定理得a:b:c=sinA:sinB:sinC≠A:B:C;④,由题意判断出三角形有两解时,A的X围,通过正弦定理及正弦函数的性质推出a的X围即可.【解答】解:对于①,由余弦定理得cosA=,∴A=120°,故错;对于②,若a2+b2>c2,只能判定C为锐角,不能判定△ABC为锐角三角形,故错;对于③,由正弦定理得a:b:c=sinA:sinB:sinC≠A:B:C,故错;对于④,解:由AC=b=2,要使三角形有两解,就是要使以C为圆心,半径为2的圆与BA有两个交点,当A=90°时,圆与AB相切;当A=45°时交于B点,也就是只有一解,∴45°<A<135°,且A≠90°,即<sinA<1,由正弦定理以及asinB=bsinA.可得:a==2sinA,∵2sinA∈(2,2).∴a的取值X围是(2,2).故正确.故选:A11.不等式|2a﹣b|+|a+b|≥|a|(|x﹣1|+|x+1|)对于任意不为0的实数a,b恒成立,则实数x的X围为()A. B.C. D.【考点】R5:绝对值不等式的解法.【分析】由绝对值不等式的性质可得|2a﹣b|+|a+b|≥3|a|,再由所给的条件可得3|a|≥|a|(|x﹣1|+|x+1|),即3≥|x﹣1|+|x+1|.再根据绝对值的意义求得3≥|x﹣1|+|x+1|的解集.【解答】解:由绝对值不等式的性质可得|2a﹣b|+|a+b|≥|2a+b+(a﹣b)|=3|a|,再由不等式|2a﹣b|+|a+b|≥|a|(|x﹣1|+|x﹣1|)恒成立,可得3|a|≥|a|(|x﹣1|+|x+1|),故有3|a|≥|a|(|x﹣1|+|x﹣1|),即3≥|x﹣1|+|x+1|.而由绝对值的意义可得|x﹣1|+|x+1|表示数轴上的x对应点到1和﹣1对应点的距离之和,而﹣和对应点到1和﹣1对应点的距离之和正好等于3,故3≥|x﹣1|+|x+1|的解集为,故选:D.12.若数列{a n}满足(n∈N*,d为常数),则称{a n}为“调和数列”,已知正项数列为“调和数列”,且x1+x2+…+x20=200,则的最小值为()A.B.10 C.D.5【考点】8H:数列递推式.【分析】结合调和数列的定义可得:x n+1﹣x n=t,(n∈N*,t为常数),从而数列{x n}是等差数列.由等差数列的性质可得x3+x18=x1+x20=20,从而20≥2,由此能求出的最小值.【解答】解:∵数列{a n}满足(n∈N*,d为常数),则称{a n}为“调和数列”,正项数列为“调和数列”,∴结合调和数列的定义可得:x n+1﹣x n=t,(n∈N*,t为常数),∴数列{x n}是等差数列.∵x1+x2+x3+…+x20=200,∴结合等差数列的性质可得:x1+x2+x3+…+x20=10(x1+x20)=200,∴x3+x18=x1+x20=20,∴20≥2,即x3x18≤100.∴==≥=,当且仅当x3=x18=10时,取等号,∴的最小值为.故选:C.二、填空题(每小题5分共20分)13.已知正实数a,b满足ab=1,则2a+b的最小值为2.【考点】7F:基本不等式.【分析】利用基本不等式的性质即可得出.【解答】解:∵正实数a,b满足ab=1,∴2a+b≥2=2,当且仅当a=,b=时取等号.∴2a+b的最小值为2.故答案为:14.函数x2+y2=2,则3x+4y的最大值是5.【考点】J9:直线与圆的位置关系.【分析】令z=3x+4y,可得直线的截距式方程,求出在y轴上的截距,当直线和圆x2+y2=2相切时,截距取得最值,z取得最值.根据直线和圆相切,圆心到直线的距离等于半径,求出z 的值,从而得到z的最大值.【解答】解:令z=3x+4y,即y=﹣+,故直线y=﹣+在y轴上的截距为,故当直线y=﹣+在y轴上的截距最大时,z最大.根据题意可得,当直线和圆x2+y2=2相切时,取得最值.由=可得z=±5,故z的最大值为5.故答案为:15.已知数列{a n}的前n项和为S n,且a1=1,a n+1=3S n(n≥1,n∈N*)第k项满足750<a k<900,则k等于 6 .【考点】8H:数列递推式.【分析】由a n+1=3S n,当n≥2时,可得a n=3S n﹣1,两式相减可得a n+1=4a n.数列{a n}是从第二开始的等比数列,a2=3.利用通项公式即可得出.【解答】解:由a n+1=3S n,当n≥2时,可得a n=3S n﹣1,∴a n+1﹣a n=3a n,∴a n+1=4a n.∴数列{a n}是从第二开始的等比数列,a2=3.∴a n=3×4n﹣2(n≥2).∵第k项满足750<a k<900,a5=192,a6=768,a7=3172.∴k=6.故答案为:6.16.如图所示,已知A、B、C是一条直路上的三点,AB与BC各等于2km,从三点分别遥望塔M,在A处看见塔在北偏东45°方向,在B处看塔在正东方向,在点C处看见塔在南偏东60°方向,则塔M到直路ABC的最短距离为.【考点】HU:解三角形的实际应用.【分析】根据已知条件求得∠CMA,进而可推断出△MBC与△MBA面积相等,利用三角形面积公式可求得CM和AM的关系,进而在△MAC中利用余弦定理求得a,最后根据三角形面积公式求得答案.【解答】解:已知AB=BC=2,∠AMB=45°,∠CMB=30°,∴∠CMA=75°易见△MBC与△MBA面积相等,∴AMsin45°=CMsin30°即CM=AM,记AM=a,则CM=a,在△MAC中,AC=4,由余弦定理得:16=3a2﹣2a2cos75°,∴a2=,记M到AC的距离为h,则a2sin75°=2h得h=,∴塔到直路ABC的最短距离为:.故答案为:.三、解答题17.解关于x的不等式x2﹣(a+1)x+a≥0(a∈R).【考点】74:一元二次不等式的解法.【分析】把不等式化为(x﹣1)(x﹣a)≥0,求出不等式对应方程的实数根,讨论a的取值,写出不等式的解集即可.【解答】解:关于x的不等式x2﹣(a+1)x+a≥0化为(x﹣1)(x﹣a)≥0,不等式对应方程的实数根为a和1;当a>1时,不等式的解集为(﹣∞,1]∪∪,解得m=,矛盾;综上所述,不存在满足条件的m.。
