2018中考数学专题复习第四讲二次根式共44张

合集下载

中考数学第一轮复习 第1章第4讲二次根式(共14张PPT)

中考数学第一轮复习 第1章第4讲二次根式(共14张PPT)

类型3 二次根式的运算 【例3】计算:( 2- 3)20( 1 823)20192 3(2)0.
2
【思路分析】根据零指数幂、绝对值、整数指数幂、二 次根式的混合运算,分别进行计算,再把所得的结果合并 即可.
技法点拨►在二次根式的混合运算中,如能结合题目特点 ,灵活运用二次根式的性质,选择恰当的解题途径,往往 能事半功倍.
注意►判断几个二次根式是否为 同类二次根式的方法:首先应 化为最简二次根式,然后观察 每个最简二次根式的被开方数, 若被开方数相同,则它们为同 类二次根式
同类二次根式
几个二次根式化成最简二次根式后,如果⑤__被开方 式__相同,那么这几个二次根式就叫做同类二次根式
考点2 二次根式的化简与性质
(1)( a )2=①__a__(a≥0);
You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
类型2 二次根式的化简与性质 【例2】实数a,b在数轴上对应点的位置如图所示,化简 |a|+ (a - b)2 的结果是( A )
A.-2a+b B.2a-b
第 1 章 数与式 第4讲 二次根式
考点梳理 考点1 二次根式的有关概念
二次根式
一般地,我们把形如①___a_(a≥0)的代数式叫做二次 根式
二次根式有意义 被开方数②__大于等于0__.如:a - 2 有意义的条件为 的条件 ≥0,即a≥2
最简二次根式
满足下列条件的二次 根式,叫做最简二次 根式:(1)被开方式中 不含有③__分母__; (2)被开方式中不含④ __能开得尽方__的因 式
典型例题运用 类型1 二次根式的意义 【例1】 式子 a 1 有意义,则实数a的取值范围是( C ) A.a≥-1 a - 2 B.a≠2 C.a≥-1且a≠2 D.a>2

第4讲二次根式及其运算(讲义)(原卷版)-2024年浙江中考数学一轮复习

第4讲二次根式及其运算(讲义)(原卷版)-2024年浙江中考数学一轮复习

第一单元 数与式第4讲 二次根式及其运算1.了解二次根式和最简二次根式的概念,知道二次根式a 中被开方数a 为非负数并且a 也是非负数.2.了解二次根式(根号下仅限于数)的加、减、乘、除运算法则并掌握二次根式的性质.3.能根据二次根式的运算法则及性质进行二次根式的加、减、乘、除和综合运算.1.二次根式的有关概念:(1)二次根式:式子 叫做二次根式.(2)最简二次根式需满足两个条件:①被开方数 .②被开方数中 的因数或因式.(3)二次根式有意义的条件:被开方数非负2.二次根式的性质:(1)(a )2= (a ≥0).(2)a 2= =⎩⎪⎨⎪⎧a (a >0),0(a =0),-a (a <0).(3)ab = (a ≥0,b ≥0).(4)ab=(a≥0,b>0).二次根式的双重非负性是指它的被开方数与结果均为非负数.3.二次根式的运算:(1)二次根式加减法的实质是合并同类二次根式.(2)二次根式的乘法:a·b=(a≥0,b≥0).(3)二次根式的除法:ab=(a≥0,b>0).运算结果中的二次根式,一般都要化成最简二次根式或整式.■考点一二次根式的相关概念►◇典例1:(2023•恩阳区模拟)若代数式有意义,则实数x的取值范围是.【变式训练】1.(2023•婺城区一模)在二次根式中,字母x的取值范围是.2.(2023•慈溪市模拟)若分式有意义,则x的取值范围是()A.x>2 B.x≤2 C.x=2 D.x≠2■考点二二次根式的性质►◇典例2:(2022•河北)下列正确的是()A.=2+3 B.=2×3 C.=32D.=0.7【变式训练】1.(2022•桂林)化简的结果是()A.2B.3 C.2D.22.(2022•内蒙古)实数a在数轴上的对应位置如图所示,则+1+|a﹣1|的化简结果是()A.1 B.2 C.2a D.1﹣2a■考点三二次根式的运算►◇典例3:(2021•西宁)计算:(+3)(﹣3)﹣(﹣1)2.【变式训练】1.(2023•娄星区校级一模)下列各式计算正确的是()A.B.C.D.2.(2022•青岛)计算(﹣)×的结果是()深度讲练A .B.1 C .D.33.(2022•甘肃)计算:×﹣.4.(2023•兰州模拟)计算:.■考点四二次根式的化简求值及应用►◇典例4:(2020•金华二模)先化简,再求值:(a +)(a ﹣)﹣a(a﹣2),其中a =+1.【变式训练】1.(2022•瑞安市校级三模)当时,代数式(a﹣1)2﹣2a+2的值为.真题演练1.(2023•金华)要使有意义,则x的值可以是()A.0 B.﹣1 C.﹣2 D.22.(2021•杭州)下列计算正确的是()A.=2 B.=﹣2 C.=±2 D.=±2 3.(2022•湖北)下列各式计算正确的是()A.B.C.D.4.(2021•金华模拟)代数式在实数范围内有意义时,x的取值范围为()A.x>﹣1 B.x≥﹣1 C.x≥﹣1且x≠0 D.x≠05.(2023•萧山区一模)已知,则实数a的值为()A.9 B.3 C.D.±36.(2023•南湖区一模)下列各式中,正确的是()A.(﹣3)2=9 B.(﹣2)3=﹣6 C.D.7.(2021•丽水模拟)若方程组,设x+y=a2,x﹣y=b2,则代数式的值为()A.B.C.D.8.(2022•杭州)计算:=;(﹣2)2=.9.(2022•萧山区一模)计算:=.10.(2023•青山区模拟)计算:﹣3=.11.(2023•杭州)计算:=.12.(2023•浙江模拟)若最简根式与是同类二次根式,则m=.13.(2023•龙游县一模)已知:a=()﹣1+(﹣)0,b=(+)(﹣),则=.14.(2023•临汾模拟)计算:=.15.(2023•萧山区一模)婷婷对“化简:”的解答过程如下:解:原式=2×3=(2×3)×()2=6×2=12.试问婷婷的解答过程是否正确?若正确,请再写出一种解答过程;若有错误,请写出正确的解答过程.16.(2021•永嘉县校级模拟)计算:﹣+3+.17.(2023•舟山二模)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+6=(m+n)2,且a、m、n均为正整数,求a的值.18.(2023•张家界)阅读下面材料:将边长分别为a,a+,a+2,a+3的正方形面积分别记为S1,S2,S3,S4.则S2﹣S1=(a+)2﹣a2=[(a+)+a]•[(a+)﹣a]=(2a+)•=b+2a例如:当a=1,b=3时,S2﹣S1=3+2根据以上材料解答下列问题:(1)当a=1,b=3时,S3﹣S2=,S4﹣S3=;(2)当a=1,b=3时,把边长为a+n的正方形面积记作S n+1,其中n是正整数,从(1)中的计算结果,你能猜出S n+1﹣S n等于多少吗?并证明你的猜想;(3)当a=1,b=3时,令t1=S2﹣S1,t2=S3﹣S2,t3=S4﹣S3,…,t n=S n+1﹣S n,且T=t1+t2+t3+…+t50,求T的值.。

