《信号与系统》第二章-第15讲

合集下载

信号与系统课件:第二章 LTI系统

信号与系统课件:第二章 LTI系统
第2章 线性时不变系统
2.1 离散时间LTI系统: 卷积和
(1)用移位单位抽样信号表示离散时间信号 (2)卷积和在离散时间信号LTI系统中的表征 (3)卷积和的计算 (4) 离散时间信号LTI系统的性质
(1)用单位抽样信号表示离散时间信号
x[n] ... x[1] n 1 x[0] n x[1] n 1... x[n][0] x[n 1][1]
(1)初始条件为n<0时,y(n)=0,求其单位抽样响应;
(2)初始条件为n≥0时,y(n)=0,求其单位抽样响应。
解:(1)设x(n) (n),且 y(1) h(1) 0 ,必有
y(n) h(n) 0, n 0
依次迭代
y(0) h(0) (0) 1 y(1) 1 0 1
2
当系统的初始状态为零,单位抽样响应h(n)就 能完全代表系统,那么对于线性时不变系统,任意 输入下的系统输出就可以利用卷积和求得。
差分方程在给定输入和边界条件下,可用迭代 的方法求系统的响应,当输入为δ(n)时,输出 (响应)就是单位抽样响应h(n)。
例:常系数差分方程
y(n) x(n) 1 y(n 1) 2
x[n]u[n] x[k]u[n k] x[k]
k
k
(ii)交换律:
yn xnhn hn xn
例子: 线性时不变系统中的阶跃响应 sn
sn unhn hnun
阶跃输入
输 单位抽样信号 入 响应的累加
n
sn hk
k
(iii)分配律:
xnh1n h2 n xnh1n xnh2 n
y(1) h(1) (1) 1 y(0) 0 1 1
2
22
y(2) h(2) (2) 1 y(1) 0 1 1 (1)2

《信号与系统》第二章总结

《信号与系统》第二章总结

它确定系统完全响应的系数:
d + r (0 ), r ' (0 ), r ' ' (0 ), r ' ' ' (0 ) L, n −1 r (0 ) dt
+ + + +
n −1
r (t ) = rh (t ) + rp (t ) = ∑ Ai eα it + rp (t )
i =1
n
冲激函数匹配法
阶跃响应
产生 阶跃响应g (t ):系统激励u (t ) 零状态响应 →
g (t )满足微分方程为 d n g (t ) d n −1 g (t ) dg (t ) C0 + C1 + L + Cn −1 + Cn g (t ) n n −1 dt dt dt d m u (t ) d m −1u (t ) du (t ) = E0 dt m + E1 dt m −1 + L + Em −1 dt + Emu (t ) (k ) g (0− ) = 0
(5)积分性: ∫
t
−∞
[ f1(τ ) ∗ f2 (τ )]dτ = f1(t) ∗ ∫−∞ f2 (τ )dτ
t
(适于多重积分)
= ∫ f1 (τ )dτ ∗ f2 (t )
−∞
t
(6)微积分性:设 f (t ) = f1 (t ) ∗ f 2 (t ) 则f
(i )
(t ) = f
( j) 1
(t ) ∗ f 2
(i − j )
(t )
(7)冲激性: f (t ) ∗ δ (t ) = f (t ) f (t ) ∗ δ (t − t0 ) = f (t − t0 )

《信号与系统》第2章1

《信号与系统》第2章1

信号与系统讲稿
二. 系统模型的建立是有一定条件的:
1. 对于同一物理系统在不同条件之下,可以得到不 同形式的数学模型。(参考书中P29) 2. 对于不同的物理系统,经过抽象和近似有可能得到 形式上完全相同的数学模型。(参考书中P29)
建立数学模型
解数学模型
对解加于物理解释
三. 时域分析方法
时域分析:在分析过程中,所涉及到的函数都是时间的 函数。 (1) 经典方法:求解微分方程 (2) 卷积积分。(重点内容)
在 t = 0 时刻换开关,由于电感的电流不能跳变,所以: i( 0+ ) = i( 0 ) = 0 A
di(t ) 而i (0 ) dt
L 1 1 u ( t ) u L (t ) u L (0 ) L t 0 t 0 t 0 L
且u L (0 ) 20 u C (0 )


信号与系统讲稿
对于电阻,有信号就有可能发生跳变。 第一种情况:在没有冲激电流(或阶跃电压)强迫 作用于电容的情况下,电容两端电压uC( t )不发生跳变; 在没有冲激电压(或阶跃电流)强迫作用于电感的情 况下,流过电感的电流iL( t )不发生跳变。 即: uC( 0+ ) = uC( 0 )、iL( 0+ ) = iL( 0 ) 第二种情况:在有冲激电流(或阶跃电压)强迫作 用于电容以及有冲激电压(或阶跃电流)强迫作用于 电感时, uC(0)和iL( 0 )发生跳变,这种情况只能借助 于对微分方程在[ 0,0+ ]内取积分或用奇异函数平衡 法来决定。 (2) 利用方程和起始条件uC( 0 )、iL( 0 ),通过奇异 函数平衡法决定初始条件。
1 i R (t ) u R (t ) 或 u R (t ) R i R (t ) R

