抛物线及其性质知识点大全教学内容
抛物线知识点与性质大全
抛物线与方程【知识讲解】 1、定义平面内,到定点的距离与到定直线距离相等的点的轨迹(定点不在定直线上).其中定点称为抛物线的焦点,定直线称为抛物线的准线.【注】若定点在直线上,则轨迹为过该点垂直于直线的一条直线.2、抛物线的方程及其简单性质3、通径过抛物线的焦点F 作直线⊥l x 轴,交抛物线22y px =于,A B 两点,弦长2=AB p ,此时的弦长称为通径,此为所有的焦点弦中最短的弦.4、焦点弦的性质(1)过抛物线()220y px p =>的焦点F 的直线交抛物线于()()1122,,,A x y B x y 两点,则①12p AF x =+,22p BF x =+;②12x x ⋅=定值24p ,12y y ⋅=定值2p -;③11||||FA FB +=定值2p ;④()1221122p x y x y y y +=-+. (2)过抛物线()220y px p =>的焦点F 作倾斜角为θ(斜率为k )的直线交抛物线于,A B (A 在B 上方)两点,则 ①1cos p A F θ=-上;②1cos p B F θ=+下;③2222s 1i 1n p k AB p θ⎛⎫+ =⎪⎝⎭=. (3)过抛物线()220y px p =>的焦点F 作直线1l 交抛物线于,A B 两点,分别过,A B 作准线l 的垂线,垂足分别为,P Q ,设AB 中点为M ,过M 作准线的垂线,垂足为N ,则①AN BN ⊥;②PF QF ⊥;③NF AB ⊥;④PF AN ⊥;⑤QF BN ⊥;⑥以AB 为直径的圆与准线相切,切点即为N ; ⑦以()AF BF 为直径的圆与y 轴相切;⑧24PQ AF BF =; 24PQF APF BQF S S S ∆∆∆=⋅;⑨232sin ABQPp S θ=四边形. (4)过抛物线()220y px p =>的焦点F 作直线1l 交抛物线于,A B 两点,分别过,A B 作准线l 的垂线,垂足分别为,P Q ,准线l 与x 轴交于H 点,O①AHF BHF ∠=∠; ②,,A O Q 三点共线; ③,,B O P 三点共线;(5)过抛物线()220y px p =>的焦点F 作直线1l 交抛物 线于,A B 两点,线段AB 的垂直平分线交x 轴于E 点,则12EF AB =. (6)过抛物线()220y px p =>的焦点F 作直线1l 交抛物线于,A B 两点,G 为准线上的一动点,且直线GA 、GF 、GB 的斜率均存在,则直线GA 、GF 、GB 的斜率成等差数列,即2GA GB GF k k k +=.5、过点()(),00M m m >的直线交抛物线()220y px p =>于()()1122,,,A x y B x y 两点,则 ①12x x ⋅=定值2m ;②12y y ⋅=定值2pm -; ③2OA OB m p ⊥⇔=;④m p =时,2211||||MA MB +=定值21p . 6、设点是抛物线()220y px p =>的焦点,12,,,n P P P 是抛物线上的n 个不同的点,若120n FP FP FP +++=,则12n FP FP FP np +++=.【典型例题】例1、已知动点M 的坐标满足方程3412x y +-,则动点M 的轨迹是( ) A .椭圆 B. 双曲线 C. 抛物线 D. 圆【变式】已知动点M 的坐标满足方程3412x y =+-,则动点M 的轨迹是( ) A .椭圆 B. 双曲线 C. 抛物线 D. 直线例2、点P 与点()20F ,的距离比它到直线40x +=的距离小2,则P 的轨迹方程为_______.【变式】动圆M 与定直线2y =相切且与定圆C :22(3)1x y ++=相外切,则动圆圆心M 的轨迹方程为_______.【变式2】到y 轴的距离比到点()2,0F 的距离小2的动点P 的轨迹方程为_______.例3、抛物线24y x =的焦点坐标为_______.【变式】1【2014上海】若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合,则该抛物线的准线方程为_______.【变式2】抛物线C 恒过定点()0,2A ,C 的准线为轴,则C 的顶点M 的轨迹方程为_______.例4、在抛物线24y x =上一点P ,使它到定点()2,2M 和焦点F 的距离之和最小,并求出距离之和的最小值.【变式1】设P 是抛物线28y x =上的一个动点,则点P 到直线4360x y -+=与点P 到y 轴的距离之和的最小值为________.【变式2】设P 是抛物线24y x =上的一个动点.(1)求点P 到点()1,1A -的距离与点P 到直线1x =-的距离之和的最小值; (2)求点P 到直线220x y ++=的距离d 与点P 到抛物线焦点F 距离之和的最小值.【变式3】已知FAB ∆,点F 的坐标为(1,0),点A 、B 分别在图中抛物线24y x =及圆22(1)4x y -+=的实线部分上运动,且AB 总是平行于x 轴,那么FAB ∆的周长的取值范围为 .例5、已知抛物线26y x =上存在三点,,A B C ,且ABC ∆的重心为抛物线的焦点为F ,则=FA FB FC ++_______.【变式】已知抛物线26y x =的焦点为F ,若该抛物线上存在四点123P P P 、、、4P ,满足1234=0FP FP FP FP +++,则1234=FP FP FP FP +++_______.例6、直线l 过()1,2A ,且与抛物线212y x =交于,M N 两点,且MA AN =,则直线l 的方程为_________;MN =_______.例7、抛物线24y x =的焦点为F ,若过F 点的直线与抛物线相交于,M N 两点,若4FM FN =-,则直线MN 的斜率为_______.【变式】【2014新课标】已知抛物线2:8C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =, 则QF =_______.例8、过抛物线x y 82=的焦点作弦AB ,点()11,A x y 、()22,B x y ,且1021=+x x ,则=AB _____.【变式1】已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点()02,M y ,若点M 到该抛物线焦点的距离为3,则OM =_____.【变式2】过抛物线x y 82=的焦点作弦AB ,点()11,A x y 、()22,B x y ,且10AB =,则ABO ∆重心的横坐标为_____.【变式3】过抛物线x y 82=的焦点作弦AB ,点()11,A x y 、()22,B x y ,且128y y +=,则=AB _____.例9、抛物线()220y px p =>的动弦AB 长为()2a a p ≥,求弦中点M 到y 轴的最短距离.【变式】抛物线()220y px p =>的动弦AB 长为()02a a p <<,求弦中点M 到y 轴的最短距离.例10、若抛物线2:1C y ax =-上存在关于直线20x y -=对称两点A 和B ,求实数a 的取值范围.例11、【2014四川】已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是____.例12、已知抛物线()220y px p =>,过定点(),0p 作两条互相垂直的直线12l l 、,1l 与抛物线交于,P Q 两点,2l 与抛物线交于,M N 两点,设1l 的斜率为k ,若已知弦PQ 的中垂线在y 轴上的截距为32p pk k+,则弦MN 的中垂线在y 轴上的截距为__________.