山东省济南市高一下学期期末数学试卷

合集下载

2023-2024学年山东省济南市高一下学期7月期末学习质量检测数学试题

2023-2024学年山东省济南市高一下学期7月期末学习质量检测数学试题

2023-2024学年山东省济南市高一下学期7月期末学习质量检测数学试题1.已知为虚数单位,则复数的虚部是()A.B.C.D.2.从装有两个白球和两个黄球的口袋中任取两个球,下列各组事件中,是互斥事件的是()A.“至少一个白球”与“至少一个黄球”B.“恰有一个白球”与“恰有两个白球”C.“至多一个白球”与“至多一个黄球”D.“至少一个黄球”与“都是黄球”3.在中,记,,若,则()A.B.C.D.4.若正三棱台上底面边长为,下底面边长为,高为,则该棱台的体积为()A.B.2C.D.5.如图,已知某频率分布直方图形成“右拖尾”形态,则下列结论正确的是()A.众数平均数中位数B.众数中位数平均数C.众数平均数中位数D.中位数平均数众数6.已知两条不同的直线,和两个不同的平面,,则下列结论正确的是()A.若,,则B.若,,则C.若,,,,则D.若,,,则与平行或异面7.某地区公共卫生部门为了了解本地区中学生的吸烟情况,对随机抽出的200名学生进行调查.为了得到该敏感性问题的诚实反应,设计如下方案:每个被调查者先后抛掷两颗骰子,调查中使用两个问题:①第一颗骰子的点数是否比第二颗的大?②你是否经常吸烟?两颗骰子点数和为奇数的学生如实回答第一个问题,两颗骰子点数和为偶数的学生如实回答第二个问题.回答“是”的学生往盒子中放一个小石子,回答“否”的学生什么都不用做.若最终盒子中小石子的个数为57,则该地区中学生吸烟人数的比例约为()A.0.035B.0.07C.0.105D.0.148.如图,设,是平面内夹角为的两条数轴,,分别是与轴、轴正方向同向的单位向量.若向量,则有序数对叫做点在坐标系中的坐标.在该坐标系下,,,为不共线的三点,下列结论错误..的是()A .线段中点的坐标为B .重心的坐标为C .,两点的距离为D .若,则,,三点共线9.已知为虚数单位,复数,,则下列结论正确的是()A .所对应的点在第一象限B .所对应的点在第二象限C .D .10.已知有限集为随机试验的样本空间,事件,为的子集,则事件,相互独立的充分条件可以是()A .B .C .D .11.如图所示,三棱锥中,,其余棱长均为.为棱的中点,将三棱锥绕旋转,使得点,分别到达点,,且.下列结论正确的是()A .平面B .C .直线与所成的角为D .点,,,,,在同一个直径为的球面上12.甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8,乙的中靶概率为0.7,现两人各自独立射击一次,则至少一人中靶的概率为______.13.已知,,分别为内角,,的对边,且,,则使得有两组解的的值可以是_____________(写出满足条件的一个值即可).14.在平行六面体中,底面是边长为2的菱形,,,且平面,均与底面垂直.点在侧面上运动,若,则点的轨迹长为_____________.15.某学校组织“泉城知识答题竞赛”,满分100分,共有100人参赛,其成绩均落在区间内,将成绩数据分成,,,,5组,制成如图所示的频率分布直方图.(1)求的值并估计参赛学生成绩的分位数;(2)从成绩低于70分的学生中,用按比例分配的分层抽样抽取6人.从这6人中任选2人,求此2人分数都在的概率.16.已知内角,,的对边分别为,,,且满足.(1)求;(2)若,,求的周长.17.如图1,在菱形中,是边长为2的等边三角形,将沿对角线翻折至的位置,得到图2所示的三棱锥.(1)证明:;(2)若二面角的平面角为,求直线与平面所成角的正弦值.18.如图,内角,,的对边分别为,,,为边上一点,且,.(1)已知.(ⅰ)求的值;(ⅱ)若,求的面积;(2)求的最小值.19.给定三棱锥,设的四个顶点到平面的距离所构成的集合为,若中元素的个数为,则称为的阶等距平面,称为的阶等距集.(1)若为三棱锥,满足,,求出的1阶等距平面截该三棱锥所得到的截面面积(求出其中的一个即可);(2)如图所示,是棱长为的正四面体.(ⅰ)若为的1阶等距平面且1阶等距集为,求的所有可能取值以及相对应的的个数;(ⅱ)已知是的4阶等距平面,点与点,,分别位于两侧.是否存在,使的4阶等距集为,其中点到的距离为?若存在,求出截所得的平面多边形的最大边长;若不存在,说明理由.。

2024届山东省济南市部分区县高一数学第二学期期末考试模拟试题含解析

2024届山东省济南市部分区县高一数学第二学期期末考试模拟试题含解析

2024届山东省济南市部分区县高一数学第二学期期末考试模拟试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本大题共10小题,每小题5分,共50分。

在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知0a b >>,且a ,b ,2-这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则a b +=( ) A .7 B .6C .5D .92.把直线y x =绕原点逆时针转动,使它与圆22230x y y ++-+=相切,则直线转动的最小正角度(). A .3πB .2π C .23π D .56π 3.若直线()y c c R =∈与函数tan (0)y x ωω=≠的图象相邻的两个交点之间的距离为1,则函数tan y x ω=图象的对称中心为( )A .,0,2k k Z ⎛⎫∈ ⎪⎝⎭B .(,0),k k Z ∈C .,0,2k k Z π⎛⎫∈⎪⎝⎭D .(,0),k k Z π∈ 4.圆()()22215x y -++=关于原点对称的圆的方程为( ) A .()()22215x y -+-= B .()()22125x y ++-= C .()()22125x y -++=D .()()22215x y ++-=5.在直三棱柱(侧棱垂直于底面)111ABC A B C -中,若2AB BC ==,13AA =,90ABC ∠=︒,则其外接球的表面积为( )A .17πB .43π C .173πD 6.关于x 的方程sin 26x m π⎛⎫+= ⎪⎝⎭在[0,]π内有相异两实根,则实数m 的取值范围为( )A .31,42⎡⎤⎢⎥⎣⎦ B .31,42⎡⎫⎪⎢⎪⎣⎭C .11,42⎡⎫⎪⎢⎣⎭D .11,42⎡⎤⎢⎥⎣⎦7.设偶函数()f x 定义在0022ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭,, 上,其导数为()f x ',当02x π<< 时,()cos ()sin 0f x x f x x '+< ,则不等式()2cos 3f x f x π⎛⎫> ⎪⎝⎭的解集为( )A .0233πππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭,,B .0332πππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭,, C .0033,,ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭D .2332ππππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭,,8.已知数列{}n a 满足:()*122,n n a a n n n N-=+≥∈,17a=-,则该数列中满足311n a ≤≤的项共有( )项A .0B .1C .2D .59.已知某几何体的三视图如图所示,则该几何体的表面积为( )A .23B .46+C .43+D .23+10.执行如图所示的程序框图,则输出的k 的值为( )A .3B .4C .5D .6二、填空题:本大题共6小题,每小题5分,共30分。

山东省济南市高一下学期期末数学试卷

山东省济南市高一下学期期末数学试卷

山东省济南市高一下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)某一考场有64个试室,试室编号为001﹣064,现根据试室号,采用系统抽样法,抽取8个试室进行监控抽查,已抽看了005,021试室号,则下列可能被抽到的试室号是()A . 029,051B . 036,052C . 037,053D . 045,0542. (2分)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()A .B .C . 36D .3. (2分)某数学兴趣小组有3名男生和2名女生,从中任选出2名同学参加数学竞赛,那么对立的两个事件是()A . 恰有1名男生与恰有2名女生B . 至少有1名男生与全是男生C . 至少有1名男生与至少有1名女生D . 至少有1名男生与全是女生4. (2分)在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,…,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个;则()A . 不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是B . ①②两种抽样方法,这100个零件中每个被抽到的概率都是,③并非如此C . ①③两种抽样方法,这100个零件中每个被抽到的概率都是,②并非如此D . 采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同5. (2分)设变量x,y满足约束条件,则目标函数的最小值为()A . 6B . 7C . 8D . 236. (2分) (2016高二上·杭州期中) △ABC中,角A,B,C所对的边分别为a,b,c,已知sinA+sinC=psinB 且.若角B为锐角,则p的取值范围是()A .B .C .D .7. (2分) (2016高二下·市北期中) 执行如图所示的程序框图,若输出的,则判断框内填入的条件可以是()A . k≥7B . k>7C . k≤8D . k<88. (2分)设0<a<b<1,则下列不等式成立的是()A . a3>b3B . <C . a2>b2D . 0<b﹣a<19. (2分) (2018高二下·中山期末) 已知x与y之间的一组数据:x0123y1357则y与x的线性回归方程为必过点()A .B .C .D .10. (2分) (2016高二上·屯溪开学考) 已知数列{an}满足a1=15,a2= ,且2an+1=an+an+2 .若ak•ak+1<0,则正整数k=()A . 21B . 22C . 23D . 24二、填空题 (共5题;共5分)11. (1分)若n为正偶数,则7n+•7n﹣1+•7n﹣2+…+•7被9除所得的余数是________.12. (1分)右面的程序框图输出的S的值为________13. (1分) (2018高三上·定州期末) 已知等差数列的前项和为,且,数列的前项和为,且对于任意的,则实数的取值范围为________.14. (1分) (2016高一下·衡阳期末) 已知矩形ABCD中,AB=2,BC=1,在矩形ABCD内随机取一点M,则BM <BC的概率为________.15. (1分)(2017·南通模拟) 设实数n≤6,若不等式2xm+(2﹣x)n﹣8≥0对任意x∈[﹣4,2]都成立,则的最小值为________三、解答题 (共5题;共70分)16. (20分)在党的群众交流路线总结阶段,一督导组从某单位随机抽调25名员工,让他们对单位的各项开展公国进行打分评价,现获得如下数据:70,82,81,76,84,77,77,65,85,69,83,71,76,89,74,73,83,78,82,72,86,79,76(1)根据上述数据完成样本的频率分布表;分组频数频率[65,70]________________(70,75]________________(75,80]________________(80,85]________________(85,90]________________(2)根据(1)的频率分布表,完成样本频率分布直方图(3)从区间[65,70]和(85,90]中任意抽取两个评分,求两个评分来自不同区间的概率.17. (10分)(2017·延边模拟) 设△ABC的内角A,B,C的对边分别为a,b,c,若c=2 ,sinB=2sinA.(1)若C= ,求a,b的值;(2)若cosC= ,求△ABC的面积.18. (20分)将一枚骰子先后抛掷2次,观察向上的点数,求:(1)两数之和为6的概率;(2)两数之和是3的倍数的概率;(3)两数之积是6的倍数的概率;(4)以第一次向上的点数为横坐标x、第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=25的内部的概率.19. (15分)(2017·崇明模拟) 已知数列{an},{bn}满足2Sn=(an+2)bn ,其中Sn是数列{an}的前n项和.(1)若数列{an}是首项为,公比为﹣的等比数列,求数列{bn}的通项公式;(2)若bn=n,a2=3,求证:数列{an}满足an+an+2=2an+1,并写出数列{an}的通项公式;(3)在(2)的条件下,设cn= ,求证:数列{cn}中的任意一项总可以表示成该数列其他两项之积.20. (5分) (2018高一上·沈阳月考) 己知函数 .(Ⅰ)当时,解关于x的不等式;(Ⅱ)若不等式的解集为D,且,求m的取值范围。

