角平分线的知识点

合集下载

八年级数学角平分线的性质知识点总结

八年级数学角平分线的性质知识点总结

角平分线的性质是八年级数学中的重要内容之一,它是指从一个角的顶点出发,将这个角分成两个相等角的线段。

下面是关于角平分线的性质的总结,包括定义、性质和应用:一、定义:角平分线是指从一个角的顶点出发,将这个角分成两个相等角的线段。

角平分线是角的重要构造之一二、性质:1.角平分线将角分成两个相等的角。

即如果一条线段是一个角的平分线,则它将这个角分成两个度数相等的角。

2.角平分线与角的两边相交于一个点。

即角平分线与角的两边交于角的顶点。

3.角平分线与角的两边垂直相交于角平分线的中点。

即角平分线与角的两边垂直相交于角平分线上的一个点,该点同时也是角平分线的中点。

4.角平分线上的点到角的两边的距离相等。

即角平分线上的任意一点到角的两边的距离相等。

5.两条平行线与角的顶点与顶边所在的线段构成的两个相似三角形,它们的角平分线平行。

即如果一条线段是一个角的平分线,另一条与之平行的线段也是这个角的平分线。

三、应用:1.判断角平分线。

当我们需要判断一个线段是否为一个角的平分线时,可以使用角平分线的定义和性质进行判断,即判断这个线段能否将角分成两个相等的角。

2.利用角平分线的性质解决问题。

当我们遇到需要将角分成两个相等的角的问题时,可以使用角平分线的性质进行解决。

例如,在解决相似三角形的问题中,可以利用角平分线的性质进行角的划分。

3.构造角平分线。

当我们需要构造角的平分线时,可以利用直尺和圆规进行构造。

常见的构造方法有尺规作图法和五线谱法等。

四、例题:1.已知角ABC,其中角平分线AD交角的两边于E、F两点,证明:AE=AF。

证明:根据角平分线的性质4,角平分线上的点到角的两边的距离相等,即DE=DF,又因为AD为角ABC的平分线,所以∠DAE=∠DAF。

再根据等腰三角形的性质,得知AE=AF。

2.已知直角三角形ABC中,角A=90°,角B的平分线BD与AC相交于点D,求证:∠ADB=45°。

证明:由直角三角形的性质,角B=90°-角A=90°-90°=0°,即角B为零角。

角平分线与垂直平分线知识点

角平分线与垂直平分线知识点

角平分线与垂直平分线知识点一、角平分线1.角平分线可以得到两个相等的角。

(角平分线的定义)∵AD是∠CAB的角平分线1∠CAB∴∠CAD=∠B AD=22.角平分线上的点到角两边的距离相等。

(角平分线的性质)∵AD是∠CAB的角平分线,DC⊥AC ,DB⊥AB∴DC=DB3.三角形的三条角平分线交于一点,称作三角形内心。

三角形的内心到三角形三边的距离相等。

4.到角两边的距离相等的点在角平分线上。

(角平分线的判定)∵DC⊥AC ,DB⊥AB,DC=DB∴点D在∠CAB的角平分线上。

二、角平分线图模(对称性)1、角平分线作垂线角平分线+垂直一边:“图中有角平分线,可向两边作垂线,作完垂线全等必出现”若PA⊥OM于点A,可以过P点作PB⊥ON于点B,则PB=PA。

利用角平分线的性质定理,可以得到∆OAP≌∆OBP(AAS)。

2、角平分线+垂线:“角分垂必延长”垂直角分线,等腰全等现。

若AP⊥OP于点P,可延长AP交ON于点B,构造△AOB是等腰三角形,P是底边AB的中点,三线合一,∆OAP≌∆OBP(ASA)。

3、角平分线+斜线:“截等长构造全等”若点A是射线OM上任意一点,可以在ON上截取OB=OA,连接PB,构造△OPB≌△OPA(SAS)。

4、角平分线+平行线:“角平分线+平行线,等腰三角形必出现”若过P点作PQ∥ON交OM于点Q,利用平行的内错角相等及等角对等边可以得到△POQ是等腰三角形。

5、角平分线+对角互补:“截长补短构造全等”6、夹角模型①双内角角平分线模型:BP、CP分别是∠ABC、∠ACE的角平分线,则:∠P=90°+12∠A.②内角和外交角平分线模型:BP、CP分别是∠ABC、∠ACE的角平分线,则:∠P=12∠A.③双外角角平分线模型:BP、CP分别是∠CBD、∠BCD的角平分线,则:∠D=90°-12∠B.在∠AOB中,画角平分线:1.以点O为圆心,以任意长为半径画弧,两弧交∠AOB两边于点M,N。

角平分线知识点+经典例题

角平分线知识点+经典例题

第四讲 角平分线【要点梳理】要点一、角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.要点诠释:用符号语言表示角的平分线的性质定理:若CD 平分∠ADB ,点P 是CD 上一点,且PE ⊥AD 于点E ,PF ⊥BD于点F ,则PE =PF.要点二、角的平分线的判定角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角的平分线的判定:若PE ⊥AD 于点E ,PF ⊥BD 于点F ,PE =PF ,则PD 平分∠ADB要点三、角的平分线的尺规作图角平分线的尺规作图(1)以O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于E.(2)分别以D 、E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 内部交于点C.(3)画射线OC.射线OC 即为所求.要点四、三角形角平分线的性质三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等.三角形的一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC 的内心为1P ,旁心为234,,P P P ,这四个点到△ABC三边所在直线距离相等.【典型例题】类型一、角的平分线的性质例1.如图,已知BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,PN ⊥CD 于N ,求证:PM=PN .【思路点拨】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【答案与解析】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB,∵点P在BD上,PM⊥AD,PN⊥CD,∴PM=PN.【总结升华】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB是解题的关键.例2、如图在△ABC中∠C=90°,AC=BC,AD平分∠CAB,DE⊥AB于E,若AB=6cm,求△DEB的周长.【思路点拨】利用角平分线的性质求得CD=DE,然后利用线段中的等长来计算△DEB的周长.【答案与解析】解:∵∠C=90°,AD平分∠CAB,DE⊥AB,∴CD=DE,∴△CAD≌△EAD(HL)∴AC=AE,∵AC=BC,∴∠B=45°,∴BE=DE,∴△DEB的周长=BE+DE+BD= BE+CD+BD = BE+BC =BE+AC=BE+AE =AB=6cm.【总结升华】将△DEB的周长用相等的线段代换是关键.【变式】已知:如图,AD是△ABC的角平分线,且:3:2AB AC=,则△ABD与△ACD的面积之比为()A.3:2 B.3:2C.2:3 D.2:3【答案】B;提示:∵AD是△ABC的角平分线,∴点D到AB的距离等于点D到AC的距离,又∵:3:2AB AC=,则△ABD与△ACD的面积之比为3:2.例3、如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA交于点D,PE⊥OB交于点E,F是OC 上除点P、O外一点,连接DF、EF,则DF与EF的关系如何?证明你的结论.【思路点拨】利用角平分线的性质证明PD=PE,再根据“HL”定理证明△OPD≌△OPE,从而得到∠OPD =∠OPE,∠DPF=∠EPF.再证明△DPF≌△EPF,得到结论.【答案与解析】解:DF=EF.理由如下:∵OC是∠AOB的角平分线,P是OC上一点,PD⊥OA交于点D,PE⊥OB交于点E,∴PD=PE,由HL 定理易证△OPD ≌△OPE , ∴∠OPD =∠OPE ,∴∠DPF =∠EPF .在△DPF 与△EPF 中,PD PE DPF EPF PF PF =⎧⎪∠=∠⎨⎪=⎩,∴△DPF ≌△EPF ,∴DF =EF.【总结升华】此题综合运用了角平分线的性质、全等三角形的判定及性质.由角平分线的性质得到线段相等,是证明三角形全等的关键.类型二、角的平分线的判定例4、已知,如图,CE ⊥AB,BD ⊥AC,∠B =∠C ,BF =CF.求证:AF 为∠BAC 的平分线.【答案与解析】证明: ∵CE ⊥AB,BD ⊥AC (已知)∴∠CDF =∠BEF =90°∵∠DFC =∠BFE(对顶角相等)∵ BF =CF(已知)∴△DFC ≌△EFB(AAS)∴DF =EF(全等三角形对应边相等)∵FE ⊥AB ,FD ⊥AC (已知)∴点F 在∠BAC 的平分线上(到一个角的两边距离相等的点在这个角的平分线上)即AF 为∠BAC 的平分线【总结升华】应用角平分线性质及判定时不要遗漏了“垂直”的条件.如果遗漏了说明没有认识到“垂直”条件在证明结论的必要性.【变式】已知:如图,P 是OC 上一点,PD ⊥OA 于D ,PE ⊥OB 于E ,F 、G 分别是OA 、OB 上的点,且PF=PG ,DF=EG .求证:OC 是∠AOB 的平分线.【答案】证明:在Rt △PFD 和Rt △PGE 中,,∴Rt △PFD ≌Rt △PGE (HL ),∴PD=PE ,∵P 是OC 上一点,PD ⊥OA ,PE ⊥OB ,∴OC 是∠AOB 的平分线.。

八年级角平分线知识点总结

八年级角平分线知识点总结

八年级角平分线知识点总结角平分线是几何知识中的一个重要概念,也是初中数学中常见的考点之一。

在八年级中学习了角平分线的相关知识后,许多同学还存在一定的困惑。

因此,本文将对八年级角平分线的知识点做一个总结,以帮助大家更好地掌握该知识。

一、角平分线的定义和性质1. 定义所谓“角平分线”,是指将一个角平分为两个角的线段。

在角上下方形成两个新的角,它们的大小相等。

2. 性质(1) 角平分线把原来的角分成两个大小相等的角。

(2) 角平分线的两侧所对的两个角相等。

(3) 在三角形中,若一条线段是一个角的平分线,则它所在的线段所对的两侧角的大小之比等于它所在的线段所对的两侧边的长度之比。

二、与角平分线有关的定理1. 外角定理所谓“外角”,是指一个三角形的一个内角所对的另一个角。

外角定理是指一个三角形的一个外角等于它的不相邻两个内角之和。

2. 内角定理一个多边形的内角和等于这个多边形的狄利克雷函数乘以180°。

三、角平分线的应用了解了角平分线的定义和性质以及与角平分线有关的定理,我们就可以在解题过程中灵活应用,其中最常见的就是角平分线定理的应用。

在三角形中,若已知一条角平分线及其所分割的两边长度,则可以利用角平分线定理求解三角形中其它角的大小。

例如,已知在三角形ABC中,角BAD的平分线交BC边于点E,且BE=7,EC=5,则可以利用角平分线定理求解角DAB和角DAC的大小。

根据角平分线定理,有:$\dfrac{BD}{DC}=\dfrac{AB}{AC}$因此,$\dfrac{BD}{DC}=\dfrac{BE}{EC}=\dfrac{7}{5}$又有:$\dfrac{BD}{DC}=\dfrac{\sin \angle BAD}{\sin \angle DAC}$因此,$\dfrac{\sin \angle DAB}{\sin \angle DAC}=\dfrac{7}{5}$由于$\angle DAB+\angle DAC=180^\circ$,因此可以列出以下方程组:$\begin{cases} \dfrac{\sin \angle DAB}{\sin \angleDAC}=\dfrac{7}{5} \\ \sin \angle DAB+\sin \angle DAC=1\end{cases}$解得$\sin \angle DAB=\dfrac{7}{12}$,$\sin \angleDAC=\dfrac{5}{12}$,$\angle DAB=\sin^{-1} \dfrac{7}{12}$,$\angle DAC=\sin^{-1} \dfrac{5}{12}$,即$\angle DAB \approx 36.87^\circ$,$\angle DAC \approx 26.57^\circ$。