高一数学下学期期末试卷 文(含解析)-人教版高一全册数学试题
2015-2016学年某某某某市平罗中学高一(下)期末数学试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a>b>0,下列命题为真命题的是()A.a2<b2B.a2<ab C.<1 D.>2.在锐角△ABC中,a、b分别是角A、B的对边,若2bsinA=a,则角B等于()A.B.C.D.3.设向量=(1,m),=(m,4),若∥,则实数m的值是()A.2 B.﹣2 C.0 D.﹣2或24.如图,下列几何体各自的三视图中,三个视图各不相同的是()A.正方体B.圆锥C.三棱台D.正四棱锥5.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为()A.49 B.50 C.51 D.526.若圆柱与圆锥的底面半径相等,母线也相等,它们的侧面积分别为S1和S2,则S1:S2=()A.1:2 B.2:1 C.1:3 D.3:17.水平放置的△ABC的斜二测直观图△A′B′C′如图所示,则△ABC的面积为()A.B.2 C.4 D.88.设y=x+(x>2).当x=a时,y有最小值,则a的值是()A.4 B.3 C.1+D.1+9.在△ABC中,若sinA:sinB:sinC=3:5:7,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定10.等比数列{a n}的前n项和为S n,且4a1,2a2,a3成等差数列.若a1=1,则S4=()A.15 B.7 C.8 D.1611.若是非零向量且满足()⊥,,则与的夹角是()A.B.C. D.12.设S n是等差数列{a n}的前n项和,已知S6=36,S n=324,S n﹣6=144,则n=()A.15 B.16 C.17 D.18二、填空题:本大题共4小题,每小题5分,共20分.13.不等式x2+8x<20的解集是.14.数列{a n}满足:a1=2,a n﹣a n﹣1=2n﹣1,则a n=.15.棱长为1的正方体的八个顶点都在同一个球面上,则此球的表面积为.16.若实数a、b满足a+b=2,则3a+3b的最小值是.三、解答题:本大题共6小题,共计70分.解答应写出文字说明.证明过程或演算步骤17.已知平面直角坐标系中,点O为原点.A(﹣3,﹣4),B(5,﹣10).(1)求的坐标及||;(2)若=+, =2﹣,求•.18.已知某几何体的俯视图是如图所示的正方形,正视图和侧视图都是底面边长为6,高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的表面积S.19.一个车辆制造厂引进了一条汽车整车装配流水线,这条流水线生产的汽车月销量Q(辆)与单价x(万元)之间有如下关系:Q(x)=220﹣2x.设这条流水线生产的汽车的月产值为y(万元).(1)写出函数y=f(x)的解析式,并求汽车的单价为多少时,月产值最大;(2)若这家工厂希望这条流水线的月产值不低于6000万元,那么汽车的单价应如何确定?20.等差数列{a n}的公差为d,等比数列{b n}的公比为q,且d=q,a1=b1=1,a3﹣b3=1.(1)求数列{a n}和{b n}的通项公式;(2)设=a n+b n,求数列{}的前n项和S n.21.在△ABC中,a、b、c分别是角A、B、C的对边,且2acosB=bcosC+ccosB.(1)求角B的大小;(2)若b=2,a+c=4,求a和c的值.22.在等差数列{a n}中,a2=2,a4+a6=10.(1)求数列{a n}的通项公式;(2)设b n=a n•2an,T n是数列{b n}的前n项和,求T n.2015-2016学年某某某某市平罗中学高一(下)期末数学试卷(文科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a>b>0,下列命题为真命题的是()A.a2<b2B.a2<ab C.<1 D.>【分析】根据不等式的基本性质,及函数的单调性,判断四个答案的真假,可得结论.【解答】解:∵a>b>0,∴a2>b2,故A错误;a2>ab,故B错误;<1,故C正确;ab>0,,即,故D错误;故选:C2.在锐角△ABC中,a、b分别是角A、B的对边,若2bsinA=a,则角B等于()A.B.C.D.【分析】根据正弦定理,进行化简求出sinB的值,由锐角三角形求出B的值.【解答】解:锐角△ABC中,2bsinA=a,由正弦定理得,2sinB•sinA=sinA,又sinA≠0,所以sinB=,所以B=.故选:B.3.设向量=(1,m),=(m,4),若∥,则实数m的值是()A.2 B.﹣2 C.0 D.﹣2或2【分析】直接利用向量平行的充要条件列出方程求解即可.【解答】解:∵向量=(1,m),=(m,4),∥,∴1×4=m2,解得m=±2,故选:D.4.如图,下列几何体各自的三视图中,三个视图各不相同的是()A.正方体B.圆锥C.三棱台D.正四棱锥【分析】利用三视图的作图法则,对选项判断,正方体的三视图相同,圆锥,四棱锥的两个三视图相同,三棱台都不相同,得出选项即可.