专题04二次根式的核心知识点精讲(讲义)(原卷版)中考数学一轮复习

专题04二次根式的核心知识点精讲(讲义)(原卷版)中考数学一轮复习

专题04 二次根式的核心知识点精讲1.了解二次根式的概念及其有意义的条件.2.了解最简二次根式的概念,并会把二次根式化成最简二次根式.3.掌握二次根式(根号下仅限于数)加、减、乘、除、乘方运算法则,会用它们进行有管的简单四则运算.【题型1:二次根式有意义的条件】【典例1】(2023•济宁)若代数式有意义,则实数x的取值范围是()A.x≠2B.x≥0C.x≥2D.x≥0且x≠21.(2023•金华)要使有意义,则x的值可以是()A.0B.﹣1C.﹣2D.22.(2023•通辽)二次根式在实数范围内有意义,则实数x的取值范围在数轴上表示为()A.B.C.D.3.(2023•湘西州)若二次根式在实数范围内有意义,则x的取值范围是.【题型2:二次根式的性质】【典例2】(2023•泰州)计算等于()A.±2B.2C.4D.1.(2021•苏州)计算()2的结果是()A.B.3C.2D.92.(2023•青岛)下列计算正确的是()A.B.C.D.3.(2021•娄底)2、5、m是某三角形三边的长,则+等于()A.2m﹣10B.10﹣2m C.10D.44.(2022•遂宁)实数a、b在数轴上的位置如图所示,化简|a+1|﹣+=2.【题型3:二次根式的运算】【典例3】(2023•金昌)计算:÷×2﹣6.1.(2023•聊城)计算:(﹣3)÷=.2.(2023•山西)计算:的结果为.3.(2023•兰州)计算:.4.(2023•陕西)计算:.1.(2023秋•福鼎市期中)下列各数不能与合并的是()A.B.C.D.2.(2023秋•云岩区校级期中)下列式子中,属于最简二次根式的是()A.B.C.D.3.(2022秋•泉州期末)若二次根式有意义,则x的取值范围是()A.x<3B.x≠3C.x≤3D.x≥3 4.(2023秋•龙泉驿区期中)下列运算中,正确的是()A.B.C.D.5.(2023秋•锦江区校级期中)若a>b>0,则的结果是()A.a B.2b﹣a C.a﹣2b D.﹣a6.(2023春•河东区期中)把x根号外的因数移到根号内,结果是()A.B.C.﹣D.﹣7.(2023春•铁岭县期末)计算:的结果是()A.2B.0C.﹣2D.﹣8.(2023春•抚顺月考)二次根式的计算结果是()A.B.C.±D.9.(2023春•西丰县期中)已知a=+2,b=﹣2,则a﹣b的值是()A.2B.4C.2+4D.2﹣410.(2023春•工业园区期末)下列各组二次根式中,是同类二次根式的是()A.与B.与C.与D.与11.(2023春•武昌区校级期中)若是整数,则满足条件的最小正整数n的值为.12.(2023春•固镇县月考)计算=.13.(2023春•高安市期中)化简计算:=.14.(2023秋•高新区校级期中)计算:(1)×;(2).15.(2023秋•秦都区校级期中)计算:﹣×.1.(2022秋•鼓楼区校级期末)实数a在数轴上的位置如图所示,则化简结果为()A.7B.﹣7C.2a﹣15D.无法确定2.(2023春•新郑市校级期末)若=在实数范围内成立,则x的取值范围是()A.x≥1B.x≥4C.1≤x≤4D.x>43.(2023秋•西安校级月考)若x,y都是实数,且,则xy的值是()A.0B.4C.2D.不能确定4.(2023•商水县一模)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记,则其面积,这个公式也被称为海伦一秦九韶公式.若p=5,c=2,则此三角形面积的最大值为()A.B.C.D.55.(2023秋•闵行区期中)计算:=.6.(2023春•科左中旗校级期末)观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==,第3个等式:a3==2﹣,第4个等式:a4==﹣2,…按上述规律,计算a1+a2+a3+…+a n=.7.(2023春•中江县月考)已知的值是.8.(2023春•禹州市期中)如图,在数学课上,老师用5个完全相同的小长方形在无重叠的情况下拼成了一个大长方形,已知小长方形的长为,宽为,则这个大长方形的周长为.9.(2023春•宿豫区期末)计算的结果为.10.(2023秋•双流区校级期中)已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2;(2)a2﹣3ab+b2.11.(2023春•双柏县期中)阅读下面问题:==﹣1;==﹣;==﹣2.(1)求的值;(2)计算:+++…++.12.(2023秋•二七区校级月考)阅读材料:我们来看看完全平方公式在无理数化简中的作用.问题提出:该如何化简?建立模型:形如的化简,只要我们找到两个数a,b,使a+b=m,ab=n,这样()2+()2=m,•=.那么便有:(a>b),问题解决:化简:,解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即,.∴,模型应用1:利用上述解决问题的方法化简下列各式:(1);(2).模型应用2:(3)在Rt△ABC中,∠C=90°,AB=4﹣,AC=,那么BC边的长为多少?(直接写出结果,结果化成最简).1.(2022•桂林)化简的结果是()A.2B.3C.2D.22.(2022•内蒙古)实数a在数轴上的对应位置如图所示,则+1+|a﹣1|的化简结果是()A.1B.2C.2a D.1﹣2a3.(2022•河北)下列正确的是()A.=2+3B.=2×3C.=32D.=0.7 4.(2022•湖北)下列各式计算正确的是()A.B.C.D.5.(2022•青岛)计算(﹣)×的结果是()A.B.1C.D.36.(2022•安顺)估计(+)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(2023•绵阳)若式子在实数范围内有意义,则x的最小值为.8.(2023•丹东)若代数式在实数范围内有意义,则实数x的取值范围是.9.(2022•武汉)计算的结果是.10.(2023•内蒙古)实数m在数轴上对应点的位置如图所示,化简:=.11.(2022•荆州)若3﹣的整数部分为a,小数部分为b,则代数式(2+a)•b的值是.12.(2022•泰安)计算:•﹣3=.13.(2022•济宁)已知a=2+,b=2﹣,求代数式a2b+ab2的值.。

中考数学专题《二次根式》复习试卷含答案解析

中考数学专题《二次根式》复习试卷含答案解析

2018年中考数学专题复习卷: 二次根式一、选择题1.下列计算正确的是()A. B. C. D.2.下列四个数中,是负数的是( )A. B. C. D.3.函数y= 中自变量x的取值范围是()A. x≥-1且x≠1B. x≥-1C. x≠1D. -1≤x<14.下列各式化简后的结果为3 的是()A. B. C. D.5.下列计算正确的是()A. a5+a2=a7B. × =C. 2-2=-4D. x2·x3=x66.计算|2﹣|+|4﹣|的值是()A. ﹣2B. 2C. 2 ﹣6D. 6﹣27.计算之值为何()A. 5B. 33C. 3D. 98.下列运算正确的是()A. B. C. D.9.已知,则代数式的值是()A. 0B.C.D.10.如果(0<x<150)是一个整数,那么整数x可取得的值共有()A. 3个B. 4个C. 5个D. 6个11.化简为()A. 5﹣4B. 4 ﹣lC. 2D. 112.下列计算:①;②;③;④.其中正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题13.函数y=的自变量x的取值范围是________.14.计算:=________.15.计算:________。

16.当x=2时,二次根式的值为________.17.计算的结果是________.18.计算(+1)2016(﹣1)2017=________.19.已知实数a在数轴上的位置如图所示,化简的结果是________.20.若实数a、b满足|a+2|+ =0,则=________.21.计算:=________.22.观察下列等式:第1个等式:a1= = ﹣1,第2个等式:a2= = ﹣,第3个等式:a3= =2﹣,第4个等式:a4= = ﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n=________;(2)a1+a2+a3+…+a n=________.三、解答题23.24.计算:()﹣1﹣6cos30°﹣()0+ .25.在平面直角坐标系中,点P(- ,-1)到原点的距离是多少?26.若b为实数,化简|2b-1|- 。

二次根式-中考数学一轮复习考点专题复习大全(全国通用)

二次根式-中考数学一轮复习考点专题复习大全(全国通用)

考向08 二次根式【考点梳理】1、二次根式:一般地,形如a (a ≥0)的代数式叫做二次根式。

当a >0时,a 表示a 的算术平方根,其中0=02、 理解并掌握下列结论:(1))0(≥a a 是非负数(双重非负性); (2))0()2≥=a a a (; (3)⎩⎨⎧≤->=⎩⎨⎧<-≥=⎪⎩⎪⎨⎧<-=>==)0()0()0()0()0()0(0)0(2a a a a a a a a a a a a a a a ;口诀:平方再开方,出来带“框框” 3、二次根式的乘法:)0,0(≥≥=•b a ab b a ,反之亦成立4、二次根式的除法:)0,0(>≥=b a b a ba ,反之亦成立5、满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数不含分母,(2)被开方数不含开得尽方的因数或因式。