例13、设M 为抛物线2:4(0)C x py p =>准线上的任意一点,过点M 作曲线C 的两条切线,设切点为,A B .直线AB 是否过定点?如果是,求出该定点,如果不是,请说明理由.例14、过抛物线()220y px p =>的焦点F 作相互垂直的两条直线12,l l ,抛物线与1l 交于点12,,P P 与2l 交于点12,Q Q .证明:无论如何取直线12,l l ,都有121211PP Q Q +为一常数.例15、抛物线()2:20C y px p =>的焦点恰是椭圆22143x y +=的一个焦点,过点,02p F ⎛⎫⎪⎝⎭的直线与抛物线C 交于点,A B . (1)求抛物线C 的方程;(2)O 是坐标原点,求AOB ∆的面积的最小值; (3)O 是坐标原点,证明:OA OB ⋅为定值.【变式1】已知定点(2,0)F ,直线:2l x =-,点P 为坐标平面上的动点,过点P 作直线l 的垂线,垂足为点Q ,且FQ PF PQ ⊥+().设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点F 的直线1l 与曲线C 有两个不同的交点A 、B ,求证:111||||2AF BF +=; (3)记OA 与OB 的夹角为θ(O 为坐标原点,A 、B 为(2)中的两点),求cos θ的取值范围.11()22,B x y ,且OA OB ⊥.(1)证明21y y ⋅和12x x ⋅均为定值; (2)证明直线l 恒过定点P ; (3)求AB 的中点M 的轨迹方程;(4)过原点作AB 的垂线,垂足为N ,求N 的轨迹方程.(5)对于C 上除原点外的任意一定点()00,Q x y ,若仍有PA PB ⊥,请问是否还有直线l 恒过定点,若是,请求出定点'P ;若否,请说明理由.【变式3】设抛物线2:2(0)C y px p =>的焦点为F ,经过点F 的动直线交抛物线C 于点11(,)A x y ,22(,)B x y 且124y y =-.(1)求抛物线C 的方程;(2)若()2OE OA OB =+(O 为坐标原点),且点E 在抛物线C 上,求直线倾斜角. (3)若点M 是抛物线C 的准线上的一点,直线,,MF MA MB 的斜率分别为012,,k k k .求证: 当0k 为定值时,12k k +也为定值.例16、在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C .(1)求轨迹为C 的方程(2)设斜率为k 的直线过定点()2,1P -,求直线与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围.11(1)当直线过点(),0M p 时,证明21y y ⋅为定值;(2)如果直线过点(),0M p ,过点M 再作一条与直线垂直的直线l '交抛物线C 于两个不同点D 、E .设线段AB 的中点为P ,线段DE 的中点为Q ,记线段PQ 的中点为N .问是否存在一条直线和一个定点,使得点N 到它们的距离相等?若存在,求出这条直线和这个定点;若不存在,请说明理由.例18、动圆C 过定点F ,02p ⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.设圆心C 的轨迹Γ的程为()0,=y x F (1)求()0,=y x F ;(2)曲线Γ上的一定点()00,y x P (0y ≠0) ,方向向量()p y d -=,0的直线(不过P 点)与曲线Γ交与A 、B 两点,设直线PA 与PB 的斜率分别为PA k ,PB k ,计算PB PA k k +;(3)曲线Γ上的两个定点()000,y x P 、⎪⎭⎫ ⎝⎛''000,y x Q ,分别过点00,Q P 作倾斜角互补的两条直线N Q M P 00,分别与曲线Γ交于N M ,两点,求证直线MN 的斜率为定值.例19、已知抛物线()2:20C y px p =>和:M 228120x y x +-+=,过抛物线C 上一点()()000,0P x y y ≥作两条直线与M 相切与,A B 两点,圆心M 到抛物线准线的距离为92. (1)求抛物线C 的方程;(2)当P 点坐标为()2,2时,求直线AB 的方程;(3)设切线PA 与PB 的斜率分别为12,k k ,且1212k k ⋅=,求点()00,P x y 的坐标.例20、过抛物线()220y px p =>的对称轴上一点()(),00A a a >的直线与抛物线交于,M N 两点,自,M N 向直线:l x a =-作垂线,垂足分别为1M 、1N . (1)当2pa =时,求证:11AM AN ⊥; (2)记1AMM ∆、11AM N ∆、1ANN ∆的面积分别为123,,S S S ,是否存在实数λ,使得对任意的,都有2213S S S λ=成立,若存在,求出λ的值;若不存在,说明理由.。
高中数学必修抛物线教学讲义
03- 抛物线【知识点】一、抛物线的标准方程、种类及其几何性质() :标准方程图形焦点准线范围对称轴极点离心率二、抛物线的焦半径、焦点弦轴(0,0)轴1.焦点弦:过抛物线焦点的弦,若,则(1) x0+,(2) ,- p2(3)弦长 , ,即当 x1=x2时 , 通径最短为 2p(4)若 AB的倾斜角为θ,则 =(5) +=2.通径:过抛物线的焦点且垂直于对称轴的弦。
过焦点的全部弦中最短的弦,也被称做通径.其长度为2p.3.的参数方程为(为参数),的参数方程为(为参数).4、弦长公式:三、抛物线问题的基本方法1.直线与抛物线的地点关系2.直线,抛物线,3.,消 y 得:4.( 1)当 k=0 时,直线与抛物线的对称轴平行,有一个交点;5.( 2)当 k≠ 0 时,>0,直线与抛物线订交,两个不一样交点;=0,直线与抛物线相切,一个切点;<0,直线与抛物线相离,无公共点。
(3)若直线与抛物线只有一个公共点, 则直线与抛物线必相切吗(不必定)6.对于直线与抛物线的地点关系问题常用办理方法直线:抛物线,①联立方程法:设交点坐标为, ,则有 , 以及,还可进一步求出,在波及弦长,中点,对称,面积等问题时,常用此法,比方a.订交弦 AB的弦长或b.中点, ,②点差法:设交点坐标为,,代入抛物线方程,得将两式相减,可得a.在波及斜率问题时,b.在波及中点轨迹问题时,设线段的中点为,,即,同理,对于抛物线,若直线与抛物线订交于两点,点是弦的中点,则有(注意能用这个公式的条件: 1)直线与抛物线有两个不一样的交点, 2)直线的斜率存在,且不等于零)【典型例题】考点 1 抛物线的定义题型利用定义, 实现抛物线上的点到焦点的距离与到准线的距离之间的变换[ 例1 ]已知点P 在抛物线 y2= 4x 上,那么点P 到点Q( 2,- 1)的距离与点P 到抛物线焦点距离之和的最小值为[分析]过点P 作准线的垂线交准线于点R,由抛物线的定义知,,当P 点为抛物线与垂线的交点时,获得最小值,最小值为点Q到准线的距离, 因准线方程为x=-1,故最小值为31. 已知抛物线的焦点为,点,在抛物线上,且、、成等差数列,则有()A.B.C. D.[分析]C由抛物线定义,即:.2.已知点 F 是抛物线的焦点 ,M 是抛物线上的动点 , 当最小时 ,M点坐标是()A. B. C. D.