【解答】解:正方体的三视图都相同,而三棱台的三视图各不相同,圆锥和正四棱锥的,正视图和侧视图相同,故选:C.5.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为()A.49 B.50 C.51 D.52【分析】先利用递推关系得出其为等差数列,再代入等差数列的通项公式即可.【解答】解:由2a n+1=2a n+1,得a n+1﹣a n=,故为首项为2,公差为的等差数列,所以a101=a1+100d=2+100×=52.故选:D.6.若圆柱与圆锥的底面半径相等,母线也相等,它们的侧面积分别为S1和S2,则S1:S2=()A.1:2 B.2:1 C.1:3 D.3:1【分析】圆柱的侧面积=底面周长×高,圆锥的侧面积=底面周长×母线长,把相关数值代入即可求得两个侧面积,进而求得其比值即可.【解答】解:∵圆柱与圆锥的底面半径相等,母线也相等,∴S1=2πrh,S2=πrh∴S1:S2=2:1,故选:B.7.水平放置的△ABC的斜二测直观图△A′B′C′如图所示,则△ABC的面积为()A.B.2 C.4 D.8【分析】将直观图还原成平面图形,根据斜二侧画法原理求出平面图形的边长,计算面积.【解答】解:作出△ABC的平面图形,则∠ACB=2∠A′C′B′=90°,BC=B′C′=4,AC=A′C′=2,∴△ABC的面积为=4.故选:C.8.设y=x+(x>2).当x=a时,y有最小值,则a的值是()A.4 B.3 C.1+D.1+【分析】将原式变形y=x﹣2++2,由x﹣2>0根据不等式的性质,y=x﹣2++2≥2=2=2+2=4,当x﹣2=时取“=”,即可求得a的值.【解答】解:y=x+=x﹣2++2,∵x>2,∴x﹣2>0,∴y=x﹣2++2≥2=2=2+2=4,∴当x﹣2=时取“=”,即x=3时取“=”∴当x=3时,y有最小值4,∴a=3,故答案选:B.9.在△ABC中,若sinA:sinB:sinC=3:5:7,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定【分析】由正弦定理可得a:b:c=3:5:7,进而可用b表示a,c,代入余弦定理化简可得cosC的值,结合C的X围即可得解C的值,从而得解.【解答】解:∵sinA:sinB:sinC=3:5:7,∴由正弦定理可得:a:b:c=3:5:7,∴a=,c=,∴由余弦定理可得:cosC===﹣,∵C∈(0,π),∴C=.故△ABC的形状是钝角三角形.故选:C.10.等比数列{a n}的前n项和为S n,且4a1,2a2,a3成等差数列.若a1=1,则S4=()A.15 B.7 C.8 D.16【分析】利用4a1,2a2,a3成等差数列求出公比即可得到结论.【解答】解:∵4a1,2a2,a3成等差数列.a1=1,∴4a1+a3=2×2a2,即4+q2﹣4q=0,即q2﹣4q+4=0,(q﹣2)2=0,解得q=2,∴a1=1,a2=2,a3=4,a4=8,∴S4=1+2+4+8=15.故选:A11.若是非零向量且满足()⊥,,则与的夹角是()A.B.C. D.【分析】利用两个向量垂直,数量积等于0,得到==2•,代入两个向量的夹角公式得到夹角的余弦值,进而得到夹角.【解答】解:∵()⊥,()⊥,∴()•=﹣2=0,()•=﹣2=0,∴==2,设与的夹角为θ,则由两个向量的夹角公式得cosθ====,∴θ=60°,故选B.12.设S n是等差数列{a n}的前n项和,已知S6=36,S n=324,S n﹣6=144,则n=()A.15 B.16 C.17 D.18【分析】根据S n﹣S n﹣6=a n﹣5+a n﹣4+…+a n求得a n﹣5+a n﹣4+…+a n的值,根据S6=得a1+a2+…+a6的值,两式相加,根据等差数列的性质可知a1+a n=a2+a n﹣1=a6+a n﹣5,进而可知6(a1+a n)的值,求得a1+a n,代入到数列前n项的和求得n.【解答】解:∵S n=324,S n﹣6=144,∴S n﹣S n﹣6=a n﹣5+a n﹣4+…+a n=180又∵S6=a1+a2+…+a6=36,a1+a n=a2+a n﹣1=a6+a n﹣5,∴6(a1+a n)=36+180=216∴a1+a n=36,由,∴n=18故选D二、填空题:本大题共4小题,每小题5分,共20分.13.不等式x2+8x<20的解集是(﹣10,2).【分析】把不等式化为x2+8x﹣20<0,左边因式分解,即可求出该不等式的解集.【解答】解:不等式x2+8x<20可化为x2+8x﹣20<0,即(x+10)(x﹣2)<0,解得﹣10<x<2;所以该不等式的解集是(﹣10,2).故答案为:(﹣10,2).14.数列{a n}满足:a1=2,a n﹣a n﹣1=2n﹣1,则a n= 2n.【分析】利用“累加求和”方法、等比数列的求和公式即可得出.【解答】解:∵a1=2,a n﹣a n﹣1=2n﹣1,则a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2n﹣1+2n﹣2+…+2+2=+1=2n.故答案为:2n.15.棱长为1的正方体的八个顶点都在同一个球面上,则此球的表面积为3π.【分析】棱长为1的正方体的八个顶点都在同一个球面上,球的直径是正方体的对角线,知道棱长为1的正方体的对角线是,做出半径,利用圆的表面积公式得到结果.【解答】解:∵棱长为1的正方体的八个顶点都在同一个球面上,∴球的直径是正方体的对角线,∴球的半径是r=,∴球的表面积是4×=3π故答案为:3π16.