中考数学第25题专题复习训练(含答案)_图文
人教版 初三数学第25章能力测试题(含答案)
人教版 初三数学 25.1 随机事件与概率 一、选择题1. 下列事件是确定性事件的是( )A .阴天一定会下雨B .黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C .打开电视机,任选一个频道,屏幕上正在播放新闻联播D .在五个抽屉中任意放入6本书,则至少有一个抽屉里不少于2本书2. 有一个摊位的游戏:先旋转一个转盘,当转盘停止时,如果指针箭头停在奇数的位置,玩的人就可以从袋子中摸出一个弹珠.转盘和袋子里的弹珠如图所示,当摸到黑色的弹珠时就能得到奖品,小刚玩了这个游戏,则小刚得到奖品的可能性为( )A .不可能B .很有可能C .不太可能D .可能3. 事件A “若a 是实数,则|a |≥a ”;事件B “若实数x 满足x >-x ,则x 是正实数”.下列关于事件A 和事件B 的说法正确的是( )A .事件A 是必然事件,而事件B 是随机事件B .事件A 是随机事件,而事件B 是必然事件C .事件A 是必然事件,事件B 是必然事件D .事件A 是随机事件,事件B 是随机事件4. 一个不透明的布袋中装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出1个球,摸出红球的概率是( )A.12B.23C.25D.355. 有人预测2024年巴黎奥运会上中国女排夺冠的概率是80%,对这个说法正确的理解应该是()A.中国女排一定会夺冠B.中国女排一定不会夺冠C.中国女排夺冠的可能性比较大D.中国女排夺冠的可能性比较小6. 2018·泰州小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下列几种说法正确的是()A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球7. 在有25名男生和20名女生的班级中,随机抽取1名学生做代表,则下列说法正确的是()A.男、女生做代表的可能性一样大B.男生做代表的可能性大C.女生做代表的可能性大D.男、女生做代表的可能性大小不能确定8. 甲、乙两布袋装有红、白两种颜色的小球,两袋所装球的总数量相同,两种小球仅颜色不同.甲袋中,红球个数是白球个数的2倍;乙袋中,红球个数是白球个数的3倍.将乙袋中的球全部倒入甲袋,随机从甲袋中摸出1个球,摸出红球的概率是()A.512 B.712 C.1724 D.25二、填空题9. 写一个你喜欢的实数m的值:________,使得事件“对于二次函数y=12x2-(m-1)x+3,当x<-3时,y随x的增大而减小”成为随机事件.要使此事件成为随机事件,则抛物线的对称轴应位于直线x=-3的左侧.10. 有下列4个事件:①异号两数相加,和为负数;②异号两数相减,差为正数;③异号两数相乘,积为正数;④异号两数相除,商为负数.其中,必然事件是________,不可能事件是________.(将事件的序号填上即可)11. 如图,把图中能自由转动的转盘的序号按转出黑色(阴影)的可能性从小到大的顺序排列起来是____________.12. 2019·贵阳一个袋中装有m个红球,10个黄球,n个白球,每个球除颜色外都相同,任意摸出1个球,如果摸到黄球的概率与不是黄球的概率相同,那么m 与n的关系是____________.13. 2018·湘西州农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了1个,则吃到腊肉棕的概率为________.14. 用力旋转涂有红、黄、蓝、白四色的转盘,指针停在红色上,是________事件,举一个和它事件类型不一样的事件:________________________________________________.15. 在如图所示(A,B,C三个区域)的图形中随机撒一把豆子,豆子落在________区域的可能性最大(填“A”“B”或“C”).链接听P55例3归纳总结16. 一个盒中装着质地、大小、外形一模一样的x 颗白色弹珠和y 颗黑色弹珠,从盒中随机取出1颗弹珠,取得白色弹珠的概率是13.若再往盒中放12颗同样的白色弹珠,取得白色弹珠的概率是23,则原来盒中有白色弹珠________颗.三、解答题17. 