[分析]设 M到准线的距离为, 则,当最小时,M点坐标是,选C考点2抛物线的标准方程题型 : 求抛物线的标准方程[ 例 2 ]求知足以下条件的抛物线的标准方程,并求对应抛物线的准线方程:(1) 过点 (-3,2)(2)焦点在直线上[ 分析 ] (1)设所求的抛物线的方程为或,∵过点 (-3,2)∴∴∴抛物线方程为或,前者的准线方程是后者的准线方程为(2)令得,令得,∴抛物线的焦点为(4,0) 或 (0,-2),当焦点为(4,0)时,∴,此时抛物线方程; 焦点为 (0,-2)时∴,此时抛物线方程.∴所求抛物线方程为或, 对应的准线方程分别是.3. 若抛物线的焦点与双曲线的右焦点重合, 则的值[分析]4.对于极点在原点的抛物线,给出以下条件:①焦点在 y 轴上;②焦点在 x 轴上;③抛物线上横坐标为 1 的点到焦点的距离等于 6;④抛物线的通径的长为 5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2, 1).能使这抛物线方程为y 2=10的条件是 ____________. (要求填写适合条件的序号)x[分析]用清除法,由抛物线方程y2=10x 可清除①③④,进而②⑤知足条件.5.若抛物线的极点在原点,张口向上, F 为焦点, M为准线与 Y 轴的交点, A 为抛物线上一点 , 且,求此抛物线的方程[ 分析 ]设点是点在准线上的射影,则,由勾股定理知,点 A 的横坐标为,代入方程得或4,抛物线的方程或考点 3抛物线的几何性质题型:相关焦半径和焦点弦的计算与论证[ 例 3 ] 设 A、 B 为抛物线上的点, 且 (O 为原点 ), 则直线 AB必过的定点坐标为__________.[分析]设直线OA方程为 , 由解出 A点坐标为解出 B 点坐标为,直线AB方程为 , 令得,直线AB 必过的定点增补:抛物线的几个常有结论及其应用结论一:若AB是抛物线的焦点弦(过焦点的弦),且,,则:,。
《抛物线的简单几何性质》 知识清单
《抛物线的简单几何性质》知识清单一、抛物线的定义平面内与一定点 F 和一条定直线 l 的距离相等的点的轨迹叫做抛物线。
点 F 叫做抛物线的焦点,定直线 l 叫做抛物线的准线。
二、抛物线的标准方程1、抛物线的标准方程有四种形式:\(y^2 = 2px (p>0)\),焦点坐标为\((\frac{p}{2}, 0)\),准线方程为\(x =\frac{p}{2}\)。
\(y^2 =-2px (p>0)\),焦点坐标为\((\frac{p}{2}, 0)\),准线方程为\(x =\frac{p}{2}\)。
\(x^2 = 2py (p>0)\),焦点坐标为\((0, \frac{p}{2})\),准线方程为\(y =\frac{p}{2}\)。
\(x^2 =-2py (p>0)\),焦点坐标为\((0, \frac{p}{2})\),准线方程为\(y =\frac{p}{2}\)。
2、\(p\)的几何意义:\(p\)表示焦点到准线的距离。
三、抛物线的范围1、对于\(y^2 = 2px (p>0)\),\(x\geq 0\),\(y\in R\)。
2、对于\(y^2 =-2px (p>0)\),\(x\leq 0\),\(y\inR\)。
3、对于\(x^2 = 2py (p>0)\),\(y\geq 0\),\(x\in R\)。
4、对于\(x^2 =-2py (p>0)\),\(y\leq 0\),\(x\inR\)。
四、抛物线的对称性1、抛物线\(y^2 = 2px (p>0)\)关于\(x\)轴对称。
2、抛物线\(y^2 =-2px (p>0)\)关于\(x\)轴对称。
3、抛物线\(x^2 = 2py (p>0)\)关于\(y\)轴对称。
4、抛物线\(x^2 =-2py (p>0)\)关于\(y\)轴对称。
五、抛物线的顶点抛物线的顶点是抛物线与对称轴的交点。
(完整版)抛物线及其性质知识点大全
抛物线及其性质1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质:图形参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔.开口方向 右左上下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p =>22(0)x py p =->焦 点位 置 X 正X 负Y 正Y 负焦 点坐 标 (,0)2p (,0)2p -(0,)2p(0,)2p -准 线方 程 2p x =-2p x =2p y =-2p y =范 围 0,x y R ≥∈0,x y R ≤∈0,y x R ≥∈0,y x R ≤∈对 称轴 X 轴X 轴Y 轴Y 轴顶 点坐 标 (0,0)离心率 1e =通 径 2p焦半径11(,)A x y 12p AF x =+12p AF x =-+12p AF y =+12p AF y =-+焦点弦长AB12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++焦点弦长AB 的补充11(,)A x y22(,)B x y以AB 为直径的圆必与准线l 相切若AB 的倾斜角为α,22sin p AB α=若AB 的倾斜角为α,则22cos pAB α=2124p x x = 212y y p =-112AF BF AB AF BF AF BF AF BF p++===•• 3.抛物线)0(22>=p px y 的几何性质:(1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.(2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),离心率:1=e ,焦点(,0)2p F ,准线2px -=,焦准距p . (4) 焦点弦:抛物线)0(22>=p px y 的焦点弦AB ,),(11y x A ,),(22y x B ,则p x x AB ++=21||. 弦长|AB|=x 1+x 2+p,当x 1=x 2时,通径最短为2p 。
§10.3 抛物线及其性质
.焦点弦的性质:斜率存在时,过点F 的直线方程为y=k ;斜率 2 2
不存在时为通径,一般焦点弦长通过焦半径公式来计算. 例2 (2017浙江金华十校调研,15)已知抛物线y2=4x的焦点为F,过焦点 的直线与抛物线交于A,B两点,则直线的斜率为
1 ×4 ×5=10 . 5 5 2
答案 y2=4x;10 5
评析 本题考查抛物线的定义和标准方程,抛物线的对称性,三角形垂 心的性质,面积的计算等基础知识,考查推理运算能力.
方法 2 抛物线的几何性质的解题策略
p 1.焦半径:抛物线y =2px(p>0)上一点P(x0,y0)到焦点F 2 ,0 的距离|PF|=x0 p +2. p 2.通径:过焦点F 2 ,0 且与x轴垂直的弦PQ叫通径,|PQ|=2p,是所有焦点
要根据一次项来判断焦点的位置,若x为一次项,则焦点在x轴上,若y为一 次项,则焦点在y轴上.一次项系数大于0时,焦点在正半轴上,系数小于0 时,焦点在负半轴上.
考点二
1.双基表
抛物线的几何性质
2.点P(x0,y0)和抛物线y2=2px(p>0)的关系 (1)P在抛物线内(含焦点)⇔ y02 <2px0; (2)P在抛物线上⇔ y02 =2px0; (3)P在抛物线外⇔ y02 >2px0.
(4)弦长l=
(6)以AB为直径的圆与抛物线的准线相切; (7)焦点F对A,B在准线上射影的张角为90°. 4.AB为抛物线y2=2px(p>0)的弦,A(x1,y1),B(x2,y2),弦中点M(x0,y0),设弦所在 直线斜率存在,为k(k≠0).