12.3 角平分线的性质(重难点突破)解析版

12.3 角平分线的性质(重难点突破)解析版

12.3 角平分线的性质(重难点)【知识点一、角的平分线及其性质】1.尺规作角平分线尺规作角平分线方法(重要):已知:∠AOB.求作:∠AOB的平分线.作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M、N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC.射线OC即为所求.2.角平分线的性质定理:角的平分线上的点到角的两边的距离相等.【知识点二、角平分线的判定】1.角平分线的判定定理:角的内部到角的两边的距离相等的点在角的平分线上.定理的几何表述:∵PD⊥OA,PE⊥OB,PD=PE.∴点P 在∠AOB的平分线上.2.三角形的内角平分线结论:三角形的三条角平分线交于一点,并且这点到三边的距离相等.已知如图,△ABC的角平分线BM,CN相交于点P,则点P到三边AB,BC,CA的距离相等.A.4B.【答案】B【分析】过点D作DH⊥AB,垂足为H,由题意可得DC=3,再由角平分线的性质可得CD=DH=3,即可得到答案.【详解】解:如图,过点D作DH⊥AB,垂足为H,∵AC=9,DC=1AC,3∴DC=3,∵BD平分∠ABC,∠C=90°,DH⊥AB,∴CD=DH=3,∴点D到AB的距离等于3,故选:B.【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线上的点到角的两边的距离相等是解题的关键.【变式训练1-1】如图,点E为∠BAC平分线AP上一点,AB=5,△ABE的面积为15,则点E到直线AC的距离为()A.5B.6C.7D.8【答案】B【分析】设点E到直线AB的距离为ℎ,根据三角形面积公式即可求解.【详解】解:如图,过点E作EM⊥AC,EN⊥AB,垂足分别为M,N,∵E为∠BAC平分线AP上一点,∴EM=EN,∵AB=5,△ABE的面积为15,AB×EN=15,∴12=6,∴EN=305∴EM=6,即点E到直线AC的距离为6.故选:B.【点睛】本题考查角平分线的性质定理及点到直线的距离之概念.其关键要理解角平分线上一点到角两边距离相等.【变式训练1-2】如图,OC是∠AOB的平分线,PD⊥OA于点D,PD=2,则点P到OB的距离是()A.1B.2C.4D.都不对【答案】B【分析】过点P作PE⊥OB于E,根据角平分线的性质即可求解.【详解】解:如图,过点P作PE⊥OB于E,∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PE=PD=2,即点P到边OB的距离为2.故选:B.【点睛】本题考查了角平分线的性质:角平分线上的点到角的两边的距离相等.【变式训练1-3】如图,在Rt△ABC中,∠A=90°,BD是△ABC的角平分线.若AC=9,CD=6,则点D到BC的距离是()A.2B.4C.3D.6【答案】C【分析】过点D作DE⊥BC于点E,根据角平分线的性质得到DE=AD=3.【详解】解:过点D作DE⊥BC于点E,∵AC=9,CD=6,∴AD=AC―CD=9―6=3,∵BD是△ABC的角平分线,∠A=90°,DE⊥BC,∴DE=AD=3,∴点D到BC的距离是3,故选:C.【点睛】此题考查了角平分线的性质:角平分线上的点到角的两边的距离相等,正确掌握性质是解题的关键.考点2:利用角平分线性质求周长例2.如图所示,△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于D,DE⊥AB于E.AB=10cm,则△DEB的周长是()A.5cm B.10cm C.15cm D.20cm【答案】B【分析】先根据角平分线的性质得出DE=DC,再利用HL证明Rt△ADE≌Rt△ADC,推出AC=AE,进而通过等量代换可得BD+DE+EB=AB=10cm.【详解】解:∵AD平分∠CAB,∠C=90°,DE⊥AB,∴DE=DC,又∵AD=AD,∴Rt△ADE≌Rt△ADC(HL),∴AC=AE,∵AC=BC,∴AE=BC,∴BD+DE+EB=BD+DC+EB=BC+EB=AE+EB=AB=10cm,故选B.【点睛】本题主要考查角平分线的性质、直角三角形全等的判定与性质,解题的关键是通过证明Rt△ADE≌Rt△ADC推导出AC=AE.【变式训练2-1】.如图,△ABC中,∠C=90∘,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BE=3,则△BDE的周长是()A.15B.12C.9D.6【答案】B【分析】由△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,根据角平分线的性质,即可得DE=CD,继而可求得△BDE的周长是:BE+BC,则可求得答案.【详解】解:∵△ABC中,∠C=90°;∴AC⊥CD;∵AD平分∠BAC,DE⊥AB;∴DE=CD,∵BC=9,BE=3,∴△BDE的周长是:BE+BD+DE=BE+BD+CD=BE+BC=3+9=12.故选:B.【点睛】本题主要考查了角平分线的性质.注意角平分线的性质:角的平分线上的点到角的两边的距离相等.【变式训练2-2】如图,在△ABC中,∠C=90°,BC=6cm,AC=8cm,AB=10cm,若BD平分∠ABC交AC 于点D,过D作DE⊥AB于点E,则△ADE的周长为( )cm.A.8B.10C.12D.14【答案】C【分析】根据角平分线的性质定理可得DE=CD,从而可证△BDE≌△BDC(HL),即得出BE=BC=6cm,最后可求△ADE的周长为AC+AE=12cm.【详解】∵BD平分∠ABC,∠C=90°,DE⊥AB,∴DE=CD.又∵BD=BD,∴△BDE≌△BDC(HL),∴BE=BC=6cm,∴AE=AB―BE=10―6=4cm,∴C△ADE=AD+DE+AE=AD+CD+AE=AC+AE=8+4=12cm.故选C.【点睛】本题考查角平分线的性质定理,三角形全等的判定和性质.证明C△ADE=AC+AE是解题关键.【变式训练2-3】如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,BE=2,BC=6,则△BDE的周长为( )A.6B.8C.10D.14【答案】B【分析】根据角平分线的性质定理可得DE=DC,进而可以求出△BDE的周长;【详解】解:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DE=DC,∴C△BDE=BE+DE+BD=BE+BC=2+6=8,故选:B.【点睛】本题考查了角平分线的性质定理;熟练运用该定理实现线段的转化是解题的关键.考点3:利用角平分线性质求面积例3.在△ABC中,BD是△ABC的高线,CE平分∠ACB,交BD于点E,BC=6,DE=3,则△BCE的面积等于()A.3B.5C.9D.12【答案】C【分析】过点E作EF⊥BC于点F,根据角平分线的性质可得EF=DE=3,再根据三角形的面积公式求解即可.【详解】解:过点E作EF⊥BC于点F,∵CE 平分∠ACB ,ED ⊥AC ,EF ⊥BC ,∴EF =DE =3,∴S △BCE =12BC ⋅EF =12×6×3=9,故选:C .【点睛】本题主要考查了角平分线的性质,解题的关键是熟练掌握角平分线上的点到两边距离相等.【变式训练3-1】如图,在△ABC 中,CD 是AB 边上的高,BE 平分∠ABC ,交CD 于点E ,已知,BC =8,DE =2,则△BCE 的面积等于( )A .4B .6C .8D .10【答案】C 【分析】作EF ⊥BC 于F ,根据角平分线的性质得到EF =DE =2,根据三角形的面积公式计算即可.【详解】解:如图,作EF ⊥BC 于F ,∵BE 平分∠ABC ,ED ⊥AB ,EF ⊥BC ,∴EF =DE =2,∴△BCE 的面积=12×BC ×EF =12×8×2=8,故选C .【点睛】本题考查角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.【变式训练3-2】如图,AD 是△ABC 的角平分线,DE ⊥AC 于E ,M ,N 分别是边AB ,AC 上的点,DM =DN ,若△ADM 和△ADN 的面积分别为30和16,则△ADE 的面积是( )A .22B .23C .24D .25【答案】B 【分析】如图所示(见详解),过点D 作DF ⊥AB 于F ,AD 是△ABC 的角平分线,DE ⊥AC 于E ,可证Rt △DFM ≌Rt △DEN(HL),同理可证Rt △ADF ≌Rt △ADE(AAS),设S △DFM =x ,△ADM 和△ADN 的面积分别为30和16,列方程30―x =16+x 即可求解.【详解】解:如图所示,过点D 作DF ⊥AB 于F ,∵AD 是△ABC 的角平分线,DE ⊥AC 于E ,∴DE =DF ,在Rt △DFM,Rt △DEN 中,DM =DN DF =DE ,∴Rt △DFM ≌Rt △DEN(HL),∴S △DFM =S △DEN ,在Rt △ADF,Rt △ADE 中,∠FAD =∠EAD ∠AFD =∠AED =90°AD =AD(公共边),∴Rt △ADF ≌Rt △ADE(AAS),∴S △AFD =S △AED =S △ADN +S △DEN =S △ADN +S△AFM ,设S △DFM =x ,△ADM 和△ADN 的面积分别为30和16,∴30―x =16+x ,解方程得,x =7,∴S △AFM =S △AEN =7,∴S△ADE=S△ADN+S△AEN=16+7=23,故选:B.【点睛】本题主要考查角平分线,三角形全等和性质的综合,理解并掌握角平分线上点到角两边的距离相等,全等三角形的判定和性质是解题的关键.【变式训练3-3】如图,在四边形ABCD中,∠A=90°,AD=4,BC=10,BD平分∠ABC,则△BCD的面积是()A.10B.12C.16D.20【答案】D【分析】过D点作DE⊥BC于E,根据角平分线的性质“角平分线上的点到角的两边的距离相等”得到DE=DA=4,根据三角形面积公式计算即可.【详解】解:过D点作DE⊥BC于E,如图,∵BD平分∠ABC,DE⊥BC,∠A=90°,∴DE=DA=4,×10×4=20.∴△BCD的面积=12故选:D.【点睛】本题主要考查了角平分线的性质以及求三角形面积角,理解并掌握角平分线的性质是解题关键.考点4:判定结论是否正确例4.如图,ΔAOB的外角∠CAB,∠DBA的平分线AP,BP相交于点P,PE⊥OC于E,PF⊥OD于F,下列结论:(1)PE=PF;(2)点P在∠COD的平分线上;(3)∠APB=90°―∠O,其中正确的有()A .0个B .1个C .2个D .3个【答案】C【分析】过点P 作PG ⊥AB ,由角平分线的性质定理,得到PE =PG =PF ,可判断(1)(2)正确;由∠APB =12∠EPF ,∠EPF +∠O =180°,得到∠APB =90°―12∠O ,可判断(3)错误;即可得到答案.【详解】解:过点P 作PG ⊥AB ,如图:∵AP 平分∠CAB ,BP 平分∠DBA ,PE ⊥OC ,PF ⊥OD ,PG ⊥AB ,∴PE =PG =PF ;故(1)正确;∴点P 在∠COD 的平分线上;故(2)正确;∵∠APB =∠APG +∠BPG =12∠EPF ,又∠EPF +∠O =180°,∴∠APB =12×(180°―∠O)=90°―12∠O ;故(3)错误;∴正确的选项有2个;故选:C .【点睛】本题考查了角平分线的判定定理和性质定理,解题的关键是熟练掌握角平分线的判定和性质进行解题.【变式训练4-1】如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的∠EAC 、∠ABC 、∠ACF ,以下结论:①AD ∥BC ;②∠ACB =2∠ADB ;③∠ADC =90°―∠ABD ;④BD 分∠ADC ;⑤3∠BDC =∠BAC 。

角平分线模型知识点

角平分线模型知识点

角平分线模型知识点什么是角平分线模型?角平分线模型是几何学中的一个重要概念,用于描述一个角被一条直线平分的情况。

角平分线模型在数学和物理学中有广泛的应用,特别是在三角函数的计算和几何图形的构建中起着重要的作用。

角平分线的性质角平分线有一些重要的性质,我们来逐一介绍:1.角平分线将一个角分为两个相等的角。

这意味着如果一条直线与一个角的两边相交,并且将这个角分为两个相等的角,那么这条直线就是这个角的平分线。

2.角平分线与角的两边相交于角的顶点。

也就是说,角平分线从角的顶点开始,穿过角的两边,并且与两边相交。

3.角平分线与角的两边垂直。

这意味着角平分线与角的两边形成的角是直角。

4.在三角形中,三条角的平分线的交点是三角形的内心。

内心是三角形内部到三条边的距离之和最小的点。

角平分线的应用角平分线模型在实际应用中有很多用途,下面我们列举几个常见的应用场景:1.三角函数的计算:角平分线可以帮助我们计算三角函数的值。

通过将一个角平分为两个相等的角,我们可以简化三角函数的计算,并且减少计算的复杂性。

2.几何图形的构建:在绘制几何图形时,角平分线模型可以帮助我们确定图形的对称性和角度的关系。

通过绘制角平分线,我们可以准确地构建各种形状的几何图形。

3.三角形的内心:角平分线的交点是三角形的内心,内心是三角形内部到三条边的距离之和最小的点。

在解决与三角形相关的问题时,内心的位置和性质都是非常重要的。

4.证明几何定理:在几何证明中,角平分线模型可以用于证明一些重要的几何定理。

通过利用角平分线的性质,我们可以简化证明过程,提高证明的效率。

总结角平分线模型是几何学中的一个重要概念,用于描述一个角被一条直线平分的情况。

角平分线具有许多重要的性质,包括将角分为两个相等的角、与角的两边相交于角的顶点、与角的两边垂直等。

角平分线模型在数学和物理学中有广泛的应用,特别是在三角函数的计算和几何图形的构建中起着重要的作用。

在实际应用中,角平分线模型可以帮助我们计算三角函数的值、构建几何图形、确定三角形的内心位置,以及证明几何定理。

七年级角平分线知识点

七年级角平分线知识点

七年级角平分线知识点七年级的数学学习中,角平分线是比较重要的知识点之一,它是几何中的一个比较基础的概念。

本文将针对角平分线的定义、性质、求解方法以及应用场景等方面进行详细介绍,希望对各位学生的数学学习有所帮助。

一、角平分线的定义角平分线是指将一个角平分成两个相等的角的直线,也称为角的平分线。

如下图所示,$BD$就是角$ABC$的平分线。

(请参见附图一)二、角平分线的性质1. 角平分线上的点到角两边的距离相等。

如下图所示,$BP$是角$ABC$的平分线,$BD$和$BC$是该角的两边,那么有$BD=PC$,$BC=PD$。

(请参见附图二)2. 在一个三角形中,角平分线将对边分成相似的线段。

如下图所示,$AD$为角$BAC$的平分线,那么有$\frac{AB}{BD}=\frac{AC}{CD}$。

(请参见附图三)3. 在一个四边形中,对角线相交于一点,当且仅当相邻角的平分线相交于该点。

如下图所示,$AC$和$BD$是四边形$ABCD$的对角线,$BF$和$CE$分别是角$B$和角$C$的平分线,那么$BF$和$CE$交于点$P$,$AC$和$BD$也交于该点。

(请参见附图四)三、角平分线的求解方法1. 利用角平分线的定义和性质进行推导。

如下图所示,$BD$是角$ABC$的平分线,那么有$\angleABD=\angle DBC$,$\angle ABC=\angle ABD+\angle DBC$,又因为$\angle ABD=\angle DBC$,所以$\angle ABC=2\angle ABD$。

因此,当角的度数已知时,可以通过计算得到角平分线所对应的度数。

2. 利用相似三角形的性质。

如下图所示,$AD$为角$BAC$的平分线,那么有$\frac{AB}{BD}=\frac{AC}{CD}$,因此可得出$BD$所对应的线段长度。

3. 利用对角线的交点进行计算。

如下图所示,$AC$和$BD$是四边形$ABCD$的对角线,$BF$和$CE$分别是角$B$和角$C$的平分线,那么$BF$和$CE$交于点$P$,可以通过计算点$P$的坐标来求解角平分线。

九年级角平分线知识点总结

九年级角平分线知识点总结

九年级角平分线知识点总结一、角平分线的定义在平面几何中,如果一条射线恰好把一个角分成两个相等的角,那么这条射线就称为这个角的平分线。

二、角平分线的性质1. 角平分线的定义性质:角平分线将一个角分成两个相等的角。

2. 角平分线定理:如果一条射线是一个角的平分线,那么这条射线上的任意一点与角的两边构成的两个角相等。

3. 两条角平分线的交点:如果两条不同的角平分线相交于一个点,那么这两条角平分线所构成的角是相等的。

4. 角平分线的唯一性:一个角的两边上有且仅有一条角平分线。

5. 角平分线的夹角定理:角的平分线所平分的角,与角的两边构成的角互补。

6. 角平分线的垂直平分线:在一个直角三角形中,直角的平分线即为直角边的垂直平分线。

7. 角平分线的应用:在一些证明题目中,角平分线可以被运用,简化证明的过程。

三、角平分线的构造方法1. 利用直尺和圆规来画出一个角的角平分线。

2. 利用三角形特点来寻找角平分线,如利用等腰三角形的特点来构造角平分线。

3. 利用角平分线的性质来构造角平分线,如利用角平分线与直线的相交得到的相等角来构造角平分线。

四、角平分线的应用1. 利用角平分线进行角的三等分。

如在一个40度的角中,通过画出其角平分线,再进行角的三等分。

2. 利用角平分线进行证明。

如在一个几何问题中,可以利用角平分线的性质来简化证明的过程。

3. 利用角平分线进行角的构造。

如在画出一个特定角度的角时,可以利用角平分线来准确地构造。

五、角平分线的相关定理1. 角平分线的交叉定理:如果两条角平分线相交于一点,那么这两条角平分线所构成的角相等。

2. 角平分线的三线共点定理:在任意的三角形中,角的外角平分线、内角平分线和中垂线三条线相交于一点。

3. 角平分线的内切定理:三角形内切圆的切点与三角形的顶点连线所成的角等于这个角的角平分线与这个角的两边所成的角。

4. 角平分线的外角平分线定理:在一个三角形中,三个外角平分线所构成的三个角互补。

专题07 角的平分线性质(知识点串讲)(解析版)