若实数a、b满足a+b=2,则3a+3b的最小值是 6 .【分析】根据基本不等式和指数运算可直接得到答案.【解答】解:∵a+b=2∴3a+3b≥2=2=6当且仅当a=b=1时等号成立故答案为:6三、解答题:本大题共6小题,共计70分.解答应写出文字说明.证明过程或演算步骤17.已知平面直角坐标系中,点O为原点.A(﹣3,﹣4),B(5,﹣10).(1)求的坐标及||;(2)若=+, =2﹣,求•.【分析】根据向量的坐标运算和向量的数量积计算即可.【解答】解:(1)∵A(﹣3,﹣4),B(5,﹣10),∴=(5,﹣10)﹣(﹣3.﹣4)=(8,﹣6),∴||==10,(2)∵=(﹣3,﹣4),=(5,﹣10),∴=+=(2,﹣15),=2﹣=(﹣6,﹣8)﹣(5,﹣10)=(﹣11,2),∴•=2×(﹣11)﹣15×2=﹣5218.已知某几何体的俯视图是如图所示的正方形,正视图和侧视图都是底面边长为6,高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的表面积S.【分析】由三视图得该几何体是正四棱锥,画出直观图,由题意求出棱长、高以及斜面上的高,(1)由椎体的条件求出该几何体的体积V;(2)由图和面积公式求出该几何体的表面积S.【解答】解:由三视图得该几何体是正四棱锥P﹣ABCD,如图所示:其中PO⊥平面ABCD,E是BC的中点,∵正视图和侧视图都是底面边长为6,高为4的等腰三角形,∴PO=4,AB=BC=6,OE=3,则PE==5,(1)该几何体的体积V==48;(2)∵E是BC的中点,∴PE⊥BC∴该几何体的表面积S==51.19.一个车辆制造厂引进了一条汽车整车装配流水线,这条流水线生产的汽车月销量Q(辆)与单价x(万元)之间有如下关系:Q(x)=220﹣2x.设这条流水线生产的汽车的月产值为y(万元).(1)写出函数y=f(x)的解析式,并求汽车的单价为多少时,月产值最大;(2)若这家工厂希望这条流水线的月产值不低于6000万元,那么汽车的单价应如何确定?【分析】(1)根据题意列出不等式即可解得解析式;(2)根据题意,将题目条件转化为关于x的不等式,解不等式即可解得答案.【解答】解:(1)由题意可得,y=f(x)=xQ(x)=x=﹣2x2+220x=﹣2(x﹣55)2+6050,∴当x=55时,y=f(x)取得最大值;(2)根据题意得,﹣2x2+220x>6000,移项整理,得x2﹣110x+3000<0,∴50<x<60,∴汽车的单价在50﹣60万元间,可以使这家工厂这条流水线的月产值不低于6000万元.20.等差数列{a n}的公差为d,等比数列{b n}的公比为q,且d=q,a1=b1=1,a3﹣b3=1.(1)求数列{a n}和{b n}的通项公式;(2)设=a n+b n,求数列{}的前n项和S n.【分析】(1)利用等差数列与等比数列的通项公式即可得出.(2)利用等差数列与等比数列的求和公式即可得出.【解答】解:(1)∵d=q,a1=b1=1,a3﹣b3=1.∴1+2d﹣d2=1,d=q≠0,解得d=q=2.∴a n=1+2(n﹣1)=2n﹣1,b n=2n﹣1.(2)=a n+b n=2n﹣1+2n﹣1.∴数列{}的前n项和S n=+=n2+2n﹣1.21.在△ABC中,a、b、c分别是角A、B、C的对边,且2acosB=bcosC+ccosB.(1)求角B的大小;(2)若b=2,a+c=4,求a和c的值.【分析】(1)由已知及正弦定理得:sinA=2sinAcosB,又0<A<π.可求cosB=,结合X 围0<B<π,即可求B的值.(2)由已知及余弦定理可求ac=4,联立a+c=4,从而解得a,c的值.【解答】解:(1)在△ABC中,由2acosB=bcosC+ccosB,及正弦定理得:sinBcosC+sinCcosB=2sinAcosB,即sin(B+C)=2sinAcosB,又A+B+C=π,所以sin(B+C)=sinA,从而sinA=2sinAcosB,又0<A<π.故cosB=,又0<B<π,所以B=.(2)∵b=2,B=,a+c=4①,∴由余弦定理b2=a2+c2﹣2accosB,可得:4=a2+c2﹣ac=(a+c)2﹣3ac=16﹣3ac,可得:ac=4②,∴①②联立解得:a=c=2.22.在等差数列{a n}中,a2=2,a4+a6=10.(1)求数列{a n}的通项公式;(2)设b n=a n•2an,T n是数列{b n}的前n项和,求T n.【分析】(1)求出等差数列的公差,然后求解数列的通项公式.(2)化简数列数列{b n}的通项公式,然后利用错位相减法求解数列的和.【解答】解:(1)设等差数列{a n}的公差为d,∵a2=2,a4+a6=10;∴2×2+6d=10,解得d=1.∴a n=2+1(n﹣2)=n.(2)b n=n×2n.T n=1×21+2×22+3×23+4×24+…+n×2n2T n=1×22+2×23+3×24+4×25+…+n×2n+1,两式相减,得﹣T n=21+22+23+24+…+2n﹣n×2n+1=﹣n×2n+1∴T n═n×2n+1﹣2n+1+2.。
人教版高一上学期数学期中(必修一)试卷(含答案解析,可下载)
-2-
18.(本小题满分 12 分)
已知函数 f x log4 4x 1 kx k R 是偶函数.
(1)证明:对任意实数 b ,函数 y
f
x 的图象与直线 y
3 2
x b 最多只有一个交点;
(2)若方程 f x log4
a 2 x
4 3
有且只有一个解,求实数 a 的取值范围.