1 1 |y1-y2| k2 ·
(1)弦长l= 1 k |x1-x2|=⑧
完整版)抛物线知识点归纳总结
完整版)抛物线知识点归纳总结抛物线是一种经典的二次函数图像,具有许多重要的特点和性质。
以下是对抛物线知识点的详细总结。
1.定义:抛物线是平面上一点P到定点F的距离等于点P到定直线上一点的距离的轨迹。
2.构成:抛物线由平面上的点集组成,由对称轴与焦点决定。
3. 表达式:一般形式的抛物线方程是y=ax^2 + bx + c,其中a、b、c是实数且a不等于0。
4.开口方向:抛物线开口方向由a的正负决定,如果a大于0,抛物线开口向上;如果a小于0,抛物线开口向下。
5.对称轴:抛物线的对称轴是一条与抛物线的开口方向垂直的直线,由方程x=-b/2a给出。
6. 焦点:抛物线的焦点是与抛物线上任意一点的距离相等的定点F,其坐标为((-b/2a), (4ac-b^2)/4a)。
7.直径:抛物线的直径是通过焦点且与抛物线相交于两点的直线。
8.非退化抛物线:当a不等于0时,抛物线是非退化的,并且它的对称轴是直线x=-b/2a。
9.顶点:抛物线的顶点是抛物线上最高或最低的点,它是通过对称轴的纵坐标最小(或最大)的点。
10.切线:抛物线上任意一点的切线是通过该点并且与抛物线仅有一个交点的直线。
11.弦:抛物线上的弦是通过抛物线上两个点并且与抛物线仅有两个交点的线段。
12. 与X轴交点:抛物线与X轴的交点可通过求解方程ax^2 + bx +c = 0得到。
13.与Y轴交点:抛物线与Y轴的交点是抛物线上当x=0时的点,即把x替换为0后求解方程得到。
14.对称性:抛物线具有关于对称轴对称的性质,即对称轴上的一点关于对称轴上的另一点的映射是自身。
15.焦点和直角三角形:抛物线上两点和焦点构成的三角形是直角三角形。
16.抛物线的图像:抛物线的图像是一个开口朝上或朝下的弧线,形状可以通过方程中的系数来确定。
17.抛物线的平移:抛物线可以通过平移来改变其位置,平移的方式是通过方程中的常数项来实现。
18.抛物线的拉伸/压缩:通过改变抛物线方程中的a的值,可以改变抛物线的宽度。
九年级抛物线的知识点总结
九年级抛物线的知识点总结九年级的数学课程中,抛物线是一个重要的内容。
在这篇文章中,我们将对九年级抛物线的知识点进行总结和归纳,希望能够帮助同学们更好地理解和掌握这一部分内容。
以下是九年级抛物线的知识点总结。
一、抛物线的基本概念抛物线是一种特殊的曲线,由于其外形独特,被广泛应用于物理、工程等领域。
在数学中,抛物线可以由二次函数表示,其一般形式为:y = ax^2 + bx + c。
其中,a、b、c为常数,且a不为0。
抛物线的图像呈现出对称性,以顶点为中心,向两侧呈开口。
二、抛物线的性质1. 对称性:抛物线是对称的,关于纵轴对称和关于顶点的对称性。
2. 最值点:抛物线的顶点是其最值点,当a大于0时,抛物线的顶点为最小值点;当a小于0时,抛物线的顶点为最大值点。
3. 判别式:抛物线关于x的判别式Δ=b^2-4ac与抛物线的开口、开口方向有关。
当Δ大于0时,抛物线开口向上或向下;当Δ等于0时,抛物线开口向上或向下;当Δ小于0时,抛物线开口向上或向下。
4. 坐标轴交点:抛物线与x、y坐标轴交点称为抛物线的零点。
求解抛物线零点的方法包括配方法、因式分解法、求根公式等。
三、抛物线的平移和压缩通过平移和压缩,我们可以改变抛物线的位置和形状。
平移是指将抛物线在坐标平面上沿着x轴或y轴方向移动一段距离。
压缩是指将抛物线在x轴或y轴上缩放,使其变矮或变胖。
四、抛物线的应用抛物线在日常生活中具有广泛的应用。
以下是几个常见的抛物线应用案例:1. 反射:抛物线的特性使其成为反射器的理想形状,例如车头灯的灯罩和卫星天线的反射器。
2. 投射:抛物线的形状让其成为抛射物的轨迹,例如抛物线形状的跳水板和抛球动作中的轨迹。
3. 焦点效应:抛物线的焦点效应被应用于太阳能反射器和卫星接收器等领域。
综上所述,九年级抛物线的知识点主要包括抛物线的基本概念、性质、平移和压缩以及应用。
在学习抛物线时,我们应理解抛物线的基本形式和性质,同时掌握如何求解抛物线的顶点、零点等关键概念和技巧。
抛物线知识点归纳总结
积
• 利用抛物线的对称性,简化体积计算过程
抛物线面积与体积问题的实际应用
抛物线面积与体积在几何问题中的应用
• 描述圆锥曲线、圆等几何图形的面积和体积问题
• 描述抛物线与椭圆、双曲线等二次曲线的面积和体积问题
抛物线面积与体积在物理问题中的应用
• 描述物体的抛物线运动轨迹的面积和体积问题
• 描述物体的抛物线形变问题的面积和体积问题
• 标准方程y = ax^2 + bx + c决定了抛物线图像的形状、
• 一般方程为Ax^2 + Bx + Cy + D = 0,其中A、B、C、
开口方向、顶点坐标等
D为常数,A≠0
• 根据抛物线图像的特征,可以反推出标准方程
• 一般方程可以转化为标准方程,进而确定抛物线图像
03
抛物线的方程求解与应用
kx
抛物线的切线绘制方法与技巧
抛物线的切线绘制方法
抛物线的切线绘制技巧
• 确定抛物线上需要绘制切线的点
• 利用抛物线的对称性,简化切线绘制过程
• 利用切线方程,计算切线的斜率和截距
• 结合图像,判断抛物线的形状和开口方向,辅助切线绘
• 绘制切线,使其通过指定点和切线方程
制
抛物线切线问题的实际应用
• 对抛物线方程进行化简,得到标准方程或一般方程
• 变形后的抛物线方程仍保持原有性质,但图像发生改变
• 化简后的抛物线方程便于求解和应用
04
抛物线的极值与最值问题
抛物线的极值点与最值点求解
抛物线的极值点
抛物线的最值点
• 抛物线在顶点处取得极值,即顶点为极值点
• 抛物线在顶点处取得最值,即顶点为最值点
抛物线性质和知识点总结
抛物线性质和知识点总结1. 抛物线的定义和基本形式抛物线是指平面上满足二次方程y=ax^2+bx+c(a≠0)的曲线。
其基本形式是y=ax^2+bx+c,其中a、b、c是常数,称为抛物线的系数。
a决定抛物线的开口方向,当a>0时抛物线开口朝上,当a<0时抛物线开口朝下;b决定抛物线的位置,c决定抛物线与y轴的交点。
2. 抛物线的顶点和对称轴抛物线的顶点是抛物线的最低点(开口向上)或者最高点(开口向下),对于标准形式的抛物线y=ax^2+bx+c,它的顶点坐标为(-b/2a, c-b^2/4a)。
抛物线的对称轴是通过顶点并垂直于x轴的直线,对称轴方程为x=-b/2a。
3. 抛物线的焦点和直线方程抛物线的焦点是到抛物线上所有点的距离到抛物线的对称轴的距离相等的点,焦点的坐标为(-b/2a, 1-1/4a)。
抛物线的直线方程是y=mx+n,其中m和n是常数,直线与抛物线有两个交点。
当直线与抛物线相切时,两个交点重合。
当直线与抛物线没有交点时,这个抛物线不与这条直线相交。
4. 抛物线的焦距和离心率抛物线的焦距是抛物线的顶点到焦点的距离,焦距的大小是2|a|;抛物线的离心率是焦距与顶点到焦点的距离的比值,离心率的大小是1。
5. 抛物线的性质抛物线的性质是抛物线的特征,对于抛物线y=ax^2+bx+c,它的性质包括:a)抛物线的开口方向是由a的符号决定的,a>0时开口向上,a<0时开口向下;b)抛物线的顶点在对称轴上;c)焦点在对称轴上的顶点的上方,离心率等于1;d)与y轴的交点是常数项c;e)抛物线的焦点到直线方程的距离等于抛物线到直线方程的对称轴的距离。
6. 抛物线的知识点抛物线的知识点是在解决抛物线问题时需要掌握的知识,包括:a)抛物线的标准形式、一般形式、顶点形式和焦点形式的相互转化;b)抛物线的顶点、对称轴、焦点和直线方程的求法;c)抛物线与直线的交点和相切点的求法;d)抛物线的焦距和离心率的求法;e)抛物线的方程的实际应用问题。
高三抛物线知识点归纳总结
高三抛物线知识点归纳总结抛物线是数学中的一种曲线,它在高三数学课程中占据着重要的地位。
掌握抛物线的相关知识,对于高三学生来说至关重要。
本文将对高三抛物线的知识点进行归纳总结,以帮助学生更好地理解和应用这一概念。
一、抛物线的基本定义和性质抛物线是一条平面曲线,其定义为到一个定点距离与到一条直线距离相等的点的轨迹。