6、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式是同类二次根式。

【题型探究】题型一:二次根式的概念和性质1.(2022·湖北黄石·统考中考真题)函数11y x =+-的自变量x 的取值范围是( ) A .3x ≠-且1x ≠B .3x >-且1x ≠C .3x >-D .3x ≥-且1x ≠2.(2022·广东广州·广东番禺中学校考三模)若3y =,则2022()x y +等于( ) A .1B .5C .5-D .1-3.(2022·湖北黄石·校联考模拟预测)函数y 中,自变量x 的取值范围是( ) A .5x >B .35x ≤<C .5x <D .35x ≤≤题型二:二次函数的化简4.(2022·河北·统考中考真题)下列正确的是( )A 23+B 23=⨯C D 0.75.(2023·河北·b a 的值是( ) A .6B .9C .12D .276.(2022·四川绵阳·统考三模)已知y =,则xy =( )A .3B .-6C .±6D .±3题型三:二次根式的乘除7.(2022·广东广州· )A B C D .8.(2022·天津南开·二模)计算3)的结果等于______.9.(2022·河北唐山·=a =______;b =__.题型四:二次根式的加减10.(2022·黑龙江哈尔滨·=_____. 11.(2022·黑龙江绥化·统考中考真题)设1x 与2x 为一元二次方程213202x x ++=的两根,则()212x x -的值为________.12.(2022·黑龙江哈尔滨·______.题型五:分母的有理化13.(2022·河北保定·统考一模)已知x =2y = (1)22x y +=________; (2)2()x y xy --=________.14.(2022·广东中山·统考二模)小明喜欢构建几何图形,利用“数形结合”的思想解决代数问题.在计算tan 22.5︒时,如图,在Rt ACB 中,9045C ABC ∠=︒∠=︒,,延长CB 使BD AB =,连接AD ,得22.5D ∠=︒,所以tan 22.51AC CD ︒===,类比小明的方法,计算tan15︒的值为________.15.(2020·四川成都·四川省成都列五中学校考三模)3的整数部分是m ,小数部分是n ,则mn+3=_____.题型六:二次根式的比较大小16.(2021·四川成都·766517.(2020·陕西西安·西安市铁一中学校考二模)比较大小:1013-(填“>”、“=”、“<”)18.(2021·陕西宝鸡·17﹣5(填“>”或“<”)题型七:二次根式的化简求值问题19.(2023·江西·九年级专题练习)先化简,再求值:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭,其中53x =. 20.(2022·四川广元·统考一模)先化简,再求值:222a ab b a b a b a b ab ⎛⎫---÷ ⎪--⎝⎭,其中32a =+32b = 21.(2022·辽宁抚顺·模拟预测)先化简,再求值:22124()(1)442x x x x x x x-+-÷--+-,其中x =2+tan30°.【必刷基础】一、单选题22.(2023·广西玉林·一模)下列运算正确的是( ) A 257B .22525=+C 532=D .233323.(2022·福建泉州·校考三模)在函数32y x =+中,自变量x 的取值范围是( ) A .23x ≠-B .23x >-C .23x -D .23x -24.(2022·上海松江·校考三模)下列式子属于同类二次根式的是( ) A .2与22B .3与24C .5与25D .6与1225.(2022春·河北保定·九年级保定市第十七中学校考期中)如图,把一张矩形纸片ABCD 按如图所示方法进行两次折叠后,BEF △恰好是等腰直角三角形,若2BE =,则CD 的长度为( )A .22B .22+C .222+D .224+26.(2021·广西百色·统考二模)将一组数2,2,6,22,10,…,210,按下列方式进行排列: 2,2,6,22,10; 23,14,4,32,25;…若2的位置记为()1,2,23的位置记为()2,1,则36这个数的位置记为( )A .()54,B .()44,C .()43,D .()35,27.(2022·山东青岛·统考中考真题)计算1(2712)3-⨯的结果是( ) A .33B .1C .5D .328.(2022·河北廊坊·统考二模)一次函数()32y k x k =++-的图象如图所示,则使式子()011k k ++-有意义的k 的值可能为( )A .-3B .-1C .-2D .229.(2021·北京·统考中考真题)若7x -在实数范围内有意义,则实数x 的取值范围是_______________. 30.(2018·江苏苏州·校联考中考模拟)若x 满足|2017-x|+-2018x =x , 则x-20172=________31.(2021·辽宁鞍山·统考中考真题)先化简,再求值:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭,其中62a =+. 32.(2022春·福建泉州·九年级福建省安溪第一中学校考阶段练习)已知实数a ,b ,c 在数轴上的位置如图所示,化简:222||()()a a c c a b -++--.【必刷培优】一、单选题33.(2021·广东·统考中考真题)设610-的整数部分为a ,小数部分为b ,则()210a b +的值是( ) A .6B .210C .12D .91034.(2021·湖南娄底·统考中考真题)2,5,m 是某三角形三边的长,则22(3)(7)m m -+-等于( ) A .210m -B .102m -C .10D .435.(2021·内蒙古·统考中考真题)若21x =+,则代数式222x x -+的值为( ) A .7 B .4C .3D .322-36.(2020·河北·统考中考真题)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是( )A .1,4,5B .2,3,5C .3,4,5D .2,2,4二、填空题37.(2019·广西柳州·中考模拟)如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=_____.38.(2021·四川眉山·统考中考真题)观察下列等式:12211311112212x =++==+⨯; 22211711123623x =++==+⨯; 3221113111341234x =++==+⨯; ……根据以上规律,计算12320202021x x x x ++++-=______.39.(2022·湖北荆州·统考中考真题)若32-的整数部分为a ,小数部分为b ,则代数式()22a b +⋅的值是______. 40.(2021·河南信阳·河南省淮滨县第一中学校考三模)已知625x =-为一元二次方程20x ax b ++=的一个根,且a ,b 为有理数,则=a ______,b =______.41.(2019·江苏·校考中考模拟)若a ,b 都是实数,b =12a -+21a -﹣2,则a b 的值为_____. 42.(2022·四川遂宁·统考中考真题)实数a ,b 在数轴上的位置如图所示,化简()()2211a b a b +--+-=______.三、解答题43.(2021·四川成都·统考中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中33=a .44.(2022·安徽·统考二模)阅读下列解题过程: 21+21(21)(21)-+-2-1; 32+32(32)(32)-+-32; 43+434343-+-()()433 …解答下列各题: (1109+= ;(2= .(3)利用这一规律计算:)×).45.(2019·福建泉州·统考中考模拟)先化简,再求值:2443(1)11m m m m m -+÷----,其中2m .46.(2013·贵州黔西·中考真题)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:231+(,善于思考的小明进行了以下探索:设(2a m ++(其中a 、b 、m 、n 均为整数),则有2222a m n +++∴2222a m n b mn =+=,.这样小明就找到了一种把部分a + 请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a 、b ,得a = ,b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n ,填空: + =( +2;(3)若(2a m ++,且a 、b 、m 、n 均为正整数,求a 的值.参考答案:1.B【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【详解】解:依题意,3010 xx+>⎧⎨-≠⎩∴3x>-且1x≠故选B【点睛】此题主要考查了函数自变量的取值范围,正确掌握二次根式与分式有意义的条件是解题关键.2.A【分析】直接利用二次根式中被开方数是非负数,得出x的值,进而得出y的值,再利用有理数的乘方运算法则计算即可.