19.(12 分)某投资公司投资甲乙两个项目所获得的利润分别是 M (亿元)和 N (亿元),它们与
投资额 t (亿元)的关系有经验公式: M
1 3
t,
N
1 6
t
,今该公司将
3
亿元投资这个项目,若设甲
项目投资 x 亿元,投资这两个项目所获得的总利润为 y 亿元.
集为
.
14.幂函数 y
x
1 2
p
2
p
3 2
p Z 为偶函数,且
f
1
f
4 ,则实数 p
.
15.用 min a, b, c 表示 a 、 b 、 c 三个数中的最小值设 f x min 2x, x 2,10 x x 0 ,则
f x 的最大值为
22.(12
分)已知函数
f
x
11x1x1
, ,
0 x1
. x 1
(1)当 0
a
log1 a ,
3
1 3
b
log1 b,
3
1 3
c
lo g3 c ,则
高一数学下学期期末考试试卷(含解析)-人教版高一全册数学试题
某某省某某市长安区第一中学2015-2016学年高一下学期期末考试数学一、选择题:共12题1.不等式的解集为A. B.C. D.【答案】C【解析】本题考查一元二次不等式的解法.,即,解得.即不等式的解集为.选C.2.数列,,,,,,,则是这个数列的A.第10项B.第11项C.第12项D.第21项【答案】B【解析】本题考查数列的通项.由题意得,令,解得.选B.3.在数列中,,,则的值为A.52B.51C.50D.49【答案】A【解析】本题考查等差数列的性质.由得,所以为等差数列,所以==,所以.选A.4.=A. B. C. D.【答案】A【解析】本题考查同角三角函数的诱导公式及两角和的正弦公式.====.选A.【备注】.5.已知角的终边经过点,则的值等于A. B. C. D.【答案】D【解析】本题考查三角函数的定义.由题意得所以=,=,所以=.选D.6.若数列是等差数列,且,则A. B. C. D.【答案】B【解析】本题考查等差数列的性质,诱导公式.因为是等差数列,所以=,又所以,,所以===.选B.【备注】若,等差数列中.7.设,若是与的等比中项,则的最小值为A.8B.4C.1D.【答案】B【解析】本题考查等比数列性质,基本不等式.因为是与的等比中项,所以,即.所以===4(当且仅当时等号成立),即的最小值为4.选B.【备注】若,等比数列中.8.已知是等比数列,,则=A.16()B.16()C.)D.)【答案】C【解析】本题考查等比数列的通项与求和.由题意得的公比=,所以=,所以,令,则是以8为首项,为公比的等比数列,所以的前n项和=).选C.【备注】等比数列中,.9.在△中,已知,,若点在斜边上,,则的值为A.48 B.24 C.12 D.6【答案】B【解析】本题考查平面向量的线性运算和数量积.因为,,所以==,所以==+0=24.选B.【备注】.10.函数,,的部分图象如图所示,则A. B.C. D.【答案】D【解析】本题考查三角函数的性质和图象,解析式的求解.由图可得,,,即,即,所以,又过点,所以=2,由可得=.所以.选D.【备注】知图求式.11.已知向量,,且∥,则= A. B. C. D.【答案】C【解析】本题考查向量的坐标运算与线性运算,二倍角公式.因为∥,所以,即,即=-3,所以=====.选C.【备注】二倍角公式:,.12.设函数,若存在使得取得最值,且满足,则m的取值X围是A. B.C. D.【答案】C【解析】本题考查三角函数的性质与最值,一元二次不等式.由题意得,且=,解得,(),所以转化为,而,所以,即,解得或.选C.二、填空题:共6题13.不等式的解集是 .【答案】【解析】本题考查分式不等式,一元二次不等式.由题意得且,所以或.所以不等式的解集是.【备注】一元高次不等式的解法:穿针引线法.14.已知,,则的值为_______.【答案】3【解析】本题考查两角和与差的正切角公式.由题意得=== 3.【备注】=是解题的关键.15.已知向量a=,b=, 若m a+n b=(),则的值为______. 【答案】-3【解析】本题考查平面向量的坐标运算.由题意得===,即,解得,,所以.16.江岸边有一炮台高30m,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得两船的俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距 m.【答案】【解析】本题考查解三角形的应用.画出图形,为炮台,为两船的位置;由题意得m,,,;在△中,=m.在Rt△中,,所以m;在△中,由余弦定理得=300.即,两条船相距m.【备注】余弦定理:.17.若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.【答案】【解析】本题主要考查三角函数图象平移、函数奇偶性及三角运算.解法一f(x)=sin(2x+)的图象向右平移φ个单位得函数y=sin(2x+-2φ)的图象,由函数y=sin(2x+-2φ)的图象关于y轴对称可知sin(-2φ)=±1,即sin(2φ-)=±1,故2φ-=kπ+,k∈Z,即φ=+,k∈Z,又φ>0,所以φmin=.解法二由f(x)=sin(2x+)=cos(2x-)的图象向右平移φ个单位所得图象关于y轴对称可知2φ+=kπ,k∈Z,故φ=-,又φ>0,故φmin=.【备注】解题关键:解决三角函数的性质问题,一般化为标准型后结合三角函数的图象求解,注意正余弦函数的对称轴过曲线的最低点或最高点是解题的关键所在.18.已知分别为△的三个内角的对边,,且,则△面积的最大值为 . 【答案】【解析】本题考查正、余弦定理,三角形的面积公式.由正弦定理得=,又所以,即,所以=,所以.而,所以;所以≤=(当且仅当时等号成立).即△面积的最大值为.【备注】余弦定理:.三、解答题:共5题19.在△中,已知,,.(1)求的长;(2)求的值.【答案】(1)由余弦定理知,==,所以.