指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)多边形的外角和等于360°;(2)两直线被第三条直线所截,内错角相等;(3)一元二次方程x2+2x +4=0无实数解;(4)任意买一张电影票,座位号是双号;(5)方程2x -2+x 2-x=0的解是x =2.18. 某路口红绿灯的时间设置为红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据是什么?19. 公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高,如果用a(单位:cm)表示脚印长度,b(单位:cm)表示身高,关系接近于b =7a -3.07.(1)某人的脚印长度为24.5 cm ,则他的身高约为多少厘米?(2)在某次案件中,抓获了两名可疑人员,一个身高为1.87 m ,另一个身高为1.75 m ,现场测量的脚印长度为26.7 cm ,请你帮助侦查一下,哪个可疑人员作案的可能性更大?20. 在某节目中,有一个精彩刺激的游戏——幸运大转盘,其规则如下:①游戏工具是一个可绕轴心自由转动的圆形转盘,转盘按圆心角划分为20等份,并在其边缘标记5,10,15,…,100共20个5的整数倍的数,游戏时,选手可旋转转盘,待转盘停止时,指针所指的数即为本次游戏的得分;②每个选手在旋转一次转盘后可视得分情况选择是否再旋转转盘一次,若只旋转一次,则以该次得分为本轮游戏的得分,若旋转两次则以两次得分之和为本轮游戏的得分;③若某选手游戏得分超过100分,则称为“爆掉”,该选手本轮游戏裁定为“输”,在得分不超过100分的情况下,分数高者裁定为“赢”;④遇到相同得分的情况,相同得分的选手重新做游戏,直到分出输赢.现有甲、乙两位选手进行游戏,请解答以下问题:(1)甲已旋转转盘一次,得分为65分,他选择再旋转一次,求他本轮游戏不被“爆掉”的概率;(2)若甲一轮游戏的最终得分为90分,乙第一次旋转转盘得分为85分,则乙再旋转一次转盘,赢的概率是多少?(3)若甲、乙两人交替进行游戏,现各旋转一次后甲得85分,乙得65分,你认为甲是否应选择旋转第二次?说明你的理由.解题突破(17题)甲是否应选择旋转第二次,就看乙再旋转一次,获胜的概率大还是小.若乙获胜的概率大,则甲需再旋转一次,若乙获胜的概率小,则甲不需要再旋转.人教版初三数学25.1 随机事件与概率同步课时训练-答案一、选择题1. 【答案】D[解析] 阴天和下雨没有必然关联,因此是一个随机事件;黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门也是一个随机事件;打开电视机,任选一个频道,屏幕上正在播放新闻联播也是一个随机事件;选项D包含着抽屉原理,是一个必然事件,也是一个确定性事件.2. 【答案】C3. 【答案】C [解析] 当a 是非负实数时,有|a |=a ,当a 是负实数时,有|a |>a ,∴事件A 是必然事件;“若实数x 满足x >-x ,则x 是正实数”也是一个必然事件.4. 【答案】C5. 【答案】C6. 【答案】C7. 【答案】B8. 【答案】C [解析] 设甲袋中白球的个数为x ,则红球的个数为2x ,乙袋中球的总数为3x ,则乙袋中红球的个数为94x ,白球的个数为34x ,两个袋里球的总个数为6x ,其中红球的个数为2x + 94x =174x .所以P (摸出红球)=174x 6x =1724.二、填空题9. 【答案】答案不唯一,如-4 [解析] y =12x 2-(m -1)x +3,图象的对称轴为直线x =-b 2a =m -1.∵事件“对于二次函数y =12x 2-(m -1)x +3,当x <-3时,y 随x 的增大而减小”是随机事件,∴m -1<-3,解得m <-2,∴m 为小于-2的任意实数.10. 【答案】④ ③ [解析] ①和②都是随机事件,④是必然事件,③是不可能事件.11. 【答案】⑤③②④① [解析] 黑色部分多的转出黑色的可能性较大,故图中能自由转动的转盘的序号按转出黑色的可能性从小到大的顺序排列起来是⑤③②④①.12. 【答案】m +n =10 [解析] ∵一个袋中装有m 个红球,10个黄球,n 个白球,摸到黄球的概率与不是黄球的概率相同,∴m 与n 的关系是m +n =10. 