信号与系统第二章

信号与系统第二章
2 B2 14 B1 6
解得
B1
21 50
, B2
3 50
u2(t)的特解为: u2 p t 21 cos 2t 3 sin 2t
50 50
全响应u2(t)为
u2 t u 2 h t u 2 p t A1e t A2 e 6t 21 3 cos 2t sin 2t 50 50
微分方程的建立
对于电系统,当结构参数已知时,可通过基尔霍夫电流 定律KCL和基尔霍夫电压定律KVL及元部件的伏安特性VAR 来建立方程。
VAR
电阻

iR (t )
R
uR (t ) RiR (t )

uR (t )
iR (t )
uR (t ) R
电感
iL (t )
L

uL (t )

diL (t ) uL (t ) L dt
对于连续时间系统,最常用的数学模型为高阶微分方程。
连续时间系统
微分方程
如果系统为单输入、单输出LTI系统,则可用下面的高阶常 n m 微分方程来描述 i j
C r t E e t
i 0 i j 0 i
式中,e(t)为输入激励量,又称强迫量;r(t)为输出响应 变量,是待求量;n是系统的阶数。这种描述系统的方法只 关心系统的输入信号和输出信号,而对系统内部的其他信号 的变化不关心,故称为输入-输出法。
特解的形式 系统微分方程的特解rp(t)就是系统的强迫响应,它只与激励 函数的形式有关。 几种典型激励函数e(t)及其所对应的特解rp(t)如表所示。选定 特解后,将其代入原微分方程,求出特解函数式中的待定系 数,就可得出特解rp(t)。 P46 表2-2

信号与系统第二章

信号与系统第二章
第 2 章 连续信号与系统的时域分析
2.0 引 言
2.1 连续时间基本信号 2.2 卷积积分 2.3 系统的微分算子方程 2.4 连续系统的零输入响应 2.5 连续系统的零状态响应 2.6 系统微分方程的经典解法
2.0 引 言
信号与系统分析的基本任务:
在给定系统和输入的条件下,求解系统的
输出响应。
f2( ) c

f2(-)
1

2、反转:
-1
c
0

3、平移: 将f(-)沿时间轴平移t,t为参变量
f2(-) c
t>0时向右平移, t<0时向左平移
f2(t-) c
-1
0

f 2 (( t )) f 2 (t )
f2(t-) c
-1
0 t-1 t

t-1
t
-1
0
0

0
2 0
1

0
2 0
f1() f2(1-) 1 g(t)
f1() f2(2-)
0

2
0
0
t
以上可以归纳为下列情况:
f1( )
2
f1(t) f2(t)
g(t)
0
2

0
t
当t<0时,f1()f2(t-)=0,所以g1(t)=0
当0t2时,f1()与f2(t-) 有部分重迭, 积分限 0t,g2(t)为:
t-2
t 0

用图解法进行分段积分,求出g(t)
f1( ) 2 0 1 2 2 0
f1( ) 2 2 f2(1-) 0
f1( ) 2 2 0
f1 ( )

《信号与系统》奥本海姆第二章

《信号与系统》奥本海姆第二章

conditions ( 初始条件 ) : d y (t 0 ) , , dt d
N 1
y (t 0 )
N 1
dt
完全解:
y(t)=yh(t)+yp(t)
齐次解 特解
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
当N=0时,即 ak 0, k 0 ,差分方程为:
M
a 0 y[ n ]
M
b
j0
j
x[ n j ]
y[ n ]
a
j 0
M
bj
0
x[ n j ]
h[ n]
j 0
bj a0
[n j ]
0nM
bn h[ n ] , a0
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
w(n) bk x(n k ) b0 x(n) b1x(n 1) ... bM x(n M )
方框图为:
x n )) x(( n

D D
b0 1 / a 0
b1 a1


1/ a0y ( n ) y ( n) w(v n( )n ) w(n) b0
D D
D D
N k k 0
M k k 0
a y ( n k ) b x( n k )
N 1 M y(n) bk x(n k ) ak y(n k ) a0 k 0 k 1
令 w(n)
M
b x(n k )

信号与系统第2章

信号与系统第2章

第二章 傅立叶变换
(5) 微分特性 如果 那么
(6)积分特性 如果 那么
如果F(0)=0
第二章 傅立叶变换
(7)卷积定理 1.时域卷积定理 如果 那么 (8)频域卷积定理 如果
那么
第二章 傅立叶变换
11周期信号的傅里叶变换
周期信号的频谱------用傅里叶级数表示。 非周期信号的频谱——用傅里叶变换表示。 周期信号的频谱可以用傅里叶变换表示吗? (1)正弦、余弦信号的傅里叶变换 直流信号的博立叶变换为
n1 ) 2 n1 2
2 E sin( An T
2 E sin( An T

2
)

2
这里
2 1 T
Hale Waihona Puke n1第二章 2 E sin( An T
傅立叶变换

2
)