(2)由正弦定理知,所以,因为,所以为锐角,则,因此【解析】本题考查二倍角公式,正、余弦定理.(1)由余弦定理知.(2)由正弦定理知,,因此.20.设是公比为正数的等比数列,,.(1)求的通项公式;(2)设是首项为1,公差为2的等差数列,求数列的前n项和.【答案】(1)设q为等比数列{a n}的公比,则由a1=2,a3=a2+4得2q2=2q+4,即q2-q-2=0,解得q=2或q=-1(舍去),因此q=2.所以{a n}的通项为a n=2·2n-1=2n(n∈N*)(2)S n=+n×1+×2=2n+1+n2-2.【解析】本题考查等差、等比数列的通项与求和.(1)求得q=2,所以a n=2n(n∈N*);(2)分组求和得S n=2n+1+n2-2.21.已知向量,,函数,且的图象过点.(1)求的值;(2)将的图象向左平移个单位后得到函数的图象,若图象上各最高点到点的距离的最小值为,求的单调递增区间.【答案】(1)已知,过点,解得(2)由(1)知,左移个单位后得到,设的图象上符合题意的最高点为,,解得,,解得,,由得,的单调增区间为【解析】本题考查平面向量的数量积,三角函数的图像与性质,三角恒等变换.(1)由向量的数量积求得,过点,解得;(2),求得,,其单调增区间为.22.某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费用第一年是0.2万元,第二年是0.4万元,第三年是0.6万元,……,以后逐年递增0.2万元. 汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的总和平均摊到每一年的费用叫做年平均费用.设这种汽车使用x(x∈N*)年的维修总费用为g(x),年平均费用为f(x).(1)求出函数g(x),f(x)的解析式;(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?【答案】(1)由题意,知使用x年的维修总费用为g(x)==0.1x+0.1x2,依题意,得f(x)=[10+0.9x+(0.1x+0.1x2)]=(10+x+0.1x2).(2)f(x)=++1≥2+1=3,当且仅当,即x=10时取等号.所以x=10时,y取得最小值3.所以这种汽车使用10年时,它的年平均费用最小,最小值是3万元.【解析】无23.把正奇数数列中的数按上小下大、左小右大的原则排成如下三角形数表:设是位于这个三角形数表中从上往下数第行、从左往右数第个数.(1)若,求,的值;(2)已知函数,若记三角形数表中从上往下数第行各数的和为,求数列的前项和.【答案】(1)三角形数表中前m行共有个数,所以第m行最后一个数应当是所给奇数列中的第项.故第m行最后一个数是.因此,使得的m是不等式的最小正整数解.由得,, 于是,第45行第一个数是,(2)第n行最后一个数是,且有n个数,若将看成第n行第一个数,则第n行各数成公差为的等差数列,故..故.因为,两式相减得..【解析】本题考查数列的概念,数列的通项与求和.(1)找规律得第m行最后一个数是.可得,求出第45行第一个数是,(2)..错位相减可得.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年某某省某某高一(下)期中数学试卷一、选择题(12*5=60分)1.下列说法中正确的是()A.第一象限角一定不是负角B.﹣831°是第四象限角C.钝角一定是第二象限角D.终边与始边均相同的角一定相等2.下列说法正确的是()A.若|,B.若,C.若,则D.若,则与不是共线向量3.已知角α终边上一点P(﹣4,3),则sinα=()A.B.C.D.﹣4.已知点A(﹣1,5)和向量=(2,3),若=3,则点B的坐标为()A.(7,4)B.(7,14) C.(5,4)D.(5,14)5.cos(﹣225°)+sin(﹣225°)等于()A.B.﹣C.0 D.6.在△ABC中, =, =,当<0时,△ABC为()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形7.P是△ABC所在平面上一点,若,则P是△ABC的()A.外心 B.内心 C.重心 D.垂心8.要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位9.已知函数f(x)=sin(πx﹣)﹣1,则下列命题正确的是()A.f(x)是周期为1的奇函数B.f(x)是周期为2的偶函数C.f(x)是周期为1的非奇非偶函数D.f(x)是周期为2的非奇非偶函数10.已知ω>0,函数f(x)=sin(ωx+)在(,π)上单调递减,则实数ω的取值X围是()A.[,] B.[,] C.(0,] D.(0,2]11.函数y=lncosx()的图象是()A.B.C.D.12.设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若=λ(λ∈R),=μ(μ∈R),且+=2,则称A3,A4调和分割A1,A2,已知平面上的点C,D调和分割点A,B,则下面说法正确的是()A.C可能是线段AB的中点B.D可能是线段AB的中点C.C、D可能同时在线段AB上D.C、D不可能同时在线段AB的延长线上二、填空题(4*5=20分)13.cos =.14.已知θ∈{α|α=kπ+(﹣1)k+1•,k∈Z},则角θ的终边所在的象限是.15.已知||=||=1,|+|=1,则|﹣|=.16.如图,已知△ABC中,D为边BC上靠近B点的三等分点,连接AD,E为线段AD的中点,若,则m+n=.二、解答题(共70分,其中17题10分,18,19,20,21,22各12分)17.已知tanα=2,求下列各式的值:(1);(2)3sin2α+3sinαcosα﹣2cos2α.18.已知f(α)=,(1)化简f(α)(2)若cosα=,求f(α)的值.19.