2022-2023学年山东省济南市高一(下)期末数学试卷【答案版】

2022-2023学年山东省济南市高一(下)期末数学试卷【答案版】

2022-2023学年山东省济南市高一(下)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z =11+2i对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.《2023年五一出游数据报告》显示,济南凭借超强周边吸引力,荣登“五一”最强周边游“吸金力”前十名榜单.其中,济南天下第一泉风景区接待游客100万人次,济南动物园接待游客30万人次,千佛山景区接待游客20万人次.现采用按比例分层抽样的方法对三个景区的游客共抽取1500人进行济南旅游满意度的调研,则济南天下第一泉风景区抽取游客( ) A .1000人B .300人C .200人D .100人3.设α,β为两个平面,则α⊥β的充要条件是( ) A .α过β的一条垂线B .α,β垂直于同一平面C .α内有一条直线垂直于α与β的交线D .α内有两条相交直线分别与β内两条直线垂直 4.袋子中有5个大小质地完全相同的球,其中3个红球,2个黄球,从中不放回地依次随机摸出2个球,则第二次摸到红球的概率为( ) A .110B .15C .25D .355.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π4,b =1,c =√62,则角C 的值为( )A .π3B .2π3C .π3或2π3D .无解6.如果三棱锥S ﹣ABC 底面不是等边三角形,侧棱SA ,SB ,SC 与底面ABC 所成的角都相等,SO ⊥平面ABC ,垂足为O ,则O 是△ABC 的( ) A .垂心B .重心C .内心D .外心7.已知锐角△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π3,c =2,则△ABC 的周长的取值范围为( )A .(3+√3,2+2√3)B .(3+√3,4+2√3)C .(3+√3,6+2√3)D .(3+√3,+∞)8.在四棱锥P ﹣ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB =1.点E ,F ,G 分别为平面P AB ,平面P AD 和平面ABCD 内的动点,点Q 为棱PC 上的动点,则QE 2+QF 2+QG 2的最小值为( ) A .12B .23C .34D .1二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知复数ω=−12+√32i ,则下列说法中正确的是( )A .|ω|=1B .ω3=﹣1C .ω2=ωD .ω2+ω+1=010.先后抛掷质地均匀的硬币两次,则下列说法正确的是( ) A .事件“恰有一次正面向上”与事件“恰有一次反面向上”相等B .事件“至少一次正面向上”与事件“至少一次反面向上”互斥C .事件“两次正面向上”与事件“两次反面向上”互为对立事件D .事件“第一次正面向上”与事件“第二次反面向上”相互独立11.某学校为了调查高一年级学生每天体育活动时间情况,随机选取了100名学生,绘制了如图所示频率分布直方图,则下列说法正确的是( )A .平均数的估计值为30B .众数的估计值为35C .第60百分位数估计值是32D .随机选取这100名学生中有25名学生体育活动时间不低于40分钟12.如图,已知三棱锥D ﹣ABC 可绕AB 在空间中任意旋转,△ABC 为等边三角形,AB 在平面α内,AB ⊥CD ,AB =2,CD =√6,cos∠CBD =14,则下列说法正确的是( )A .二面角D ﹣AB ﹣C 为π2B .三棱锥D ﹣ABC 的外接球表面积为20π3C .点C 与点D 到平面α的距离之和的最大值为2 D .点C 在平面α内的射影为点M ,线段DM 的最大值为√15+√32三、填空题:本题共4小题,每小题5分,共20分. 13.一组数据1,2,4,5,8的第75百分位数为 .14.在正方体ABCD ﹣A 1B 1C 1D 1中,直线BC 1与直线CD 1夹角的余弦值为 . 15.在圆C 中,已知弦AB =2,则AB →⋅AC →的值为 .16.已知△ABC 的重心为G ,面积为1,且AB =2AC ,则3AG 2+BC 2的最小值为 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知e →1,e →2是两个单位向量,夹角为π3,设a→=e →1+2e →2,b→=te →1−3e →2.(1)求|a →|;(2)若a →⊥b →,求t 的值.18.(12分)已知正三棱柱ABC ﹣A 1B 1C 1的棱长均为2,M 为A 1C 1的中点. (1)求证:BC 1∥平面AB 1M ; (2)求点B 到平面AB 1M 的距离d .19.(12分)独立事件是一个非常基础但又十分重要的概念,对于理解和应用概率论和统计学至关重要.它的概念最早可以追溯到17世纪的布莱兹•帕斯卡和皮埃尔•德•费马,当时被定义为彼此不相关的事件.19世纪初期,皮埃尔•西蒙•拉普拉斯在他的《概率的分析理论》中给出了相互独立事件的概率乘法公式.对任意两个事件A 与B ,如果P (AB )=P (A )P (B )成立,则称事件A 与事件B 相互独立,简称为独立.(1)若事件A 与事件B 相互独立,证明:A 与B 相互独立;(2)甲、乙两人参加数学节的答题活动,每轮活动由甲、乙各答一题,已知甲每轮答对的概率为35,乙每轮答对的概率为23.在每轮活动中,甲和乙答对与否互不影响,各轮结果也互不影响,求甲乙两人在两轮活动中答对3道题的概率.20.(12分)某社区工作人员采用分层抽样的方法分别在甲乙两个小区各抽取了8户家庭,统计了每户家庭近7天用于垃圾分类的总时间(单位:分钟),其中甲小区的统计表如下,设x i ,y i 分别为甲,乙小区抽取的第i 户家庭近7天用于垃圾分类的总时间,s x 2,s y 2分别为甲,乙小区所抽取样本的方差,已知x =18∑ 8i=1x i =200,s x 2=18∑ 8i=1(x i −x)2=200,y =195,s y 2=210,其中i =1,2,⋯,8.(1)若a ≤b ,求a 和b 的值;(2)甲小区物业为提高垃圾分类效率,优先试行新措施,每天由部分物业员工协助垃圾分类工作,经统计,甲小区住户每户每天用于垃圾分类的时间减少了5分钟.利用样本估计总体,计算甲小区试行新措施之后,甲乙两个小区的所有住户近7天用于垃圾分类的总时间的平均值z 和方差s z 2.参考公式:若总体划为2层,通过分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:m ,x 1,s 12;n ,x 2,s 22,总的样本平均数为ω,样本方差为s 2,则s 2=m m+n [s 12+(x 1−ω)2]+n m+n[s 22+(x 2−ω)2].21.(12分)如图1,在等腰△ABC 中,AC =4,A =π2,O ,D 分别为BC 、AB 的中点,过D 作DE ⊥BC 于E .如图2,沿DE 将△BDE 翻折,连接BA ,BC 得到四棱锥B ﹣ACED ,F 为AB 中点.(1)证明:DF ⊥平面AOB ;(2)当OB =√2时,求直线BF 与平面BCD 所成的角的正弦值.22.(12分)射影几何学中,中心投影是指光从一点向四周散射而形成的投影,如图,O 为透视中心,平面内四个点E ,F ,G ,H 经过中心投影之后的投影点分别为A ,B ,C ,D .对于四个有序点A ,B ,C ,D ,定义比值x =CACBDA DB叫做这四个有序点的交比,记作(ABCD ). (1)证明:(EFGH )=(ABCD );(2)已知(EFGH)=32,点B为线段AD的中点,AC=√3OB=3,sin∠ACOsin∠AOB=32,求cos A.2022-2023学年山东省济南市高一(下)期末数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z=11+2i对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解:z=11+2i=1−2i(1+2i)(1−2i)=15−25i,它在复平面内对应点为(15,−25),在第四象限.故选:D.2.《2023年五一出游数据报告》显示,济南凭借超强周边吸引力,荣登“五一”最强周边游“吸金力”前十名榜单.其中,济南天下第一泉风景区接待游客100万人次,济南动物园接待游客30万人次,千佛山景区接待游客20万人次.现采用按比例分层抽样的方法对三个景区的游客共抽取1500人进行济南旅游满意度的调研,则济南天下第一泉风景区抽取游客()A.1000人B.300人C.200人D.100人解:依题意济南天下第一泉风景区应抽取游客1500×100100+30+20=1000(人).故选:A.3.设α,β为两个平面,则α⊥β的充要条件是()A.α过β的一条垂线B.α,β垂直于同一平面C.α内有一条直线垂直于α与β的交线D.α内有两条相交直线分别与β内两条直线垂直解:由α⊥β可得α经过β的一条垂线,反之若α经过β的一条垂线,由面面垂直的判定定理可得α⊥β,故A正确;α,β垂直于同一个平面,可得α,β平行或相交,故B错误;α内有一条直线垂直于α与β的交线,可得α,β不一定垂直,故C 错误; α内有两条相交直线分别与β内两条直线垂直,可得α,β平行或相交,故D 错误. 故选:A .4.袋子中有5个大小质地完全相同的球,其中3个红球,2个黄球,从中不放回地依次随机摸出2个球,则第二次摸到红球的概率为( ) A .110B .15C .25D .35解:袋子中有5个大小质地完全相同的球,其中3个红球,2个黄球, 从中不放回地依次随机摸出2个球, 第二次摸到红球的情况有两种:①第一次摸到红球,第二次摸到红球,概率为:P 1=35×24=310, ②第一次摸到黄球,第二次摸到红球,概率为:P 2=25×34=310, 则第二次摸到红球的概率为P =P 1+P 2=310+310=35. 故选:D .5.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π4,b =1,c =√62,则角C 的值为( ) A .π3B .2π3C .π3或2π3D .无解解:∵B =π4,b =1,c =√62,由正弦定理有:bsinB=c sinC,∴sinC =csinB b =√62×√221=√32,∵c >b ,∴C >B ,∴C ∈(π4,π),∴C =π3或2π3.故选:C .6.如果三棱锥S ﹣ABC 底面不是等边三角形,侧棱SA ,SB ,SC 与底面ABC 所成的角都相等,SO ⊥平面ABC ,垂足为O ,则O 是△ABC 的( ) A .垂心 B .重心C .内心D .外心解:如图所示:因为SO ⊥平面ABC ,侧棱SA ,SB ,SC 与底面ABC 所成的角都相等, 则∠SAO =∠SBO =∠SCO ,AO =SO tan∠SAO ,BO =SO tan∠SBO ,CO =SOtan∠SCO,故AO =BO =CO ,故O 是△ABC 的外心. 故选:D .7.已知锐角△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π3,c =2,则△ABC 的周长的取值范围为( )A .(3+√3,2+2√3)B .(3+√3,4+2√3)C .(3+√3,6+2√3)D .