故答案为m +n =10.13. 【答案】12 [解析] 一共有10种等可能的结果,其中吃到腊肉粽的结果有5种,所以吃到腊肉粽的概率为12.14. 【答案】随机 答案不唯一,如用力旋转涂有红、黄、蓝、白四色的转盘,指针停在黑色上,是不可能事件15. 【答案】A [解析] 区域的面积越大,豆子落在该区域的可能性就越大.SC 区域=4π cm2,SB 区域=42π-22π=12π(c m2),SA 区域=62π-42π=20π(cm2).因为SA 区域>SB 区域>SC 区域,所以豆子落在A 区域的可能性最大.16. 【答案】4 [解析] ∵第一次取得白色弹珠的概率是13,∴x x +y=13, 解得y =2x .∵再往盒中放12颗同样的白色弹珠,取得白色弹珠的概率是23,∴x +12x +y +12=23, 将y =2x 代入,解得x =4,y =8.三、解答题17. 【答案】解:必然事件:(1)(3);不可能事件:(5);随机事件:(2)(4).18. 【答案】解:当人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.根据:绿灯持续的时间最长,黄灯持续的时间最短.19. 【答案】解:(1)当a=24.5时,b=7×24.5-3.07=168.43.答:他的身高约为168.43 cm.(2)当a=26.7时,b=7×26.7-3.07=183.83,因为1.87 m比较接近183.83 cm,所以身高为1.87 m的可疑人员作案的可能性更大.20. 【答案】解:(1)∵选手两次旋转转盘得分之和超过100分时被“爆掉”,∴甲第二次旋转转盘得分为5分、10分、15分、20分、25分、30分、35分时,才能不被“爆掉”,∴P(甲本轮游戏不被“爆掉”)=7 20.(2)∵选手两次旋转转盘得分之和超过100分时被“爆掉”,∴乙第二次旋转转盘得分为10分、15分时,才能赢,∴P(乙赢)=220=110.(3)甲不应该选择旋转第二次.理由:甲选择不旋转第二次,乙必须选择旋转第二次,∵选手两次旋转转盘得分之和超过100分时被“爆掉”,∴乙获胜的话,第二次得分可为25分、30分、35分,此时P(乙赢)=320,∴乙获胜的可能性较小,∴甲不应该选择旋转第二次.25.2用列举法求一.选择题1.现有三张正面分别标有数字﹣1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为()A.B.C.D.2.现有长度为2,3,4,5的四条线段,从中任选三条,能组成三角形的概率是()A.B.C.D.13.有四张正面分别标有数字﹣2,﹣1,1,2的不透明卡片,它们除数字不同外其余相同.现将它们背面朝上,洗匀后小李从中任取两张,将两张卡片上的数字之和记为x,则小李得到的x值使分式的值为0的概率是()A.B.C.D.4.暑假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有()A.40 B.45 C.50 D.555.从一个装有2个红球、2个白球的盒子里(球除颜色外其他都相同),先摸出一个球,不再放进盒子里,然后又摸出一个球.两次摸到的都是红球的概率是()A.B.C.D.6.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它获得食物的概率是()A.B.C.D.7.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为()A.B.C.D.8.小米和小美在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,小米和小美摸到的球都是红球的概率是()A.B.C.D.9.如图,一只蚂蚁在正方形ABCD内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M、N,若蚂蚁在正方形ABCD内随机停留,则蚂蚁停留在阴影区域的概率为()A.B.C.D.10.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为()A.B.C.D.二.填空题11.在十字路口,汽车可直行、左转、右转.三种可能性相同,则一辆汽车经过向右转的概率为.12.