已知||=2,||=3,||与||的夹角为120°,求(1)(2)﹣(3)(2)()(4)||20.求函数的周期、对称轴、对称中心及单调递增区间.21.设,是不共线的两个向量=3+4, =﹣2+5,若实数λ,μ满足λ+μ=5﹣,求λ,μ的值.22.求函数y=cos2x+asinx+a+1(0≤x≤)的最大值.2016-2017学年某某省某某外国语学校三箭分校高一(下)期中数学试卷参考答案与试题解析一、选择题(12*5=60分)1.下列说法中正确的是()A.第一象限角一定不是负角B.﹣831°是第四象限角C.钝角一定是第二象限角D.终边与始边均相同的角一定相等【考点】G3:象限角、轴线角;2K:命题的真假判断与应用.【分析】通过特例判断A的正误,角所在象限判断B的正误;钝角的X围判断C的正误;角的终边判断D的正误;【解答】解:例如﹣390°是第一象限的角,它是负角,所以A不正确;﹣831°=﹣3×360°+249°所以﹣831°是第三象限角,所以B不正确;钝角一定是第二象限角,正确;终边与始边均相同的角一定相等,不正确,因为终边相同,角的差值是360°的整数倍.故选:C.2.下列说法正确的是()A.若|,B.若,C.若,则D.若,则与不是共线向量【考点】96:平行向量与共线向量;93:向量的模.【分析】利用平面向量的性质,决定向量的有大小和方向,结合共线向量的定义进行选择.【解答】解:对于A,若|,;错误;因为向量没有大小之分;对于B,,错误;因为两个向量方程可能不同;对于C,相等的向量大小和方向都相同;故正确;对于D,,则与可能是共线向量;故错误;故选:C.3.已知角α终边上一点P(﹣4,3),则sinα=()A.B.C.D.﹣【考点】G9:任意角的三角函数的定义.【分析】由题意可得,x=﹣4、y=3、r=|OP|=5,再由三角函数的定义求得结果.【解答】解:由题意可得,x=﹣4、y=3、r=|OP|=5,故sinα==,故选:A.4.已知点A(﹣1,5)和向量=(2,3),若=3,则点B的坐标为()A.(7,4)B.(7,14) C.(5,4)D.(5,14)【考点】9J:平面向量的坐标运算.【分析】设B(x,y),由得(x+1,y﹣5)=(6,9),求得x、y的值,即可求得点B的坐标.【解答】解:设B(x,y),由得(x+1,y﹣5)=(6,9),故有,解得,故选 D.5.cos(﹣225°)+sin(﹣225°)等于()A.B.﹣C.0 D.【考点】GO:运用诱导公式化简求值.【分析】直接利用诱导公式化简所给式子的值,可得答案.【解答】解:cos(﹣225°)+sin(﹣225°)=cos225°﹣sin225°=cos﹣sin=﹣cos45°+sin45°=0.故选:C.6.在△ABC中, =, =,当<0时,△ABC为()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形【考点】9P:平面向量数量积的坐标表示、模、夹角.【分析】由<0知∠BAC>90°,由此可知△ABC的形状.【解答】解:∵<0,∴,∴,∴△ABC为钝角三角形,故选C.7.P是△ABC所在平面上一点,若,则P 是△ABC的()A.外心 B.内心 C.重心 D.垂心【考点】9R:平面向量数量积的运算;9T:数量积判断两个平面向量的垂直关系.【分析】本题考查的知识点是平面向量的数量积运算,由,我们任取其中两个相等的量,如,根据平面向量乘法分配律,及减法法则,我们可得,同理我们也可以得到PA⊥BC,PC⊥AB,由三角形垂心的性质,我们不难得到结论.【解答】解:∵,则由得:,∴PB⊥AC同理PA⊥BC,PC⊥AB,即P是垂心故选D8.要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】直接利用三角函数的平移原则推出结果即可.【解答】解:因为函数y=sin(4x﹣)=sin,要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象向右平移单位.故选:B.9.已知函数f(x)=sin(πx﹣)﹣1,则下列命题正确的是()A.f(x)是周期为1的奇函数B.f(x)是周期为2的偶函数C.f(x)是周期为1的非奇非偶函数D.f(x)是周期为2的非奇非偶函数【考点】H3:正弦函数的奇偶性;H1:三角函数的周期性及其求法.【分析】直接求出函数的周期,化简函数的表达式,为一个角的一个三角函数的形式,判定奇偶性,即可得到选项.【解答】解:因为:T==2,且f(x)=sin(πx﹣)﹣1=﹣cosπx﹣1,因为f(﹣x)=f(x)∴f(x)为偶函数.故选B.10.已知ω>0,函数f(x)=sin(ωx+)在(,π)上单调递减,则实数ω的取值X围是()A.[,] B.[,] C.(0,] D.(0,2]【考点】H5:正弦函数的单调性.【分析】由条件利用正弦函数的减区间可得,由此求得实数ω的取值X围.【解答】解:∵ω>0,函数f(x)=sin(ωx+)在(,π)上单调递减,则,求得≤ω≤,故选:A.11.函数y=lncosx()的图象是()A.B.C.D.【考点】35:函数的图象与图象变化.【分析】利用函数的奇偶性可排除一些选项,利用函数的有界性可排除一些个选项.从而得以解决.【解答】解:∵cos(﹣x)=cosx,∴是偶函数,可排除B、D,由cosx≤1⇒lncosx≤0排除C,故选A.12.设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若=λ(λ∈R),=μ(μ∈R),且+=2,则称A3,A4调和分割A1,A2,已知平面上的点C,D调和分割点A,B,则下面说法正确的是()A.C可能是线段AB的中点B.D可能是线段AB的中点C.C、D可能同时在线段AB上D.C、D不可能同时在线段AB的延长线上【考点】9B:向量加减混合运算及其几何意义.