专题07 角的平分线性质(知识点串讲)(解析版)

专题07 角的平分线性质知识网络重难突破知识点一角平分线概念:从一个角的顶点引出一条射线,把这个角分成完全相同的角,这条射线叫做这个角的角平分线。

角平分线的性质:角平分线上的点到角两边的距离相等;数学语言:∵∠MOP=∠NOP,PA⊥OM PB⊥ON∴PA=PB判定定理:到角两边距离相等的点在角的平分线上.数学语言:∵PA⊥OM PB⊥ON PA=PB∴∠MOP=∠NOP典例1 (2018春 泰安市期中)如图,在△ABC 中,BE 、CE 分别是∠ABC 和∠ACB 的平分线,过点E 作DF∥BC 交AB 于D ,交AC 于F ,若AB=4,AC=3,则△ADF 周长为( )A .6B .7C .8D .10【答案】B【详解】 因为∠ABC 和∠ACB 的平分线交于点E ,所以∠ABE=∠EBC,∠ACE=∠ECB.因为DF∥BC,所以∠EBC=∠BED,∠ECB=∠FEC,则DE=DC ,EF=FC ,则DF=DE+EF=DB+FC ,所以△ADF 周长=3+4=7.故选择B 项.典例2 (2019春 邯郸市期中)如图,直线AB 、CD 相交于点O ,OD 平分∠AOE,∠BOC=50°,则∠EOB=( )A.50°B.60°C.70°D.80°【答案】D【详解】 解:∵∠BOC=50°,∴∠AOD=50°,∴∠AOE=100°,∠EOB=180°-100°=80°,故选D.典例3 (2018出 盐城市期末)如图,AOB ∠与AOC ∠互余,AOD ∠与AOC ∠互补,OC 平分BOD ∠,则AOB∠的度数是()A.20︒B.22.5︒C.25︒D.30°【答案】B【详解】解:∵∠AOB与∠AOC互余,∠AOD与∠AOC互补,∴∠AOB=90°-∠AOC,∠AOD=180°-∠AOC,∴∠BOD=∠AOD-∠AOB=90°,∵OC平分∠BOD,∴∠BOC=45°,∴∠AOC=45°+∠AOB,∴∠AOB=90°-∠AOC=90°-(45°+∠AOB),∴∠AOB=22.5°,故选:B.知识点二角平分线常考四种辅助线:⏹图中有角平分线,可向两边作垂线。

角平分线性质复习

角平分线性质复习

角的平分线的性质一、知识点:1.角的平分线的性质:角的平分线上的点到角两边的距离相等。

图形表示:若CD平分ADB,点P是CD上一点PE AD于点E,PF BD于点F,则PE=PF。

2.角平分线的判定:到角两边距离相等的点在角的平分线上。

若PE AD于点E,PF BD于点F,PE=PF,则PD平分ADB3.角平分线的尺规作图4.三角形三个内角平分线的性质:三角形三条内角平分线交于一点,且这一点到三角形三边的距离相等。

二、经验与提示1.角的平分线是射线,三角形的角平分下线是线段。

2.证明线段相等的方法:1)三角形全等;2)角的平分线的性质。

3.证明角相等的方法:1)三角形全等;2)角的平分线的判定。

三、典型例题:例1:如图,DABC中C=90°,AD平分BAC,点D在BC上,且BC=24,CD:DB=3:5求:D到AB的距离。

解:过D作DE AB于E。

∵AD平分BAC,DE AB,DC AC∴DE=CD∵BC=24,CD:DB=3:5∴CD=24 =9例2:如图,ACB=90°,BD平分ABC 交AC于D,DE AB于E,ED的延长线交BC的延长线于F.求证:AE=CF证明:∵BD平分ABC,DE AB,DC BF∴DE=DC在DADE和DFCD中∴DADE DFCD(ASA)∴AE=CF例3:如图,已知AB=AC,AD=AE,DB与CE 相交于O(1)若DB AC,CE AB,D,E为垂足,试判断点O的位置及OE与OD的大小关系,并证明你的结论。

(2)若D,E不是垂足,是否有着这样的结论?并证明你的结论。

解:(1)∵AB=AC,AD=AE∴BE=CD∵DB AC,CE AB,∴BEO= CDO=90°在DBEO和DCDO中∴DBEO DCDO∴EO=DO∵EO AB,DO AC∴点O在A的平分线上(2)点D,E不是垂足时,(1)的结论仍然成立,连接AO在DABD和DACE中∴DABD DACE ∴B= C∵AB=AC,AD=AE∴EB=CD在DBEO和DCDO中∴DBEO DCDO∴EO=DO在DAEO和DADO中∴DAEO DADO∴EAO= DAO∴O点在A的角平分线上四、练习题1.已知,点P是DABC的角平分线AD上一点,PE AB于E,PF AC于F,则PE=________,AE=_________.点Q在DABC 内,QM BC于点M,QN BA于点N,QM=QN,则点Q在___________________________.2.已知,如图,四边形ABCD内一点P到三边AB、BC、CD的距离相等,则点P的准确位置在____________________________________.3.如果三角形内一点到三条边的距离相等,那么这点是三角形三条_________线的交点。

角的平分线知识点

角的平分线知识点

角的平分线考点扫描掌握角平分线的性质定理和它的逆定理;能够利用它们证明一些相应的问题;理解互逆命题和互逆定理的概念.名师精讲1.角平分线性质定理及其逆定理性质定理:角的平分线上任意点到这个角的两边的距离相等;逆定理:到一个角的两边距离相等的点.在这个角的平分线上.由此可知,角的平分线是到两边的距离相等的所有点的集合.注意:要分清角平分线性质定理和它的逆定理的题设和结论,这两个定理,一个是性质,一个是判定,它们是有区别的,这两个定理的题设和结论正好相反.2.逆命题的定义也可以叙述为:交换一个已知命题的题设和结论所得的新命题叫做已知命题的逆命题.每个命题都有它的逆命题,原命题和逆命题两者是相对的.要注意真命题的逆命题不一定是真命题,假命题的逆命题也不一定是假命题.3.根据一个已知命题表述出它的逆命题是本节的一个难点.这就要求在对原命题深刻理解的基础上,把原命题写成“如果……,那么……”的句式,然后把两部分的内容交换,就得到它的逆命题.说明:中考中单独测验角的平分线的性质的题目较少,往往把角平分线与其它知识组合成较复杂的题目.角平分线的使用一、平分线的应用几何题中,经常出现“已知角的平分线”这一条件。

这个条件一般有下面几个方面的应用:(1)利用“角的平分线上的点到这个角的两边距离相等”的性质,证明两条线段相等。

(2)利用角是轴对称图形,构造全等三角形。

(3)构造等腰三角形。

二、应用举例:1.利用角平分线的定义例1.如图,已知AB=AC,AD//BC,求证AD平分∠EAC。

证明:因AB=AC,故∠B=∠C。

又因AD//BC,故∠1=∠B,∠2=∠C,故∠1=∠2,即AD平分∠EAC。

2.利用等腰三角形三线合一例2.正方形ABCD中,F是CD的中点,E是BC边上的一点,且AE=DC+CE,求证:AF 平分∠DAE。

证明:连结EF并延长,交AD的延长线于G,则ΔFDG≌ΔFCE,故CE=DG,EF=GF,于是AG=AD+DG=DC+CE=AE。

角平分线的性质知识点

角平分线的性质知识点

角平分线的性质一、本节学习指导角平分线的性质有助于我们解决三角形全等相关题型。

其实不仅仅是角平分线,还有三角形的中位线、高、中心都是解决三角形题目有效的途径。

本节有配套免费学习视频。

二、知识要点1、角平分线的定义:从一个角的顶点出发把一个角分成两个相等的角的射线叫做角的平分线。

如下图:0C平分/ AOB•••0C平分/ AOB•••/ AOC M BOC2、角的平分线的性质:角平分线上的点到角的两边的距离相等。

【重点】如第一个图:•••OC平分/ AOB(或/ 仁/ 2), PEL OA,PDLOB••• PD=PE此时我们知道△ OPE^A OPD(直角三角形斜边是OP即公共边,直角边斜边)3、角的平分线的判定:角的内部到角的两边距离相等的点在角的平分线上。

如第一个图:••• PE L OA,PDL OB,PD=PE•••OC T 分/ AOB(或/ 仁/ 2)4、线段的中点的定义:把一条线段分成两条相等的线段的点叫做线段的中点。

如下图:I ---------------1 ---------------- 1A C BVC是AB的中点••• AC=BC5、垂直的定义:两条直线相交所成的四个角中有一个是直角,这两条直线互相垂直。

如图:【重点】V AB丄CD•••/ AOC M AOD M BOC =/ BOD=90或VZ AOC=90••• AB丄CD注意:要判断两条直线垂直,只要知道这两条相交直线所形成的四个角中的一个角是直角就可以了。

反过来,两条直线互相垂直,它们的四个交角都是直角。

6、全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。

•••△ABC^A A'B'C'••• AB=A'B',BC=BC,AC=AC;Z A=Z A', Z B=Z B', Z C=Z C'三、经验之谈:本节的重点是第2点,角平分线的性质,这条性质在以后的几何题型中用的非常多,本章的三角形全等也不例外,如果我们碰到题目中出现角平分线,我们要会利用它的性质。

角平分线点有关的知识点

角平分线点有关的知识点

角平分线点是几何学中一个重要的概念,它与角的平分线和角的内切圆密切相关。

在本文中,我们将逐步探讨角平分线点的定义、性质以及与其他几何概念的关系。

1.角平分线点的定义:角平分线点是指一个角的两条平分线所交的点。

对于一个任意的角,它都有两条平分线,它们相交于一个点,这个点就是角的平分线点。

2.角平分线点的性质:(1)角平分线点在角的内部:根据角的定义,
平分线点一定在角的内部。

(2)角平分线点到角的边的距离相等:角的平分线点到角的两条边的距离相等。

这是因为平分线将角分成两个相等的角,而平分线点到角的边的距离就是角的内部到边的距离,所以距离相等。

(3)角平分线点到角的顶点的距离最短:角平分线点到角的顶点的距离最短。

这是因为角平分线点是两条平分线的交点,而两条平分线的交点到角的顶点的距离是最短的。

3.角平分线点与其他几何概念的关系:(1)角平分线点与角的内切圆:
角的平分线点是角的内切圆的圆心。

内切圆是与角的每一条边都相切的圆,而圆心恰好是角的平分线点。

(2)角平分线点与角的外接圆:角的平分线点是角的外接圆的圆心。

外接圆是过角的每一条边的圆,而圆心正好是角的平分线点。

综上所述,角平分线点是指一个角的两条平分线所交的点。

它具有一些特殊的
性质,如在角的内部、到角的边的距离相等以及到角的顶点的距离最短。

此外,角平分线点还与角的内切圆和外接圆有密切的关系。

通过理解和应用角平分线点的概念和性质,我们可以更好地解决与角平分线点相关的几何问题。

角平分线的性质(4种题型)-2023年新八年级数学核心知识点与常见题型(人教版)(解析版)

角平分线的性质(4种题型)-2023年新八年级数学核心知识点与常见题型(人教版)(解析版)