不透明的盒子中装有除标号外完全相同的4个小球,小球上分别标有数﹣4,﹣2,3,5,从盒子中随机抽取一个小球,数记为a,再从剩下的球中随机抽取一个小球,数记为b,则使得点(a,a﹣b)在第四象限的概率为.13.一只不透明袋子中有五个球面上分别标有数字1,2,3,4,5的小球,它们除所标数字不同外,其余全部相同,现搅匀后从中任意摸出两个小球,则两个小球上的数字和为偶数的概率为.14.把两个大小相同的正方形拼成如图所示的图案,如果可以随机在图中取点,则这个点取在阴影部分的概率是.15.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在字母“C”所示区域内的概率是.三.解答题16.“十一期间”,美美家电商场举行了买家电进行“翻牌抽奖”的活动.其规则为:现准备有4张牌,4张牌分别对应100,200,300,400(单位:元)的现金.(1)如果某位顾客随机翻1张牌,那么这位顾客抽中200元现金的概率为.(2)如果某位顾客随机翻2张牌,且第一次翻过的牌需放回洗匀后再参加下次翻牌,用列表法或画树状图求该顾客所获现金总额不低于500元的概率.17.有A、B两个不透明的盒子,A盒里有两张卡片,分别标有数字1、2,B盒里有三张卡片,分别标有数字3、4、5,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里抽取一张卡片、抽到的卡片上标有数字为奇数的概率是;(2)从A盒、B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于5的概率.18.刘雨泽和黎昕两位同学玩抽数字游戏.五张卡片上分别写有2、4、6、8、x 这五个数字,其中两张卡片上的数字是相同的,从中随机抽出一张,已知P (抽到数字4的卡片)=.(1)这五张卡片上的数字的众数为;(2)若刘雨泽已抽走一张数字2的卡片,黎昕准备从剩余4张卡片中抽出一张.①所剩的4张卡片上数字的中位数与原来5张卡片上数字的中位数是否相同?答:(填“是”或“否”);②黎昕先随机抽出一张卡片后放回,之后又随机抽出一张卡片,用列表法(或树状图)求黎昕两次抽到的卡片上的数字都是4的概率.19.某班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说①0.5戏剧4②散文100.25其他6③合计④1根据图表提供的信息,解答下列问题:(1)该班有名学生;(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.参考答案与试题解析一.选择题1.【解答】解:画树状图为:共有9种等可能的结果数,其中点P(m,n)在第二象限的结果数为2,所以点P(m,n)在第二象限的概率=;故选:D.2.【解答】解:共有2、3、4;2、3、5;2、4、5;3、4、5;4种情况,2、3、5这种情况不能组成三角形;所以P(任取三条,能构成三角形)=;故选:C.3.【解答】解:当x=﹣3时,分式的值为0.画树状图如图所示:共有12个等可能的结果,小李得到的x值使分式的值为0的结果有2个,∴小李得到的x值使分式的值为0的概率为=;故选:A.4.【解答】解:设5名同学也用A,B,C,D,E来表示,若恰有一人坐对与自己车票相符座位的坐法,设E同学坐在自己的座位上,则其他四位都不是自己的座位,则有BADC,CADB,DABC,BDAC,CDAB,DCAB,BCDA,DCBA,CDBA 共9种坐法,则恰有一人坐对与自己车票相符座位的坐法有5×9=45种,故选:B.5.【解答】解:画树状图如下由树状图知,共有12种等可能结果,其中两次摸到的都是红球的有2种结果,∴两次摸到的都是红球的概率为=,故选:C.6.【解答】解:它获得食物的概率是:×+×=,故选:D.7.【解答】解:由题意可得出:图中阴影部分占整个面积的,因此一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停在阴影部分的概率是:;故选:B.8.【解答】解:由题意可得,树状图如下图所示,共有9个等可能的结果,小米和小美摸到的球都是红球的结果有1个,∴小米和小美摸到的球都是红球的概率为;故选:D.9.【解答】解:∵四边形ABCD为正方形,点O是对角线的交点,∴∠MBO=∠NCO=45°,OB=OC,∠BOC=90°,∵∠MON=90°,∴∠MOB+∠BON=90°,∠BON+∠NOC=90°,∴∠MOB=∠NOC.