(3+√3,+∞)解:∵B =π3,c =2, ∴由正弦定理得asinA=b sinπ3=2sinC,∴b =√3sinC ,a =2sinA sinC =2sin(π3+C)sinC =√3cosC+sinCsinC, ∴a +b =√3sinC+√3cosC+sinCsinC=√3(cosC+1)sinC+1=2√3cos 2C 22sin C 2cos C 2+1=√3tan C 2+1,在锐角△ABC 中,{0<C <π20<2π3−C <π2,解得π6<C <π2, ∴π12<C 2<π4,即tanπ12<tan C2<1,又tan π6=2tanπ121−tan 2π12=√33,解得tan π12=2−√3或tan π12=−2−√3(不合题意,舍去), ∴2−√3<tan C2<1,∴1<1tan C 212−3=2+√3,∴√3+1<√3tan C 2+1<4+2√3,即√3+1<a +b <4+2√3,∴√3+3<a +b +c <6+2√3,故△ABC 的周长的取值范围为(√3+3,6+2√3). 故选:C .8.在四棱锥P ﹣ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB =1.点E ,F ,G 分别为平面P AB ,平面P AD 和平面ABCD 内的动点,点Q 为棱PC 上的动点,则QE 2+QF 2+QG 2的最小值为( ) A .12B .23C .34D .1解:由题意得QE ,QF ,QG 均最小时,平方和最小,过点Q 分别作平面P AB ,平面P AD ,平面ABCD 的垂线,垂足分别为E ,F ,G , 连接AQ ,因为P A ⊥面ABCD ,BC ⊂平面ABCD ,所以P A ⊥BC ,因为底面ABCD 为正方形,所以AB ⊥BC ,又因为P A ∩AB =A ,P A ,AB ⊂平面P AB ,所以BC ⊥面P AB ,因为QE ⊥平面P AB ,则QE ∥BC ,又因为点Q 在PC 上,则点E 应在PB 上, 同理可证F ,G 分别位于PD ,AC 上, 从而补出长方体EQFJ ﹣HGIA ,则AQ 是以QE ,QF ,QG 为共点的长方体的对角线,则AQ ²=QE ²+QF ²+QG ², 则题目转化为求AQ 的最小值,显然当AQ ⊥PC 时,AQ 的最小值, 因为四边形ABCD 为正方形,且P A =AB =1,则AC =√2, 因为P A ⊥面ABCD ,AC ⊂面ABCD ,所以P A ⊥AC , 所以PC =√PA 2+AC 2=√3, 则直角三角形P AC 斜边AC 的高AQ =1×√2√3=√63,此时AQ 2=23, 则QE ²+QF ²+QG ²的最小值为23,故选:B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知复数ω=−12+√32i ,则下列说法中正确的是( )A .|ω|=1B .ω3=﹣1C .ω2=ωD .ω2+ω+1=0解:ω=−12+√32i ,则ω2=(−12+√32i)=−12−√32i ,ω2≠ω,故C 错误; |ω|=√(−12)2+(√32)2=1,故A 正确;ω3=ω2•ω=(−12−√32i)(−12+√32i)=1,故B 错误; ω2+ω+1=−12−√32i −12+√32i +1=0,故D 正确.故选:AD.10.先后抛掷质地均匀的硬币两次,则下列说法正确的是()A.事件“恰有一次正面向上”与事件“恰有一次反面向上”相等B.事件“至少一次正面向上”与事件“至少一次反面向上”互斥C.事件“两次正面向上”与事件“两次反面向上”互为对立事件D.事件“第一次正面向上”与事件“第二次反面向上”相互独立解:根据题意,依次分析选项:对于A,事件“恰有一次正面向上”即“一次正面向上、一次反面向上”,同样,事件“恰有一次反面向上”也是“一次正面向上、一次反面向上”,两个事件相等,A正确;对于B,事件“至少一次正面向上”,即“一次正面向上、一次反面向上”和“两次都是正面向上”,事件“至少一次反面向上”,即“一次正面向上、一次反面向上”和“两次都是反面向上”,两个事件不互斥,B错误;对于C,事件“两次正面向上”与事件“两次反面向上”不是对立事件,还有一种情况“一次正面向上、一次反面向上”,C错误;对于D,由相互独立事件的定义,事件“第一次正面向上”与事件“第二次反面向上”相互独立,D正确.故选:AD.11.某学校为了调查高一年级学生每天体育活动时间情况,随机选取了100名学生,绘制了如图所示频率分布直方图,则下列说法正确的是()A.平均数的估计值为30B.众数的估计值为35C.第60百分位数估计值是32D.随机选取这100名学生中有25名学生体育活动时间不低于40分钟解:对于A,由频率分布直方图可知平均数的估计值为:5×0.1+15×0.18+25×0.22+35×0.25+45×0.2+55×0.05=29.2,故A 错误;对于B ,由频率分布直方图可知[30,40)的频率最大,因此众数的估计值为35,故B 正确; 对于C ,由频率分布直方图得从第一组到第六组的频率依次是0.1,0.18,0.22,0.25,0.2,0.05, 所以第60百分位数估计值m 在[30,40)内,所以0.1+0.18+0.22+(m ﹣30)×0.025=0.6,解得m =34,故C 错误;对于D ,随机选取这100名学生中体育活动时间不低于40分钟的人数为100×(0.2+0.05)=25,故D 正确. 故选:BD .12.如图,已知三棱锥D ﹣ABC 可绕AB 在空间中任意旋转,△ABC 为等边三角形,AB 在平面α内,AB ⊥CD ,AB =2,CD =√6,cos∠CBD =14,则下列说法正确的是( )A .二面角D ﹣AB ﹣C 为π2B .三棱锥D ﹣ABC 的外接球表面积为20π3C .点C 与点D 到平面α的距离之和的最大值为2 D .点C 在平面α内的射影为点M ,线段DM 的最大值为√15+√32解:对于A 选项,在△BCD 中,BC =AB =2,CD =√6,cos∠CBD =14, 由余弦定理可得CD 2=BC 2+BD 2﹣2BC •BD cos ∠CBD , 即4+BD 2−4BD ×14=6,即BD 2﹣BD ﹣2=0,因为BD >0,解得BD =2, 取AB 的中点E ,连接CE 、DE ,如下图所示:因为△ABC 为等边三角形,E 为AB 的中点,所以,CE ⊥AB ,又因为CD ⊥AB ,CD ∩CE =C ,CD ,CE ⊂平面CDE ,所以,AB ⊥平面CDE , 因为DE ⊂平面CDE ,所以,DE ⊥AB , 所以,二面角D ﹣AB ﹣C 的平面角为∠CED ,因为E 为AB 的中点,所以,AD =BD =2,故△ABD 也是边长为2的等边三角形, 所以DE =√AD 2−AE 2=√4−1=√3,CE =√AC 2−AE 2=√4−1=√3, 又因为CD =√6,所以,CE 2+DE 2=CD 2,则CE ⊥DE , 故二面角D ﹣AB ﹣C 为π2,A 对;对于B 选项,设△ABC 、△ABD 的中心分别为点G 、H ,分别过点G 、H 作GO ∥DE 、HO ∥CE ,设GO ∩HO =O , 因为CE ⊥DE ,CE ⊥AB ,AB ∩DE =E ,AB 、DE ⊂平面ABD ,所以,CE ⊥平面ABD ,因为HO ∥CE ,则OH ⊥平面ABD ,同理,OG ⊥平面ABC , 所以,O 为三棱锥D ﹣ABC 的外接球球心, 由等边三角形的几何性质可知,HE =13DE =√33,同理,GE =13CE =√33,因为OH ∥GE ,OG ∥EH ,HE =GE =√33,GE ⊥HE , 所以,四边形OHEG 为正方形,且OH =GE =√33, 又因为DH =DE −HE =√3−√33=2√33, 因为CE ⊥DE ,OH ∥CE ,则OH ⊥DE ,则OD =√OH 2+DH 2=√(33)2+(233)2=√153, 所以,三棱锥D ﹣ABC 的外接球半径为√153,因此,三棱锥D ﹣ABC 的外接球的表面积为4π⋅OD 2=4π×(√153)2=20π3,B 对; 对于C 选项,设点D 在平面α内的射影点为N ,连接MN ,因为CM ⊥a ,DN ⊥a ,则CM ∥DN ,故点C 、D 、N 、M 四点共面, 因为AB ⊂α,则AB ⊥CM ,又因为CD ⊥AB ,CD ∩CM =C ,CD 、CM ⊂平面CDNM ,则AB ⊥平面CDNM , 又因为AB ⊥平面CDE ,故平面CDE 与平面CDNM 重合, 又因为E ∈α,M ,N ∈α,故E ∈MN , 设∠CEM =θ,其中0≤θ≤π2,又因为∠CED =π2,则∠DEN =π−∠CED −∠CEM =π−π2−θ=π2−θ, 所以,CM =CEsin ∠CEM =√3sinθ,DN =DEsin ∠DEN =√3sin(π2−θ)=√3cosθ,所以,点C 与点D 到平面α的距离之和CM +DN =√3sinθ+√3cosθ=√6sin(θ+π4), 因为0≤θ≤π2,则π4≤θ+π4≤3π4,故当θ+π4=π2时,即当θ=π4时,CM +DN 取最大值√6,C 错; 对于D 选项,ME =CEcosθ=√3cosθ,∠DEM =∠CED +∠CEM =π2+θ, 由余弦定理可得DM =√DE 2+EM 2−2DE ⋅EMcos(π2+θ) =√3+3cos 2θ+2√3⋅√3cosθsinθ=√3+3×1+cos2θ2+3sin2θ =√3sin2θ+3cos2θ2+92=√352sin(2θ+φ)+92, 其中φ为锐角,且tanφ=12,因为0≤θ≤π2,则φ≤2θ+φ≤π+φ,故当2θ+φ=π2时,DM 取得最大值, 且(DM)max =√9+352=√18+654=√15+√32,D 对. 故选:ABD .三、填空题:本题共4小题,每小题5分,共20分. 13.一组数据1,2,4,5,8的第75百分位数为 5 .解:5×75%=3.75,故一组数据1,2,4,5,8的第75百分位数为5. 故答案为:5.14.在正方体ABCD ﹣A 1B 1C 1D 1中,直线BC 1与直线CD 1夹角的余弦值为 12.解:如图,连接A 1C 1,A 1B ,在正方体ABCD ﹣A 1B 1C 1D 1中,有A 1D 1∥B 1C 1∥BC ,A 1D 1=B 1C 1=BC , 所以四边形A 1D 1CB 为平行四边形,所以A 1B ∥CD 1, 所以∠A 1BC 1为直线BC 1与直线CD 1夹角或其补角, 设正方体ABCD ﹣A 1B 1C 1D 1棱长为a , 则A 1B =BC 1=A 1C 1=√2a , 所以△A 1BC 1为等边三角形, 所以∠A 1BC 1=π3,故直线BC 1与直线CD 1夹角的余弦值为cos ∠A 1BC 1=cos π3=12. 故答案为:12.15.在圆C 中,已知弦AB =2,则AB →⋅AC →的值为 2 . 解:∵在圆C 中,已知一条弦AB =2,∴根据圆的几何性质得出:|AC |cos ∠CAB =12|AB |=12×2=1, ∵AB →•AC →=|AB →•|AC →|cos ∠CAB =2×1=2. 故答案为:2.16.已知△ABC 的重心为G ,面积为1,且AB =2AC ,则3AG 2+BC 2的最小值为4√213.解:由题意c =2b ,S △ABC =12bc sin A =1,即b 2sin A =1;连接AG 并延长交BC 于D ,则D 为BC 的中点,可得AD →=12(AB →+AC →),又因为G 为三角形的重心,则AG →=23AD →,可得AG →=13(AB →+AC →),BC →=AC →−AB →,所以AG 2=AG →2=19(AB →2+AC →2+2AB →•AC →)=19(c 2+b 2+2bc cos A )=19(5b 2+4b 2cos A ), BC 2=BC →2=AC →2+AB →2﹣2AB →•AC →=b 2+c 2﹣2bc cos A =5b 2﹣4b 2cos A ,所以3AG 2+BC 2=53b 2+4b 23cos A +5b 2﹣4b 2cos A =203b 2−83b 2cos A =203sinA −8cosA 3sinA,令t =203sinA −8cosA 3sinA>0,则3t sin A +8cos A =20, 即sin (A +φ)=20√9t +64≤1,当且仅当A +φ=π2时取等号,tan φ=82t ,可得9t 2+64≥400,解得t ≥4√213或t ≤−4√213(舍), 即t 的最小值为:4√213.