【详解】解:由题意可得:20 420xx-≥⎧⎨-≥⎩,解得:x=2,故y=-3,∴20222022()(213)=x y+=-.故选:A.【点睛】此题主要考查了二次根式有意义的条件以及有理数的乘方运算,正确掌握被开方数为非负数是解题关键.3.C【分析】根据二次根式、立方根、分式的性质分析,即可得到答案.【详解】根据题意,得50x->∴5x<故选:C.【点睛】本题考查了二次根式、立方根、分式的知识;解题的关键是熟练掌握二次根式的性质,从而完成求解.4.B【分析】根据二次根式的性质判断即可.【详解】解:23+,故错误;23=⨯,故正确;=≠0.7,故错误;故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.5.D【分析】由二次根式的性质、二次根式的减法运算法则进行计算,即可得到答案.∴3a =,3b =, ∴3327=, 故选:D【点睛】本题考查了二次根式的性质、二次根式的减法运算,解题的关键是掌握运算法则,正确的进行解题. 6.B【分析】利用二次根式的被开方数具有非负性求出x 的值后,再求出y 的值,即可求解. 【详解】解:∵229090x x -+≥-≥,, ∴29x =, 又∵30x +≠, ∴3x =, ∴0012233y --==-+,∴()326xy =⨯-=-, 故选:B .【点睛】本题考查了二次根式有意义的条件以及性质,解题关键是求出x 的值与y 的值. 7.A【分析】根据二次根式的乘除运算法则进行计算,最后根据二次根式的性质化简即可.=== 故选:A .【点睛】)0,0a b ≥≥)0,0a b ≥>,熟练掌握相关运算法则是解题的关键. 8.4【分析】根据平方差公式计算即可.【详解】解:3)=223-=13-9 =4,故答案为:4.【点睛】本题考查二次式的混合运算,熟练掌握平方差公式是解题的关键. 9. 2 6化为最简二次根式,再利用二次根式的乘法法则解题.=2,6a b ∴==故答案为:2,6.【点睛】本题考查利用二次根式的性质化简计算,涉及最简二次根式、二次根式的乘法等知识,是基础考点,掌握相关知识是解题关键.10.-【分析】先把各二次根式化为最简二次根式,然后合并即可.【详解】解:原式==-故答案为:-【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 11.20【分析】利用公式法求得一元二次方程的根,再代入求值即可; 【详解】解:∵213202x x ++=△=9-4=5>0,∴13x =-23x =-,∴()212x x -=((223320-==,故答案为:20;【点睛】本题考查了一元二次方程的解,掌握公式法解一元二次方程是解题关键. 12【分析】根据二次根式的性质和二次根式的减法法则,即可求解.3==【点睛】本题主要考查二次根式的化简,掌握二次根式的性质和运算法则,是解题的关键. 13. 14 11【分析】根据分母有理化得到2x =x 和y 分别代入(1)(2)中根据二次根式的混合运算法则计算求解.【详解】解:∵123x =+, ∴()()12323232323x ===+-+--, ∴(1)22x y +()()222323=-++ 44334433=-++++14=,故答案为:14;(2)()2x y xy -- ()()()223232323⎡⎤=--+--+⎣⎦()()22343=---121=-11=,故答案为:11.【点睛】本题主要考查了分母有理化、二次根式的混合运算法则,理解相关知识是解答关键.14.23-【分析】仿照题意构造含15度角的直角三角形进行求解即可.【详解】解:如图,在Rt ACB 中,9030C ABC ∠=︒∠=︒,,延长CB 使BD AB =,连接AD ,∴∠BAD =∠D ,2AB BD AC ==,∴cos =3BC AC ABC AC =⋅∠,∴()23CD BC BD AC =+=+,∵∠ABC =∠BAD +∠D ,∴=15D ︒∠,∴1tan =tan15===2323AC D CD ︒-+∠, 故答案为:23-.【点睛】本题主要考查了解直角三角形,三角形外角的性质,等腰三角形的性质,正确理解题意构造出含15度角的直角三角形是解题的关键.15.2m 的值,小数部分n m ,把m 、n 代入分式m n+3中,应用分母有理化的方法进行化简,即可得到答案.【详解】解:∵12,∴m =1,n 1, ∴=n+3m=2.故答案为:2.【点睛】本题主要考查二次根式的分母有理化,熟练掌握分母有理化的方法是解题的关键.16.<【分析】直接利用二次根式的性质分别变形,进而比较得出答案.==<故答案为:<.【点睛】此题主要考查了二次根式的分母有理化,正确化简二次根式是解题关键.17.> 【分析】先将这两个数分别平方,通过比较两个数的平方的大小即可得解.【详解】解:∵21(10=,211()39-=且11109<,1<,∴13>- 故答案为:>【点睛】此题主要考查了无理数的估算能力,两个二次根式比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的正的式子的值就大,负的式子就小.18.>【分析】首先利用二次根式的性质可得【详解】解:∵∴>﹣故答案为:>.【点睛】本题主要考查了二次根式的大小比较,准确计算是解题的关键.19.13x x -+【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案. 【详解】解:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭ ()()()23221111x x x x x x ++-+=÷++- ()()()211313x x x x x +-+=⨯++13x x -=+.当3x =时,原式=. 【点睛】此题主要考查了分式的化简以及二次根式混合运算,正确化简分式是解题关键.20.ab ;7【分析】根据分式的混合运算法则化简,再代入3a =3b = 【详解】解:原式222a ab b a b a b ab-+-=÷- ()2a b ab ab a b a b-=⋅=--.当3a =3b =原式(33927==-=.【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式、二次根式及乘法公式的运用.21.()212x -;3【分析】先根据异分母分式的加减化简括号内的,同时将除法转化为乘法,再根据分式的性质化简,最后根据特殊角的三角函数值求得x 的值,代入化简结果进行计算即可. 【详解】解:22124()(1)442x x x x x x x -+-÷--+- ()()()()()22122422x x x x x x x x x x ⎡⎤-+-=-⨯⎢⎥---⎢⎥⎣⎦()2224=42x x x x x x x --+⨯-- ()241=42x x x -⋅-- ()212x =-2tan 302x =+︒=∴原式21322==⎛⎫ ⎪⎝⎭【点睛】本题考查了分式的化简求值,特殊角的三角函数值,实数的混合运算,二次根式的混合运算,正确的计算是解题的关键.22.D【分析】利用二次根式的加减运算法则进行计算,然后作出判断.【详解】解:AB、= CD、=故选:D .【点睛】本题考查二次根式的加减运算,掌握运算法则是解题关键.23.C【分析】根据被开方数大于等于0,列式求解即可.【详解】解:根据题意得:320x +,解得23x -.【点睛】本题主要考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.24.A【分析】根据同类二次根式的概念判断即可.【详解】解:A 、2与22是同类二次根式,符合题意;B 、3与26不是同类二次根式,不符合题意;C 、5与5不是同类二次根式,不符合题意;D 、6与23不是同类二次根式,不符合题意;故选A .【点睛】本题考查了同类二次根式,掌握一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式是解题的关键.25.D【分析】根据翻折过程补全图形,然后根据矩形的性质和勾股定理即可解决问题.【详解】解:由折叠补全图形如图所示,四边形ABCD 是矩形,'90ADA B C A ∴∠=∠=∠=∠=︒,AD BC =,CD AB =,由第一次折叠得:'90DA E A ∠=∠=︒,1452ADE ADC ∠=∠=︒, 45AED ADE ∴∠=∠=︒,AE AD ∴=,在Rt ADE △中,根据勾股定理得,2DE AD =,由第二次折叠知,CD DE AB ==,222DE AE ∴=,2222()2(2)CD AB BE CD ∴=-=-,422CD ∴=+【点睛】本题考查了翻折变换,矩形的性质,等腰直角三角形,解决本题的关键是掌握翻折的性质.26.C∵36218÷=,18533÷=4行,第3个数字.故选:C .【点睛】此题考查的是数字的变化规律以及二次根式的化简,找出其中的规律是解题的关键.27.B再合并即可.