角平分线的性质(4种题型)【知识梳理】一、角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.要点诠释:用符号语言表示角的平分线的性质定理:若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.二、角的平分线的逆定理角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角的平分线的判定:三、角的平分线的尺规作图角平分线的尺规作图(1)以O为圆心,适当长为半径画弧,交OA于D,交OB于E.(2)分别以D 、E 为圆心,大于DE 的长为半径画弧,两弧在∠AOB 内部交于点C. (3)画射线OC.射线OC 即为所求. 【考点剖析】题型一:角平分线性质定理 例1.(2023春·陕西榆林·八年级校考期末)如图,在四边形ABCD 中,90B C ∠=∠=︒,点E 为BC 的中点,且AE 平分BAD ∠.求证:DE 是ADC ∠的平分线.【详解】证明:如图,过点E 作EF AD ⊥于点F ,∴90B Ð=°,AE 平分BAD ∠,∴BE EF =.∴点E 是BC 的中点,∴BE CE =,∴CE EF =.又∵90C ∠=︒,EF AD ⊥,∴DE 是ADC ∠的平分线.【变式1】(2023春·山西太原·七年级校考阶段练习)如图,ABC 中,90C ∠=︒,AD 平分BAC ∠,5AB =,2CD =,求ABD △的面积.12【答案】5【详解】解:作DE AB ⊥如图,∵AD 平分BAC ∠,90C ∠=︒,2CD =,∴=2CD DE =,1152522ABD S AB DE ∴=⨯⨯=⨯⨯=△.【变式2】(2023春·湖南常德·八年级统考期末)如图,点P 是ABC 的三个内角平分线的交点,若ABC 的周长为24cm ,面积为236cm ,则点P 到边BC 的距离是( )A .8cmB .3cmC .4cmD .6cm【答案】B 【详解】解:过点P 作PD AB ⊥于,PE BC ⊥于E ,PF AC ⊥于F ,如图,∵点P 是ABC 的内角平分线的交点,∴PE PF PD ==,又ABC 的周长为24cm ,面积为236cm ,∴()11112222ABC S AB PD BC PE AC PF PE AB BC AC =⋅+⋅+⋅=++,∴124363PE ⨯⨯=∴3cm PE =【变式3】(湖南省郴州市2022-2023学年八年级下学期期末数学试题)如图,在ABC 中,90ACB ∠=︒,BD 平分ABC ∠,DE AB ⊥于点E .如果8AC =,那么AD DE +=______.【答案】8【详解】解:∵在ABC 中,90ACB ∠=︒,BD 平分ABC ∠,DE AB ⊥,∴CD DE =,∵8AC =,∴8AD DE AD CD AC +=+==, 【变式4】(2023春·广东深圳·七年级统考期末)把两个同样大小的含30︒角的三角尺像如图所示那样放置,其中M 是AD 与BC 的交点,若4CM =,则点M 到AB 的距离为______.【答案】4【详解】解:由题意,得:90,30D C ABC DAB ∠=∠=︒∠=∠=︒,∴,60MC AC CAB ⊥∠=︒,∴30MAC BAC MAB MAB ∠=∠−∠=︒=∠,∴AM 平分DAB ∠,过点M 作MN AB ⊥,交AB 于点N ,∴4MN MC ==.故答案为:4.【变式5】如图,P 为ABC 三条角平分线的交点,PH 、PN 、PM 分别垂直于BC 、AC 、AB ,垂足分别为H 、N 、M .已知ABC 的周长为15cm ,3cm PH =,则ABC 的面积为______2cm .【答案】22.5【详解】解:连接PM 、PN 、PH ,P 为ABC 三条角平分线的交点,PH 、PN 、PM 分别垂直于BC 、AC 、AB ,3cm PM PN PH ∴===,ABC ∴∆的面积ΔAPB =的面积ΔBPC +的面积ΔAPC +的面积111222AB PM BC PH AC PN =⨯⨯+⨯⨯+⨯⨯ 1()32AB BC AC =++⨯222.5(cm )=.七年级校考期末)如图,在ABC 中,【答案】(1)32︒ (2)6【详解】(1)解:∵40B ∠=︒,76C ∠=︒,∴180407664BAC ∠=︒−︒−︒=︒,∵AD 平分BAC ∠, ∴1322BAD BAC ∠=∠=︒;(2)如图,过点D 作DF AB ⊥于点F ,∵AD 平分BAC ∠,DE AC ⊥,∴DF DE =,∵2DE =,6AB =,∴2DF =, ∴ABD △的面积12662=⨯⨯=.题型二:角平分线性质定理及证明 ,且PMN 与OMN 的面积分别是【答案】(1)证明过程见详解(2)20OM ON +=【详解】(1)证明:如图所示,过P 作PC MN PD OA PE OB ⊥⊥⊥,,,∵MP 平分AMN ∠,NP 平分MNB ∠,∴PD PE =,PC PE =,∴PD PE =,∵PD AO PE BO ⊥⊥,,∴OP 平分AOB ∠.(2)解:如图所示,过P 作PC MN PD OA PE OB ⊥⊥⊥,,,连接OP ,∵18162PMN MN S MN PC ===△,,∴4PC =,由(1)可知4PD PE PC ===,∵1624PMN OMN S S ==△△,,∴40MONP S =四边形,即1122OPM ONP MONP S S S OM PD ON PE =+=+△△四边形,∴1140442222OM ON OM ON =⨯+⨯=+,∴20OM ON +=. 【变式1】(2022秋·河南安阳·八年级校考阶段练习)如图,点E 是BC 的中点,AB BC DC BC ⊥⊥,,AE 平分BAD ∠.求证:(1)DE 平分ADC ∠;(2)AD AB CD +=.【详解】(1)证明:如下图,过E 作EF AD ⊥于F ,∵AB BC ⊥,AE 平分BAD ∠,∴EB EF =,∵点E 是BC 的中点,∴EB EC =,∴EF EC =,∵DC BC EF AD ⊥⊥,,∴90EFD ECD ∠∠︒==,在Rt EFD 和Rt ECD △中,EF EC ED ED =⎧⎨=⎩,∴Rt Rt HL EFD ECD ≌(),∴FDE CDE ∠∠=,∴DE 平分ADC ∠;(2)解:由(1)知,Rt Rt EFD ECD ≌,∴FD CD =,在Rt AEF 和Rt AEB 中,EF EB AE AE =⎧⎨=⎩,∴Rt Rt HL AEF AEB ≌(),∴AF AB =,∵AD AF FD +=,∴AD AB CD +=.【变式2】(2022秋·北京朝阳·八年级校考期中)如图,在ABC ∆中,90C ∠=︒,DE AB ⊥,于点E ,AD 平分CAB ∠,点F 在AC 上,BD DF =.求证:BE FC =.【详解】证明:∵AD 平分CAB ∠,90C ∠=︒,DE AB ⊥,∴DE DC =,90C DEB ∠=∠=︒,∴在Rt DEB ∆和Rt DCF ∆中,∵DE DC BD DF =⎧⎨=⎩,∴()HL DEB DCF ∆≅∆,∴BE FC =.(1)求证:BE =CD ;(2)判断点O 是否在∠BAC 的平分线上,并说明理由.(1)证明:BE 、CD 是ABC ∆的高,且相交于点O ,90∴∠=∠=︒BEC CDB ,在BDO ∆和CEO ∆中,90CDB BEC BOD COEBD CE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,BOD COE ∴∆≅∆(AAS),OD OE ∴=,OB OC =,OD OC OE OB ∴+=+,即CD BE =;(2)解:点O 在BAC ∠的平分线上,理由如下: 连接AO ,如图所示:BE 、CD 是ABC ∆的高,且相交于点O , 90ADC AEB ∴∠=∠=︒,由(1)得BE CD =,∴在ABE ∆和ACD ∆中,90ADC AEB CAD BAE CD BE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,ACD ABE ∴∆≅∆(AAS), AD AE ∴=,由(1)得OD OE =,∴在AOD ∆和AOE ∆中,90AD AE ADC AEB OD OE =⎧⎪∠=∠=︒⎨⎪=⎩,AOD AOE ∴∆≅∆(SAS),DAO EAO ∴∠=∠, ∴点O 在BAC ∠的平分线上.题型三:角平分线的判定定理 例3.如图,90B C ∠=∠=︒,M 是BC 的中点,AM 平分DAB ∠,求证:DM 平分ADC ∠.【详解】证明:如图:过点M 作ME AD ⊥,垂足为E ,AM 平分DAB ∠,MB AB ⊥,ME AD ⊥,ME MB =∴(角平分线上的点到角两边的距离相等),又MC MB =,ME MC ∴=,MC CD ⊥,ME AD ⊥,DM ∴平分ADC ∠(到角的两边距离相等的点在这个角的平分线上).【详解】(1)证明:如图,过点E 作EF DA ⊥于点F ,∵90C ∠=︒,DE 平分ADC ∠,∴CE EF =,∵E 是BC 的中点,∴BE CE =,∴BE EF =,又∵90B Ð=°,EF DA ⊥,∴AE 平分DAB ∠.(2)解:∵EF DA ⊥,90C ∠=︒,∴EFD △和ECD 都为Rt △,又∵DE 平分ADC ∠,∴EC EF =,在Rt EFD 和Rt ECD △中,ED ED EC EF =⎧⎨=⎩,∴()Rt Rt HL EFD ECD △≌△, ∴EFD ECD S S =△△,CED FED ∠=∠,∵EF DA ⊥,90B Ð=°,∴EFA △和EBA △都为Rt △,又∵AE 平分DAB ∠,∴EF EB =,在Rt EFA △和Rt EBA △中,EA EA EF EB =⎧⎨=⎩,∴()Rt Rt HL EFA EBA △≌△, ∴EFA EBA S S =△△,FEA BEA ∠=∠, ∴()111809022DEA DEF AEF CEF BEF ∠=∠+∠=∠+∠=⨯︒=︒, ∵4AE =,3DE =, ∴1143622AED S AE DE =⋅=⨯⨯=△, ∴EFD ECD EFA EBA ABCD S S S S S =+++△△△△四边形EFD EFD EFA EFA S S S S =+++△△△△()2EFD EFA S S =+△△2AED S =△ 26=⨯12=.∴四边形ABCD 的面积为12. 【变式2】如图,在AOB 和COD △中,OA OB =,OC OD =(OA OC <),AOB COD α∠=∠=,直线AC ,BD 交于点M ,连接OM .(1)求证:AC BD =;(2)用α表示AMB ∠的大小;(3)求证:OM 平分AMD ∠.【详解】(1)证明:AOB COD α∠=∠=,AOB BOC COD BOC ∴∠+∠=∠+∠,即AOC BOD ∠=∠,在AOC 和BOD 中,OA OB AOC BODOC OD =⎧⎪∠=∠⎨⎪=⎩,()SAS AOC BOD ∴≌, ∴AC BD =,(2)解:由三角形的外角性质得:AMB OBD OAC AOB ∠+∠=∠+∠,由(1)得()SAS AOC BOD ≌△△,∴OAC OBD ∠=∠,AMB AOB α∴∠=∠=,(3)证明:作OG AM ⊥于G ,OH DM ⊥于H ,如图所示,则90OGA OHB ∠=∠=︒,在OAG △和OBH △中,OGA OHB OAC OBDOA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS OAG OBH ∴≌, OG OH ∴=,OG AM ⊥于G ,OH DM ⊥于H ,MO ∴平分AMD ∠,是ABC 的角平分线,且交于点(1)APB ∠=______.(2)求证:点P 在C ∠的平分线上.【详解】(1)解:证明:60C ∠=︒,AE ,BD 是ABC 的角平分线,12ABP ABC ∴∠=∠,12BAP BAC ∠=∠,11()(180)6022BAP ABP ABC BAC C ∴∠+∠=∠+∠=︒−∠=︒, 120APB ∴∠=︒;(2)如图,过P 作PF AB ⊥,PG AC ⊥,PH BC ⊥,AE ,BD 分别平分CAB ∠,CBA ∠,PF PG ∴=,PF PH =,PH PG ∴=,∴点P 在C ∠的平分线上;(3)如图,在AB 上取点M 使AM AD =,连接PM ,AE 是BAC ∠的平分线,PAM PAD ∴∠=∠, 在AMP 与ADP △中,AP AP PAM PADAM AD =⎧⎪∠=∠⎨⎪=⎩,()SAS AMP ADP ∴≌, 18060APM APD APB ∴∠=∠=︒−∠=︒,180()60BPM APM APD ∴∠=︒−∠+∠=︒,60BPE APD ∠=∠=︒,BPM BPE ∴∠=∠,BD Q 是ABC ∠的角平分线,MBP EBP ∴∠=∠,在BPM △与BPE 中,MBP EBP BP BPBPE BPM ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA BPM BPD ∴≌,BM BE ∴=, AB AM BM AD BE ∴=+=+. (1)如图1,连接AC BD ,,交点为G ,连接OG ,求证:①AC BD =;②OG 平分DGC ∠;(2)如图2,若90AOD BOC ∠=∠=︒,E 是CD 的中点,过点在同一条直线上.∴AOD AOB BOC AOB ∠+∠=∠+∠,∴AOB AOC ∠=∠,又∵OA OD =,OB OC =,∴()SAS DOB AOC V V ≌,∴AC BD =;②如图所示,过点O 作OH DB ⊥于点H ,OF AC ⊥于点F ,∵DOB AOC ≌,OH DB ⊥,OF AC ⊥∴OH OF =,∴点O 在DGC ∠的角平分线上,∴OG 是DGC ∠的角平分线,∴OG 平分DGC ∠;(2)证明:连接OE ,并延长到N ,使NE OE =,连接CN ,∵E 是CD 的中点,∴CE DE =,又∵CEN DEO ∠=∠,NE OE =,∴()SAS CEN DEO ∠V V ≌,∴NCE ODE ∠=∠,CN OD =,∴CN OD ∥,∴180OCN COD CN OA ∠+∠=︒=,,90AOD BOC ∠=∠=︒,180AOB COD ∴∠+∠=︒,OCN AOB ∴∠=∠,在ONC 和BAO 中,OC OB OCN AOBCN OA =⎧⎪∠=∠⎨⎪=⎩,()SAS ONC BAO ∴≌, NOC ABO ∴∠=∠,OF AB ⊥,90ABO BOF ∴∠+∠=︒,90NOC BOF ∴∠+∠=︒,180NOC BOF BOC ∴∠+∠+∠=︒,∴点E O F ,,在同一条直线上.题型四:尺规作图—作角平分线 例4.(2023春·陕西榆林·七年级校考期末)如图,已知ABC ,利用尺规,在AC 边上求作一点D ,使得ABD DBC ∠=∠.(保留作图痕迹,不写作法)【详解】解:如图点D 即为所求..【变式1】(2023春·福建福州·七年级福建省福州第十九中学校考期末)如图,Rt ABC △中,90BAC ∠=︒,AD 为BC 边上的高.(1)尺规作图,在AB 边上求作点P ,使得点P 到边BC 的距离等于AP (保留作图痕迹,不写做法):(2)连接CP (P 为所求作的点)交AD 于点Q ,若30B ∠=︒,求AQC ∠的度数.【详解】(1)解:如图:点P 即为所求;作法:作ACB ∠的角平分线,与AB 的交点P 即为所求;理由:∵CP 是ACB ∠的角平分线,∴点P 到AC 的距离等于点P 到BC 的距离,∵90BAC ∠=︒,∴点P 到AC 的距离即为PA 的值,故点P 到边BC 的距离等于AP .(2)解:如图:∵90BAC ∠=︒,30B ∠=︒,∴180903060ACB ∠=︒−−︒=︒,又∵AD 为BC 边上的高,∴90ADC ∠=︒,∴180906030DAC ∠=︒−−︒=︒,由(1)可知CP 是ACB ∠的角平分线, ∴1302ACQ QCD ACB ∠=∠=∠=︒,∴1803030128001ACQ DAC AQC ∠−∠=︒−︒−︒=︒∠=︒−. 【变式2】(2023·甘肃兰州·统考中考真题)综合与实践问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”即:作一个已知角的平分线,如图2是欧几里得在《几何原本》中给出的角平分线作图法:在OA 和OB 上分别取点C 和D ,使得OC OD =,连接CD ,以CD 为边作等边三角形CDE ,则OE 就是AOB ∠的平分线.请写出OE 平分AOB ∠的依据:____________;类比迁移:(2)小明根据以上信息研究发现:CDE 不一定必须是等边三角形,只需CE DE =即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3,在AOB ∠的边OA ,OB 上分别取OM ON =,移动角尺,使角尺两边相同刻度分别与点M ,N 重合,则过角尺顶点C 的射线OC 是AOB ∠的平分线,请说明此做法的理由;拓展实践:(3)小明将研究应用于实践.如图4,校园的两条小路AB 和AC ,汇聚形成了一个岔路口A ,现在学校要在两条小路之间安装一盏路灯E ,使得路灯照亮两条小路(两条小路一样亮),并且路灯E 到岔路口A 的距离和休息椅D 到岔路口A 的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规..........在对应的示意图5中作出路灯E 的位置.(保留作图痕迹,不写作法)【详解】解:(1)∵OC OD =,CE DE =,DE DE =,∴()SSS OCE ODE ≌,∴AOE BOE ∠=∠,∴OE 是AOB ∠的角平分线;故答案为:SSS(2)∵OM ON =,CM CN =,OC OC =,∴()SSS OCM OCN ≌,∴AOC BOC ∠=∠,∴OC 是AOB ∠的角平分线;(3)如图,点E 即为所求作的点;. 【变式3】(2023春·重庆九龙坡·七年级校考期末)如图,已知在ABC 中,90BAC ∠=︒,AD BC ⊥于点D .(1)尺规作图:作ABC ∠的平分线交AC 于点E ,交AD 于点F ;(要求:保留作图痕迹,不写作法,不下结论)(2)在(1)的条件下,求证:AFE AEF ∠=∠.AD BC ⊥90ADB ∴∠=︒∴__________90BFD +∠=︒又BFD ∠=__________FBD ∴∠+__________90=︒90BAC ∠=︒ABF ∴∠+__________90=︒BF 平分ABC ∠ABF ∴∠=__________AFE AEF ∴∠=∠.【详解】(1)如图所示,(2)AD BC ⊥90ADB ∴∠=︒∴FBD ∠90BFD +∠=︒又BFD ∠=AEF ∠FBD ∴∠+AEF ∠90=︒90BAC ∠=︒ABF ∴∠+AFE ∠90=︒ BF 平分ABC ∠ABF ∴∠=FBD ∠AFE AEF ∴∠=∠.故答案为:FBD ∠;AEF ∠;AEF ∠;AFE ∠;FBD ∠.【过关检测】一、单选题 1.(2023春·四川泸州·八年级统考期末)如图,70AOB ∠=︒,点C 是AOB ∠内一点,CD OA ⊥于点D ,CE OB ⊥于点E .且CD CE =,则DOC ∠的度数是( )A .30︒B .35︒C .40︒D .45︒【答案】B【分析】根据角平分线的判定定理可得OC 平分AOB ∠,再计算角度.【详解】解:∵CD OA ⊥,CE OB ⊥,CD CE =,∴OC 平分AOB ∠, ∴1352DOC AOB ∠=∠=︒,故选C .【点睛】本题主要考查了角平分线的判定,注意:到角的两边距离相等的点在角平分线上. 2.(陕西省榆林市高新区2022-2023学年七年级下学期期末数学试题)如图,在Rt ABC △中,ABC ∠的平分线BD 交AC 于点D ,过点D 作DE AB ⊥交AB 于点E .若9cm CD =,则点D 到AB 的距离是( )A .9cmB .6cmC .4.5cmD .3cm【答案】A 【分析】根据角平分线的性质,角平分线上的点到角两边的距离相等,即可求解.【详解】∵BD 平分ABC ∠,DE AB ⊥,AC BC ⊥,∴9DC DE ==,∴点D 到AB 的距离是9cm .故选:A .【点睛】本题考查角平分线的性质,解题的关键是掌握角平分线的性质.3.(2023春·河南焦作·七年级校考期末)如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 的长不可能是( )【答案】A【分析】根据余角的性质可得ABD CBD ∠=∠,即BD 平分ABC ∠,作DE BC ⊥于E ,则3AD DE ==,再根据垂线段最短即可得到答案.【详解】解:∵90A ∠=︒,BD CD ⊥,∴90,90ABD ADB CBD C ∠+∠=︒∠+∠=︒,∵ADB C ∠=∠,∴ABD CBD ∠=∠,即BD 平分ABC ∠,作DE BC ⊥于E ,则3AD DE ==,∵P 是BC 边上一动点,则DP DE ≥,即3DP ≥,∴DP 的长不可能是52;故选:A .【点睛】本题考查了直角三角形的性质和角平分线的性质,得出BD 平分ABC ∠是解题的关键.A .12∠=∠且CM DM =B .13∠=∠且CM DM =C .12∠=∠且OD DM =D .23∠∠=且OD DM =【答案】A 【分析】由作图过程可得:,OD OC CM DM ==,再结合DM DM =可得()SSS COM DOM ≌,由全等三角形的性质可得12∠=∠即可解答.【详解】解:由作图过程可得:,OD OC CM DM ==,∵DM DM =,∴()SSS COM DOM ≌.∴12∠=∠.∴A 选项符合题意;不能确定OC CM =,则13∠=∠不一定成立,故B 选项不符合题意;不能确定OD DM =,故C 选项不符合题意,OD CM ∥不一定成立,则23∠∠=不一定成立,故D 选项不符合题意.故选A .【点睛】本题主要考查了角平分线的尺规作图、全等三角形的判定与性质等知识点,理解尺规作图过程是解答本题的关键. ,ABC 的面积为,则ABC 的周长为( A .4B .6C .24D .12【答案】C 【分析】过点E 作EF AB ⊥,垂足为F ,过点E 作EG AC ⊥,垂足为G ,根据角平分线的性质可得1EG EF ED ===,然后根据三角形的面积公式进行计算即可解答.【详解】解:过点E 作EF AB ⊥,垂足为F ,过点E 作EG AC ⊥,垂足为G ,∵BE 平分ABC ∠,ED BC ⊥,EF AB ⊥,∴1EF ED ==,∵CE 平分ACB ∠,ED BC ⊥,EG AC ⊥,∴1ED EG ==,∴ABC 的面积ABE =的面积BEC +△的面积AEC +△的面积()11111122222AB EF BC ED AC EG AB BC AC =⋅+⋅+⋅=⨯⨯++=,∴24AB BC AC ++=,即ABC 的周长为24.