2
若: 2 An 0 (1) 2 (2) 2
该式表明:周期信号f(t)的傅里叶变换F(ω )是由一些冲击函数组成的, 并位于基波ω 1的整数倍处,冲击强度为f(t)的指数傅里叶级数的系数Cn 的2π 倍。
第二章 傅立叶变换
例4. 求周期单位冲激序列的傅里叶级数与傅里叶变换。
傅里叶级数为
第二章 傅立叶变换
例5. 求周期矩形脉冲信号的傅里叶级数和傅里叶变换 矩形脉冲信号f(t)的 傅里叶系数为:
第二章 傅立叶变换
例1已知矩形脉冲f1(t)如图(a)所示,其相位谱如图(b)所示, 将f1(t)右移τ /2得到如图(c)所示f2(t),试画出其相位谱。
由题意可知
根据时移特性,可得f2(t)的频谱函数 为
第二章 傅立叶变换
f2(t)幅度谱没有变化,其相位谱比图(b)滞后τ ω /2、如图(d)所示。要

信号与系统——泛函分析初步

信号与系统——泛函分析初步
例如,在电信领域,通常考虑能量有限信号,能量有限信号的全体 构成一个内积空间,其内积为,而且这个内积空间是一个Hilbert空间。
再如,若一个能量有限信号可以分解成无穷多个分量,即其各分量 平方可和
可证明,按内积构成的内积空间,也是一个Hilbert空间。 Cauchy-Schwarz不等式:为内积空间,,有
定义(和、直和,Sum、Direct sum):
设是的线性子空间,称为子空间的和。如果,即p个子空间彼此无 交集,则这些子空间的和称为直和,记为:。
定理:设是的线性子空间,则 (1)子空间的交也是的子空间; (2)子空间的和也是的子空间; (3)是直和 对于,可唯一表示成
,其中。
§2.3 距离空间(度量空间)
其中,为定义域,为值域。
图2-1 算子的映射作用 定义(数域,Number field):包括0、1且对四则运算封闭 的数集。 定义(泛函,Functional):值域是实/复数域的算子称为 泛函。 注:定积分,距离,范数,内积,函数(第三种定义),(普 通)函数均为泛函。 定义(线性算子):为线性空间,,若对,
Hilbert第六问题:任何物理学理论、物理定 律、实验结论,都可以从一组数学公理出发通
过演绎得到。
希尔伯特第六问题,体现了一种对于统一的追求。
泛函分析:属于基于公理的分析体系,不在于计算,
而着眼于概念演绎,更普适、更一般、更深刻地理
解、解释数学物理问题。
1. 内积空间:
定义(内积,Inner product):设为实或复线性空间,若对 (复数域),均有一实数或复数与之对应,记为,满足:
注意2:满足三条公里的距离定义可以有多种。因此,同一个集合
与不同定义的距离结合,构成不同的度量空间。

信号与系统(郑君里)第二版讲义第二章

信号与系统(郑君里)第二版讲义第二章

信号与系统(郑君⾥)第⼆版讲义第⼆章第⼆章连续时间系统的时域分析第⼀讲微分⽅程的建⽴与求解⼀、微分⽅程的建⽴与求解对电路系统建⽴微分⽅程,其各⽀路的电流、电压将为两种约束所⽀配: 1.来⾃连接⽅式的约束:KVL 和KIL ,与元件的性质⽆关。

2.来⾃元件伏安关系的约束:与元件的连接⽅式⽆关。

例2-1 如图2-1所⽰电路,激励信号为,求输出信号。

电路起始电压为零。

图2-1解以输出电压为响应变量,列回路电压⽅程:所以齐次解为:。

因激励信号为,若,则,将其代⼊微分⽅程:所以,从⽽求得完全解:由于电路起始电压为零并且输⼊不是冲激信号,所以电容两端电压不会发⽣跳变,,从⽽若,则特解为,将其代⼊微分⽅程,并利⽤起始条件求出系数,从⽽得到:⼆、起始条件的跳变——从到1.系统的状态(起始与初始状态)(1)系统的状态:系统在某⼀时刻的状态是⼀组必须知道的最少量的数据,利⽤这组数据和系统的模型以及该时刻接⼊的激励信号,就能够完全确定系统任何时刻的响应。

由于激励信号的接⼊,系统响应及其各阶导数可能在t=0时刻发⽣跳变,所以以表⽰激励接⼊之前的瞬时,⽽以表⽰激励接⼊以后的瞬时。

(2)起始状态:,它决定了零输⼊响应,在激励接⼊之前的瞬时t=系统的状态,它总结了计算未来响应所需要的过去的全部信息。

(3)初始状态:跳变量,它决定了零状态响应,在激励接⼊之后的瞬时系统的状态。

(4)初始条件:它决定了完全响应。

这三个量的关系是:。

2.初始条件的确定(换路定律)电容电压和电感电流在换路(电路接通、断开、接线突变、电路参数突变、电源突变)瞬间前后不能发⽣突变,即是连续的。

时不变:时变:例电路如图2-2所⽰,t=0以前开关位于"1"已进⼊稳态,t=0时刻,开关⾃"1"转⾄"2"。

(1)试从物理概念判断、和、。

(2)写出t>0时间内描述系统的微分⽅程式,求的完全响应。

图2-2解(1)换路前电路处于稳态电感相当于短路,电感电流,电容相当于开路= 0,= = 0。

信号与系统-吴大正PPT课件

信号与系统-吴大正PPT课件
■ 第 17 页
§1.2 信号的描述和分类
信号的描述 信号的分类 几种典型确定性信号
■ 第 18 页
一、信号的描述
信号是信息的一种物理体现。它一般是随时间或 位置变化的物理量。
信号按物理属性分:电信号和非电信号。它们 可以相互转换。
电信号容易产生,便于控制,易于处理。本课 程讨论电信号——简称“信号”。