【详解】解:94321 故选:B .【点睛】本题考查的是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.28.B【分析】通过一次函数图象可以得出:3020k k +>⎧⎨->⎩,解得:32k -<<.()01k -有意义的条件为:1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且0k ≠.将两个关于k 的解集综合,得到k 的范围是:12k -≤<且0k ≠.根据所求范围即可得出答案选B .【详解】解:由图象得:3020k k +>⎧⎨->⎩,解得:32k -<<()01k -有意义,则1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且1k ≠ ∴综上所述,k 的取值范围是:12k -≤<且0k ≠.A 、-3不在k 的取值范围内,不符合题意;B 、-1在k 的取值范围内,符合题意;C 、-2不在k 的取值范围内,不符合题意;D 、2不在k 的取值范围内,不符合题意.故选B .【点睛】本题主要考查知识点为,一次函数图象与一次函数系数的关系、使二次根式有意义的条件,零指数幂中底29.7x ≥【分析】根据二次根式有意义的条件可直接进行求解.【详解】解:由题意得:70x -≥,解得:7x ≥;故答案:为7x ≥.【点睛】本题主要考查二次根式有意义的条件,解题的关键是熟练掌握二次根式有意义的条件.30.2018【分析】根据二次根式有意义的条件列出不等式,求解得出x 的取值范围,再根据绝对值的意义化简即可得出方程=2017,将方程的两边同时平方即可解决问题.【详解】解:由条件知,x-2018≥0, 所以x≥2018,|2017-x|=x-2017.所以x-2017+ =x ,即 =2017,所以x-2018=20172 ,所以x-20172=2018,故答案为:2018.【点睛】本题主要考查了二次根式的内容,根据二次根式有意义的条件找到x 的取值范围是解题的关键.31.2a a -,1+【分析】根据分式的混合运算的运算法则把原式化简为2a a -,再代入求值. 【详解】解:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭ ()()()2132221a a a a a a ⎡⎤+=-⨯⎢⎥-+--⎣⎦()()()21221a a a a a a +-=⨯+-- 2a a =-.当2a 时,原式1==== 【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值. 32.a b -【分析】直接利用数轴判断得出:a<0,a+c<0,c-a<0,b>0,进而化简即可.【详解】由数轴,得a<0,0a c +<,0c a -<,0b >.【点睛】此题考查二次根式的性质与化简,数轴,解题关键在于利用数轴进行解答.33.Aa 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【详解】∵34,∴263<<,∴62a =,∴小数部分624b ==∴(((22244416106a b =⨯==-=.故选:A .【点睛】本题考查了二次根式的运算,正确确定6a 与小数部分b 的值是解题关键.34.D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+, 解得:37x ,374m m -+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简.35.C【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.36.B【分析】根据勾股定理,222+=a b c ,则小的两个正方形的面积等于大正方形的面积,再分别进行判断,即可得到面积最大的三角形.【详解】解:根据题意,设三个正方形的边长分别为a 、b 、c ,222A 、∵1+4=5,则两直角边分别为:1和2,则面积为:112=12⨯⨯;B 、∵2+3=512 C 、∵3+4≠5,则不符合题意;D 、∵2+2=4112=;1>, 故选:B .【点睛】本题考查了正方形的性质,勾股定理的应用,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,以及正方形的性质进行解题.37.2【分析】直接利用二次根式的性质以及结合数轴得出a 的取值范围进而化简即可.【详解】解:由数轴可得:0<a <2,则a=a =a +(2﹣a )=2.故答案为:2.【点睛】本题主要考查了二次根式的性质与化简,解题的关键是正确得出a 的取值范围.38.12021-【分析】根据题意,找到第n 1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120202021⨯化为12015﹣12016,再进行分数的加减运算即可.11(1)n n =++,20201120202021x =+⨯ 12320202021x x x x ++++-=112+116+1112+…+1120202021⨯﹣2021 =2020+1﹣12+12﹣13+…+12020﹣12021﹣2021 =2020+1﹣12021﹣2021=12021-. 故答案为:12021-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算. 39.2【分析】先由12<得到132<<,进而得出a 和b ,代入()2b ⋅求解即可.【详解】解:∵ 12<,∴132<<,∵ 3的整数部分为a ,小数部分为b ,∴1a =,312b ==∴()((222242b ⋅=⨯=-=,故答案为:2.【点睛】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.40. 2; 4-;【分析】将x =1x =,则20x ax b ++=)()260a b a -+-+=,根据a ,b 为有理数,可得2a -,6b a -+)()260a b a -+-+=时候,只有20a -=,60b a -+=,据此求解即可.【详解】解:∵x ====1∴20x ax b ++=∴))2110a b ++= ∴60a b --+=60a b -++=)()260a b a -+-+=∵a ,b 为有理数,∴2a -,6b a -+也为有理数,∴2a =,4b =-,故答案是:2,4-;【点睛】本题考查了二次根式的化简,利用完全平方公式因式分解,一元二次方程的解,有理数,无理数的概念的理解,熟悉相关性质是解题的关键.41.4【分析】直接利用二次根式有意义的条件得出a 的值,进而利用负指数幂的性质得出答案.【详解】解:∵b 2,∴120210a a -≥⎧⎨-≥⎩∴1-2a=0,解得:a=12,则b=-2, 故ab=(12)-2=4. 故答案为4.【点睛】此题主要考查了二次根式有意义的条件,以及负指数幂的性质,正确得出a 的值是解题关键. 42.2【分析】利用数轴可得出102a b -<<<<,1,进而化简求出答案.【详解】解:由数轴可得:102a b -<<<<,1,则10,10,0a b a b +>->-<∴1a +=|1||1|||a b a b +--+-=1(1)()a b a b +----=11a b a b +-+-+=2.故答案为:2.【点睛】此题主要考查了二次根式的性质与化简,正确得出a ,b 的取值范围是解题关键.43.13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++ 13a =+,当3=a 时,原式= 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.44.(13;(2(3)2020【分析】(1,然后利用平方差公式和二次根式的性质计算,即可得到答案;(2(3)根据(1)和(2)的结论,先分母有理化,经加减运算后,再利用平方差公式计算,即可得到答案.【详解】(133;(2==(3)×)1+)×)1)×) =20211-=2020.【点睛】本题考查了二次根式和数字规律的知识:解题的关键是熟练掌握二次根式混合运算、数字规律、平方差公式的性质,从而完成求解.45.22m m-+ 1. 【详解】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m -- =221m m --()•122m m m --+-()() =﹣22m m -+ =22m m-+当m 2时,原式===﹣=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 46.(1)223m n +,2mn ;(2)13,4,2,1(答案不唯一);(3)7或13.【分析】根据题意进行探索即可.【详解】(1)∵2(a m +=+,∴2232a m n +=++∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13.【点睛】本题考查二次根式的运算.根据题意找出规律是解决本题的关键.。