故答案为:4√213. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知e →1,e →2是两个单位向量,夹角为π3,设a→=e →1+2e →2,b→=te →1−3e →2.(1)求|a →|;(2)若a →⊥b →,求t 的值.解:(1)∵|e 1→|=|e 2→|=1,<e 1→,e 2→>=π3, ∴e 1→⋅e 2→=12,∴|a →|=√e 1→2+4e 2→2+4e 1→⋅e 2→=√1+4+2=√7; (2)∵a →⊥b →,∴a →⋅b →=(e 1→+2e 2→)⋅(te 1→−3e 2→)=te 1→2−6e 2→2+(2t −3)e 1→⋅e 2→=t −6+12(2t −3)=0,解得t =154. 18.(12分)已知正三棱柱ABC ﹣A 1B 1C 1的棱长均为2,M 为A 1C 1的中点. (1)求证:BC 1∥平面AB 1M ; (2)求点B 到平面AB 1M 的距离d .证明:(1)连接A 1B 交AB 1于点N ,连接MN ,则正三棱柱中A 1B 1BA 是平行四边形, 所以N 为A 1B 的中点,又M 为A 1C 1的中点,所以MN ∥BC 1,BC 1⊄平面AB 1M ,MN ⊂平面AB 1M ,所以BC 1∥平面AB 1M . 解:(2)过M 作MH ⊥A 1B 1,垂足为H ,由题意可得B 1M =√3,AM =√5,AB 1=2√2,所以B 1M 2+AM 2=AB 12,所以B 1M ⊥AM ,所以△AB 1M 的面积S △AB 1M =12×√3×√5=√152, 因为正三棱柱中平面A 1B 1C 1⊥平面A 1B 1BA ,又平面A 1B 1C 1∩平面A 1B 1BA =A 1B 1,MH ⊂平面A 1B 1C 1,且MH ⊥A 1B 1, 所以MH ⊥平面A 1B 1BA ,即M 到平面A 1B 1BA 的距离为MH =MA 1sin π3=√32,又△ABB 1的面积S △ABB 1=12AB ⋅BB 1=2, 所以V M−ABB 1=13MH ⋅S △ABB 1=13×√32×2=√33,又V M−ABB 1=V B−MAB 1, 所以13S △AB 1M ⋅d =√33,解得d =2√55, 所以点B 到平面AB 1M 的距离为2√55. 19.(12分)独立事件是一个非常基础但又十分重要的概念,对于理解和应用概率论和统计学至关重要.它的概念最早可以追溯到17世纪的布莱兹•帕斯卡和皮埃尔•德•费马,当时被定义为彼此不相关的事件.19世纪初期,皮埃尔•西蒙•拉普拉斯在他的《概率的分析理论》中给出了相互独立事件的概率乘法公式.对任意两个事件A 与B ,如果P (AB )=P (A )P (B )成立,则称事件A 与事件B 相互独立,简称为独立.(1)若事件A 与事件B 相互独立,证明:A 与B 相互独立;(2)甲、乙两人参加数学节的答题活动,每轮活动由甲、乙各答一题,已知甲每轮答对的概率为35,乙每轮答对的概率为23.在每轮活动中,甲和乙答对与否互不影响,各轮结果也互不影响,求甲乙两人在两轮活动中答对3道题的概率.解:(1)证明:事件A 与事件B 相互独立,则P (AB )=P (A )P (B ), 又由B =A B +AB ,事件A B 和AB 互斥,则有P (B )=P (A B +AB )=P (AB )+P (A B )=P (A )P (B )+P (A B ),变形可得:P (A B )=P (B )﹣P (A )P (B )=[1﹣P (A )]P (B )=P (A )P (B ), 故事件A 与B 相互独立;(2)根据题意,设事件A 1、A 2分别表示甲答对1道、2道题目,事件B 1、B 2分别表示乙答对1道、2道题目,则P (A 1)=2×35×(1−35)=1225,P (A 2)=35×35=925, P (B 1)=2×23×(1−23)=49,P (B 2)=23×23=49, 若甲乙两人在两轮活动中答对3道题,即A 2B 1+A 1B 2,则甲乙两人在两轮活动中答对3道题的概率P =P (A 2B 1+A 1B 2)=P (A 2B 1)+P (A 1B 2)=925×49+1225×49=2875. 20.(12分)某社区工作人员采用分层抽样的方法分别在甲乙两个小区各抽取了8户家庭,统计了每户家庭近7天用于垃圾分类的总时间(单位:分钟),其中甲小区的统计表如下,设x i,y i分别为甲,乙小区抽取的第i户家庭近7天用于垃圾分类的总时间,s x2,s y2分别为甲,乙小区所抽取样本的方差,已知x=18∑8i=1x i=200,s x2=18∑8i=1(x i−x)2=200,y=195,s y2=210,其中i=1,2,⋯,8.(1)若a≤b,求a和b的值;(2)甲小区物业为提高垃圾分类效率,优先试行新措施,每天由部分物业员工协助垃圾分类工作,经统计,甲小区住户每户每天用于垃圾分类的时间减少了5分钟.利用样本估计总体,计算甲小区试行新措施之后,甲乙两个小区的所有住户近7天用于垃圾分类的总时间的平均值z和方差s z2.参考公式:若总体划为2层,通过分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:m,x1,s12;n,x2,s22,总的样本平均数为ω,样本方差为s2,则s2=mm+n [s12+(x1−ω)2]+nm+n[s22+(x2−ω)2].解:(1)已知x=18∑8i=1x i=18(200+220+200+180+200+a+b+220)=200,整理得a+b=380,①又s x2=18∑8i=1(x i−x)2=8[3×(200﹣200)2+2×(220﹣200)2+(180﹣200)2+(a﹣200)2+(b﹣200)2]=200,整理得(a﹣200)2+(b﹣200)2=400,②联立①②,解得a=180,b=200或a=200,b=180,因为a≤b,所以a=180,b=200;(2)设甲小区试行新措施之后,甲小区抽取的第i户家庭近7天用于垃圾分类的总时间为m i,此时m i=x i﹣35,则m i=x−35=165,s m2=s x2=200,所以z=116(8m+8y)=12(165+195)=180,s z2=88+8[s m2+(m−z)2]+88+8[s y2+(y−z)]=12[200+(165﹣180)2]+12[210+(195﹣180)2]=430.21.(12分)如图1,在等腰△ABC中,AC=4,A=π2,O,D分别为BC、AB的中点,过D作DE⊥BC于E .如图2,沿DE 将△BDE 翻折,连接BA ,BC 得到四棱锥B ﹣ACED ,F 为AB 中点.(1)证明:DF ⊥平面AOB ;(2)当OB =√2时,求直线BF 与平面BCD 所成的角的正弦值.(1)证明:因为DE ⊥BE ,DE ⊥OE ,且BE ∩OE =E ,BE 、OE ⊂平面BCE , 所以DE ⊥平面BCE ,又OA ∥DE ,所以OA ⊥平面BCE ,设点P 是翻折前点B 所在的位置,则D 为AP 的中点, 因为F 为AB 的中点,所以DF ∥PB ,因为PB ⊂平面BCE ,所以OA ⊥PB ,所以OA ⊥DF , 由题意知,DA =DB ,因为F 为AB 的中点,所以DF ⊥AB , 又OA ∩AB =A ,OA 、AB ⊂平面AOB , 所以DF ⊥平面AOB .(2)解:以O 为坐标原点,建立如图所示的空间直角坐标系,则A (0,0,2√2),P (2√2,0,0),C (﹣2√2,0,0),D (√2,0,√2), 由(1)知,DF ⊥平面AOB ,因为DF ∥PB ,所以PB ⊥平面AOB ,所以PB ⊥OB , 又OB =√2=12OP ,所以∠POB =60°,所以B (√22,√62,0),F (√24,√64,√2), 所以BF →=(−√24,−√64,√2),CD →=(3√2,0,√2),CB →=(5√22,√62,0),设平面BCD 的法向量为n →=(x ,y ,z ),则{n →⋅CD →=0n →⋅CB →=0,即{3√2x +√2z =05√22x +√62y =0, 令x =1,则y =53,z =﹣3,所以n →=(1,53,﹣3), 设直线BF 与平面BCD 所成的角为θ,则sin θ=|cos <BF →,n →>|=|BF →⋅n →||BF →|⋅|n →|=|−√24+√64×5√3−3√2|(24)+(64)√1+(5√3)=4√3355,故直线BF 与平面BCD 所成的角的正弦值为4√3355. 22.(12分)射影几何学中,中心投影是指光从一点向四周散射而形成的投影,如图,O 为透视中心,平面内四个点E ,F ,G ,H 经过中心投影之后的投影点分别为A ,B ,C ,D .对于四个有序点A ,B ,C ,D ,定义比值x =CACBDA DB叫做这四个有序点的交比,记作(ABCD ). (1)证明:(EFGH )=(ABCD );(2)已知(EFGH )=32,点B 为线段AD 的中点,AC =√3OB =3,sin∠ACOsin∠AOB =32,求cos A .解:(1)证明:在△AOC 、△AOD 、△BOC 、△BOD 中,CA CB =S △AOC S △BOC =12OA⋅OCsin∠AOC 12OB⋅OCsin∠BOC =OAsin∠AOC OBsin∠BOC,DA DB=S △AOD S △BOD=12OA⋅ODsin∠AOD 12OB⋅ODsin∠BOD =OAsin∠AOD OBsin∠BOD,所以(ABCD)=CA CB DA DB=OAsin∠AOC OBsin∠BOC OAsin∠AOD OBsin∠BOD=sin∠AOC⋅sin∠BODsin∠BOC⋅sin∠AOD,又在△EOG 、△EOH 、△FOG 、△FOH 中,GE GF =S △EOG S △FOG =12OE⋅OGsin∠EOG 12OF⋅OGsin∠FOG =OEsin∠EOG OFsin∠FOG,HE HF=S △EOH S △FOH=12OE⋅OHsin∠EOH 12OF⋅OHsin∠FOH =OEsin∠EOH OFsin∠FOH,所以(EFGH)=GE GF HE HF=OEsin∠EOG OFsin∠FOG OEsin∠EOH OFsin∠FOH=sin∠EOG⋅sin∠FOHsin∠FOG⋅sin∠EOH ,又∠EOG =∠AOC ,∠FOH =∠BOD ,∠FOG =∠BOC ,∠EOH =∠AOD , 所以sin∠AOC⋅sin∠BOD sin∠BOC⋅sin∠AOD=sin∠EOG⋅sin∠FOH sin∠FOG⋅sin∠EOH,所以(EFGH )=(ABCD ).(2)由题意可得(EFGH)=32,所以(ABCD)=32,即CACB DA DB=32,所以CA CB ⋅DBDA=32,又点B 为线段AD 的中点,即DB DA=12,所以CACB=3,又AC =3,则AB =2,BC =1, 设OA =x ,OC =y 且OB =√3, 由∠ABO =π﹣∠CBO , 所以cos ∠ABO +cos ∠CBO =0, 即2√3)222×2×√3+2√3)222×1×√3=0,解得x 2+2y 2=15,①在△AOB 中,由正弦定理可得AB sin∠AOB =x sin∠ABO,②在△COB 中,由正弦定理可得OB sin∠BCO=y sin∠CBO,③且sin ∠ABO =sin ∠CBO ,②③得,x y=AB sin∠AOB⋅sin∠BCO OB=32×√3=√3,即x =√3y ,④由①④解得x =3,y =√3(负值舍去), 即AO =3,OC =√3所以cosA =AO 2+AB 2−OB 22AO⋅AB =32+22−(√3)22×3×2=56.。