抛物线具有以下基本性质:1. 对称性:抛物线关于其对称轴对称。
2. 定点和定线:抛物线上的每个点到焦点的距离与到直线(准线)的距离相等。
3. 焦距和准线:焦距是定点到准线的距离,准线是焦点垂直平分切线的直线。
4. 弧长和面积:抛物线的弧长和面积计算可以通过积分得到。
二、抛物线的标准方程和一般方程抛物线的标准方程是 y = ax^2 + bx + c,其中 a、b、c 是常数,a ≠ 0。
通过标准方程我们可以了解抛物线的开口方向、顶点坐标以及对称轴的方程。
一般方程是经过对标准方程的平移、旋转、伸缩等变换得到的,形式为 Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0。
通过一般方程可以确定抛物线的具体形状和位置。
三、抛物线的性质和应用1. 高考重点:掌握抛物线的性质对于应对高考数学考试非常重要。
在高考中,抛物线相关的题目通常包括求焦点、顶点、对称轴、切线等问题,也可能涉及到与其他图形的求交点等问题。
2. 物理应用:抛物线在物理学中有广泛的应用,描述了自由落体、抛体运动等过程。
理解抛物线的性质和应用可以帮助我们更好地理解和解决与自由落体和抛体运动相关的物理问题。
3. 工程应用:抛物线的形状具有美学上的优点,因此在建筑和设计中经常被应用。
例如,拱桥的形状和抛物线非常相似,这是因为抛物线形状具有均匀分散应力的特点,是一种力学上最优的形状。
四、抛物线的图像绘制和计算1. 使用计算机软件绘制抛物线的图像可以辅助我们更好地理解抛物线的形式和变化规律。
常用软件如Geogebra、MATLAB等都可以绘制抛物线的图像。
超详细抛物线知识点归纳总结
引言概述:抛物线是高中数学中的重要内容,具有广泛的应用领域,包括物理、工程、经济等。
本文将对抛物线的相关知识进行归纳总结,从定义、性质、方程、焦点与准线、图形以及应用等多个方面进行详细的阐述。
正文内容:一、定义和性质1.抛物线的定义:抛物线是平面内一点到固定点和固定直线的距离之比等于常数的轨迹。
2.焦点与准线的关系:焦点是抛物线上所有点到准线的距离相等的点。
3.对称性:抛物线具有关于准线对称和关于纵轴对称的性质。
4.切线方程:抛物线上任意一点的切线方程为y=mx+c,其中m 是斜率,c是截距。
5.切线与法线的关系:切线与法线互为垂线且交于抛物线上的点。
二、方程和焦点、准线1.标准方程:抛物线的标准方程为y=ax^2+bx+c,其中a、b、c 是常数,a≠0。
2.顶点坐标:抛物线的顶点坐标为(b/2a,f(b/2a)),其中f(x)=ax^2+bx+c。
3.焦点坐标:抛物线的焦点坐标为(h,f(h+1/4a)),其中h=b/2a。
4.准线方程:抛物线的准线方程为y=f(h+1/4a)1/(4a)。
三、图形展示和性质分析1.抛物线的开口方向:a的正负决定抛物线的开口方向,a>0时开口向上,a<0时开口向下。
2.抛物线的焦点位置:焦点在抛物线的顶点上方,焦点的纵坐标为f(h+1/4a)+1/(4a)。
3.抛物线的对称轴:对称轴是通过抛物线的顶点和焦点的直线。
4.抛物线的顶点与焦点距离:顶点与焦点的距离等于抛物线的准线长。
四、应用领域1.物理学应用:抛物线可以描述自由落体运动、抛射运动等。
2.工程学应用:抛物线常用于建筑物的设计、桥梁的设计等。
3.经济学应用:抛物线可以用来表示成本、收入和利润的函数关系。
4.生物学应用:抛物线可用于描述某些生物体运动的轨迹。
5.计算机图像处理应用:抛物线可以用于图像处理算法中的平滑处理。
五、总结本文对抛物线的定义、性质、方程、焦点与准线、图形以及应用进行了详细的阐述。
抛物线及其性质知识点大全新
抛物线及其性质知识点大全新抛物线是一个非常重要的数学曲线,具有很多有趣的性质和应用。
本文将介绍抛物线的基本定义、性质和常见应用,希望能对大家的学习和理解有所帮助。
一、基本定义1.抛物线的定义:抛物线是一种平面曲线,它的定义方式有多种,其中一种常见的定义是:一个平面上的点到一个定点与一个定直线的距离的平方相等,这个距离等于点到这个定直线的垂直距离的两倍。
这个定点叫做抛物线的焦点,定直线叫做抛物线的准线。
2. 抛物线的一般方程:抛物线的一般方程可以写成 y=ax^2+bx+c 的形式,其中 a、b 和 c 是实数,且 a 不等于零。
这个方程描述了抛物线的形状、位置和方向。
二、性质1.对称性:抛物线具有关于焦点的对称性,即抛物线上任意一点到焦点的距离等于该点在抛物线准线上的垂直距离到准线的距离。
2.焦距和准线:焦点与抛物线上的任意点之间的距离叫做焦距,准线与抛物线上的任意点之间的距离叫做准线距离。
抛物线的焦距等于准线距离的两倍。
3.定点和定直线:焦点和准线是抛物线的两个重要的定点和定直线。
4.对称轴:抛物线的对称轴是与准线垂直,并与焦点和抛物线上的顶点连线重合的直线。
5.顶点:抛物线的顶点处于焦点和抛物线的准线的中点。
6.开口方向:当a大于零时,抛物线向上开口;当a小于零时,抛物线向下开口。
7.过顶点的切线:过抛物线的顶点的切线与抛物线的对称轴重合。
8.拐点:抛物线与x轴的交点叫做拐点。
9.单调性:当a大于零时,抛物线在对称轴的左侧是单调递增的,在对称轴的右侧是单调递减的;当a小于零时,则相反。
三、常见应用1.物理学中的自由落体:自由落体运动中,物体的运动轨迹是抛物线。
2.焦点反射性质:如果从抛物线的焦点处发射的光线照射到抛物线上的任意一点,并且与抛物线的切线垂直,那么光线将会从该点发生反射,并经过抛物线的焦点。
3.抛物天线:抛物天线具有聚焦信号的特点,常被用于卫星通信和微波通信。
4.汽车大灯设计:汽车大灯的设计中,经常使用抛物面反射器,目的是将光线聚焦到需要照亮的地方。
抛物线及其性质知识点大全推荐文档
抛物线及其性质知识点大全推荐文档1. 抛物线的定义:抛物线是一个平面曲线,其定义式为y = ax^2 + bx + c,其中a、b、c为常数,a不等于0。
2.抛物线的图像:抛物线的图像呈现出对称性,它的开口方向由抛物线的系数a的正负决定。
当a大于0时,抛物线向上开口;当a小于0时,抛物线向下开口。
3.抛物线的顶点:抛物线的顶点为曲线上的最低点(向上开口)或最高点(向下开口)。
顶点的横坐标为x=-b/(2a),纵坐标为y=f(-b/(2a)),其中f(x)为抛物线的函数。
4. 抛物线的焦点:抛物线的焦点是曲线上与直线y = mx + n相交的点的轨迹,其中m、n为常数。
焦点的横坐标为x = -b/(2a),纵坐标为y = c - (b^2 - 1)/(4a)。
5.抛物线的对称轴:抛物线的对称轴是通过顶点和焦点的垂直平分线。
对称轴的方程为x=-b/(2a)。
6. 抛物线的判别式:抛物线的判别式为Δ = b^2 - 4ac,其中Δ的值决定了抛物线的性质。
若Δ大于0,则抛物线与x轴有两个交点,即开口向上或向下的抛物线。
若Δ等于0,则抛物线与x轴有一个交点,即开口向上或向下的抛物线。
若Δ小于0,则抛物线与x轴没有交点,即开口向上或向下的抛物线。
7.抛物线的焦距:焦点到抛物线上任意一点的距离等于该点到对称轴的距离,即焦距等于对称轴到顶点的距离。
8.抛物线的切线:抛物线上任意一点处的切线与该点的切线斜率相等,切线方程为y-y0=f'(x0)(x-x0),其中f'(x)为抛物线函数的导数。
9.抛物线的性质:抛物线是一条连续曲线,它具有对称性、单调性(a的符号决定)、可导性(除去顶点的地方都可导)、增减性(导数的符号决定)、可微性(除去顶点的地方都可微)、凸凹性(a的符号决定)等性质。
10.抛物线的应用:抛物线在物理学中常用于描述自由落体、抛体运动等;在工程学中常用于设计桥梁、铁轨等;在经济学中常用于描述成本、收益等。
抛物线和性质知识点大全
抛物线和性质知识点大全1.抛物线的定义:抛物线是一个平面曲线,其距离一个定点(焦点)和一个定直线(准线)的距离都相等。
2.标准方程:抛物线的标准方程是y = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。