中考数学一轮复习20讲:第4讲二次根式

中考数学一轮复习20讲:第4讲二次根式

【知识归纳】1.二次根式的有关概念⑴ 式子)0(≥a a 叫做二次根式.注意被开方数a 只能是 .(要使二次根式a 有意义,则a ≥0.)⑵ 最简二次根式被开方数所含因数是 ,因式是 ,不含能 的二次根式,叫做最简二次根式. (3) 同类二次根式化成最简二次根式后,被开方数 几个二次根式,叫做同类二次根式.2.二次根式的性质(1(a ≥0);(2))0()(2≥=a a a )0(≥a a(3)==a a 2)0(<-a a(4))0,0(≥≥•=b a b a ab(5))0,0(≥≥=b a ba b a 3.二次根式的运算(1).二次根式的加减法合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有 二次根式,可把同类二次根式合并成一个二次根式.(2).二次根式的乘除法二次根式的乘法:a ·b = (a ≥0,b ≥0).二次根式的除法:a b= (a ≥0,b >0). 【知识归纳答案】1.⑴非负数.⑵ 整数,因式是整式,不含能开得尽方的因数或因式(3)相同的二次根式的性质 (1)a ≥ 0(a ≥0);(2))0()(2≥=a a a )0(≥a a(3)==a a 2)0(<-a a(4))0,0(≥≥•=b a b a ab(5))0,0(≥≥=b a b ab a3.(1(2).ab b a2.二次根式中,x 的取值范围是( )A .x ≥1B .x >1C .x ≤1D .x <1【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x ﹣1≥0,∴x ≥1,3.下列运算正确的是()A.= B.2×=C.=a D.|a|=a(a≥0)【考点】73:二次根式的性质与化简;15:绝对值;83:等式的性质.【分析】直接利用分式的基本性质以及绝对值的性质、二次根式的性质分别化简求出答案.【解答】解:A、无法化简,故此选项错误;B、2×=,故此选项错误;C、=|a|,故此选项错误;D、|a|=a(a≥0),正确.故选:D.4.下列说法中正确的是()A.8的立方根是±2B.是一个最简二次根式C.函数y=的自变量x的取值范围是x>1D.在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称【考点】74:最简二次根式;24:立方根;E4:函数自变量的取值范围;P5:关于x轴、y轴对称的点的坐标.【分析】根据开立方,最简二次根式的定义,分母不能为零,关于原点对称的点的坐标,可得答案.【解答】解:A、8的立方根是2,故A不符合题意;B、不是最简二次根式,故B不符合题意;C、函数y=的自变量x的取值范围是x≠1,故C不符合题意;D、在平面直角坐标系中,点P(2,3)与点Q(﹣2,3)关于y轴对称,故D 符合题意;5.下列根式是最简二次根式的是()A.B.C.D.【考点】74:最简二次根式.【分析】根据最简二次根式是被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、该二次根式的被开方数中含有分母,不是最简二次根式,故本选项错误;B、该二次根式的被开方数中含有小数,不是最简二次根式,故本选项错误;C、该二次根式符合最简二次根式的定义,故本选项正确;D、20=22×5,该二次根式的被开方数中含开的尽的因数,不是最简二次根式,故本选项错误;故选:C.6.已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=,其中p=;我国南宋时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=,若一个三角形的三边长分别为2,3,4,则其面积是()A.B.C.D.【考点】7B:二次根式的应用.【分析】根据题目中的秦九韶公式,可以求得一个三角形的三边长分别为2,3,4的面积,从而可以解答本题.【解答】解:∵S=,∴若一个三角形的三边长分别为2,3,4,则其面积是:S==,故选B.7.下列计算:(1)=2,(2)=2,(3)(﹣2)2=12,(4)(+)(﹣)=﹣1,其中结果正确的个数为()A.1 B.2 C.3 D.4【考点】79:二次根式的混合运算.【分析】根据二次根式的性质对(1)、(2)、(3)进行判断;根据平方差公式对(4)进行判断.【解答】解::(1)=2,(2)=2,(3)(﹣2)2=12,(4)(+)(﹣)=2﹣3=﹣1.故选D.二.填空题(共3小题)8.若在实数范围内有意义,则x的取值范围是x≥3.【考点】72:二次根式有意义的条件.【分析】根据被开方数大于等于0列式进行计算即可求解.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.9.计算﹣6的结果是.【考点】78:二次根式的加减法.【分析】先将二次根式化简即可求出答案.【解答】解:原式=3﹣6×=3﹣2=故答案为:10.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=,现已知△ABC的三边长分别为1,2,,则△ABC的面积为1.【考点】7B:二次根式的应用.【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.三.解答题(共8小题)11.计算:(﹣)×+|﹣2|﹣()﹣1.【考点】79:二次根式的混合运算;6F:负整数指数幂.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣+2﹣﹣2=﹣2﹣=﹣312.计算:﹣16×cos45°﹣20170+3﹣1.【考点】79:二次根式的混合运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】直接利用特殊角的三角函数值结合零指数幂的性质以及负指数幂的性质分别化简求出答案.【解答】解:﹣16×cos45°﹣20170+3﹣1=﹣1+2×﹣1+=.13.(1)计算:×﹣4××(1﹣)0;(2)先化简,再求值:( +)÷,其中a,b满足+|b﹣|=0.【考点】79:二次根式的混合运算;16:非负数的性质:绝对值;23:非负数的性质:算术平方根;6D:分式的化简求值;6E:零指数幂.【分析】(1)根据二次根式的乘法法则和零指数幂的意义得到原式=﹣4××1=2﹣,然后合并即可;(2)先把分子和分母因式分解和除法运算化为乘法运算,再计算括号内的运算,然后约分得到原式=,再根据非负数的性质得到a+1=0,b﹣=0,解得a=﹣1,b=,然后把a和b的值代入计算即可.【解答】解:(1)原式=﹣4××1=2﹣=;14.计算:﹣12017﹣丨1﹣丨+×()﹣2+0.【考点】79:二次根式的混合运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】直接利用绝对值的性质以及负指数幂的性质以及零指数幂的性质分别化简求出答案.【解答】解:原式=﹣1﹣|1﹣×|+2×4+1=﹣1﹣0+8+1=8.15.计算:(1)|﹣2|﹣(2)(3﹣)(3+)+(2﹣)【考点】79:二次根式的混合运算.【分析】(1)根据负整数指数幂的意义和绝对值的意义计算;(2)利用平方差公式和二次根式的乘法法则运算.【解答】解:(1)原式=2﹣3=﹣1;(2)原式=9﹣7+2﹣2=2.16.计算、求值:(1)计算:|﹣2|+()﹣1﹣(+1)(﹣1);(2)已知单项式2x m﹣1y n+3与﹣x n y2m是同类项,求m,n的值.【考点】79:二次根式的混合运算;34:同类项;6F:负整数指数幂.【分析】(1)利用绝对值的定义结合平方差公式计算得出答案;(2)直接利用同类项的定义分析得出答案.【解答】解:(1)|﹣2|+()﹣1﹣(+1)(﹣1)=2﹣+2﹣(5﹣1)=﹣;学科网(2)∵单项式2x m﹣1y n+3与﹣x n y2m是同类项,∴,解得:.17.请你参考黑板中老师的讲解,运用平方差公式简便计算:(1)×;(2)(﹣).【考点】79:二次根式的混合运算;4F:平方差公式.【分析】(1)把19化为20﹣1,把21化为20+1,然后利用平方差公式计算;(2)把第1个括号内提2017,然后利用平方差公式计算.【解答】解:(1)原式===;(2)原式=2017()(﹣)=2017×(3﹣2)=2017.18.如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.2m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过估算说明.(参考数据:≈1.7)【分析】首先在AB之间找一点F,且BF=2.5,过点F作GF⊥AB交CD于点G,只要求得GF的数值,进一步与货车高相比较得出答案即可.【解答】解:如图,在AB之间找一点F,使BF=2.5m,过点F作GF⊥AB交CD于点G,∵AB=3.2m,CA=0.7m,BF=2.5m,∴CF=AB﹣BF+CA=1.4m,∵∠ECA=60°,∴tan60°=,∴GF=CAtan60°=1.4≈2.38m,∵2.38<3∴这辆货车在不碰杆的情况下,不能从入口内通过.11。

2024年中考数学复习专题讲义:二次根式(含答案)

2024年中考数学复习专题讲义:二次根式(含答案)

2024年中考数学复习专题讲义:二次根式知识点讲解1、二次根式的定义 一般地,形如a (a ≥0)的式子叫做二次根式。

2、二次根式的基本性质①2a =(a ≥0); a = (a ≥0); a = (a 取全体实数)。

3、二次根式的乘除(1)二次根式的乘法:①ab b a =⋅; ②b a ab ⋅= (a ≥0, b ≥0)。

(2)二次根式的除法:= = (a ≥0, b >0)。

4、最简二次根式 最简二次根式满足的条件:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式。

5、二次根式的加减二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。

专题练习一、选择题1.下列二次根式中,是最简二次根式的是( )A .√12B .√8C .√13D .√0.22.若二次根式√x +2有意义,则x 的取值范围是( ).A .x >−2B .x ≥−2C .x <−2D .x ≥23.化简√(−3)2的结果是( )A .−3B .±3C .3D .94.估计(√27−√6)÷√3的值应在( )A .0到1之间B .1到2之间C .2到3之间D .3到4之间5.下列计算错误的是( )A .3√2−√2=3B .√60÷√5=2√3C .√25a +√9a =8√aD .√14×√7=7√26.若 x =√m −√n,y =√m +√n ,则 xy 的值是( ).A .2√mB .m −nC .m +nD .2√n 7.计算:√12×√13−√8÷√2的结果是( ) A .2 B .0 C .-2 D .−√28.用四张大小一样的长方形纸片拼成一个正方形 ABCD (如图),它的面积是 48, 已知长方形的一边长 AE =3√3, 图中空白部分是一个正方形,则这个小正方形的周长为( )A .2√3B .4√3C .8√3D .16√3二、填空题9.化简√3= 10.若√a +√3=3√3,则a = . 11.计算(2√2+1)(2√2−1)的结果等于 .12.若二次根式√x+3x 有意义,则x 的取值范围为 .13.当m = 时,二次根式√m −2取到最小值.三、解答题14.计算 (1)√16÷√2−√13×√6; (2)32√4x +2√x 9−x √1x +4√x4.15.已知2x =+2y =(1)试求22x y +的值; (2)试求x y y x-的值. 16.某居民小区有一块形状为长方形ABCD 的绿地,长方形绿地的长BC 为√162m ,宽AB 为√128m (即图中阴影部分),长方形花坛的长为(√13+1)m ,宽为(√13−1)m ,(1)长方形ABCD 的周长是多少?(结果化为最简二次根式)(2)除去修建花坛的地方.其他地方全修建成通道,通道上要铺上造价为50元每平方米的地砖,若铺完整个通道,则购买地砖需要花费多少元?17.已知x=2−√3,y=2+√3.(1)求x2+y2−xy的值;(2)若x的小数部分是a,y的整数部分是b,求ax−by的值.参考答案1.C2.B3.C4.B5.A6.B7.B8.C9.√33 10.1211.712.x ≥−3且x ≠013.214.解:(1)原式=√16÷2−√13×6=2√2−√2=√2;(2)原式=3√x +23√x −√x +2√x=143√x .15.(1)解:∵2x =, 2y =∴x+y=22+,xy=(22+=1 ∴()2222242114x y x y xy +=+-=-⨯= ;(2)解:∵2x =+,2y =-∴x+y=22+,x-y=((2222--=+=xy=(22=1∴()()22x y x yx y x yy x xy xy+---====16.(1)解:长方形ABCD的周长=2(√162+√128)=2(9√2+8√2)=34√2(m),答:长方形ABCD的周长是34√2m;(2)解:购买地砖需要花费=50[9√2×8√2−(√13+1)(√13−1)]=50(144−13+1)=50×132=6600(元)答:购买地砖需要花费6600元.17.(1)解:∵x=2−√3,y=2+√3,∴xy=(2−√3)(2+√3)=4−3=1,(x−y)2=(2−√3−2−√3)2=(−2√3)2=12,∴x2+y2−xy=(x−y)2+xy=12+1=13;(2)解:∵1<3<4,∴1<√3<2,∴3<2+√3<4,∴2+√3的整数部分是3,∴b=3,∵1<√3<2,∴−2<−√3<−1,∴0<2−√3<1,∴2−√3的整数部分是0,小数部分=2−√3−0=2−√3,∴a=2−√3,∴ax−by=(2−√3)(2−√3)−3(2+√3)=7−4√3+6−3√3=13−7√3,∴ax−by的值为13−7√3.)解:①(30x -2)x -②0020x x -22))(2)x -,又232x -+30x -+代数式当2x =时,代数式。