故选:C .【点睛】本题考查了角平分线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.A .3PD =B .3PD <C .3PD ≤ D .3PD ≥【答案】D 【分析】根据角平分线的性质得到3PF =,再根据垂线段最短即可解答.【详解】解:过点P 作PE AB ⊥于点E ,过点P 作PF BC ⊥于点F ,∵点P 在ABC ∠的平分线上,∴PE PF =, ∵3PE =,∴3PF =,∴根据垂线段最短可知:3PD ≥,故选D .【点睛】本题考查了角平分线的性质,垂线段最短,掌握角平分线的性质是解题的关键. 八年级统考期末)如图,在ABC 中, A .83 B .43 【答案】D【分析】由题意可求DC 的长,由角平分线的性质可求解.【详解】解:如图,过点D 作DH AB ⊥,垂足为H ,∵143AC DC AC ==,,∴1DC =,∵BD 平分ABC ∠,90C DH AB =︒∠,⊥,∴1CD DH ==,∴点D 到AB 的距离等于1,故选:D .【点睛】本题考查了角平分线的性质,熟练运用角平分线的性质是本题的关键.8.(2023春·湖南娄底·八年级统考期末)如图,三条公路把A ,B ,C 三个村庄连成一个三角形区域,现决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在( )A .三角形三个内角的角平分线的交点B .三角形三条边的垂直平分线的交点C .三角形三条高的交点D .三角形三条中线的交点【答案】A 【分析】根据角平分线上的点到角的两边的距离相等解答即可.【详解】解:根据角平分线的性质,集贸市场应建在三个角的角平分线的交点处.故选:A .【点睛】本题主要考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.9.(2023春·陕西榆林·八年级统考期末)如图,OD 平分AOB ∠,DE AO ⊥于点E ,5DE =,F 是射线OB 上的任意一点,则DF 的长度不可能是( )【答案】A 【分析】过D点作DH OB ⊥于H ,根据角平分线的性质得5DH DE ==,再利用垂线段最短得到5DF ≥,然后对各个选项进行判断即可,【详解】过D点作DH OB ⊥于H ,OD 平分AOB ∠,DE OA ⊥,DH OB ⊥,5DH DE ∴==,DF DH ≥,5DF ∴≥,故选A【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等,也考查了垂线段最短,掌握角平分线的性质是解题的关键. 10.(2023春·河南开封·七年级统考期末)如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,DE AB ⊥于E ,则下列结论:①DE CD =;②AD 平分CDE ∠;③BAC BDE ∠=∠;④BE AC AB +=,其中正确的是( )A .1个B .2个C .3个D .4个【答案】D 【分析】①根据角平分线的性质得出结论:DE CD =;②证明ACD AED △≌△,得AD 平分CDE ∠;③由四边形的内角和为360︒得180CDE BAC ∠+∠=︒,再由平角的定义可得结论是正确的;④由ACD AED ∆≅∆得AC AE =,再由AB AE BE =+,得出结论是正确的.【详解】解:①90C ∠=︒,AD 平分BAC ∠,DE AB ⊥,DE CD ∴=;所以此选项结论正确;②DE CD =,AD AD =,90ACD AED ∠=∠=︒,ACD AED ∴≌,ADC ADE ∴∠=∠,AD ∴平分CDE ∠,所以此选项结论正确;③90ACD AED ∠=∠=︒,3609090180CDE BAC ∴∠+∠=︒−︒−︒=︒,180BDE CDE ∠+∠=︒,BAC BDE ∴∠=∠,所以此选项结论正确;④ACD AED ≌,AC AE ∴=,AB AE BE =+,BE AC AB ∴+=,所以此选项结论正确;本题正确的结论有4个,故选D .【点睛】本题考查了全等三角形性质和判定,同时运用角平分线的性质得出两条垂线段相等;本题难度不大,关键是根据HL 证明两直角三角形全等,根据等量代换得出线段的和,并结合四边形的内角和与平角的定义得出角的关系.二、填空题 七年级统考期末)如图,在ABC 中,ABC 的内部相交于点 【答案】5【分析】先根据尺规作图描述得出AD 为BAC ∠的角平分线,再根据角平分线的性质得到点D 到AB 的距离5DE =,进而求出三角形的面积.【详解】由作法得AD 平分BAC ∠,如图所示,过点D 作DE AB ⊥于E ,∵90ACB ∠=︒,根据角平分线的性质,得43DC DE ==,ABD ∴的面积114102233AB DE AB =⋅⋅=⨯⨯=. ∴5AB =,故答案为:5.【点睛】本题考查角平分线的性质,解决本题的关键是熟知角平分线的性质并灵活应用.【答案】2【分析】根据尺规作图可得BF 平分ABC ∠,再利用角平分线的性质定理可得出2DF CF ==,最后根据垂线段最短即可得出FH 的最小值是2.【详解】解:如图,过点F 作FD AB ⊥于D .由作图可知,BF 平分ABC ∠,∵FC BC ⊥,FD AB ⊥,∴2DF CF ==.根据垂线段最短可知,FH 的最小值为DF 的长,即为2.故答案为:2.【点睛】本题主要考查角平分线的性质,垂线段最短,解题的关键在于能够准确判断出BF 是ABC ∠的角平分线.13.(2023春·重庆沙坪坝·七年级重庆八中校考期末)如图,Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,E 为线段AC 上一点,连接DE ,且B CED ∠=∠.若16AB =,6CE =,则AE 的长为________.【答案】4【分析】过点D 作DF AB ⊥于点F ,由角平分线的性质得出DC DF =,证明DCE DFB ≌,得出BF CE =,求出AF ,由HL 证明Rt Rt ADC ADF ≌,得出AC AF =,即可求出结果.【详解】解:过点D 作DF AB ⊥于点F ,如图所示:∵90C ∠=︒,AD 平分BAC ∠交BC 于点D ,,∴DC DF =,在DCE △和DFB △中,90=BFD DCE B CEDDC DF ∠=∠=︒⎧⎪∠=∠⎨⎪⎩,∴()AAS DCE DFB ≌,∴6BF CE ==,∴10AF AB BF =−=,在Rt ADC 与Rt ADF 中,==DC DF AD AD ⎧⎨⎩,∴Rt Rt ADC ADF ≌,∴10AC AF ==,∴1064AE AC CE =−=−=.故答案为:4.【点睛】此题考查全等三角形的判定和性质和角平分线的性质,解题的关键是作出辅助线,构造全等三角形,根据HL 证明直角三角形的全等解答.【答案】30【分析】由作图可知OC 是AOB ∠的角平分线,根据角平分线的定义即可得到答案.【详解】解:由题意可知,OC 是AOB ∠的角平分线,∴11603022AOC AOB ∠=∠=⨯︒=︒.故答案为:30【点睛】此题考查角平分线的作图、角平分线相关计算,熟练掌握角平分线的作图是解题的关键.,则POD 的面积是【答案】6【分析】过点P 作PF OB ⊥交OB 于点F ,由作图可知OP 是AOB ∠的平分线,根据角平分线的性质得3PF PC ==,即可求得POD 的面积.【详解】解:如图,过点P 作PF OB ⊥交OB 于点F ,由作图可知,OP 是AOB ∠的平分线,∵PC OA ⊥,PF OB ⊥,∴3PF PC ==,∴POD 的面积为:162OD PF ⋅=,故答案为:6.【点睛】本题考查了尺规作角平分线以及角平分线的性质定理:角平分线上的点到角两边的距离相等.16.(2023春·山东泰安·七年级统考期末)如图,在锐角ABC 中,60BAC ∠=︒,BE 、CD 为ABC 的角平分线.且BE 、CD 交于点F ,连接AF .有下列四个结论:①120BFC ∠=︒;②BD CE =;③BC BD CE =+;④FBD FEC FBC S S S +=△△△.其中结论正确的序号是__________ .【答案】①③④【分析】根据角平分线的定义和三角形内角和定理求出BFC ∠;在BC 上取BM BD =,证明()SAS DBF MBF ≌△△,再证明()ASA MCF ECF ≌△△;过点F 作FG AB ⊥于点G ,FH AC ⊥于点H ,FK BC ⊥于点K ,根据角平分线的性质和三角形面积公式分别对各个结论进行判断即可.【详解】解:∵ABC 的两条角平分线BE 和CD 交于点F ,60BAC ∠=︒,∴FBC FCB∠+∠()12ABC ACB =∠+∠()11802BAC ︒=−∠()1180602=⨯︒−︒60=︒, ∴()180********BFC FBC FCB ∠=︒−∠+∠=︒−︒=︒,故结论①正确; ∴18060BFD BFC CFE Ð=°-Ð=°=Ð,在BC 上取BM BD =,∵BE 平分ABC ∠,∴DBF MBF Ð=Ð,在DBF 和MBF V 中,BD BM DBF MBFBF BF =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS DBF MBF ≌△△, ∴60BFD BFM ∠=∠=︒,∴1206060CFM BFC BFM ∠=∠−∠=︒−︒=︒,∴60CFM CFE ∠=∠=︒,∵CD 平分ACB ∠,∴MCF ECF ∠=∠,在MCF △和ECF △中,CFM CFE CF CFMCF ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA MCF ECF ≌△△, ∴CM CE =,∴BC BM CM BD CE =+=+,故结论③正确;∵没有条件得出点M 是BC 的中点,∴不能得出BD 与CE 一定相等,故结论②错误;过点F 作FG AB ⊥于点G ,FH AC ⊥于点H ,FK BC ⊥于点K ,∵BE 、CD 为ABC 的角平分线,∴FG FK =,FK FH =,∴FG FK FE ==, ∵12FBD S BD FG =⋅△,12FEC S EC FH =⋅△,12FBC S BC FK =⋅△,∴FBD FEC S S +△△1122BD FG EC FH =⋅+⋅ 1122BM FK MC FK =⋅+⋅ ()12BM MC FK =+⋅ 12BC FK =⋅FBC S =△,∴FBD FEC FBC S S S +=△△△,故结论④正确,∴结论正确的序号是①③④.故答案为:①③④.【点睛】本题考查角平分线的性质,全等三角形的判定与性质,三角形内角和定理,三角形的面积,作出辅助线构造全等三角形是解题的关键.三、解答题 17.(2023春·重庆江北·七年级统考期末)完成下面的解答过程,并填上适当的理由.已知:如图,DE BC ∥,BD 平分ABC ∠,EF 平分AED ∠.解: ∵DE BC ∥(已知)∴ABC AED ∠=∠( ① ).∵BD 平分ABC ∠,EF 平分∠∴112ABC ∠=∠,122AED ∠=∠【答案】两直线平行,同位角相等 2∠ 等量代换 同位角相等,两直线平行【分析】先分析角的位置关系,根据平行线的性质及判定定理,即可写出答案.【详解】证明:∵DE BC ∥(已知),∴ABC AED ∠=∠.∵BD 平分ABC ∠,EF 平分AED ∠,∴112ABC ∠=∠,122AED ∠=∠.∴12∠=∠(等量代换).∴EF BD ∥(同位角相等,两直线平行).故答案为:两直线平行,同位角相等 ; 2∠ ;等量代换 同位角相等,两直线平行.【点睛】本题主要考查平行线的性质(两直线平行,同位角相等),及平行线的判定方法(同位角相等,两直线平行).牢记平行线的性质和判定方法是解题的关键.18.(2023春·山东泰安·七年级统考期末)如图,在AOB 和COD △中,OA OB =,OC OD =,OA OC <,36AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM .求证:(1)36AMB ∠=︒;(2)MO 平分AMD ∠.【答案】(1)证明见解析 (2)证明见解析【分析】(1)证明()SAS AOC BOD ≌△△,由三角形全等的性质得出OAC OBD ∠=∠,由三角形的外角性质得:AMB OBD OAC AOB ∠+∠=∠+∠,可得出AMB ∠的度数;(2)作OG AC ⊥于G ,OH BD ⊥于H ,利用全等三角形对应边上的高相等,得出OG OH =,由角平分线的判定方法即可得证.【详解】(1)证明:∵36AOB COD ∠=∠=︒,∴AOB BOC COD BOC ∠+∠=∠+∠,即AOC BOD ∠=∠,在AOC 和BOD 中,OA OB AOC BODOC OD =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS AOC BOD ≌△△, ∴OAC OBD ∠=∠,∵AEB ∠是AOE △和BME 的外角∴AEB AMB OBD AOB OAC ∠=∠+∠=∠+∠,∴36AMB AOB ∠=∠=︒;(2)如图所示,作OG AC ⊥于G ,OH BD ⊥于H ,∴OG 是AOC 中AC 边上的高,OH 是BOD 中BD 边上的高,由(1)知:AOC BOD ≌,∴OG OH =,∴点O 在AMD ∠的平分线上,即MO 平分AMD ∠.【点睛】本题考查全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识.证明三角形全等是解题的关键. 七年级统考期末)如图,在ABC 中, (2)18【分析】(1)根据BD 平分ABC ∠,CD 平分ACB ∠得12DBC ABC ∠=∠,12DCB ACB ∠=∠,根据40ABC ∠=︒,70ACB ∠=︒得140202DBC ∠=⨯︒=︒,170352DCB ∠=⨯︒=︒,根据三角形内角和定理即可得;(2)过点D 作DF BC ⊥于点F ,根据BD 平分ABC ∠,DE AB ⊥,DF BC ⊥得DE DF =,根据4DE =得4DF =,即可得.【详解】(1)解:∵BD 平分ABC ∠,CD 平分ACB ∠,∴12DBC ABC ∠=∠,12DCB ACB ∠=∠,∵40ABC ∠=︒,70ACB ∠=︒,∴140202DBC ∠=⨯︒=︒,170352DCB ∠=⨯︒=︒,∴在BCD △中,1802035125BDC ∠=︒−︒−︒=︒;(2)解:过点D 作DF BC ⊥于点F ,∵BD 平分ABC ∠,DE AB ⊥,DF BC ⊥,∴DE DF =,∵4DE =,∴4DF =,∵9BC =, ∴11S 941822BCD BC DF =⨯⨯=⨯⨯=△.【点睛】本题考查了角平分线,三角形内角和定理,三角形的面积,解题的关键是理解题意,掌握这些知识点. 八年级假期作业)如图,在ABC 中, 【答案】6cm CD =,34B ∠=︒【分析】根据角平分线的性质可得CD DE =,28BAD CAD ∠=∠=︒,再根据直角三角形的两个锐角互余即可求出B ∠的度数.【详解】解:∵ABC 中,90C ∠=︒,AD 平分BAC ∠,DE AB ⊥,∴6cm CD DE ==,28BAD CAD ∠=∠=︒,∴256BAC CAD ∠=∠=︒,∴9034B CAD ∠=︒−∠=︒.【点睛】本题考查了角平分线的性质定理和直角三角形的两个锐角互余,属于基础题型,熟练掌握角平分线的点到一个角的两边距离相等是解题关键.21.(2023春·广西南宁·七年级南宁十四中校考期末)如图,已知ABC .(1)尺规作图:作BAC ∠的角平分线交BC 于点G (不写作法,保留作图痕迹);(2)如果6AB =,10AC =,ABG 的面积为18,求ACG 的面积.【答案】(1)见解析(2)30【分析】(1)根据角平分线的尺规作图方法作图即可;(2)如图所示,过点G 作GE AB GF AC ⊥⊥,垂足分别为E 、F ,证明AEF AFG △≌△,得到EG FG =,根据面积法求出6EG FG ==,再根据三角形面积公式求解即可.【详解】(1)解:如图所示:(2)解:如图所示,过点G 作GE AB GF AC ⊥⊥,垂足分别为E 、F ,∴90AEG AFG ∠=∠=︒,∵AG 是BAC ∠的角平分线,∴EAG FAG ∠=∠,又∵AG AG =,∴()AAS AEF AFG △≌△,∴EG FG =;∵6AB =,ABG 的面积为18,∴1182AB EG ⋅=,即16182EG ⨯=,∴6EG =,∴6EG FG ==,∴111063022ACG S AC FG =⋅=⨯⨯=△.【点睛】本题主要考查了全等三角形的性质与判定,三角形面积,角平分线的尺规作图,角平分线的定义等等,灵活运用所学知识是解题的关键. 22.(2023春·山西太原·七年级统考期末)如图,在ABC 中,AD 是它的角平分线,DE AB ⊥于点,E DF AC ⊥于点F ,且BE CF =.线段BD 与CD 相等吗?说明理由.【答案】BD CD =,见解析【分析】根据角平分线的性质得出DE DF =,根据垂直定义得出90DEB DFC ∠=∠=︒,根据SAS 证明DFC △D E B ≌△,得出BD CD =即可.【详解】解:BD CD =;理由如下:∵AD 是BAC ∠的角平分线,DE AB ⊥,DF AC ⊥,∴DE DF =,∵DE AB ⊥,DF AC ⊥,∴90DEB DFC ∠=∠=︒,又∵BE CF =,∴DFC △DE B ≌△, ∴BD CD =.【点睛】本题主要考查了角平分线的性质,垂线定义理解,三角形全等的判定和性质,解题的关键是熟练掌握三角形全等的判定方法,证明DFC △DE B ≌△. 23.(重庆市大渡口区2022-2023学年七年级下学期期末数学试题)如图,AD BC ∥,180B BCD ∠+∠=︒.(1)用直尺和圆规完成以下基本作图:过点A 作BAD ∠的角平分线,交CD 于点F ,与BC 的延长线交于点E ;(不写做法,保留作图痕迹)(2)求证:CFE FEC ∠=∠.证明:∵AD BC ∥(已知),∴DAF FEC ∠=∠(①__________). ∵AE 平分BAD ∠,∴②__________(角平分线的定义). ∴BAE FEC ∠=∠(③__________). ∵180B BCD ∠+∠=︒(已知), ∴④__________(⑤__________). ∴BAE CFE ∠=∠(两直线平行,同位角相等). ∴CFE FEC ∠=∠(等量代换). 【答案】(1)见解析(2)见解析【分析】(1)利用基本作图作BAD ∠的平分线即可;(2)先根据平行线的性质得到DAF FEC ∠=∠,再利用角平分线的定义得到BAE DAF ∠=∠,则BAE FEC ∠=∠,接着证明AB CD ∥得到BAE CFE ∠=∠,然后利用等量代换得到CFE FEC ∠=∠.【详解】(1)解:如图,BE 为所作;(2)证明:AD BC ∥(已知), DAF FEC ∴∠=∠(两直线平行,内错角相等).AE 平分BAD ∠,BAE DAF ∴∠=∠(角平分线的定义),BAE FEC ∴∠=∠(等量代换).180B BCD ∠+∠=︒(已知),AB CD ∴∥(同旁内角互补,两直线平行).BAE CFE ∴∠=∠(两直线平行,同位角相等).CFE FEC ∴∠=∠(等量代换).【点睛】本题考查了作图−基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了角平分线的性质和平行线的判定与性质. 七年级校考阶段练习)如图,ABC 中, 若BCG 的面积为,则ABC 的面积为【答案】(1)120︒(2)3(3)6【分析】(1)根据作图方法可得BG 是ABC ∠的角平分线,则1302ABG ABC ==︒∠∠,再由三角形外角的性质可得120BGC A ABG =+=︒∠∠;(2)如图所示,过点G 作GD BC ⊥于D ,先求出3AG AC CG =−=,再证明ABG DBG △≌△,得到3DG AG ==,根据垂线段最短可知线段H G 的最小值为3;(3)证明BDG CDG △≌△,得到122BDG CDG BCG S S S ===△△△,进而求出2BDG ABG S S ==△△,则6ABC ABG CBG S S S =+=△△△.【详解】(1)解:由作图方法可知BG 是ABC ∠的角平分线, ∴1302ABG ABC ==︒∠∠,∵90A ∠=︒,∴120BGC A ABG =+=︒∠∠,故答案为:120︒;(2)解:如图所示,过点G 作GD BC ⊥于D ,∴90BAG BDG ==︒∠∠,∵96AC CG ==,,∴3AG AC CG =−=,∵BG 是ABC ∠的角平分线,∴ABG DBG ∠=∠,又∵BG BG =,∴()AAS ABG DBG △≌△,∴3DG AG ==,∵H 是边BC 上一动点,∴当点H 与点D 重合时,HG 最小,∴线段HG 的最小值为3, 故答案为:3;(3)解:∵BG 是ABC ∠的角平分线,∴30ABG DBG ==︒∠∠,∵9030C ABC ∠=︒−∠=︒,∴GBD C ∠=∠,又∵90DG DG BDG CDG ===︒,∠∠,∴()AAS BDG CDG △≌△, ∴122BDG CDG BCG S S S ===△△△,∵ABG DBG △≌△,∴2BDG ABG S S ==△△,∴6ABC ABG CBG S S S =+=△△△,故答案为:6.【点睛】本题主要考查了全等三角形的性质与判定,三角形内角和定理,三角形外角的性质,角平分线的定义,角平分线的尺规作图等等,正确作出辅助线构造全等三角形是解题的关键. 七年级统考期末)ABC 中, (2)如图2,若ABC 是锐角三角形.过点FED ∠,EDB ∠与ABC ∠ (3)若ABC 是钝角三角形,其中FED ∠,EDB ∠与ABC ∠之间的数量关系.【答案】(1)45 (2)12BDE FED ABC ∠=∠+∠,证明见解析 (3)12ABC BDE DEF ∠=∠+∠【分析】(1)首先证明AED ABC ∠=∠得到DE BC ∥,得到EDB DBC ∠=∠,再根据角平分线的定义得到1452DBC ABC ∠=∠=︒,即可证明;(2)延长ED 、BC 交于G ,利用平行线的性质得FED G ∠=∠,再利用三角形外角的性质可得结论;(3)由(2)同理解决问题.【详解】(1)解:DE AB ∵⊥,90AED ∴∠=︒.90ABC ∠=︒,AED ABC ∴∠=∠.DE BC ∴∥.EDB DBC ∴∠=∠.BD Q 平分ABC ∠,1452DBC ABC ∴∠=∠=︒.45EDB ∴∠=︒.(2)如图,12BDE FED ABC ∠=∠+∠,理由如下:延长ED 、BC 交于G ,EF BC ∥,FED G ∴∠=∠,BD Q 平分ABC ∠,。