3.抛物线的焦点:抛物线的焦点是一个点,其到抛物线上的任意一点的距离与该点到抛物线的准线的距离相等。
4.抛物线的准线:抛物线的准线是一个直线,与抛物线的对称轴平行,并且距离对称轴固定的距离。
5.抛物线的对称轴:抛物线的对称轴是垂直于准线,通过焦点和抛物线的顶点的一条直线。
6.抛物线的顶点:抛物线的顶点是曲线的最高或最低点,即y轴距离最大或最小的点。
7.抛物线的焦距:抛物线的焦距是焦点到顶点的距离。
焦距等于准线与对称轴的距离的两倍。
8.抛物线的直径:抛物线的直径是通过焦点和曲线上两个对称的点的线段。
直径等于焦距的两倍。
9.抛物线的离心率:抛物线的离心率是焦距与准线与顶点的距离的比值。
离心率等于110.抛物线的焦点方程:如果抛物线的焦点为(F,p),则焦点到顶点的距离为p,焦点的横坐标为F,抛物线方程为(x-F)^2=4p(y-c),其中c为抛物线的顶点纵坐标。
11.抛物线的顶点方程:如果抛物线的顶点为(h,k),则抛物线方程为(y-k)=a(x-h)^212.抛物线的对称性:抛物线具有对称性,对称轴将抛物线分成两个对称的部分。
13.抛物线的焦点和准线的关系:抛物线上任意一点的到焦点的距离等于该点到准线的距离的两倍。
14.抛物线的切线:抛物线上任意一点处的切线与该点到焦点的连线重合。
15.抛物线的渐近线:当抛物线的开口向上时,抛物线没有水平渐近线;当抛物线的开口向下时,抛物线有一条水平渐近线。
16.抛物线的面积:抛物线所围成的面积等于焦点到顶点的纵坐标与准线的距离之积的1/317.抛物线的长度:抛物线的长度等于8/3倍焦距的立方根。
18.抛物线的应用:抛物线广泛应用于物理学、工程学和计算机图形学等领域。
抛物线知识点归纳总结
抛物线知识点归纳总结一、抛物线的定义抛物线是平面上的一个几何图形,它的形状像一个弯曲的弧线,其数学定义为:所有到定点的距离等于到直线的距离的点构成的集合。
这个定点称为焦点,直线称为准线,通常用符号来表示抛物线,可以用二次方程来表示:y = ax^2 + bx + c,其中a、b、c为实数,a≠0。
二、抛物线的性质1. 焦点和准线:抛物线的焦点位于开口向上或者向下的一端,准线则位于抛物线的中轴线上。
焦点和准线的位置可以通过二次方程的系数a、b、c来确定。
2. 对称性:抛物线具有轴对称性,即抛物线的焦点和准线关于中轴线对称。
3. 焦点的坐标:抛物线的焦点的坐标可以通过二次方程的系数a、b、c来计算得出。
4. 定点的坐标:抛物线上最低点或者最高点称为定点,定点的坐标可以通过二次方程的顶点公式来计算得出。
5. 法线和切线:抛物线的切线是与抛物线相切的直线,而法线是与切线垂直的直线,它们具有一些特殊的性质和公式。
6. 焦距和焦半径:焦距是焦点到准线的距离,焦半径是焦点到抛物线顶点的距离,它们与抛物线的方程之间存在一些重要的关系。
7. 焦直和准直:焦直是焦点在准线上的投影轴,准直是准线在焦点上的投影轴,它们的位置和形状也与抛物线的方程有关。
8. 定义域和值域:抛物线的定义域和值域是指抛物线上的点的集合,它们与抛物线的方程形式、系数和图像的形态有关。
9. 开口方向:抛物线的开口方向是指向上或者向下,它与抛物线的二次方程的系数a的正负有关。
10. 直线与抛物线的位置关系:抛物线与直线的位置关系有相交、切线和相离三种情况,这与抛物线的方程和直线的方程有关。
三、抛物线的应用抛物线在日常生活和工程技术中有着广泛的应用,如抛物面反射天线、汽车大灯光束设计等。
同时,它也在物理学、天文学、工程学等领域有着重要的作用。
1. 抛物线的运动学应用:抛物线是物体在一个力场中运动的轨迹,它在各种自然和人造的运动中都有着广泛的应用,如抛物线轨道的运动、人造卫星的轨迹等。
(完整版)抛物线知识点归纳总结
引言:抛物线是高中数学中重要的曲线之一,具有许多重要的性质和应用。
本文将对抛物线的知识点进行归纳总结,包括抛物线的定义、性质、方程、焦点、准线等。
通过深入理解抛物线的相关概念和性质,读者将能够更好地应用抛物线解决实际问题。
概述:抛物线是一种特殊的曲线,其形状呈现出两侧对称且开口向上或向下的特点。
具体而言,抛物线由一条称为准线的直线和一个称为焦点的特殊点确定。
正文内容:1.抛物线的定义:抛物线是所有到一个定点(焦点)与到一条直线(准线)的距离相等的点的集合。
抛物线也可以通过平面上点的坐标表示,而其坐标满足经典的二次方程形式。
抛物线具有一条对称轴,该对称轴是准线与焦点所在直线的垂直平分线。
2.抛物线的性质:对称性:抛物线是关于对称轴对称的,即对称轴上任意一点关于对称轴上的另一点的坐标对称。
单调性:抛物线开口朝上时,在对称轴上坐标递增;开口朝下时,在对称轴上坐标递减。
切线性质:抛物线上任意一点的切线与焦点到该点的连线垂直,这是抛物线独有的性质。
定理一:抛物线上两个焦点到准线的距离之和等于焦距的两倍。
定理二:抛物线上任意一点到焦点的距离等于该点到准线的距离。
3.抛物线的方程:标准形式:y=ax^2+bx+c,其中a、b、c为实常数,且a≠0。
顶点形式:y=a(xh)^2+k,其中a、h、k为实常数,且a≠0,(h,k)为抛物线的顶点坐标。
焦点形式:4a(yk)=(xh)^2,其中a、h、k为实常数,且a≠0,(h,k)为抛物线的顶点坐标。
4.抛物线的焦点和准线:焦点:抛物线的焦点是准线上一个固定的点,与抛物线的形状和方程相关。
焦距:焦距是焦点到准线的距离,等于焦点到对称轴的距离。
准线:准线是与抛物线的形状和焦点相关的一条直线,与对称轴平行且到焦点的距离等于焦距。
5.抛物线的应用:物理学中的自由落体:抛物线可以用来描述自由落体运动的轨迹,例如抛体的抛射问题。
工程学中的抛物面反射器:抛物面反射器可以将光线从一个点集中集中到另一个点上,常用于太阳能聚焦等应用。
初中抛物线知识点总结
初中抛物线知识点总结一、基本概念1. 抛物线的定义:抛物线是一个平面曲线,它具有和直线对称的性质。
抛物线上的每个点到焦点的距离和到直线的距离相等。
2. 抛物线的方程:一般式为y=ax^2+bx+c,其中a≠0。
3. 抛物线的焦点和直线的关系:抛物线的焦点到直线的距离与焦点到抛物线上的点的距离相等。
二、抛物线的性质1. 定义域和值域:抛物线的定义域为实数集,值域为从最小值开始一直到无穷大。
2. 对称性:抛物线关于y轴对称,焦点关于抛物线的对称轴垂直于x轴的直线对称。
3. 最值点:抛物线的最小值为其顶点的纵坐标,最大值为无穷大。
4. 平行于坐标轴:抛物线在y轴上的交点称为焦点,x轴上的交点称为零点。
三、抛物线的常见类型1. 向上开口的抛物线:当a>0时,抛物线向上开口,顶点为最小值点。
2. 向下开口的抛物线:当a<0时,抛物线向下开口,顶点为最大值点。
3. 零点不相等的抛物线:当b^2-4ac>0时,抛物线零点不相等。
4. 零点相等的抛物线:当b^2-4ac=0时,抛物线零点相等。
5. 零点虚数的抛物线:当b^2-4ac<0时,抛物线零点为虚数。
四、抛物线的应用1. 物体的抛射运动:当物体以一定的初速度和角度抛出时,其运动轨迹为抛物线。
2. 抛物线天花板:在建筑设计中,由于抛物线的稳定性和美观性,抛物线作为天花板的设计元素被广泛应用。
3. 抛物线反射面镜:抛物线反射面镜是一种能够将光线聚焦并反射的镜子,适用于太阳能发电和望远镜等领域。
4. 抛物线型的道路设计:道路设计中经常会用到抛物线的形状,在坡度和曲线的设计中有广泛应用。
五、常见问题分析1. 已知抛物线的焦点和顶点,求抛物线的方程。
解法:由于抛物线的顶点坐标为(x0, y0),焦点坐标为(x1, y1),则抛物线的方程为(y-y0)=a(x-x0)^2,带入焦点坐标可求得a的值,从而确定抛物线的方程。
2. 已知抛物线的方程,求抛物线的焦点和顶点坐标。
抛物线知识点总结(通用3篇)