新人教初中数学中考复习数的开方与二次根式【精品】

新人教初中数学中考复习数的开方与二次根式【精品】

知 识
1.判断正误:
[答案] (1)× (2)× (3)× (4)×


(1)36 的平方根是 6; ( )
(5)× (6)×
高 频
(2)±9 的平方根是±3; ( )

向 (3) 4=±2; ( )


(4)0.01 是 0.1 的平方根; ( )
[解析](1)36 的平方根是±6,故错误; (2)-9 没有平方根,故错误; (3) 4=2,故错误; (4)0.1 是 0.01 的算术平方根,故错误;
(1)
1 ������
=
������
������ ·
������
=
������ ������
;
(2)
1 ������ -
������ =(
������ -
������+ ������ ������)( ������+
������
=
)
������ + ������-������
������ .
基 础

A.x≥4

B.x>4
4-x>0,解得 x<4,故选 D.

C.x≤4
D.x<4




基 础
考向三 二次根式的化简与计算
知 识
9.[2019·常德]下列运算正确的是 ( D )


A. 3 + 4= 7
B. 12=3 2
高 频
C. (-2)2=-2




D.
164 =
21 3
基 础

专题04二次根式(讲练)-2023年中考一轮复习(原卷版)

专题04二次根式(讲练)-2023年中考一轮复习(原卷版)

2023年中考数学总复习一轮讲练测()第一单元 数与式专题04二次根式(讲练)1.了解二次根式和最简二次根式的概念,知道二次根式a 中被开方数a 为非负数并且a 也是非负数.2.了解二次根式的加、减、乘、除运算法则并掌握二次根式的性质.3.能根据二次根式的运算法则及性质进行二次根式的加、减、乘、除和综合运算.1.(2021•杭州)下列计算正确的是( )A 2=B 2=-C 2±D 2=±2.(2022有意义,x 的取值范围是( ) A .5x B .5x ≠ C .5x > D .5x3.(2022有意义,x 的取值范围是( ) A .5x B .9x ≠ C .59x D .59x <4.(2022秋•上城区校级期中)实数a ,b ,c 在数轴上的对应点如图所示,化简||a b a -+-( )A.b c-+D.2a b ca b c++-C.222--B.c b5.(2022=;2(2)-=.6.(2021x的值可以是.(写出一个即可)7.(2021春•鹿城区校级期中)当3a==.8.(2021秋•鄞州区校级期末)已知3y,则xy的值为.9.(2021秋•诸暨市期末)如图1,以Rt ABC∆各边为边分别向外作等边三角形,编号为①、②、③,将②、①如图2所示依次叠在③上,已知四边形EMNB与四边形MPQN的面积分别为,则Rt ABC∆的斜边长AB=.10.(20201|-.11.(2022春•拱墅区期中)计算(1(2)12.(2022春•柯桥区月考)化简:(1;(2)22)+.13.(2022春•椒江区校级期中)阅读下列材料,并回答问题:把形如a +a a -、b 为有理数且0b >,m 为正整数且开方开不尽)的两个实数称为共轭实数.(1)请你举出一对共轭实数: 和 ;(2)-a 、b 的值;(3)若两个共轭实数的和是10,差的绝对值是,请求出这两个共轭实数.1.二次根式的有关概念:(1)二次根式:式子 叫做二次根式.(2)最简二次根式需满足两个条件:①被开方数 .②被开方数中 的因数或因式.2.二次根式的性质:(1)(a )2= (a ≥0).(2)a 2= =⎩⎪⎨⎪⎧a (a >0),0(a =0),-a (a <0). (3)ab = (a ≥0,b ≥0).(4)ab = (a ≥0,b >0).二次根式的双重非负性是指它的被开方数与结果均为非负数.3.二次根式的运算:(1)二次根式加减法的实质是合并同类二次根式. (2)二次根式的乘法:a ·b = (a ≥0,b ≥0).(3)二次根式的除法:a b= (a ≥0,b >0). 运算结果中的二次根式,一般都要化成最简二次根式或整式.考点一、 二次根式中字母的取值范围例1.(2021春•长兴县月考)求下列二次根式中字母的取值范围:(1)√2k −1.(2)√1k+1.【变式训练】1.(2022春•安吉县期末)若√x是二次根式,则x的值可以是()A.1B.﹣1C.﹣2D.﹣3 2.(2022春•乐清市期末)当a=5时,二次根式√4+a的值是()A.3B.2C.1D.﹣1 3.(2022春•仙居县期中)下列的式子中是二次根式的是()A.√−1B.√3−πC.√83D.√3 4.(2022春•钱塘区期末)下列二次根式中字母a的取值范围是全体实数的是()A.√a B.√a−1C.√1a+1D.√(a−1)25.(2022秋•南湖区校级期中)已知y=√x−2+√2−x+4,y x的平方根是()A.16B.8C.±4D.±2考点二、二次根式的性质例2.(2021春•邗江区月考)计算:(1)已知实数a,b,c在数轴上的对应点如图所示,化简√a2+|c﹣a|+√(b−c)2;(2)已知x、y满足y=√x2−9+√9−x2+1x−3,求5x+6y的值.【变式训练】1.(2022秋•南湖区校级期中)下列计算正确的是()A.√(−2)2=±2B.√(−2)2=−2C.√−83=2D.√12=2√32.(2022春•金东区期中)下列计算正确的是()A.√9=±3B.√22+32=5C.√4=2D.√(−3)2=−33.(2022春•长兴县期中)二次根式√50的化简结果正确的是()A.5√2B.2√5C.10√5D.5√104.(2022秋•海曙区校级期中)已知数a,b,c在数轴上的位置如图所示,化简:√a2−|a+c|−√(c−b)2−|−b|的结果是()A.2c﹣2b B.﹣2c C.﹣2a﹣2c D.05.(2022•谷城县二模)计算:√(1−√2)2=.6.(2022•钱塘区二模)已知√(3+a)2=−3−a ,则a 的取值范围 . 考点三 、二次根式的运算例3.(2022春•滨江区校级期中)计算:(1)√12−√43;(2)(√5−√3)2+(√5+√3)(√5−√3). 【变式训练】1.(2022春•鹿城区校级期中)下列计算正确的是( )A .√3√2=√62B .√(−2)2=−2C .(√2)2=4D .√4916=2342.(2022春•婺城区期末)下列计算正确的是( )A .3+√3=3√3B .2√3+√3=3√3C .2√3−√3=2D .√3+√2=√53.(2022春•长兴县月考)已知a =2020×2022﹣2020×2021,b =√20232−4×2022,c =√20212−1,则a ,b ,c 的大小关系是( )A .a <b <cB .b <a <cC .a <c <bD .b <c <a4.(2022春•长兴县月考)(√6+√5)2021×(√6−√5)2022= .5.(2022•江北区开学)若a +6√3=(m +n √3)2,当a ,m ,n 均为正整数时,则√a 的值为 .6.(2022春•富阳区期中)计算:(1)√8×√18;(2)(7+4√3)(7−4√3)+(√5−1)2.7.(2022春•南湖区校级期中)计算:(1)12√12−√27−9√13 (2)(√15−4)2021×(√15+4)2022考点四 、二次根式的化简求值及应用例4.(2022春•拱墅区期中)已知a =√7+√6,b =√7−√6,试求:(1)ab ;(2)a 2+b 2﹣5+2ab .1.(2022•瑞安市校级三模)当a =√3+1时,代数式(a ﹣1)2﹣2a +2的值为 .2.(2022春•东阳市期末)设a =√7+√6,b =√7−√6,则a 2021b 2022的值是 .3.(2022春•拱墅区期中)已知a=√7+√6,b=√7−√6,试求:(1)ab;(2)a2+b2﹣5+2ab.4.(2022春•义乌市月考)小芳在解决问题:已知a=2+√3,求2a2﹣8a+1的值.他是这样分析与解的:a=12+√3=2−√3(2+√3)(2−√3)=2−√3,∴a=2−√3,∴(a﹣2)2=3,a2﹣4a+4=3,∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小芳的分析过程,解决如下问题:(1)计算:√2+1+√3+√2+√4+√3+⋯+√2022+√2021.(2)若a=1√2−1.①求4a2﹣8a﹣1的值;②求3a3﹣12a2+9a﹣12的值.5.(2022春•余杭区期中)如图是一张等腰直角三角形彩色纸,AC=BC=20√2cm.要裁出几张宽度相等的长方形纸条,宽度都为5√2cm,用这些纸条为一幅正方形照片EFGH镶边(纸条不重叠).图1和图2是两种不同裁法的示意图.(1)求两种裁法最多能得到的长方形纸条的条数;(2)分别计算两种裁法得到长方形纸条的总长度;(3)这两种裁法中,被镶边的正方形照片EFGH的最大面积为多少?。