山东省济南市2019-2020学年高一数学下学期期末考试试题[含答案]

山东省济南市2019-2020学年高一数学下学期期末考试试题[含答案]

山东省济南市2019-2020学年高一数学下学期期末考试试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,则21i i=- A. 1 B. 1 C. 1 D. 1i i i i+--+--2.甲乙两名射击运动员进行射击比赛,甲中靶的概率为0.8,乙中靶的概率为0.9.甲乙各射击一次,则两人都中靶的概率为A .0.26B .0.72C .0.8D .0.983.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若 222b c a +=+,则角A 的大小为52 A. B. C. 6336D.ππππ4.设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是A .若,则m ⊥nB .若 ,则,,m n αβαβ⊥⊂⊂,m m αβ⊥⊂αβ⊥C .若,则m //nD .若,则,m n αα ,m m αβ αβ5.2020年起,山东省高考实行新方案.新高考规定:语文、数学、英语是必考科日,考生还需从思想政治、历史、地理、物理、化学、生物6个等级考试科目中选取3个作为选考科目.某考生已经确定物理作为自己的选考科目,然后只需从剩下的5个等级考试科目中再选择2个组成自己的选考方案,则该考生“选择思想政治、化学”和“选择生物、地理”为A .相互独立事件B .对立事件C .不是互斥事件D .互斥事件但不是对立事件6.如图,A ,B 两点分别在河的两侧,为了测量A ,B 两点之间的距离,在点A 的同侧选取点C ,测得米,则A ,B45,105,100ACB BAC AC ︒︒∠=∠==两点之间的距离为A . 100米B . 100米23C .50米D .200米7.作三棱锥P —ABC 中.PA ⊥平面ABC,,则该三棱锥外按球的表面积为2AB AC PA BC ====8.32.8..23A C B D ππππ8.在△ABC 中,.P 为△ABC 所在平面上任意一点,则,22BAC AB AC π∠===的最小值为()PA PB PC '⋅+ A .1B .-C .1D .-212二、多项选择题:本题共1小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.在全国人民的共同努力下,特别是医护人员的奋力救治下,"新冠肺炎”疫情得到了有效控制.下图是国家卫健委给出的全国疫情通报,甲、乙两个省份从2月7日到2月13日一周的新增“新冠肺炎"确诊人数的折线图.则下列关于甲、乙两省新增确诊人数的说法,正确的是A .甲省的平均数比乙省低B .甲省的方差比乙省大C .甲省的中位数是27D .乙省的极差是1210.已知M 为△ABC 的重心,D 为BC 的中点,则下列等式成立的是11 A. B. 0222112 D. 3333AD AB AC MA MB MC BM BA BD CM CA CD =+++==+=+ 11.任何一个复数(其中为虚数单位)都可以表示成:z a bi =+,,a b R i ∈的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现: (cos sin )z r i θθ=+,我们称这个结论为棣莫弗定理[(cos sin )]n n z r i θθ=+=(cos isin )()n r n n n N θθ++∈.根据以上信息,下列说法正确的是A . 22||||z z =B .当r =1,θ=时,π331z =C 当r =1,θ=时,π312z =-D .当r =1,时,若n 为偶数,则复数z n 为纯虚数4πθ=12.如图1,在边长为2的正方形ABCD 中,E ,F 分别是AB , BC 的中点,将△ADE ,△CDF ,△BEF 分别沿DE , DF,EF 折起、使A ,B ,C 重合于点P ,得到如图2所示的三棱锥P -DEF ,则下列结论正确的是A .PD ⊥EFB 平面PDE ⊥平面PDFC .三面角P —EF —D 的余弦值为13D .点P 到平面DEF 的距离为33三、填空题:本题共4小题,每小题5分,共20分.13.已知,其中i 为虚数单位,则的值为________43a i bi +=-,,a b R ∈||a bi +14.为做好"新冠肺炎"疫情肪控工作,济南市各学校坚持落实“双测温两报告"制度,以下是某宿舍6名同学某日上午的体温记录:36.3,36.1.36.4,36,7,36.5.36.6(单位:℃),则该组数据的第80百分位数为________15.已知圆锥底面半径为1,母线长为3,某质点从圆锥底而圆周上一点A 出发,绕圆维侧面一周,再次回到A 点,则该质点经过的最短路程为________16.在圆内接四边形ABCD 中,.则60,DAB BD ︒∠==∠ADB =________,若AC =4,则△BCD 面积的最大值为2________.(本小题第一空2分,第二空3分)四、解答题:本题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)在①PA ⊥平面ABC ,②∠ABC =60°,③点P 在平面ABC 内的射影为△ABC 的垂心这三个条件中任选两个补充在下面的问题中,并解答.三棱锥P -ABC 中, PA =AB =AC =6.若________,求三棱锥P -ABC 的体积.注:如果选择多种条件组合分别解答,按第一种解答计分.18.(12分)已知向量.(1,2),(3,1)=-=-a b (1)若(+λ) ⊥.求实数λ的值;a b a (2)若,求向量与的夹角.2-2==+c a b,d a b c d 19.(12分)4月23日是世界读书日,其设立的目的是推动更多的人去阅读和写作,某市教育部门为了解全市中学生课外阅读的情况,从全市随机抽取1000名中学生进行调查,统计他们每周课外阅读的时长,右图是根据调查结果绘制的频率分布直方图.(1)已知样本中每周课外阅读时长不足4小时的中学生有100人,求图中a ,b 的值;(2)试估计该市中学生阅读时长不小于10小时的概率;(3)为了更具体的了解全市中学生课外阅读情况,用比例分配的分层抽样的方法从[10,12)和[12,14]两组中共抽取了6名学生参加座谈会,现从上述6名学生中随机抽取2名在会上进行经验分享,求这2名学生来自不同组的概率.20.(12分)如图,在正三棱柱,中,D 为AC 的中点.111ABC A B C -(1)证明: AB 1∥平面BC 1D ;(2)证明:BD ⊥平面AA 1C 1C ;(3)若AA 1=A B .求直线BC 1与平面AA 1C 1C 所成角的正弦值.21.(12分)在△ABC 中,角A ,B .C 所对的边分别为a ,b ,c , D 为AB 的中点.(1)证明:CD =(2)已知a =4.b =6.CD =4,求△ABC 的面积.22.(12分)某玻璃工艺品加工厂有2条生产线用于生产其款产品,每条生产线一天能生产200件该产品,该产品市场评级规定:评分在10分及以上的为A 等品,低于10分的为B 等品.厂家将A 等品售价定为2000元/件,B 等品售价定为1200元/件.下面是检验员在现有生产线上随机抽取的16件产品的评分:经计算得,其中为抽16161622221111119.97,()0.045161616i i i i i i x x s x x x x ======-=-=∑∑∑i x 取的第i 件产品的评分, i =1,2, (16)该厂计划通过增加生产工序来改进生产工艺,已知对一条生产线增加生产工序每年需花费1500万元,改进后该条生产线产能不变,但生产出的每件产品评分均提高0.05.已知该厂现有一笔1500万元的资金.(1)若厂家用这1500万元改进一条生产线,根据随机抽取的16件产品的评分,(i )估计改进后该生产线生产的产品中A 等品所占的比例;(ii )估计改进后该厂生产的所有产品评分的平均数和方差.(2)某金融机构向该厂推销一款年收益率为8.2%的理财产品,请你利用所学知识分析,将这1500万元用于购买该款理财产品所获得的收益,与通过改进一条生产线使产品评分提高所增加的收益相对比,一年后哪种方案的收益更大? (一年按365天计算)。