第1页
信号与系统
是电子技术、信息工程、通信工程 等专业重要的学科基础课
课程介绍
Signals and Systems
电子技术、 信息工程、 通信工程 等专业的 考研课程

第3页
课程位置
先修课
后续课程
《高等数学》 《通信原理》
《线性代数》 《数字信号处理》
《复变函数》 《自动控制原理》
《电路分析基础》 《数字图像处理》


第7页
参考书目
(1)郑君里等. 信号与系统(第二版) . 北京:高等教育出 版社, 2000 (2) 管致中等 . 信号与线性系统 (第四版) . 北京:高等 教育出版 社, 2004 (3)A.V.OPPENHEIM. 信号与系统 (第二版) .北京 :电 子工业出版 社, 2002 (4)王松林、张永瑞、郭宝龙、李小平.信号与线性系统 分析 (第4版) 教学指导书. 北京:高等教育出版 社, 2006


第8页
信号与系统
第一章 信号与系统
第二章 连续系统的时域分析
第三章 离散系统的时域分析
第四章 傅里叶变换和系统的频域分析
第五章 连续系统的s域分析
第六章 离散系统的z域分析
第七章 系统函数
第八章 系统的状态变量分析

信号与系统第二章

信号与系统第二章
1.3 复指数信号与正弦信号
(Exponential and Sinusoidal Signals )
一. 连续时间复指数信号与正弦信号 连续时间正弦信号 (周期信号)
ω ω0 为频率,Φ为相位, 0=2π/T0
x(t)=Asin(ω0 t + Φ)
∃ T0 , s.t. x(t + T0 ) = x(t) Asin(ω0 (t + T0 ) + φ) = Asin(ω0t + φ) ∴ω0T0 =2π
离散时间信号的频率表示为 ω0 ,其量纲是弧度。
离散时间正弦信号不一定是周期的,因此,离散 时间虚指数信号也不一定是关于n的周期信号。
3. 一般复指数信号:
x[n] = Cα n
令 C = C e jθ α = α e jω0 则
x[n] = C α en j(ω0n+θ )
= C ⋅ α n ⋅[cos(ω0n +θ) + j sin(ω0n +θ)] 其实部与虚部都是幅度按实指数规律变化的正弦 序列。
k =-∞
k =0
δ[n − k]
1
• • • •••• •• • k
n
δ [n]具有提取信号 x[n]中某一点的样值的作用。 x[n]δ [n] = x[0]δ [n] x[n]δ [n − n0 ] = x[n0 ]δ [n − n0 ]
5
二. 连续时间单位阶跃与单位冲激
1. 单位阶跃 u(t)
可见,只有当 2π/ Ω0为有理数时, sinΩ0n才是周期信号. 周期为??
1
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6

信号与系统(郑君里)第二版 讲义 第二章

信号与系统(郑君里)第二版 讲义 第二章

第二章 连续时间系统的时域分析第一讲 微分方程的建立与求解一、微分方程的建立与求解对电路系统建立微分方程,其各支路的电流、电压将为两种约束所支配: 1.来自连接方式的约束:KVL 和KIL ,与元件的性质无关。

2.来自元件伏安关系的约束:与元件的连接方式无关。

例2-1 如图2-1所示电路,激励信号为,求输出信号。

电路起始电压为零。

图2-1解以输出电压为响应变量,列回路电压方程:所以齐次解为:。

因激励信号为,若,则,将其代入微分方程:所以,从而求得完全解:由于电路起始电压为零并且输入不是冲激信号,所以电容两端电压不会发生跳变,,从而若,则特解为,将其代入微分方程,并利用起始条件求出系数,从而得到:二、起始条件的跳变——从到1.系统的状态(起始与初始状态)(1)系统的状态:系统在某一时刻的状态是一组必须知道的最少量的数据,利用这组数据和系统的模型以及该时刻接入的激励信号,就能够完全确定系统任何时刻的响应。