2018中考数学总复习第一章数与式第4节二次根式课件

2018中考数学总复习第一章数与式第4节二次根式课件

考点二
考点三 )
◆教材回顾
◆突破考点( 考点一
考点二
考点三 )
◆教材回顾
◆突破考点( 考点一
考点二
考点三 )
◆教材回顾
◆突破考点( 考点一
考点二
考点三 )
◆教材回顾
◆突破考点( 考点一
考点二
考点三 )
◆教材回顾
◆突破◆突破考点( 考点一
考点二
考点三 )
◆教材回顾
◆突破考点( 考点一
考点二
考点三 )
◆教材回顾
◆突破考点( 考点一
考点二
考点三 )
◆教材回顾
◆突破考点( 考点一
考点二
考点三 )
◆教材回顾
◆突破考点( 考点一
考点二
考点三 )
◆教材回顾
◆突破考点( 考点一
考点二
考点三 )
◆教材回顾
◆突破考点( 考点一
考点二
考点三 )
◆教材回顾
◆突破考点( 考点一
◆教材回顾
◆突破考点( 考点一
考点二
考点三 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲 二次根式
一、二次根式的相关概念 1.二次根式 :形如__a_(_a_≥__0_) 的代数式. 2.二次根式的性质 : (1) a(a≥0)是 _非__负__数;(2) a2 (a≥0)=_a_; (3)( a ) 2=_a_(a≥0).
二、二次根式的运算 1.最简二次根式 : 最简二次根式要同时具备下列两个条件 : (1)被开方数不含 _分__母__.(2) 被开方数中不含 _能__开__得__ _尽__方__的因数或因式 .
A. 6 B. 12 C. 18 D. 36
【思路点拨】 利用二次根式的性质化简 ,对比结果得 答案. 【自主解答】 选C. 6 不能化简,
x x
? ?
-2 0,
所以x≥-2且x≠0.
答案:x≥-2且x≠0
考点二 二次根式的性质 【示范题2】(1)(2017·枣庄中考 )实数a,b在数轴上
对应点的位置如图所示 ,化简|a|+ ?a ? b?2 的结果是
()
A.-2a+b B.2a-b C.-b
D.b
(2)(2017·东营中考 )若|x2-4x+4|与 2x ? y ? 3 互为相 反数,则x+y的值为 ( )
A.3
B.4
C.6
D.9
【思路点拨】 (1)直接利用数轴上 a,b的位置,得出 a<0,b>0, 进而得出a-b<0,再利用绝对值和二次根式 的性质进行化简得答案 . (2)先根据互为相反数的定义列出式子 ,再根据两个非 负数的和等于 0,每一个非负数都等于 0,求解.
【自主解答】 (1)选A.由题图可知 :a<0,b>0, 得a-b<0,
a-2
的取值范围是 ( )
A.a≥ -1
B.a≠2
C.a≥ -1且a≠2
D.a>2
【思路点拨】 (1)根据被开方式大于或等于 0,列不等式 组求解 . (2)根据被开方式大于或等于 0,且分母不等于 0列不等 式组求解 .
【自主解答】 (1)选C.由题意可知:
?2x ??1 ?
? 1解? 0
2x ? 0,
【变式训练】
1.(2017·成都中考 )二次根式 围是 ( )
x ? 1 中,x的取值范
A.x≥1 B.x>1
C.x≤1 D.x<1
【解析】选A.根据二次根式的定义可知 ,x-1≥0,解得 x≥1.
2.(2017·潍坊中考 )若代数式 x的取值范围是 ( )
x-2 有意义,则实数
x-1
A.x≥1
7.计算 ??3?2 的结果是 -3. ( × )
考点一 二次根式有意义的条件
【示范题 1】(1)(2017·济宁中考 )若 2x ? 1 ? 1? 2x ? 1
在实数范围内有意义 ,则x满足的条件是 ( )
A.x≥ 1
2
C.x= 1
2
B.x≤ 1
2
D.x≠ 1
2
(2)(2017·日照中考 )若式子 a ? 1 有意义,则实数a
2.二次根式的乘除 :
(1) a g b =___ab(a≥0,b≥0).
(2)
a b
a
=__b_(a≥0,b>0).
3.积、商平方根的性质 :
(1) agb =__a_g__b(a≥0,b≥0).
(2)
a b
a
=__b_(a≥0,b>0).
4.二次根式的加减 :先将二次根式化成 _最__简__二__次__根__式__, 再将_被__开__方__数__ 相同的二次根式合并 .
答案:3
2.(2017·鄂州中考 )若 y= x-1 ? 1-x-6 ,则
22
xy=________.
【解析】 由二次根式有意义的条件得
? ?? ?
x-
1 2
?
0, 解得x=
1

代入 y= x-1 ? 1-x-6 得y=-6,
??
1-x 2
?
0,
2
22
∴xy= 1 ×(-6)=-3.
2
答案:-3
? ? (2) a2与 a 2 的异同:
a2 中的a可以取任何实数 ,而( a ) 2中的a必须取非负
数,只有当a取非负数时 ,
?a(a>0),
(3) a2 ? a ? ??0?a ? 0?,
?? ? a (a<0).?
? ?2
a2= a .
【变式训练】
1.(2017·南京中考 )计算: ??3?2=________. 【解析】根据二次根式的性质 ,得 ??3?2 =3.
【自我诊断】 (打“√”或“×”)
1.要使式子 m ? 1 有意义,则m的取值范围是m≥ -1
m?1
且m≠1. ( √ )
2.计算 2 ? 3的结果是 6 . ( √ ) 3. 1 是最简二次根式 . ( × )
3
4. a ? b= ab. 5. ab ? a ? b.
( √) (× )
6. 3 a- a=3. ( × )
得:x= 1.
2
(2)选C.式子 a ?有1 意义,则a+1≥0,且 a-2≠0,
a-2
解得:a≥ -1 且a≠2.
【答题关键指导】 二次根式有无意义的条件需注意的两个问题 (1)如果一个式子中含有多个二次根式 ,那么它们有意 义的条件是 :各个二次根式中的被开方数都必须是非 负数.
(2)如果所给式子中含有分母 ,则除了保证被开方数为 非负数外,还必须保证分母不为零 .
则|a|+ ?a ?=b?-2a-(a-b)=-2a+b.
(2)选A.由题意得|x2-4x+4|+ 2x-y-=30,
即|(x-2)2|+ 2x-=y-03,
由非负数的性质得
?x-2 ? 0 ??2x-y-3
?
解得 0,
? ? ?
x y
? ?
2 1,
所以x+y=3.
【答题关键指导】 理解二次根式的性质需注意的三个问题 (1) a (a≥0)的双重非负性 : ①被开方数 a非负. ② a 本身非负.
考点三 二次根式的运算 【考情分析】 二次根式的运算的层级为了解法则并会 应用法则进行计算 ,在各地中考试题中均有体现 ,是二 次根式的一个重要考向 ,一般与实数的性质、零指数 幂、负指数幂、特殊角的三角函数值结合一起考查 , 各种题型均有体现 .
命题角度 1: 二次根式的化简 【示范题3】(2017·益阳中考 )下列各式化简后的结 果为 3 2 的是 ( )
B.x≥2
C.x>1
D.x>2
【解析】 选B.根据题意得
?x-2 ? ??x-1 ?
0 0
,解得
?x ? 2 ??x ? 1
,
所以x≥2.
3.(2017·天水中考 )若式子 x ? 2 有意义,则x的取
x
值范围是 ________.
【解析】 根据题意得
?x ??x
? ?
2 ? 0解得 0,
? ? ?
相关文档
最新文档