初中数学角平分线的性质知识点

初中数学角平分线的性质知识点

初中数学角平分线的性质知识点
初中数学中,角平分线是一个重要的概念。

下面我们来探讨一下角平分线的性质。

一、角平分线的定义
角平分线是指把一个角平分为两个相等的角的线段。

二、角平分线的性质
1.角平分线与角的两边相交于角的顶点,并把角分为两个相等的角。

2.角平分线所在的平面上,与角的两边的延长线交于一点,这个点称为角的外心。

3.角平分线上的每一个点到角的两边的距离相等。

4.角平分线上的每一个点到角的外心的距离相等。

5.对于同一个角,高度相等的两条角平分线相交于角的外心。

6.角平分线将一个角分为两个相等的角,但是并不一定把一个平面分为两个相等的部分。

三、角平分线的性质应用
1.根据角平分线的定义和性质,可以帮助我们判断一个线段是否为角的平分线。

2.通过利用角平分线的性质,可以求解一些几何问题。

比如,已知一个角的两边和这个角的外心,可以求出这个角的平分线。

3.利用角平分线的性质,可以证明一些角的关系。

比如,可以利用角平分线的性质来证明角平分线是角的垂直平分线。

四、角平分线的相关定理
1.角平分线定理:如果一条直线与一个角的两边相交且把这个角平分为两个相等的角,则这条直线是这个角的平分线。

2.角平分线的外角性质:角平分线所在直径上的角是180度的外角。

五、角平分线的证明方法
1.角平分线的证明方法一般采用反证法或者直接证明。

比如,先假设直线不是角的平分线,然后利用假设得出矛盾,从而得到直线是角的平分线。

2.对于一些特殊的角,可以直接利用三角形的辅助线去证明角平分线的存在性和性质。

角的平分线的判定

角的平分线的判定

如图,在△ABC中,分别与∠ABC,∠ACB相邻的 外角的平分线相交于点F,连接AF,则下列结论正 确的是( B ) A.AF平分BC B.AF平分∠BAC C.AF⊥BC D.以上结论都正确
角的平分线的性质与判定定理的关系:
(1)都与距离有关,即垂直的条件都应具备.
性质
(2)点在角的平分线上 判定定理 点到这个角两边的距离 相等.
证明:如图,过点P分别作PF,PG,PH垂直于直线 AC,AB,BC,垂足分别为F,G,H. 因为BD是△ABC的∠ABC的外角的平分线,点 P在BD上, 所以PG=PH(角的平分线上 的点到角的两边的距离相等). 同理PF=PH, 所以PG=PH=PF,即点P到三边AB,BC,CA 所在直线的距离相等.
上”来判定 . 判定角平分线时,需要满足两个条件: “垂直”和“相等”.
1 在正方形网格中,∠AOB的位置如图所示,到∠AOB 两边距离相等的点应是( A ) A.点M B.点N C.点P D.点Q
2. 如图,在CD上求一点P,使它到边OA,OB的距 离相等,则点P是( C ) A.线段CD的中点 B.CD与过点O作CD的 垂线的交点 C.CD与∠AOB的平分线的交点 D.以上均不对
D
A
P E
B
判定方法:角的内部到角的两边的距离相等的点在角 的平分线上. 书写格式:如图,∵PD⊥OA,PE⊥OB,PD=PE,
∴点P在∠AOB的平分线上(或∠AOC=∠BOC).
例1 如图,BE=CF,DF⊥AC于点F,DE⊥AB于 点E,BF和CE相交于点D. 求证:AD平分∠BAC.
导引:要证AD平分∠BAC,已知 条件中有两个垂直,即有 点到角的两边的距离,再证这两个距离相等即 可证明结论,证这两条垂线段相等,可通过证 明△BDE和△CDF全等来完成.