【分析】由题意可设A(0,0)、B(1,0)、C(c,0)、D(d,0),结合条件+=2,根据题意考查方程+=2的解的情况,用排除法选出正确的答案即可.【解答】解:由已知不妨设A(0,0)、B(1,0)、C(c,0)、D(d,0),则(c,0)=λ(1,0),(d,0)=μ(1,0),∴λ=c,μ=d;代入+=2,得+=2;(*)若C是线段AB的中点,则c=,代入(*)得,d不存在,∴C不可能是线段AB的中点,A错误;同理B错误;若C,D同时在线段AB上,则0≤c≤1,0≤d≤1,代入(*)得,c=d=1,此时C和D点重合,与已知矛盾,∴C错误.若C,D同时在线段AB的延长线上时,则λ>1.μ>1,∴1λ+1μ<2,这与1λ+1μ=2矛盾;∴C、D不可能同时在线段AB的延长线上,D正确.故选:D.二、填空题(4*5=20分)13.cos =.【考点】GO:运用诱导公式化简求值.【分析】直接由三角函数的诱导公式化简计算得答案.【解答】解:cos =cos=cos(25π+)=cos()=﹣cos=.故答案为:.14.已知θ∈{α|α=kπ+(﹣1)k+1•,k∈Z},则角θ的终边所在的象限是三,四.【考点】G3:象限角、轴线角.【分析】对k分奇数与偶数讨论利用终边相同的角的集合的定义即可得出.【解答】解:当k=2n+1(n∈Z)时,α=(2n+1)π+,角θ的终边在第三象限.当k=2n(n∈Z)时,α=2nπ﹣,角θ的终边在第四象限.故答案为:三,四.15.已知||=||=1,|+|=1,则|﹣|=.【考点】9R:平面向量数量积的运算.【分析】法一、由已知求出,然后求出,开方后得答案;法二、由题意画出图形,然后求解直角三角形得答案.【解答】解:法一、由||=||=1,|+|=1,得,即,∴,则|﹣|=;法二、由题意画出图形如图,设,则图中A、B两点的距离即为|﹣|.连接AB后解直角三角形可得|AB|=.故答案为:.16.如图,已知△ABC中,D为边BC上靠近B点的三等分点,连接AD,E为线段AD的中点,若,则m+n=.【考点】9V:向量在几何中的应用.【分析】根据向量加法的平行四边形法则,向量加减法的几何意义,以及向量的数乘运算即可得出,这样便可得出m+n的值.【解答】解:根据条件,====;又;∴.故答案为:.二、解答题(共70分,其中17题10分,18,19,20,21,22各12分)17.已知tanα=2,求下列各式的值:(1);(2)3sin2α+3sinαcosα﹣2cos2α.【考点】GH:同角三角函数基本关系的运用.【分析】(1)原式分子分母除以cosα,利用同角三角函数间基本关系化简,将tanα的值代入计算即可求出值;(2)原式分母看做“1”,利用同角三角函数间基本关系化简,将tanα的值代入计算即可求出值.【解答】解:(1)∵tanα=2,∴原式===;(2)∵tanα=2,∴原式===.18.已知f(α)=,(1)化简f(α)(2)若cosα=,求f(α)的值.【考点】GO:运用诱导公式化简求值.【分析】(1)根据诱导公式化简可得答案.(2)由cosα=,利用同角三角函数间的关系式可求解.【解答】解:(1)由f(α)=,==2sinα.(2)∵cosα=,∴当α在第一象限时,sinα==.∴f(α)=2sinα=1;∴当α在第四象限时,sinα=﹣=﹣.∴f(α)=2sinα=﹣1.19.已知||=2,||=3,||与||的夹角为120°,求(1)(2)﹣(3)(2)()(4)||【考点】9R:平面向量数量积的运算.【分析】(1)直接由已知结合数量积公式得答案;(2)由运算得答案;(3)展开多项式乘以多项式,代入数量积得答案;(4)求出,开方后得答案.【解答】解:∵||=2,||=3,||与||的夹角为120°,∴(1)=;(2)﹣=22﹣32=﹣5;(3)(2)()==2×22+5×(﹣3)﹣3×32=﹣34;(4)||==.20.求函数的周期、对称轴、对称中心及单调递增区间.【考点】H5:正弦函数的单调性;H3:正弦函数的奇偶性;H4:正弦函数的定义域和值域;H6:正弦函数的对称性.【分析】根据正弦函数的图象及性质求解即可.【解答】解:函数=﹣sin(2x+)+1.∴周期T=.令2x+=,得:x=kπ+,k∈Z即对称轴方程为:x=kπ+,k∈Z;令2x+=kπ,得:x=∴对称中心为(,1),k∈Z;由2x++2kπ得:≤x≤.∴单调递增区间为[,],k∈Z;综上得:周期T=π,对称轴方程为:x=kπ+,k∈Z;对称中心为(,1),k∈Z;单调递增区间为[,],k∈Z;21.设,是不共线的两个向量=3+4, =﹣2+5,若实数λ,μ满足λ+μ=5﹣,求λ,μ的值.【考点】9F:向量的线性运算性质及几何意义.【分析】根据平面向量的线性运算,利用向量相等,列出方程组求出λ与μ的值.【解答】解:∵,是不共线的两个向量,且=3+4, =﹣2+5,∴λ+μ=λ(3+4)+μ(﹣2+5)=(3λ﹣2μ)+(4λ+5μ)=5﹣,∴,解得λ=1,μ=﹣1.22.求函数y=cos2x+asinx+a+1(0≤x≤)的最大值.【考点】HW:三角函数的最值.【分析】根据二倍角公式整理所给的函数式,得到关于正弦的二次函数,根据所给角x的X围,得到二次函数的定义域,根据对称轴与所给定义域之间的关系,分类求得函数的最大值.【解答】解:函数y=f(x)=cos2x+asinx+a+1=1﹣sin2x+asinx+a+1=﹣++a+2;∵函数f(x)的定义域为,∴sinx∈,∴当0≤≤1,即0≤a≤2时,f(x)的最大值是f(x)max=f()=+a+2;当<0,即a<0时,f(x)在sinx=0时取得最大值是f(x)max=f(0)=a+2;当>1,即a>2时,f(x)在sinx=1取得最大值是f(x)max=f()=a+1;综上可知:a<0时,f(x)max=a+1;0≤a≤2时,f(x)max=+a+2;a>2时,f(x)max=a+1.。