山东省济南市市中区实验中学2024届数学高一下期末统考试题含解析

山东省济南市市中区实验中学2024届数学高一下期末统考试题含解析

山东省济南市市中区实验中学2024届数学高一下期末统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。

在每个小题给出的四个选项中,恰有一项是符合题目要求的1.己知ABC ∆的周长为20,内切圆的半径为3,7BC =, 则tan A 的值为( )A .33B .1C .3D .22.在ABC △中,3A π∠=,6,26BC AB ==,则C ∠=( )A .4π或34πB .34π C .4π D .6π 3.化简()1111232240,0a b a b a b ⎛⎫⎛⎫÷>> ⎪ ⎪⎝⎭⎝⎭结果为( ) A .a B .b C .abD .b a4.若实数,x y 满足26403xy x x ⎛⎫+=<< ⎪⎝⎭,则41x y +的最小值为( ) A .4B .8C .16D .325.设甲、乙两地的距离为a (a >0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数图象为( ) A .B .C .D .6.把十进制数15化为二进制数为 A .1011 B .1001 C .1111D .11107.已知直线()21:3120l x a y +--=,()21:103l x a y a +--=,若12//l l ,则a 的值为( ) A .1a =或2a =B .1a =C .2a =D .2a =-8.若函数()sin cos 2sin cos 1f x x x x x a =+-+-有零点,则实数a 的取值范围为( ) A .9[2,]4B .[2,2]-C .[2,2]-D .9[2,]4-9.在△ABC 中,已知9,sin cos sin ,6ABC AB AC B A C S ∆⋅==⋅=,P 为线段AB上的点,且,||||CA CBCP x y xy CA CB =⋅+⋅则的最大值为( ) A .3 B .4 C .5 D .6 10.已知,,a b R +∈且115a b a b+++=,则+a b 的取值范围是( ) A .[1,4]B .[)2,+∞C .(2,4)D .(4,)+∞二、填空题:本大题共6小题,每小题5分,共30分。

山东省济南市高一数学下学期期末试卷(含解析)

山东省济南市高一数学下学期期末试卷(含解析)