由于激励信号的接入,系统响应及其各阶导数可能在t=0时刻发生跳变,所以以表示激励接入之前的瞬时,而以表示激励接入以后的瞬时。

(2)起始状态:,它决定了零输入响应,在激励接入之前的瞬时t=系统的状态,它总结了计算未来响应所需要的过去的全部信息。

(3)初始状态:跳变量,它决定了零状态响应,在激励接入之后的瞬时系统的状态。

(4)初始条件:它决定了完全响应。

这三个量的关系是:。

2.初始条件的确定(换路定律)电容电压和电感电流在换路(电路接通、断开、接线突变、电路参数突变、电源突变)瞬间前后不能发生突变,即是连续的。

时不变:时变:例电路如图2-2所示,t=0以前开关位于"1"已进入稳态,t=0时刻,开关自"1"转至"2"。

(1)试从物理概念判断、和、。

(2)写出t>0时间内描述系统的微分方程式,求的完全响应。

图2-2解(1)换路前电路处于稳态电感相当于短路,电感电流,电容相当于开路= 0,= = 0。

信号与系统吴大正第四版第二章

信号与系统吴大正第四版第二章
在t=0-时,激励尚未接入,因而响应及其各阶导数在该时刻 的值反映了系统的历史情况而与激励无关。 0+状态:t=0-(或t=t0-) 即y(j)(0-)或y(j)(t0-),与激励有关。
利用冲激函数匹配法求初始条件0+ 状态
第1-17页

信号与系统 电子课件
例:描述某LTI系统的微分方程为
y(t ) 2 y(t ) y(t ) f (t ) 2 f (t ) 已知 y(0 ) 1, y(0 ) 1, f (t ) (t ),求y(0 )和y(0 ) 解:将输入f (t ) (t ) 代入微分方程,得: y(t ) 2 y(t ) y(t ) (t ) 2 (t ) 配平的原理:t=0时刻微分方程左右两端的δ(t)及各阶导数
不同特征根对应的齐次解
特征根λ和齐次解yh(t) 单实 根 r重实根
t
e
(Cr 1t r 1 Cr 2t r 2 C1t C0 )et
一对共轭复根 et [C cos(t ) D sin(t )]或A cos(t ),其中Ae j C jD
应该平衡,令
y(t ) a (t ) b (t ) c (t ) d (t )
y(t ) a (t ) b (t ) c (t )
y(t ) a (t ) b (t )
第1-18页

信号与系统 电子课件
代入微分方程: a 1 b 2a 0
第1-6页

信号与系统 电子课件
元件特性约束:
表征元件特性的关系式。例如二端元件电阻、电 容、电感各自的电压与电流的关系以及四端元件互感 的初、次级电压与电流的关系等等。

信号与系统(第二章)

信号与系统(第二章)

•但由于自变量 的系数不同, 但由于自变量t 的系数不同, 但由于自变量 则达到同样函数值2的时间不同。 则达到同样函数值 的时间不同。 的时间不同 •时间变量乘以一个系数等于改 时间变量乘以一个系数等于改 变观察时间的标度。 变观察时间的标度。
1
O
f (2t ) 2 1
O
T 2
t
2T
t
, a > 1 压缩保持信号的时间缩短 f (t ) → f (at ) , 0 < a < 1 扩展保持信号的时间增长
13 页
τ < 0,左移 超前 超前) ,左移(超前
例:
f (t ) 1
−1 O t −1 O
f(t+1)的波形? 的波形? 的波形
ft) f ((t+ 1)
1 t
1
1
宗量相同,函数值相同, 宗量相同,函数值相同,求新坐标
t = 0 t +1 = 0 t = −1 f (t ) = 1 f (t +1) = 1 f (t +1) = 1
X
O
t

欧拉(Euler)公式
1 jωt −jωt sin(ωt ) = e − e 2j
1 jωt −jωt cos(ωt ) = e + e 2
7 页
(
)
(
)
e
jω t
= cos(ωt ) + jsin(ωt )
X