初中角平分线知识点总结与巧用

初中角平分线知识点总结与巧用

初中角平分线知识点总结与巧用角平分线是指将一个角分为两个相等的角的线段,也可以说是从角的顶点出发,将角内部一分为二的线段。

角平分线的性质和应用是初中数学中重要的内容之一,下面我们来总结一下初中角平分线的知识点以及一些巧妙的应用。

一、角平分线的定义及性质1.角平分线的定义:角平分线是从一个角的顶点出发,将角内部一分为二的线段。

2.角平分线的性质:(1)角平分线被分成的两个小角相等;(2)在平面内,从一个角的顶点出发,将这个角平分为两个相等的角的直线只有一条。

二、角平分线的判定定理1.角平分线判定定理:一个线段能够作为一个角的平分线,当且仅当它等于这个角的对边的一半。

2.角平分线的作法:(1)将这个线段的两个端点与角的两条边的一个顶点连接;(2)若两个连线相等,则这个线段是角的平分线;(3)若两个连线不相等,则这个线段不是角的平分线。

三、角平分线的应用1.直角三分线:在直角三角形中,角平分线特殊的性质是直角三角形的其中一个角的三分线。

(1)设直角三角形ABC中∠B=90°,AB=BC,AD是∠A的平分线;则∠DAB=∠DAC=∠BAC=45°。

(2)在一个直角三角形中,利用角平分线可以将角平分为两个相等的角,从而简化问题的求解过程。

2.角平分线的应用于构造等腰三角形:(1)在已知等腰三角形的等边或等角的情况下,可以通过作角平分线来构造等腰三角形。

(2)构造等腰三角形的步骤:a.画出底边;b.在底边的两端点上作两个相等的角;c.两个角的平分线交于一点,连接该点与底边的另一端点,得到等腰三角形。

3.相关定理及定律的证明:(1)锐角与锐角平分线的相关定理:在锐角ABC中,AD是∠BAC的平分线,那么∠BAD=∠CAD;(2)对称性:如果角平分线上的一部分角等于角的一半,那么角平分线的整体也是角的平分线。

四、优化问题中的角平分线的应用1.角平分线和最大值最小值问题:通过构造合适的角平分线,可以将一个问题化简为一个或多个已知的最值问题,从而求解出最优解。

九年级角平分线知识点

九年级角平分线知识点

九年级角平分线知识点角平分线是指一个线段将一个角分成两个等角的线段。

在九年级几何学中,角平分线是一个重要的概念。

本文将介绍角平分线的定义、性质以及解题方法。

1. 角平分线的定义在平面几何中,给定一个角A,若存在一条线段MN,这条线段的一个端点M在角A内部,另一个端点N在角A的边上,并且线段MN将角A分成两个相等的角,则称线段MN为角A的角平分线。