抛物线知识点总结(通用3篇)抛物线知识点总结第1篇高三数学知识点之导数公式(c为常数) y'=0y'=nx^(n-1)y'=a^xlnay=e^x y'=e^xy'=logae/xy=lnx y'=1/xy'=cosxy'=-sinxy'=1/cos^2xy'=-1/sin^2xy'=1/√1-x^2y'=-1/√1-x^2y'=1/1+x^2y'=-1/1+x^2三角函数公式锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边 / ∠α的邻边cot α=∠α的邻边 / ∠α的对边倍角公式Sin2A=2SinA?CosA抛物线知识点总结第2篇一、教材分析(一)教学内容的特点本节课是“抛物线及其标准方程”的第一节课,主要学习内容为抛物线的定义和标准方程。
它是学生学习解析几何部分的重要基础知识。
这一节课是在学完“椭圆”和“双曲线”的基础上,将研究求曲线方程的方法拓展到抛物线,又是继续学习抛物线的几何性质的基础,同时还为后面学习抛物线的性质做好准备。
(二)教学重点、难点、关键点分析教学重点:抛物线定义及其标准方程。
教学难点:抛物线标准方程的推导。
(三)教学目标分析1.知识与技能目标(1)掌握抛物线的定义和标准方程,明确p的几何意义;(2)能用抛物线的定义解决一些简单的问题。
2.过程与方法目标(1)通过抛物线与椭圆、双曲线的类比,培养学生类比归纳能力。
(2)在抛物线定义的获得和其标准方程的推导过程中进一步渗透数形结合等数学思想和方法。
3.情感、态度与价值观目标(1)通过对抛物线定义的诠释,培养学生探索数学的兴趣。
(2)增强学生团队协作能力以及主动与他人合作交流的意识。
(3)感受四种形式的抛物线的美。
二、学生分析(一)学生的知识储备分析学生已学习了求曲线方程的一般方法和步骤以及椭圆和双曲线的方程,但学生仍对坐标法解决几何问题还存在障碍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线及其性质1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质:图形参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔.开口方向 右左上下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p =>22(0)x py p =->焦 点位 置 X 正X 负Y 正Y 负焦 点坐 标 (,0)2p (,0)2p -(0,)2p(0,)2p -准 线方 程 2p x =-2p x =2p y =-2p y =范 围 0,x y R ≥∈0,x y R ≤∈0,y x R ≥∈0,y x R ≤∈对 称轴 X 轴X 轴Y 轴Y 轴顶 点坐 标 (0,0)离心率 1e =通 径 2p焦半径11(,)A x y 12p AF x =+12p AF x =-+12p AF y =+12p AF y =-+焦点弦长AB12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++焦点弦长AB 的补充11(,)A x y22(,)B x y以AB 为直径的圆必与准线l 相切若AB 的倾斜角为α,22sin p AB α=若AB 的倾斜角为α,则22cos pAB α=2124p x x = 212y y p =-112AF BF AB AF BF AF BF AF BF p++===•• 3.抛物线)0(22>=p px y 的几何性质:(1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.(2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),离心率:1=e ,焦点(,0)2p F ,准线2px -=,焦准距p . (4) 焦点弦:抛物线)0(22>=p px y 的焦点弦AB ,),(11y x A ,),(22y x B ,则p x x AB ++=21||. 弦长|AB|=x 1+x 2+p,当x 1=x 2时,通径最短为2p 。
4.焦点弦的相关性质:焦点弦AB ,),(11y x A ,),(22y x B ,焦点(,0)2pF (1) 若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-。
(2) 若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α=(α≠0)。
(3) 已知直线AB 是过抛物线22(0)y px p =>焦点F ,112AF BF AB AF BF AF BF AF BF p++===•• (4) 焦点弦中通径最短长为2p 。
通径:过焦点垂直于焦点所在的轴的焦点弦叫做通径.(5) 两个相切:○1以抛物线焦点弦为直径的圆与准线相切.○2过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。
5.弦长公式:),(11y x A ,),(22y x B 是抛物线上两点,则221212()()AB x x y y =-+-||11||1212212y y k x x k -+=-+=6.直线与抛物线的位置关系 直线,抛物线,,消y 得:(1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时,Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。
(3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定)7.关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线,)0(φp① 联立方程法:⎩⎨⎧=+=pxy bkx y 22⇒0)(2222=+-+b x p kb x k设交点坐标为),(11y x A ,),(22y x B ,则有0φ∆,以及2121,x x x x +,还可进一步求出b x x k b kx b kx y y 2)(212121++=+++=+,2212122121)())((b x x kb x x k b kx b kx y y +++=++=在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长2122122124)(11x x x x k x x k AB -++=-+=ak ∆+=21 或 2122122124)(1111y y y y k y y k AB -++=-+=ak ∆+=21 b. 中点),(00y x M , 2210x x x +=, 2210y y y += ② 点差法:设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得1212px y = 2222px y =将两式相减,可得)(2))((212121x x p y y y y -=+-2121212y y px x y y +=--a. 在涉及斜率问题时,212y y pk AB +=b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M ,021*******y py p y y p x x y y ==+=--, 即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点),(00y x M 是弦AB 的中点,则有px p x p x x k AB 0021222==+=(注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零)【经典例题】(1)抛物线——二次曲线的和谐线椭圆与双曲线都有两种定义方法,可抛物线只有一种:到一个定点和一条定直线的距离相等的所有点的集合.其离心率e=1,这使它既与椭圆、双曲线相依相伴,又鼎立在圆锥曲线之中.由于这个美好的1,既使它享尽和谐之美,又生出多少华丽的篇章.【例1】P 为抛物线px y 22=上任一点,F 为焦点,则以PF 为直径的圆与y 轴( ).A 相交 .B 相切 .C 相离 .D 位置由P 确定【解析】如图,抛物线的焦点为,02p F ⎛⎫⎪⎝⎭,准线是 :2pl x =-.