6.复指数信号
f (t ) = Kest = Keσ t cos(ω t ) + jKeσt sin(ω t ) (−∞< t < ∞)
宗量3t+5 宗量

《信号与系统教案》课件

《信号与系统教案》课件

《信号与系统教案》PPT课件第一章:信号与系统概述1.1 信号的概念与分类信号的定义信号的分类:连续信号、离散信号、随机信号等1.2 系统的概念与分类系统的定义系统的分类:线性系统、非线性系统、时不变系统、时变系统等1.3 信号与系统的研究方法解析法数值法图形法第二章:连续信号及其运算2.1 连续信号的基本性质连续信号的定义与图形连续信号的周期性、奇偶性、能量与功率等性质2.2 连续信号的运算叠加运算卷积运算2.3 连续信号的变换傅里叶变换拉普拉斯变换Z变换第三章:离散信号及其运算3.1 离散信号的基本性质离散信号的定义与图形离散信号的周期性、奇偶性、能量与功率等性质3.2 离散信号的运算叠加运算卷积运算3.3 离散信号的变换离散时间傅里叶变换离散时间拉普拉斯变换离散时间Z变换第四章:线性时不变系统的特性4.1 线性时不变系统的定义与性质线性时不变系统的定义线性时不变系统的性质:叠加原理、时不变性等4.2 线性时不变系统的转移函数转移函数的定义与性质转移函数的绘制方法4.3 线性时不变系统的响应输入信号与系统响应的关系系统的稳态响应与瞬态响应第五章:信号与系统的应用5.1 信号处理的应用信号滤波信号采样与恢复5.2 系统控制的应用线性系统的控制原理PID控制器的设计与应用5.3 通信系统的应用模拟通信系统数字通信系统第六章:傅里叶级数6.1 傅里叶级数的概念傅里叶级数的定义傅里叶级数的使用条件6.2 傅里叶级数的展开周期信号的傅里叶级数展开非周期信号的傅里叶级数展开6.3 傅里叶级数的应用周期信号分析信号的频谱分析第七章:傅里叶变换7.1 傅里叶变换的概念傅里叶变换的定义傅里叶变换的性质7.2 傅里叶变换的运算傅里叶变换的计算方法傅里叶变换的逆变换7.3 傅里叶变换的应用信号分析与处理图像处理第八章:拉普拉斯变换8.1 拉普拉斯变换的概念拉普拉斯变换的定义拉普拉斯变换的性质8.2 拉普拉斯变换的运算拉普拉斯变换的计算方法拉普拉斯变换的逆变换8.3 拉普拉斯变换的应用控制系统分析信号的滤波与去噪第九章:Z变换9.1 Z变换的概念Z变换的定义Z变换的性质9.2 Z变换的运算Z变换的计算方法Z变换的逆变换9.3 Z变换的应用数字信号处理通信系统分析第十章:现代信号处理技术10.1 数字信号处理的概念数字信号处理的定义数字信号处理的特点10.2 现代信号处理技术快速傅里叶变换(FFT)数字滤波器设计数字信号处理的应用第十一章:随机信号与噪声11.1 随机信号的概念随机信号的定义随机信号的分类:窄带信号、宽带信号等11.2 随机信号的统计特性均值、方差、相关函数等随机信号的功率谱11.3 噪声的概念与分类噪声的定义噪声的分类:白噪声、带噪声等第十二章:线性系统理论12.1 线性系统的状态空间描述状态空间模型的定义与组成线性系统的性质与方程12.2 线性系统的传递函数传递函数的定义与性质传递函数的绘制方法12.3 线性系统的稳定性分析系统稳定性的定义与条件劳斯-赫尔维茨准则第十三章:非线性系统13.1 非线性系统的基本概念非线性系统的定义与特点非线性系统的分类13.2 非线性系统的数学模型非线性微分方程与差分方程非线性系统的相平面分析13.3 非线性系统的分析方法描述法映射法相平面法第十四章:现代控制系统14.1 现代控制系统的基本概念现代控制系统的定义与特点现代控制系统的设计方法14.2 模糊控制系统模糊控制系统的定义与原理模糊控制系统的结构与设计14.3 神经网络控制系统神经网络控制系统的定义与原理神经网络控制系统的结构与设计第十五章:信号与系统的实验与实践15.1 信号与系统的实验设备与原理信号发生器与接收器信号处理实验装置15.2 信号与系统的实验项目信号的采样与恢复实验信号滤波实验信号分析与处理实验15.3 信号与系统的实践应用通信系统的设计与实现控制系统的设计与实现重点和难点解析信号与系统的基本概念:理解信号与系统的定义、分类及其研究方法。