2016-2017学年山东省济南市高一(下)期末数学试卷一、单项选择题(共48分,每题4分)1.sin7°cos37°﹣sin83°sin37°的值为()A.﹣B.﹣ C.D.2.sin 15° sin 30° sin 75° 的值等于()A.B.C.D.﹣3.函数y=的周期为()A.2πB.πC.4πD.24.用更相减损术之求得420和84的最大公约数为()A.84 B.12 C.168 D.2525.阅读如图程序框图,若输出结果为0,则①处的执行框内应填的是()A.x=﹣1 B.b=0 C.x=1 D.a=6.下列四个命题:①共线向量是在同一条直线上的向量;②若两个向量不相等,则它们的终点不可能是同一点;③与已知非零向量共线的单位向量是唯一的;④若四边形ABCD是平行四边形,则与,与分别共线.其中正确命题的个数是()A.1 B.2 C.3 D.47.点P从(1,0)点出发,沿单位圆x2+y2=1逆时针方向运动弧长到达Q点,则Q点坐标为()A.B.C.D.8.已知P1(﹣4,7),P2(﹣1,0),且点P在线段P1P2的延长线上,且,则点P的坐标为()A.(﹣2,11)B.C.D.(2,﹣7)9.从一批羽毛球产品中任取一个,质量小于4.8g的概率是0.3,质量不小于4.85g的概率是0.32,那么质量在[4.8,4.85)g范围内的概率是()A.0.62 B.0.38 C.0.7 D.0.6810.如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q 取自△ABE内部的概率等于()A.B.C.D.11.为得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位12.函数f(x)=2sin(4x+)的图象()A.关于原点对称 B.关于点(﹣,0)对称C.关于y轴对称 D.关于直线x=对称二、填空题(共30分,每空5分,任选6个题)13.已知AM是△ABC的边BC上的中线,若=, =,则等于.14.设向量、的长度分别为4和3,夹角为60°,则||= .15.计算: = .16.已知角α的终边经过点P(m,﹣3),且,则m= .17.若向量=(1,2),=(x,﹣1),且(+2)∥,则x= .18.函数f(x)=sin(2x+)的最小正周期为.19.已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则ω= ,φ= .三.简答题(共42分,每题7分)20.已知α为第三象限角,.(1)化简f(α);(2)若,求tanα21.求函数f(x)=sin(x+)在x取得何值时达到最大值?在x取得何值时达到最小值?22.(1)已知,且α为第三象限角,求sinα的值(2)已知tanα=3,计算的值.23.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?24.已知sin(+x)=,则sin2x的值为.25.已知α,β为锐角,cosα=,tan(α﹣β)=﹣,求cosβ的值.26.在△ABC中,若tanAtanB=tanA+tanB+1,求cosC的值.2016-2017学年山东省济南市深泉高级技工学校高一(下)期末数学试卷参考答案与试题解析一、单项选择题(共48分,每题4分)1.sin7°cos37°﹣sin83°sin37°的值为()A.﹣B.﹣ C.D.【考点】GQ:两角和与差的正弦函数.【分析】利用诱导公式,两角差的正弦函数公式,特殊角的三角函数值即可化简求值得解.【解答】解:sin7°cos37°﹣sin83°sin37°=sin7°cos37°﹣cos7°sin37°=sin(7°﹣37°)=sin(﹣30°)=﹣sin30°=﹣.故选:B.2.sin 15° sin 30° sin 75° 的值等于()A.B.C.D.﹣【考点】GI:三角函数的化简求值.【分析】由条件利用诱导公式、二倍角的正弦公式进行化简所给的式子,可得结果.【解答】解:sin 15° sin 30° sin 75°=sin 15°•cos15°=sin30°=,故选:B.3.函数y=的周期为()A.2πB.πC.4πD.2【考点】H1:三角函数的周期性及其求法.【分析】利用诱导公式、二倍角公式化简函数的解析式,再利用余弦函数的周期性,得出结论.【解答】解:函数y=sin(x+)sin(x﹣)=sin(x+)•[﹣cos[(x﹣+)]==﹣sin(x+)cos(x+)=﹣sin(2x+)=﹣cos2x 的周期为=π,故选:B.4.用更相减损术之求得420和84的最大公约数为()A.84 B.12 C.168 D.252【考点】WE:用辗转相除计算最大公约数.【分析】利用更相减损术即可得出.【解答】解:由更相减损术可得:420﹣84=336,336﹣84=252,252﹣84=168,168﹣84=84.∴420和84的最大公约数为84.故选:A.5.阅读如图程序框图,若输出结果为0,则①处的执行框内应填的是()A.x=﹣1 B.b=0 C.x=1 D.a=【考点】EF:程序框图.【分析】由结果向上推即可得出结论.【解答】解:由2a﹣3=0,可得a=,∴2x+1=,∴x=﹣1.故选:A.6.下列四个命题:①共线向量是在同一条直线上的向量;②若两个向量不相等,则它们的终点不可能是同一点;③与已知非零向量共线的单位向量是唯一的;④若四边形ABCD是平行四边形,则与,与分别共线.其中正确命题的个数是()A.1 B.2 C.3 D.4【考点】2K:命题的真假判断与应用.【分析】由共线向量即为平行向量,即可判断①;考虑向量的终点和起点,即可判断②;考虑向量的方向,即可判断③;由平行四边形的定义,即可判断④.【解答】解:①共线向量即为平行向量,不一定是在同一条直线上的向量,故①错;②若两个向量不相等,则它们的终点可能是同一点,但起点不同,故②错;③与已知非零向量共线的单位向量不是唯一的,它们可能方向相同或相反,故③错;④若四边形ABCD是平行四边形,则=﹣, =,则与,与分别共线,故④对.故选A.7.点P从(1,0)点出发,沿单位圆x2+y2=1逆时针方向运动弧长到达Q点,则Q点坐标为()A.B.C.D.【考点】G7:弧长公式.【分析】由题意推出∠QOx角的大小,然后求出Q点的坐标.【解答】解:点P从(1,0)出发,沿单位圆逆时针方向运动弧长到达Q点,所以∠QOx=,所以Q(cos,sin),即Q点的坐标为:(,).故选:A.8.已知P1(﹣4,7),P2(﹣1,0),且点P在线段P1P2的延长线上,且,则点P的坐标为()A.(﹣2,11)B.C.D.(2,﹣7)【考点】IR:两点间的距离公式.【分析】设P(m,n),可得、关于m、n的坐标形式,根据题意得,由此建立关于m、n的方程组,解之即可得到点P的坐标.【解答】解:∵P在线段P1P2的延长线上,且,∴,∵P1(﹣4,7),P2(﹣1,0),∴设P(m,n),可得=(m+4,n﹣7),=(﹣1﹣m,﹣n)由此可得,解之得m=﹣2,n=﹣7所以点P的坐标为(2,﹣7).故选:D9.从一批羽毛球产品中任取一个,质量小于4.8g的概率是0.3,质量不小于4.85g的概率是0.32,那么质量在[4.8,4.85)g范围内的概率是()A.0.62 B.0.38 C.0.7 D.0.68【考点】CN:二项分布与n次独立重复试验的模型.【分析】本题是一个频率分布问题,根据所给的,质量小于4.8 g的概率是0.3,质量不小于4.85 g的概率是0.32,写出质量在[4.8,4.85)g范围内的概率,用1去减已知的概率,得到结果.【解答】解:设一个羽毛球的质量为ξg,则根据概率之和是1可以得到P(ξ<4.8)+P(4.8≤ξ<4.85)+P(ξ≥4.85)=1.∴P(4.8≤ξ<4.85)=1﹣0.3﹣0.32=0.38.故选B.10.如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q 取自△ABE内部的概率等于()A.B.C.D.【考点】CF:几何概型.【分析】利用几何概型的计算概率的方法解决本题,关键要弄准所求的随机事件发生的区域的面积和事件总体的区域面积,通过相除的方法完成本题的解答.【解答】解:由几何概型的计算方法,可以得出所求事件的概率为P=.故选C.11.为得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】把函数y=sin(2x﹣)变为y=sin[2(x﹣)],然后由x得变化得答案.【解答】解:∵y=sin(2x﹣)=sin[2(x﹣)],∴要得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象向右平移个长度单位.故选:B.12.函数f(x)=2sin(4x+)的图象()A.关于原点对称 B.关于点(﹣,0)对称C .关于y 轴对称D .关于直线x=对称【考点】H2:正弦函数的图象.【分析】根据题意,令y=2sin (4x+)=0,得x=﹣+(k ∈Z ),所以函数图象的对称中心为(﹣+,0)(k ∈Z ),取k=0即得函数的图象关于点(﹣,0)对称,得到本题答案.【解答】解:∵函数的表达式为f (x )=2sin (4x+),∴令y=2sin (4x+)=0,得4x+=k π(k ∈Z )即x=﹣+(k ∈Z ),可得函数y=2sin (4x+)图象的对称中心坐标为(﹣+,0)(k ∈Z ),取k=0得(﹣,0),即函数y=2sin (4x+)的图象关于点(﹣,0)对称故选:B二、填空题(共30分,每空5分,任选6个题) 13.已知AM 是△ABC 的边BC 上的中线,若=,=,则等于(+) .【考点】9H :平面向量的基本定理及其意义.【分析】根据题意画出图形,结合图形用、表示出、和即可.【解答】解:如图所示,AM 是△ABC 的边BC 上的中线, =, =,∴=﹣=﹣,∴==(﹣),∴=+=+(﹣)=(+).故答案为:(+).14.设向量、的长度分别为4和3,夹角为60°,则||= .【考点】9S:数量积表示两个向量的夹角;93:向量的模.【分析】首先对要求的向量的模平方,变为已知向量的平方和数量积之和,代入模长和夹角,求出结果,注意最后要对求得的结果开方.【解答】解:∵、的长度分别为4和3,夹角为60°,∴=16+4×3×cos60°+9=31∵||===,故答案为:15.计算: = 1 .【考点】GR:两角和与差的正切函数;GI:三角函数的化简求值.【分析】由tan60°=,利用两角差的正切公式,即可求出答案来.【解答】解:∵tan60°=,∴==tan(60°﹣15°)=tan45°=1.故答案为:1.16.已知角α的终边经过点P(m,﹣3),且,则m= ﹣4 .【考点】G9:任意角的三角函数的定义.【分析】利用余弦函数的定义,建立方程,即可求得结论.【解答】解:由题意,解得m=﹣4故答案为:﹣417.若向量=(1,2),=(x,﹣1),且(+2)∥,则x= .【考点】9K:平面向量共线(平行)的坐标表示.【分析】根据向量的坐标运算和向量的平行的条件即可求出.【解答】解:向量=(1,2),=(x,﹣1),∴+2=(1,2)+2(x,﹣1)=(1+2x,0),∵(+2)∥,∴0=﹣1(1+2x),解得x=﹣,故答案为:﹣.18.函数f(x)=sin(2x+)的最小正周期为π.【考点】H1:三角函数的周期性及其求法.【分析】由函数解析式找出ω的值,代入周期公式T=中,即可求出函数的最小正周期.【解答】解:f(x)=sin(2x+),∵ω=2,∴T==π,则函数的最小正周期为π.故答案为:π19.已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则ω= 2 ,φ= ﹣.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】通过图象求出函数的周期,再求出ω,由(,1)确定φ,即可得到结论.【解答】解:由图象可知:T=4×(﹣)=4×=π,∵T=,∴ω=2;∵(,1)在图象上,∴2×+φ=,即φ=﹣.故答案为:2,﹣三.简答题(共42分,每题7分)20.已知α为第三象限角,.(1)化简f(α);(2)若,求tanα【考点】GI:三角函数的化简求值.【分析】(1)根据诱导公式化简可得f(α);(2)利用同角三角函数关系式即可得解.【解答】解:(1)由==﹣cosα.(2)∵,即cosα=,α为第三象限角,那么:sin=可得.21.求函数f(x)=sin(x+)在x取得何值时达到最大值?在x取得何值时达到最小值?【考点】H2:正弦函数的图象.【分析】再利用正弦函数的定义域和值域,求得当角x取何值时函数取得最大值和最小值.【解答】解:当x+=2kπ+时,即x=2kπ+,k∈Z时,函数f(x)取的最大值,最大值为1,当x+=2kπ﹣时,即x=2kπ﹣π,k∈Z时,函数f(x)取的最小值,最小值为﹣1,22.(1)已知,且α为第三象限角,求sinα的值(2)已知tanα=3,计算的值.【考点】GG:同角三角函数间的基本关系.【分析】(1)由α为第三象限角,得到sinα小于0,由cosα的值,利用同角三角函数间的基本关系即可求出sinα的值;(2)由cosα不为0,给所求式子的分子分母同时除以cosα,利用同角三角函数间的基本关系化简后,得到关于tanα的式子,将tanα的值代入即可求出值.【解答】解:(1)∵cos2α+sin2α=1,α为第三象限角,∴;(2)显然cosα≠0,∵tanα=3,∴.23.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?【考点】HJ:函数y=Asin(ωx+φ)的图象变换;H1:三角函数的周期性及其求法;H5:正弦函数的单调性.【分析】(1)由函数的解析式求得周期,由求得x 的范围,即可得到函数的单调增区间(2)由条件可得,再根据函数y=Asin(ωx+∅)的图象变换规律得出结论.【解答】解:(1)由函数,可得周期等于 T==π.由求得,故函数的递增区间是.(2)由条件可得.故将y=sin2x的图象向左平移个单位,再向上平移个单位,即可得到f(x)的图象.24.已知sin(+x)=,则sin2x的值为﹣.【考点】GQ:两角和与差的正弦函数;GG:同角三角函数间的基本关系;GS:二倍角的正弦.【分析】已知等式左边利用两角和与差的正弦函数公式化简,求出sinx+cosx的值,两边平方并利用二倍角的正弦函数公式化简即可求出sin2x值.【解答】解:∵sin(+x)=sin cosx+cos sinx=(sinx+cosx)=,∴sinx+cosx=,两边平方得:(sinx+cosx)2=1+sin2x=,解得:sin2x=﹣.故答案为:﹣25.已知α,β为锐角,cosα=,tan(α﹣β)=﹣,求cosβ的值.【考点】GR:两角和与差的正切函数.【分析】依题意,可求得sinα及tanα,利用两角差的正切可求得tanβ,由cosβ=即可求得答案.【解答】解:∵α为锐角,cosα=,∴sinα==,∴tanα==.∵tanβ=tan[α﹣(α﹣β)]= = =,又β是锐角,∴cosβ===.26.在△ABC中,若tanAtanB=tanA+tanB+1,求cosC的值.【考点】GR:两角和与差的正切函数.【分析】由三角形内角和定理,诱导公式,两角和的正切函数公式结合已知可求tanC=1,进而可求C及cosC的值.【解答】解:∵在△ABC中,A+B=π﹣C,∴tan(A+B)=tan(π﹣C)=﹣tanC.∵由已知,tanAtanB=tanA+tanB+1,﹣﹣﹣﹣﹣﹣﹣∴tan(A+B)==﹣1=﹣tanC,﹣﹣﹣﹣﹣﹣﹣∴tanC=1,可得:C=,∴cosC=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣。