作PH ⊥l 于H ,交y 轴于Q ,那么PF PH =, 且2pQH OF ==.作MN ⊥y 轴于N 则MN 是梯形PQOF 的中位线,()111222MN OF PQ PH PF =+==.故以PF 为直径的圆与y 轴相切,选B.【评注】相似的问题对于椭圆和双曲线来说,其结论则 分别是相离或相交的.(2)焦点弦——常考常新的亮点弦有关抛物线的试题,许多都与它的焦点弦有关.理解并掌握这个焦点弦的性质,对破解这些试题是大有帮助的.【例2】 过抛物线()022φp px y =的焦点F 作直线交抛物线于()()1122,,,A x y B x y 两点,求证:(1)12AB x x p =++ (2)pBF AF 211=+ 【证明】(1)如图设抛物线的准线为l ,作1AA l ⊥11111,2p A BB l B AA x ⊥==+于,则AF , 122pBF BB x ==+.两式相加即得:12AB x x p =++(2)当AB ⊥x 轴时,有AF BF p ==,112AF BF p∴+=成立; 当AB 与x 轴不垂直时,设焦点弦AB 的方程为:2p y k x ⎛⎫=-⎪⎝⎭.代入抛物线方程:l XY FA(x,y)11B(x,y)22A 1B 1l2222p k x px ⎛⎫-= ⎪⎝⎭.化简得:()()222222014p k x p k x k -++=∵方程(1)之二根为x 1,x 2,∴1224k x x ⋅=.()122111212121111112224x x p p pp p AF BF AA BB x x x x x x +++=+=+=+++++ ()()121222121222424x x p x x p p p p pp x x p x x ++++===+++++. 故不论弦AB 与x 轴是否垂直,恒有pBF AF 211=+成立. (3)切线——抛物线与函数有缘有关抛物线的许多试题,又与它的切线有关.理解并掌握抛物线的切线方程,是解题者不可或缺的基本功.【例3】证明:过抛物线22y px =上一点M (x 0,y 0)的切线方程是:y 0y=p (x+x 0)【证明】对方程22y px =两边取导数:22.py y p y y''⋅=∴=,切线的斜率 00x x p k y y ='==.由点斜式方程:()()20000001p y y x x y y px px y y -=-⇒=-+20021y px =Q ,代入()即得: y 0y=p (x+x 0)(4)定点与定值——抛物线埋在深处的宝藏抛物线中存在许多不不易发现,却容易为人疏忽的定点和定值.掌握它们,在解题中常会有意想不到的收获.例如:1.一动圆的圆心在抛物线x y 82=上,且动圆恒与直线02=+x 相切,则此动圆必过定点 ( )()()()().4,0.2,0.0,2.0,2A B C D -显然.本题是例1的翻版,该圆必过抛物线的焦点,选B. 2.抛物线22y px =的通径长为2p ;3.设抛物线22y px =过焦点的弦两端分别为()()1122,,,A x y B x y ,那么:212y y p =-以下再举一例【例4】设抛物线22y px =的焦点弦AB 在其准线上的射影是A 1B 1,证明:以A 1B 1为直径的圆必过一定点【分析】假定这条焦点弦就是抛物线的通径,那么A 1B 1=AB=2p ,而A 1B 1与AB 的距离为p ,可知该圆必过抛物线的焦点.由此我们猜想:一切这样的圆都过抛物线的焦点.以下我们对AB 的一般情形给于证明.【证明】如图设焦点两端分别为()()1122,,,A x y B x y ,那么:22121112.y y p CA CB y y p =-⇒⋅==设抛物线的准线交x 轴于C ,那么.CF p =2111111.90A FB CF CA CB A FB ∴∆=⋅∠=︒中故.这就说明:以A 1B 1为直径的圆必过该抛物线的焦点.● 通法 特法 妙法(1)解析法——为对称问题解困排难解析几何是用代数的方法去研究几何,所以它能解决纯几何方法不易解决的几何问题(如对称问题等).【例5】(10.四川文科卷.10题)已知抛物线 y=-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于( )A.3B.4C.32D.42【分析】直线AB 必与直线x+y=0垂直,且线段 AB 的中点必在直线x+y=0上,因得解法如下.【解析】∵点A 、B 关于直线x+y=0对称,∴设直线AB 的方程为:y x m =+. 由()223013y x mx x m y x =+⎧⇒++-=⎨=-+⎩设方程(1)之两根为x 1,x 2,则121x x +=-. 设AB 的中点为M (x 0,y 0),则120122x x x +==-.代入x+y=0:y 0=12.故有11,22M ⎛⎫- ⎪⎝⎭. 从而1m y x =-=.直线AB 的方程为:1y x =+.方程(1)成为:220x x +-=.解得: 2,1x =-,从而1,2y =-,故得:A (-2,-1),B (1,2).AB ∴=,选C.(2)几何法——为解析法添彩扬威虽然解析法使几何学得到长足的发展,但伴之而来的却是难以避免的繁杂计算,这又使得许多考生对解析几何习题望而生畏.针对这种现状,人们研究出多种使计算量大幅度减少的优秀方法,其中最有成效的就是几何法.【例6】(11.全国1卷.11题)抛物线24y x =的焦点为F ,准线为l ,经过F 且斜率XYABFA 1B 11MC XOYABMl x y +=ÿXYO F(1,0)AK60°M的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积( )A .4 B. C. D .8 【解析】如图直线AFAFX=60°. △AFK 为正三角形.设准线l 交x 轴于M ,则2,FM p ==且∠KFM=60°,∴24,44AKF KF S ∆==⨯=选C. 【评注】(1)平面几何知识:边长为a 的正三角形的面积用公式2S ∆=计算. (2)本题如果用解析法,需先列方程组求点A 的坐标,,再计算正三角形的边长和面积.虽不是很难,但决没有如上的几何法简单.(3)定义法——追本求真的简单一着许多解析几何习题咋看起来很难.但如果返朴归真,用最原始的定义去做,反而特别简单. 【例7】(07.湖北卷.7题)双曲线22122:1(00)x y C a b a b-=>>,的左准线为l ,左焦点和右焦点分别为1F 和2F ;抛物线2C 的线为l ,焦点为21F C ;与2C 的一个交点为M ,则12112F F MF MF MF -等于( )A .1-B .1C .12-D .12【分析】 这道题如果用解析法去做,计算会特别繁杂,而平面几何知识又一时用不上,那么就从最原始的定义方面去寻找出路吧.如图,我们先做必要的准备工作:设双曲线的半 焦距c ,离心率为e ,作 MH l H ⊥于,令1122,MF r MF r ==.∵点M 在抛物线上,1112222,MF MF r MH MF r e MH MF r ∴=====故,这就是说:12||||MF MF 的实质是离心率e.其次,121||||F F MF 与离心率e 有什么关系?注意到:()1212111122111F F e r r c e a e e MF r r r e +⋅⎛⎫====-=- ⎪⎝⎭. 这样,最后的答案就自然浮出水面了:由于()12112||||11||||F F MF e e MF MF -=-+=-.∴选 A..(4)三角法——本身也是一种解析三角学蕴藏着丰富的解题资源.利用三角手段,可以比较容易地将异名异角的三角函数转化为同名同角的三角函数,然后根据各种三角关系实施“九九归一”——达到解题目的.因此,在解析几何解题中,恰当地引入三角资源,常可以摆脱困境,简化计算.【例8】(09.重庆文科.21题)如图,倾斜角为a 的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点。