《信号与系统教案》课件

《信号与系统教案》课件

《信号与系统教案》PPT课件第一章:信号与系统导论1.1 信号的定义与分类定义:信号是自变量为时间(或空间)的函数。

分类:连续信号、离散信号、模拟信号、数字信号等。

1.2 系统的定义与分类定义:系统是一个输入与输出之间的映射关系。

分类:线性系统、非线性系统、时不变系统、时变系统等。

1.3 信号与系统的研究方法数学方法:微分方程、差分方程、矩阵分析等。

图形方法:波形图、频谱图、相位图等。

第二章:连续信号与系统2.1 连续信号的性质连续时间:自变量为连续的实数。

有限能量:能量信号的能量有限。

有限带宽:带宽有限的信号。

2.2 连续系统的特性线性特性:叠加原理、齐次性原理。

时不变特性:输入信号的延迟不会影响输出信号。

2.3 连续信号的运算叠加运算:两个连续信号的叠加仍然是连续信号。

齐次运算:连续信号的常数倍仍然是连续信号。

第三章:离散信号与系统3.1 离散信号的性质离散时间:自变量为离散的整数。

有限能量:能量信号的能量有限。

有限带宽:带宽有限的信号。

3.2 离散系统的特性线性特性:叠加原理、齐次性原理。

时不变特性:输入信号的延迟不会影响输出信号。

3.3 离散信号的运算叠加运算:两个离散信号的叠加仍然是离散信号。

齐次运算:离散信号的常数倍仍然是离散信号。

第四章:模拟信号与系统4.1 模拟信号的定义与特点定义:模拟信号是连续时间、连续幅度、连续频率的信号。

特点:连续性、模拟性、无限可再生性。

4.2 模拟系统的特性线性特性:叠加原理、齐次性原理。

时不变特性:输入信号的延迟不会影响输出信号。

4.3 模拟信号的处理方法模拟滤波器:根据频率特性对模拟信号进行滤波。

模拟调制:将信息信号与载波信号进行合成。

第五章:数字信号与系统5.1 数字信号的定义与特点定义:数字信号是离散时间、离散幅度、离散频率的信号。

特点:离散性、数字化、抗干扰性强。

5.2 数字系统的特性线性特性:叠加原理、齐次性原理。

时不变特性:输入信号的延迟不会影响输出信号。

信号与系统第二章(陈后金)2PPT课件

信号与系统第二章(陈后金)2PPT课件
2 1 0 1 2
x [k]
3
22
1
k
2 1 0 1 2 3
x [ k ] 3 [ k 1 ] [ k ] 2 [ k 1 ] 2 [ k 2 ]
2021/4/8
28
二、基本离散时间序列
5.单位阶跃序列
定义:
u[k] 1
2 1 0 1 2
✓ [k]与u[k]的关系:
[k]u[k]u[k1]
2021/4/8
1 k 0 u[k]0 k 0
k
k
u[k] [n] n 29
二、基本离散时间序列
6.矩形序列
1 0kN1
RN[k]0 otherwise
N 1
R N[k]u[k]u[kN ][km ] m 0 RN[k] 1
k
21 0 1 2
N1
2021/4/8
30
二、基本离散时间序列
7.斜坡序列
即0N = m2p , m = 正整数时,信号是周期信号。
如果0 /2p m/N , N、m是不可约的整数, 则信号的周期为N。
2021/4/8
23
[例]判断下列离散序列是否为周期信号.
1) x1[k] = cos(kp/6)
0 /2p 1/12, 由于1/12是不可约的有理数,
故离散序列的周期N=12。
-1 0 1 2 3
k
➢ 序列的列表表示
表示k=0的位置
x[k]=[0, 2, 0, 1, 3, 1, 0]
2021/4/8
18
二、基本离散时间序列
1.实指数序列
r >1
x[k]Akr, kZ
0< r <1
r <1

《信号与系统》第二章讲

《信号与系统》第二章讲

第二章 连续时间系统的时域分析2.1 系统模型为便于对系统进行分析,需要建立系统的模型,在模型的基础上可以运用数学工具对系统进行研究。

一. 模型:模型是系统物理特性的数学抽象,以数学表达式或具有理想特性的符号组合图形来表征系统特性。

由电路图可列出方程:dt t de C t i dt t di RC dtt i d LC t e t Ri dt t di L dt t i Ct)()()()()()()()(122=++=++⎰∞-即:这就是系统的数学模型。

二. 系统模型的建立是有一定条件的:1. 对于同一物理系统在不同条件之下,可以得到不同形式的数学模型。

(参考书中P29)2. 对于不同的物理系统,经过抽象和近似有可能得到形式上完全相同的数学模型。

(参考书中P29)建立系统模型只是进行系统分析工作的第一步,为求得给定激励条件下系统的响应,还应当知道激励接入瞬间系统内部的能量储存情况。

如果系统数学模型、起始状态以及输入激励信号都已确定,即可运用数学方法求解其响应。

一般情况下我们对所求得结果可以作出物理解释赋予物理意义。

综上所述,系统分析的过程,是从实际物理问题抽象为数学模型,经过数学解释后再回到物理实际的过程。

也即:建立数学模型解数学模型对解加于物理解释三. 时域分析方法时域分析:在分析过程中,所涉及到的函数都是时间的函数。

(1)经典方法:求解微分方程(2)卷积积分法(重点内容)2.2 线性时不变系统微分方程的建立分析对象:线性的、时不变系统(非时变系统)教学目标:熟练掌握建立线性系统的微分方程的方法。