2. 角平分线的性质(1)角平分线将角分成两个相等的角,即两个分出的角度数相等。

(2)角平分线上的任意一点都与角的顶点和两条边的交点连线相等长。

(3)角平分线与角的两条边相交,形成四个角,其中两个相邻角互补,即它们的度数相加等于180度。

3. 角平分线的解题方法(1)通过角平分线的定义可以有以下解题步骤:a. 画出给定的角,并确定角的顶点。

b. 根据角平分线的定义,画出角的两条边上的两个点,并连接两个点,得到角的平分线。

c. 判断角平分线与角的两条边是否相交,如果相交则说明该线段是角的平分线。

d. 计算平分线分出的两个角的度数是否相等,如果相等则可以确定该线段是角的平分线。

(2)利用角平分线的性质可以解决一些相关问题:a. 已知角的两条边的长度,求角平分线的长度:根据角平分线的性质,可以利用相似三角形的性质求解。

b. 求两条角平分线的交点:根据角平分线的性质,交点位于角的顶点和两条边的交点组成的三角形的垂心。

c. 判断一个线段是否为角的平分线:根据角平分线的定义,判断线段是否满足将角分成两个相等的角即可。

4. 角平分线的应用角平分线的概念在数学和几何学中有广泛的应用。

例如,在建筑和设计中,可以利用角平分线的性质来确定两条墙壁的交点、寻找建筑物的中心等。

在计算机图形学中,也可以利用角平分线的性质来进行图像处理、形状分析等。

总结:九年级角平分线知识点主要包括角平分线的定义、性质以及解题方法。

通过理解和掌握角平分线的概念和性质,可以更好地解决与角平分线相关的问题,并在实际生活和学习中应用到相关领域。

角平分线的性质(知识梳理与考点分类讲解)(人教版)(教师版) 2024-2025学年八年级数学上册

角平分线的性质(知识梳理与考点分类讲解)(人教版)(教师版) 2024-2025学年八年级数学上册

专题12.9角平分线的性质(知识梳理与考点分类讲解)第一部分【知识点归纳】【知识点一】角的平分线的性质(1)性质:角的平分线上的点到角两边的距离相等.(2)符号语言:OC平分∠ADB,又 PE⊥AD,PF⊥BD,垂足为E、F,∴PE=PF【知识点二】角的平分线的判定(1)判定:角的内部到角两边距离相等的点在角的平分线上.(2)符号语言:PE⊥AD,PF⊥BD,垂足为E、F,又 PE=PF∴OC平分∠ADB,【知识点三】角的平分线的尺规作图(1)以O 为圆心,适当长为半径画弧,交OA 于D,交OB 于E.(2)分别以D、E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 内部交于点C.(3)画射线OC.射线OC 即为所求.第二部分【题型展示与方法点拨】【题型1】利用角平分线性质定理进行求值与证明【例1】(23-24七年级下·山东菏泽·阶段练习)如图,在ABC 中,90ACB ∠=︒,CD AB ⊥于点D ,BE 平分ABC ∠交AC 于点E ,交CD 于点F ,过点E 作EG CD ∥,交AB 于点G ,连接CG .(1)求证:90A AEG ∠+∠=︒;(2)求证:EC EG =;【分析】本题考查了角平分线的性质,平行线的性质,垂直的定义,解题的关键是灵活运用所学知识解决问题.(1)证明90EGA ∠=︒,即可证明结论成立;(2)利用角平分线性质定理即可证明结论成立.(1)证明:∵CD AB ⊥,∴90CDA ∠=︒EG CD ∥,∴90EGA CDA ∠=∠=︒∵180A AEG EGA ∠+∠+∠=︒1801809090A AEG EGA ∴∠+∠=︒-∠=︒-︒=︒(2)证明:∵90ACB ∠=︒,∴EC BC⊥BE 平分ABC ∠,EG AB ⊥,EC EG∴=【变式1】(23-24七年级下·广东佛山·阶段练习)如图,OC 平分AOB ∠,点P 是射线OC 上一点,PM OB ⊥交于点M ,点N 是射线OA 上的一个动点,连接PN .若6PM =,则PN 的长度不可能是()A .18B .7.2C .6D .4.5【答案】D 【分析】本题考查角平分线的性质、垂线段最短,根据角平分线的性质作出图形转化线段是解决问题的关键.过点P 作PD OA ⊥,如图所示,由角平分线的性质可得6PD PM ==,根据点与直线上各点的距离中垂线段最短可得6PN PD ≥=,从而得到答案.解:过点P 作PD OA ⊥,如图所示:OC 平分AOB ∠,点P 是射线OC 上一点,PM OB ⊥于点M ,6PM =,∴由角平分线性质可得6PD PM ==,点N 射线OA 上的一个动点,连接PN ,∴由点与直线上各点的距离中垂线段最短可得6PN PD ≥=,∴综合四个选项可知,PN 的长度不可能是4.5,故选:D .【变式2】(23-24七年级下·四川巴中·期末)如图,在ABC 中,ABC ∠,ACB ∠的平分线交于点O ,点O 到BC 边的距离为3,且ABC 的周长为20,则ABC 的面积为.【答案】30【分析】本题考查角平分线的性质、三角形的面积公式,熟练掌握角平分线的性质是解答的关键.过O 作OM AB ⊥于M ,ON AC ⊥于N ,连接OA ,利用角平分线的性质求得3OM ON OD ===,然后利用ABC AOB AOC BOC S S S S =++ 求解即可.解:过O 作OM AB ⊥于M ,ON AC ⊥于N ,连接OA ,∵点O 到BC 边的距离为3,∴3OD =,∵ABC 的周长为20,∴20AB AC BC ++=∵ABC ∠,ACB ∠的平分线交于点O ,OM AB ⊥,ON AC ⊥,∴3OM ON OD ===,∴ABC AOB AOC BOCS S S S =++ 111222AB OM AC ON BC OD =⋅+⋅+⋅()12AB AC BC OD =++⋅12032=⨯⨯30=,故答案为:30.【题型2】利用角平分线判定定理进行求值与证明【例2】如图,DE AB ⊥于E DF AC ⊥,于F ,若BD CD BE CF ==、,(1)求证:AD 平分BAC ∠;(2)已知204,==AC BE ,求AB 的长.【答案】(1)见详解(2)12【分析】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有,,,SAS ASA AAS SSS ,全等三角形的对应边相等,对应角相等.(1)求出90E DFC ∠=∠=︒,根据全等三角形的判定定理得出Rt BED Rt CFD ≌,推出DE DF =,根据角平分线性质得出即可;(2)根据全等三角形的性质得出,==AE AF BE CF ,即可求出答案.(1)证明:∵,DE AB DF AC ⊥⊥,∴90E DFC ∠=∠=︒,∴在Rt BED 和Rt CFD 中,BD CD BE CF =⎧⎨=⎩,∴()Rt BED Rt CFD HL ≌,∴DE DF =,∵,DE AB DF AC ⊥⊥,∴AD 平分BAC ∠;(2)解:∵90,,∠=∠=︒==AED AFD AD AD DE DF ,∴()Rt ADE Rt ADF HL ≌,∴AE AF =,∵20,4===AC CF BE ,∴20416AE AF ==-=,∴16412AB AE BE =-=-=.【变式1】如图,在ABC 中,70BAC ∠=︒,4AB =,2AC =,若2ABD ACD S S = ,则CAD ∠的度数为()A .45︒B .40︒C .35︒D .30︒【答案】C 【分析】作DE AB ⊥于点E ,作DF AC ⊥于点F ,根据2ABD ACD S S = 可证DE DF =,从而可知AD 是BAC∠的平分线,进而可求出CAD ∠的度数.解:如图,作DE AB ⊥于点E ,作DF AC ⊥于点F ,∵2ABD ACD S S = ,∴11222AB DE AC DF ⋅=⨯⋅.∵4AB =,2AC =,∴44DE DF=∴DE DF =,∴AD 是BAC ∠的平分线.∴11703522CAD BAC ∠=∠=⨯︒=︒.故选C .【变式2】6.(23-24八年级上·山东聊城·阶段练习)如图,在ABC 中,48ABC ∠=︒,三角形的外角DAC ∠和ACF ∠的平分线交于点E ,则EBF ∠=.【答案】24︒【分析】本题考查了角平分线的性质和角平分线的定义,解题的关键是能正确作出辅助线,证明BE 平分ABC ∠;过点E 作EM AB EN BC EO AC ⊥⊥⊥、、,根据角平分线的性质可得EM EO EN EO ==,,则有EM EN =,再根据EM AB EN BC ⊥⊥、,即可得出BE 平分ABC ∠即可解答.解:过点E 作EM AB EN BC EO AC ⊥⊥⊥、、,如图所示:三角形的外角DAC ∠和ACF ∠的平分线交于点E ,EM EO EN EO ∴==,,EM EN ∴=,EM AB EN BC ⊥⊥、,∴BE 平分ABC ∠,11482422EBF ABC ∴∠==⨯︒=︒,故答案为:24︒.【题型3】综合运用角平分线性质定理与判定定理进行证明与求值【例3】如图,ABC 和EBD △中,90ABC DBE AB CB BE BD ∠=∠=︒==,,,连接AE CD AE ,,与CD 交于点M ,AE 与BC 交于点N .(1)求证:AE CD =;(2)求证:AE CD ⊥;(3)连接BM ,有以下两个结论:①BM 平分CBE ∠;②MB 平分AMD ∠,其中正确的一个是(请写序号),并给出证明过程.【答案】(1)见详解(2)见详解(3)②【分析】本题考查全等三角形的判定和性质、等腰直角三角形的性质、角平分线的判定与性质定理等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线解决问题.(1)欲证明AE CD =,只要证明ABE CBD ≌;(2)由ABE CBD ≌,推出BAE BCD ∠=∠,由180NMC BCD CNM ∠=︒-∠-∠,18090ABC BAE ANB CNM ANB ABC ∠=︒-∠-∠∠=∠∠=︒,又,,可得90NMC ∠=︒;(3)结论:②;作BK AE ⊥于K BJ CD ⊥,于J .利用角平分线的判定定理证明即可.(1)证明:∵ABC DBE ∠=∠,∴ABC CBE DBE CBE ∠+∠=∠+∠,即ABE CBD ∠=∠,在ABE 和CBD △中,AB CB ABE CBD BE BD =⎧⎪∠=∠⎨⎪=⎩,∴SAS ABE CBD ≌(),∴AE CD =.(2)证明:∵ABE CBD ≌,∴BAE BCD ∠=∠,∵180180NMC BCD CNM ABC BAE ANB ∠=︒-∠-∠∠=︒-∠-∠,,又CNM ANB ∠=∠,90ABC ∠=︒ ,∴90NMC ∠=︒,∴AE CD ⊥.(3)解:结论:②理由:作BK AE ⊥于K BJ CD ⊥,于J.∵ABE CBD ≌,∴ABE CDB AE CD S S == ,,∴1122AE BK CD BJ ⨯⨯=⨯•,∴BK BJ =,∵作BK AE ⊥于K ,BJ CD ⊥于J ,∴BM AMD ∠平分.不妨设①成立,则CBM EBM ≌,则AB BD =,显然不可能,故①错误.故答案为:②.【变式1】(23-24八年级上·浙江杭州·阶段练习)如图,90B C ∠=∠=︒,M 是BC 的中点,DM 平分ADC ∠,且100ADC ∠=︒,则MAB ∠的度数是()A .50︒B .40︒C .45︒D .55︒【答案】B 【分析】本题考查了角平分线的性质和判定,解题的关键是掌握角平分线上的点到两边距离相等.作MN AD ⊥于N ,根据角平分线的性质得出MN MC =,进而得出1402MAB DAB ∠=∠=︒.解:作MN AD ⊥于N ,∵90B C ∠∠==︒,∴AB CD ∥,∴18080DAB ADC ∠∠=︒-=︒,∵DM 平分ADC ∠,MN AD ⊥,MC CD ⊥,∴MN MC =,∵M 是BC 的中点,∴MC MB =,∴MN MB =,又MN AD ⊥,MB AB ⊥,∴1402MAB DAB ∠=∠=︒,故选:B .【变式2】(23-24八年级上·重庆永川·期末)如图,在ABC 中,68BAC ∠=︒,72ACB ∠=︒,ACB ∠的平分线与BAC ∠的外角平分线交于点D ,连接BD ,则BDC ∠的大小等于.【答案】34︒/34度【分析】本题考查了角平分线的判定与性质,三角形外角的性质等知识,先根据角平分线的判定与性质得出BD 平分ABH ∠,然后利用三角形外角的性质12BDC DBH DCB BAC ∠=∠-∠=∠,即可求解.解:过点D 作DH BC ⊥于H ,DE AC ⊥于E ,DF AB ⊥于F ,∵ACB ∠的平分线与BAC ∠的外角平分线交于点D ,∴DE DF DH ==,12BCD ACB ∠=∠,∴BD 平分ABH ∠,∴12DBH ABH ∠=∠,∵68BAC ∠=︒,∴BDC DBH DCB ∠=∠-∠1122ABH ACB =∠-∠()12ABH ACB =∠-∠12BAC =∠1682=⨯︒34=︒,故答案为:34︒.【题型4】通过作图(作角平分线)进行求值或证明【例4】(23-24八年级上·广东珠海·期中)请回答下列问题:(1)如图1,已知ABC ,利用直尺和圆规,作BAC ∠的平分线AD 交BC 于点D (保留作图痕迹,不要求写作法);(2)如图2所示,AD 是ABC 的角平分线E F 、分别是AB AC 、上的点,且180EDF BAC ∠+∠=︒,求证:DE DF =.【分析】(1)根据角平分线的基本作图方法作图即可;(2)过点D 作DH AB ⊥于点H ,作DQ AC ⊥于点Q ,证明()AAS EHD FQD ≌,得出DE DF =,即可得出答案.(1)解:如图,作BAC ∠的平分线AD 交BC 于点D ;(2)证明:如图,过点D 作DH AB ⊥于点H ,作DQ AC ⊥于点Q ,则90EHD FQD ∠=∠=︒,AD 平分BAC ∠,DH DQ ∴=,180EDF BAC ∠+∠=︒Q ,180AED AFD ∴∠+∠=︒,180DFQ AFD ∠+∠=︒ ,DEH DFQ ∴∠=∠,在EHD △和FQD △中DEH DFQ EHD FQD DH DQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS EHD FQD ∴ ≌,DE DF ∴=.【点拨】本题主要考查了角平分线的基本作图,角平分线的性质,三角形全等的判定和性质,补角的性质,解题的关键作图辅助线,熟练掌握三角形全等的判定方法.【变式1】(2024·湖南湘西·模拟预测)如图,在ABC 中,90C ∠=︒,以A 为圆心,任意长为半径画弧,分别交AC AB 、于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E .已知4CE =,7AB =,ABE 的面积为()A .6B .11C .14D .28【答案】C 【分析】此题考查了角平分线的性质定理,根据角平分线的性质得到点E 到AC 和AB 的距离相等,点E 到AB 的距离等于EC 的长度,利用三角形面积公式即可得到答案.解:由基本作图得到AE 平分BAC ∠,∴点E 到AC 和AB 的距离相等,∴点E 到AB 的距离等于EC 的长度,即点E 到AB 的距离为4,∴174142ABE S =⨯⨯= .故选:C .【变式2】(2024·湖南·中考真题)如图,在锐角三角形ABC 中,AD 是边BC 上的高,在BA ,BC 上分别截取线段BE ,BF ,使BE BF =;分别以点E ,F 为圆心,大于12EF 的长为半径画弧,在ABC ∠内,两弧交于点P ,作射线BP ,交AD 于点M ,过点M 作MN AB ⊥于点N .若2MN =,4AD MD =,则AM =.【答案】6【分析】本题考查了尺规作图,角平分线的性质等知识,根据作图可知BP 平分ABC ∠,根据角平分线的性质可知2DM MN ==,结合4AD MD =求出AD ,AM .解:作图可知BP 平分ABC ∠,∵AD 是边BC 上的高,MN AB ⊥,2MN =,∴2MD MN ==,∵4AD MD =,∴8AD =,∴6AM AD MD =-=,故答案为:6.第三部分【中考链接与拓展延伸】1、直通中考【例1】1.(2024·天津·中考真题)如图,Rt ABC △中,90,40C B ∠=︒∠=︒,以点A 为圆心,适当长为半径画弧,交AB 于点E ,交AC 于点F ;再分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧(所在圆的半径相等)在BAC ∠的内部相交于点P ;画射线AP ,与BC 相交于点D ,则ADC ∠的大小为()A .60B .65C .70D .75【答案】B 【分析】本题主要考查基本作图,直角三角形两锐角互余以及三角形外角的性质,由直角三角形两锐角互余可求出50BAC ∠=︒,由作图得25BAD ∠=︒,由三角形的外角的性质可得65ADC ∠=︒,故可得答案解:∵90,40C B ∠=︒∠=︒,∴90904050BAC B ∠=︒-∠=︒-︒=︒,由作图知,AP 平分BAC ∠,∴11502522BAD BAC ∠=∠==︒⨯︒,又,ADC B BAD ∠=∠+∠∴402565,ADC ∠=︒+︒=︒故选:B【例2】.(2021·黑龙江大庆·中考真题)已知,如图1,若AD 是ABC 中BAC ∠的内角平分线,通过证明可得=AB BD AC CD,同理,若AE 是ABC 中BAC ∠的外角平分线,通过探究也有类似的性质.请你根据上述信息,求解如下问题:如图2,在ABC 中,2,3,BD CD AD ==是ABC 的内角平分线,则ABC 的BC 边上的中线长l 的取值范围是【答案】12522l <<【分析】根据题意得到2=3AB AC ,设AB =2k ,AC =3k ,在△ABC 中,由三边关系可求出k 的范围,反向延长中线AE 至F ,使得AE EF =,连接CF ,最后根据三角形三边关系解题.解:如图,反向延长中线AE 至F ,使得AE EF =,连接CF ,2,3,BD CD AD == 是ABC 的内角平分线,2==3AB BD AC CD ∴可设AB =2k ,AC =3k ,在△ABC 中,BC =5,∴5k >5,k <5,∴1<k <5,BE EC AEB CEF AE EF =⎧⎪∠=∠⎨⎪=⎩()ABE FCE SAS ∴≅ AB CF∴=由三角形三边关系可知,AC CF AF AC CF-<<+5k AF k∴<<522k k AE ∴<<∴12522l <<故答案为:12522l <<.【点拨】本题考查角平分线的性质、中线的性质、全等三角形的判定与性质、三角形三边关系等知识,是重要考点,难度一般,掌握相关知识是解题关键.2、拓展延伸【例1】(23-24七年级下·重庆沙坪坝·阶段练习)如图1,在ABC 中,BD 为AC 边上的高,BF 是ABD ∠的角平分线,点E 为AF 上一点,连接AE ,45AEF ∠=︒.(1)求证:AE 平分BAF∠(2)如图2,连接CE 交BD 于点G ,若BAE 与CAE 的面积相等,求证:BG CF=【分析】本题主要考查了全等三角形的证明以及性质运用,角平分线的判定以及基本性质,熟练掌握全等三角形的几种判定方法以及角平分线的判定是解答该题的关键.(1)根据BF 是ABD ∠的角平分线和,BD 为AC 边上的高,可得114522BAD ABD ∠=︒-∠,由45AEF ∠=︒得145452BAE ABE ABD ∠=︒-∠=︒-∠,即可证明12BAE BAD ∠=∠;(2)过点E 作EM AB ⊥于点M ,EN AC ⊥于点N ,由角平分线性质可以得EM EN =,由BAE 与CAE 的面积相等可得AB AC =,证明(SAS)ABE ACE △≌△,得出135AEB CEB ∠=∠=︒,BE EC =,即可得出36090BEG CEF AEB AEC ∠=∠=︒-∠-∠=︒,再根据垂直模型证明ASA BEG CEF ≌(),即可得出结论.(1)证明:∵BD 为AC 边上的高,即90ADB ∠=︒,∴90ABD BAD ∠+∠=︒,∴1()452ABD BAD ∠+∠=︒,∴114522BAD ABD ∠=︒-∵45AEF ABF BAE ∠=∠+∠=︒,∴45BAE ABF ∠=︒-∠,∵12ABF ABD ∠=∠,∴1452BAE ABD ∠=︒-∠,∴12BAE BAF ∠=∠,即:AE 平分BAF ∠.(2)过点E 作EM AB ⊥于点M ,EN AC ⊥于点N ,AE 平分BAC ∠,且EM AB ⊥,EN AC ⊥,EM EN ∴=.ABE ACE S S △△=,AB AC ∴=,AE 平分BAC ∠,BAE CAE ∴∠=∠,在ABE 和ACE △中,AB BC BAE CAE AE AE =⎧⎪∠=∠⎨⎪=⎩(SAS)ABE ACE ∴ ≌,AEB CEB ∴∠=∠,BE EC =,45AEF ∠=︒ ,135AEB AEC ∴∠=∠=︒,36090BEG CEF AEB AEC ∴∠=∠=︒-∠-∠=︒,BD 为AC 边上的高,90ADB ∴∠=︒,FBD BFC BFC FCE ∴∠+∠=∠+∠,EBG ECF ∴∠=∠.在BEG 和CEF △中,BEG CEF BE CE EBG ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩ASA BEG CEF ∴ ≌().BG CF ∴=.【例2】(23-24八年级上·江西宜春·期末)课本再现:思考如图12.3-3,任意作一个角AOB ∠,作出AOB ∠的平分线OC .在OC 上任取一点P ,过点P 画出OA ,OB 的垂线,分别记垂足为D 、E ,测量PD 、PE 并作比较,你得到什么结论?在OC 上再取几个点试一试.通过以上测量,你发现了角的平分线的什么性质?【实验猜想】针对以上问题,同学们进行了小组实验探究,并猜想:角的平分线上的点到角的两边的距离相等.【推理证明】为了证明该定理,小明同学根据书上的图形(如图12.3-3)写出了“已知”和“求证”,请你利...用全等的知识完成证明过程.............(1)已知:点P 是AOB ∠的平分线OC 上一点,过点P 作PD OA ⊥于点D ,PE OB ⊥于点E .求证:PD PE =.【知识应用】(2)如图2,BAC ∠的平分线与ABC 的外角BCD ∠的平分线相交于点O ,过点O 作OD AC⊥于点D ,OE AB ⊥于点E ,连接OB .①证明:OB 平分CBE ∠;②若70CAB ∠=︒,则COB ∠=________.【答案】(1)证明见解析(2)①证明见解析;②55︒【分析】(1)根据条件证明OPD OPE ≌V V ,从而PD PE =.(2)①过点O 作OF CB ⊥于点F ,由(1)的结论易证OD OF OE ==,根据“到角的两边距离相等的点在这个角的平分线上”得到OB 平分CBE ∠;②根据三角形的内角和180COB BCO CBO ∠=︒-∠-∠,再利用角平分线的定义和“三角形的一个外角等于不相邻的两个内角的和”,推导出1902COB BAC ∠=︒-∠,从而求解.(1)证明:OC 平分AOB ∠,AOC BOC ∴∠=∠,PD OA ⊥ ,PE OB ⊥,90ODP OEP ∴∠=∠=︒,在OPD △和OPE 中,AOC BOC ODP OPE OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,OPD OPE ∴V V ≌,PD PE ∴=;(2)①证明:过点O 作OF CB ⊥于点F,AO 是ABC ∠的平分线,OD AC ⊥,OE AB ⊥,OD OE ∴=,CO 是BCD ∠的平分线,OD AC ⊥,OF BC ⊥,OD OF ∴=,OF OE ∴=,OF BC ⊥ ,OE AB ⊥,BO ∴平分CBE ∠,②OB Q 平分CBE ∠,OC 平分BCD ∠,12CBO CBE ∴∠=∠,12BCO BCD ∠=∠,()111180180180222COB CBO BCO CBE BCD CBE BCD ∴∠=︒-∠-∠=︒-∠-∠=︒-∠+∠()()11118018018090222CAB ACB CAB ABC CAB CAB =︒-∠+∠+∠+∠=︒-︒+∠=︒-∠19070552=︒-⨯︒=︒.故答案为:55︒.【点拨】本题考查了全等三角形的判定与性质、角平分线的定义、角平分线的性质和判定以及三角形的内角和定理、三角形外角的性质等,熟练掌握相关知识是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角平分线的知识点
【篇一:角平分线的知识点】
文章来源
课件 w w
角平分线的性质
一、本节学习指导
角平分线的性质有助于我们解决三角形全等相关题型。

其实不仅仅是角平分线,还有三角形的中位线、高、中心都是解决三角形题目有效的途径。

二、知识要点
1、角平分线的定义:从一个角的顶点出发把一个角分成两个相等的角的射线叫做角的平分线。

如下图:oc平分∠aob
∵oc平分∠aob
∴∠aoc=∠boc
2、角的平分线的性质:角平分线上的点到角的两边的距离相等。

【重点】
如第一个图:
∵oc平分∠aob(或∠1=∠2),pe⊥oa,pd⊥ob
∴pd=pe,此时我们知道△ope≌△opd(直角三角形斜边是op即公共边,直角边斜边)
3、角的平分线的判定:角的内部到角的两边距离相等的点在角的平分线上。

如第一个图:
∵pe⊥oa,pd⊥ob,pd=pe
∴oc平分∠aob(或∠1=∠2)
4、线段的中点的定义:把一条线段分成两条相等的线段的点叫做线段的中点。

∵c是ab的中点
∴ac=bc
5、垂直的定义:两条直线相交所成的四个角中有一个是直角,这两条直线互相垂直。

如图:【重点】
∵ab⊥cd
∴ab⊥cd
注意:要判断两条直线垂直,只要知道这两条相交直线所形成的四个角中的
一个角是直角就可以了。

反过来,两条直线互相垂直,它们的四个交角都是直角。

6、全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。

∵△abc≌△abc
∴ab=ab,bc=bc,ac=ac; ∠a=∠a, ∠b=∠b, ∠c=∠c
文章来源
课件 w w
上一篇教案:下一篇教案:
【篇二:角平分线的知识点】。

相关文档
最新文档