山东省济南市高一下学期数学期末考试试卷

山东省济南市高一下学期数学期末考试试卷

山东省济南市高一下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017高一上·汪清月考) 下列各式正确的是()A . =aB . a0=1C . =-4D . =-52. (2分)已知命题:抛物线的准线方程为;命题:平面内两条直线的斜率相等是两条直线平行的充分不必要条件;则下列命题是真命题的是()A .B .C .D .3. (2分) (2017高一下·承德期末) 已知a,b是两条直线,α是一个平面,则下列判断正确的是()A . a⊥α,b⊥α,则a⊥bB . a∥α,b⊂α,则a∥bC . a⊥b,b⊂α,则a⊥αD . a∥b,b⊂α,a⊄α,则a∥α4. (2分) (2017高一下·承德期末) 已知x<0,﹣2<y<﹣1,则下列结论正确的是()A . xy>x>xy2B . xy2>xy>xC . xy>xy2>xD . x>xy>xy25. (2分) (2017高一下·承德期末) 已知{an}为等差数列,其前n项和为Sn ,若a3=6,S3=12,则公差d 等于()A . 1B .C . 2D . 36. (2分) (2017高一下·承德期末) 在△ABC中,角A,B,C的对边分别是a,b,c,若C=45°,c= a,则A等于()A . 120°B . 60°C . 150°D . 30°7. (2分) (2017高一下·承德期末) 如图是一个几何体的三视图,则该几何体的表面积为()A . 46B . 48C . 50D . 528. (2分) (2017高一下·承德期末) 直线(2a+5)x﹣y+4=0与2x+(a﹣2)y﹣1=0互相垂直,则a的值是()A . ﹣4B . 4C . 3D . ﹣39. (2分) (2017高一下·承德期末) 已知变量x,y满足约束条件,则z=2x+y的最小值为()A .B . 1C . ﹣2D .10. (2分) (2017高一下·承德期末) 飞机的航线和山顶在同一个铅垂直平面内,已知飞机的高度为海拔15000m,速度为1000km/h,飞行员先看到山顶的俯角为18°,经过108s后又看到山顶的俯角为78°,则山顶的海拔高度为()A . (15﹣18 sin18°cos78°)kmB . (15﹣18 sin18°sin78°)kmC . (15﹣20 sin18°cos78°)kmD . (15﹣20 sin18°sin78°)km11. (2分) (2017高一下·承德期末) 在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD为矩形,AB=2BC,E 是CD上一点,若AE⊥平面PBD,则的值为()A .B .C . 3D . 412. (2分) (2017高一下·承德期末) 已知数列{an}中,a1=2,当n≥2时, = +n﹣1,设bn= ﹣1,则 + +…+ 等于()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2017高二上·芜湖期末) 不论m为何值,直线(3m+4)x+(5﹣2m)y+7m﹣6=0都恒过一定点,则此定点的坐标是________.14. (1分) (2017高一下·承德期末) 底面半径为2 ,母线长为4的圆锥的体积为________.15. (1分) (2017高一下·承德期末) 在△ABC中,角A,B,C的对边分别为a,b,c,asinB= sinC,sinC= ,△ABC的面积为4,则c=________.16. (1分) (2017高一下·承德期末) 已知三棱锥P﹣ABC的四个顶点都在球O的球面上,△ABC是边长为2的正三角形,PA⊥平面ABC,若三棱锥P﹣ABC的体积为2 ,则球O的表面积为________.三、解答题 (共6题;共50分)17. (10分)设全集为R,集合, .(1)求,;(2)设时,若,求实数m的取值范围.18. (5分)已知条件:,条件,若是的必要不充分条件,求实数的取值范围.19. (5分)计算: .20. (10分) (2017高一下·承德期末) 如图,四边形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.(1)求证:平面AEC⊥平面ABE;(2)点F在BE上,若DE∥平面ACF,DC=CE= BC=3,求三棱锥A﹣BCF的体积.21. (10分) (2017高一下·承德期末) 已知点A(2,2),B(3,4),C(m,0),△ABC的面积为5.(1)求m的值;(2)若m>0,∠BAC的平分线交线段BC于D,求点D的坐标.22. (10分) (2017高一下·承德期末) 已知数列{an}中,a1=1,a1+2a2+3a3+…+nan= (n≥1,n∈Z)(1)求数列{an}的通项公式an;(2)求数列{n2an}的前n项和Tn .参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共50分) 17-1、17-2、18-1、19-1、20-1、20-2、21-1、21-2、22-1、22-2、。

山东省济南高一下期末考试数学试题含答案【精选】.doc

山东省济南高一下期末考试数学试题含答案【精选】.doc

2019-2020学年度第二学期期末模块考试高一期末数学试题考试时间 120分钟 满分 150 分第Ⅰ卷(选择题,共50分)一、选择题(10*5=50分)1.已知sin α<0且tan α>0,则角α是 ( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角2、已知向量1(,22BA =uu v,1),22BC =uu u v 则ABC ∠= ( )(A)300 (B) 450 (C) 600 (D)12003、函数f ()=–sin )的最小正周期是 ( )(A )2π(B )π (C )23π(D )2π4、已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是则圆M 与圆N :22(1)1x y +-=(-1)的位置关系是 ( ) (A )内切(B )相交(C )外切(D )相离 5、样本(12,,,nx x x L )的平均数为x ,样本(12,,my y y L )的平均数为()y x y ≠,若样本(12,,,nx x x L ,12,,my y y L )的平均数(1)z ax a y =+-,其中102a <<,则n,m 的大小关系为 ( )A .n m =B .n m >C .n m <D .不能确定6、在ABC ∆中,已知,2,45a x b B ===o,如果利用正弦定理三角形有两解,则x 的取值范围是( )A .2x <<B. x > C .2x << D.02x <<7、某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )(A )710 (B )58 (C )38 (D )3108、从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( ). A .至少有一个红球与都是红球 B .至少有一个红球与都是白球C .至少有一个红球与至少有一个白球D .恰有一个红球与恰有二个红球 9、函数=sin()y A x ωϕ+的部分图像如图所示,则( )(A )2sin(2)6y x π=- (B )2sin(2)3y x π=-(C )2sin(2+)6y x π= (D )2sin(2+)3y x π=10、已知函数)0(21sin 212sin )(2>-+=ωωωx xx f ,R x ∈.若)(x f 在区间)2,(ππ内没有零点,则ω的取值范围是( )(A )]81,0( (B ))1,85[]41,0(Y (C )]85,0( (D )]85,41[]81,0(Y第Ⅱ卷(非选择题,共80分)二、填空题(4*5=20分)11、设向量a =(,+1),b =(1,2),且a ⊥b ,则=.12、某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取名学生.13、如图,已知点O (0,0),A (1.0),B (0,−1),P 是曲线21y x =-上一个动点,则OP BA ×uu u r uu r的取值范围是.14、在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是.二、解答题(共60分,各12分)15、已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,(1)求a 与b 的夹角θ; (2)求|a +b |;(3)若AB →=a , BC →=b ,求△ABC 的面积.16、已知:圆C :2+y 2-8y +12=0,直线l :a +y +2a =0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省济南市高一下学期期末数学试卷
姓名:________ 班级:________ 成绩:________
一、填空题 (共14题;共14分)
1. (1分)(2012·北京) 在直角坐标系xOy中.直线l过抛物线y2=4x的焦点F.且与该抛物线相交于A、B 两点.其中点A在x轴上方.若直线l的倾斜角为60°.则△OAF的面积为________.
2. (1分)若不等式(x﹣3)(x+a)≥0的解集为(﹣∞,﹣2]∪[3,+∞),则(x﹣3)(x+a)≤0的解集为________.
3. (1分)在平面直角坐标系中,已知点A(0,0),B(1,1),C(2,﹣1),则∠BAC的余弦值为________
4. (1分) (2019高二上·汇川期中) 已知l,m是平面外的两条不同直线.给出下列三个论断:
①l⊥m;②m∥ ;③l⊥ .
以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:________.
5. (1分)斜率为2,且与直线2x+y﹣4=0的交点恰好在x轴上的直线方程是________.
6. (1分)(2020·杨浦期末) 己知数列的通项公式为,是数列的前项和,则 ________.
7. (1分) (2019高二上·洛阳期中) 在锐角中,内角的对边分别为,若
,则的最小值为________.
8. (1分) (2017高三上·嘉兴期中) 如图,已知AB为圆O的直径,C为圆上一动点,圆O所在平面,且PA=AB=2,过点A作平面,交PB,PC分别于E,F,当三棱锥P-AEF体积最大时, =________.
9. (1分)(2019·黄冈模拟) 关于的实系数方程的一个根在内,另一个根在
内,则的值域为________.
10. (1分) (2017高二上·江苏月考) 以双曲线的右焦点为圆心,且与双曲线的渐近线相切的圆的方程为________.
11. (1分)(2017·西宁模拟) 已知正四棱锥S﹣ABCD中,SA=2 ,那么当该棱锥的体积最大时,它的高为________.
12. (1分) (2016高二上·西安期中) 已知x>0,y>0,n>0,4x+y=1,则 + 的最小值为________
13. (1分) (2016高一下·盐城期中) M(﹣1,0)关于直线x+2y﹣1=0对称点M′的坐标是________.
14. (1分) (2016高二上·清城期中) 在数列{an}中,a1=2,an+1=an+ln(1+ ),则an=________.
二、解答题 (共6题;共45分)
15. (5分) (2017高二上·汕头月考) 如图,四棱锥 ,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形, 为棱上的动点,且 .
(I)求证:为直角三角形;
(II)试确定的值,使得二面角的平面角余弦值为 .
16. (5分) (2017高二上·潮阳期末) 如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点.
(Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值为,求直线PA与平面EAC所成角的正弦值.
17. (5分)(2017·泰安模拟) 若数列{an}是公差为2的等差数列,数列{bn}满足b1=1,b2=2,且anbn+bn=nbn+1 .
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设数列{cn}满足cn= ,数列{cn}的前n项和为Tn ,若不等式(﹣1)nλ<Tn+ 对一切n∈N* ,求实数λ的取值范围.
18. (10分) (2019高三上·铁岭月考) 在平面直角坐标系中,已知的顶点,边上中线所在直线方程为,边上的高所在直线方程为,求:(1)顶点的坐标;
(2)求外接圆的方程.
19. (10分) (2018高一上·汉中期中) 某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购1件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.
(1)设销售商一次订购x件,服装的实际出厂单价为p元,写出函数p=f(x)的表达式.
(2)当销售商一次订购多少件服装时,该厂获得的利润最大?最大利润是多少?
20. (10分)(2017·枣庄模拟) 已知等差数列{an}的前n项和为Sn ,且a6=0,S4=14.
(1)求an;
(2)将a2,a3,a4,a5去掉一项后,剩下的三项按原来的顺序恰为等比数列{bn}的前三项,求数列{anbn}的前n项和Tn.
参考答案一、填空题 (共14题;共14分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
二、解答题 (共6题;共45分)
16-1、
17-1、
18-1、
18-2、19-1、19-2、
20-1、20-2、。

相关文档
最新文档