重点:电路系统建立微分方程的基本依据。

难点:用网孔电流法及节点电位法列状态方程。

一.一. 电路系统建立微分方程的基本依据1.元件特性约束(电路元件的伏安特性)(1)电阻器:-R由欧姆定律:)( )()(1)(tiRtutuRtiRRRR⋅==或若电阻特性参数与时间无关,即R与流过电阻器的电流或施加的电压大小无关,则此电阻称为时不变电阻或线性电阻。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2-15-1 卷积应用例-多径失真抑制
实践中要求无失真地记录一个信号往往是非常困难的, 比如室内环境下的录音,其麦克风接收到的音频信号一 般认为主要是由三部分构成:来自声源的直达波,经过 墙壁有限次数反射的前期波和经过墙壁多次反射形成的 后期波。由于传播路径的不同,这三种声波信号到达麦 克风的先后顺序就有所不同,并且存在互相混叠的现象。
回波系统
y(t)
逆系统
x(t)
(t)
h(t)
h(t)
hi (t )
h(t) hi (t) (t)
图2-15-1 用逆系统均衡室内回波
7
第二章 连续时间信号与系统
2-15-1 卷积应用例-多径失真抑制
根据系统零状态响应的定义,针对第二个子系统 hi (t) 的输出,显然有:
x(t) y(t) hi (t) x(t) [h(t) hi (t)]
5
第二章 连续时间信号与系统
2-15-1 卷积应用例-多径失真抑制
如果信号的室内回波不止一条(多径),处理上只需要
简单迭加具有不同衰减系数和时延因子的冲激信号,就
可以根据下面的冲激响应来定义一般意义上的LTI系统
的回波模型: N h(t) k (t tk )
(2-15-4)
k 0
顺便说明一下,上述模型描述的多径回波可模拟
10
第二章 连续时间信号与系统
2-15-1 卷积应用例-多径失真抑制
到这一步,读者可能会问,虽然消除了幅度为、
时延为 td 的回波,却又引入了一个附加的、幅度为 2
且时延为 2td 的回波,这有意义吗?回答是肯定的,但应
该满足第三步的条件;
第三步,如果 1 ,虽然第二步的运算在消除第一个回
波的同时又引入了额外的回波分量,但显然这个回波分 量的强度已受到更大的衰减,尽管到目前为止还没有完 全消除它。那么怎样才能消除时延2td为 的回波呢?不妨 假设在式(2-15-7)中增加第二项,就是说2td在 处再加 一个幅度 2为 的冲激:
hi (t) (t) (t td ) 2 (t 2td )
(2-15-8)
11
第二章 连续时间信号与系统
2-15-1 卷积应用例-多径失真抑制
重复第二步的运算可得到:
h(t)hi (t) (t) 3 (t 3td ) (2-15-9)
为了找到逆系统,我们需要从式(2-15-6)中解 出 hi (t)。虽然看上去式(2-15-6)并不复杂,但解这类 卷积方程却没有通用的解析方法。这时,观察法及尝 试法就有用了。我们按照以下思路来解这个问题:
第一步,首先注意 hi (t) 中应该包含一个冲激,因为式 (2-15-6)等式的左边是一个冲激;
为系统的逆系统,用它代替式(2-15-6)种的 hi (t) ,
则有:
h(t) hi (t) [ (t) (t td )][ (t) (t td )] (t) 2 (t 2td )
显然,上式表明已经消除了幅度为 、时延为 td 的回
波,但又引入了一个幅度为 2、时延为 2td 的附加回 波。
所谓的混响效果。
当记录的信号存在回波和混响时,往往需要抑制 掉信号中的回波或混响成分,也就是说需要从 y(t) 中 恢复出 x(t)。这个问题一般而言需要用到后续章节中
将要讨论的谱分析和滤波技术,但若仅考虑单一回波, 有无简单的方法从 中y(恢t) 复 ?x(t)
6
第二章 连续时间信号与系统
2-15-1 卷积应用例-多径失真抑制
第二步,由于希望消除幅度为、时延为 td 的回波,
可以考虑给系统引入一个幅度为、时延为 td 的冲激。
因此,假设:
hi (t) (t) (t td ) (2-15-7)
9
第二章 连续时间信号与系统
2-15-1 卷积应用例-多径失真抑制
因此,假设:
hi (t) (t) (t td ) (2-15-7)
x(t) (t td ) x(t td ) (2-15-2)
因此若令 x(t) (t),带入式(2-15-1),则可以用具
有如下冲激响应的LTI系统模拟或仿真室内回声模型:
h(t) (t) (t td ) (2-15-3)
由此可知,式(2-15-3)给出的回声模型其实就是单
位冲激响应 h(t) 与信号x(t)的卷积 y(t) h(t) x(t) 。
国家“十二五”规划教材——《信号与系统》
LOGO
§2-15
应用示例及 ThemeGallery
MATLABPo实we践rTemplate
重点 连续时间系统的工程应用 难点 MATLAB编程
内容安排
2-15-1 卷积应用例-多径失真抑制
2-15-2 混沌动力学系统的建 模与仿真时间变换
2
第二章 连续时间信号与系统
下面我们证明只要满足一个简单的条件,就可以 y(t)
从 中x恢(t)复 。设想让已录制y(好t)的 信号通过一
个我们在前面曾经介绍过的所谓的逆系统,可以用图 2-15-所示的框图描述这个运算过程,图中阴影部分表 示回波子系统与逆系统的级联,其目的是希望获得一 个冲激响应为单一冲激的总的系统。
x(t)
3
第二章 连续时间信号与系统
2-15-1 卷积应用例-多径失真抑制
如果忽略多次反射的后期波,则模拟这种回声现象的 最简单的方法是定义麦克风所接收的信号为直达波与 一个反射分量的和,可建模为:
y(t) x(t) x(t td ) (2-15-1)
其中 1是反射系数,表示声波经过反射后产生的衰减,
(2-15-5)
回顾一下 (t) 的卷积特性(即 x(t) x(t) (t)),可知
欲从式(2-15-5)中解出 hi (t),必须满足:
(t) h(t) hi (t)
(2-15-6)
[ (t) (t td )] hi (t)
8
第二章 连续时间信号与系统
2-15-1 卷积应用例-多径失真抑制
为声t波d 经反射造成的时延。当 是x一(t个) 声音信号且时
延 td 10时0m,s 人耳能够感觉到一个明显的回声;但若
很小并td 且存在多个反射,则听到的会是一个混合声用例-多径失真抑制
我们知道,任一信号 (t td )与一个时移冲激信号的 卷积只是对该信号进行了平移,即:
相关文档
最新文档