在△MOB和△NOC中,有,∴△MOB≌△NOC(ASA).同理可得:△AOM≌△BON(ASA).∴S阴影=S△BOC=S正方形ABCD.∴蚂蚁停留在阴影区域的概率P==.故选:C.10.【解答】解:随机地停在某块方砖上,它停留在黑色方砖上的概率=.故选:A.二.填空题(共5小题)11.【解答】解:∵汽车可直行、左转、右转.三种可能性相同,∴一辆汽车经过向右转的概率为;故答案为:.12.【解答】解:画树状图为:共有12种等可能的结果,其中点(a,a﹣b)在第四象限的结果数为1,所以使得点(a,a﹣b)在第四象限的概率=.故答案为.13.【解答】解:画树状图如图:共有20个等可能的结果,两个小球上的数字和为偶数的结果有8个,∴两个小球上的数字和为偶数的概率为=,故答案为:.14.【解答】解:设小正方形边长为a,则阴影部分面积为3a2,图案总面积8a2﹣a2=7a2,因此这个点取在阴影部分的概率是=;故答案为:.15.【解答】解:由图知字母“C”所示区域的圆心角度数为360°﹣(60°+120°+60°)=120°,∴当转盘停止转动后,指针落在字母“C”所示区域内的概率是=,故答案为:.三.解答题(共4小题)16.【解答】解:(1)随机翻1张牌,那么抽中200元现金的概率为;故答案为:;(2)画树状图为:共有16种等可能的结果,其中随机翻2张牌所获现金总额不低于500元的结果数为10种,∴所获现金总额不低于500元的概率==.17.【解答】解:(1)从A盒里抽取一张卡片,抽到的卡片上标有数字为奇数的概率为;故答案为:;(2)画树状图得:共有6种等可能的结果,抽到的两张卡片上标有的数字之和大于5的有3种情况,∴两次抽取的卡片上数字之和大于5的概率为=.18.【解答】解:(1)∵2、4、6、8、x这五个数字中,P(抽到数字4的卡片)=,则数字4的卡片有2张,即x=4,∴五个数字分别为2、4、4、6、8,则众数为:4;(2)①否,理由如下:原来五个数字的中位数为:4,抽走数字2后,剩余数字为4、4、6、8,则中位数为:=5,∴与原来5张卡片上数字的中位数不一样;故答案为:否;②根据题意画树状图如下:可得共有16种等可能的结果,其中两次都抽到数字4的情况有4种,则黎昕两次都抽到数字4的概率为:=.19.【解答】解:(1)该班有10÷0.25=40名学生,故答案为:40;(2)类型为小说的频数为40×0.5=20,类型为戏剧的频率为4÷40=0.1,类型为其他的频率为:6÷40=0.15,合计为40,补全的频数分布表如下图所示,类别频数(人数)频率小说200.5戏剧40.1散文100.25其他60.15合计401扇形统计图中“其他”类所占的百分比为:6÷40×100%=15%,即扇形统计图中“其他”类所占的百分比为15%;(3)树状图如下图所示25.3 用频率估计概率一、选择题(本题共计10 小题,每题 3 分,共计30分,)1. 做重复试验:抛掷同一枚啤酒瓶盖次.经过统计得“凸面向上”的次数约为次,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A. B. C. D.2. 在一个不透明的布袋中,红色、黑色、白色的玻璃球共有个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在和,则口袋中白色球的个数很可能是()A. B. C. D.3. 下列模拟掷硬币的实验不正确的是()A.用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B.袋中装两个小球,分别标上和,随机地摸,摸出表示硬币正面朝上C.在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D.将、、、、分别写在张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上4. 在抛一枚均匀硬币的实验中,如果没有硬币,则可作为实验替代物的是()A.同一副扑克中的任意两张B.图钉C.瓶盖D.一个小长方体5. 从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了次,其中有次摸到黑球,已知口袋中有黑球个和若干个白球,由此估计口袋中大约有多少个白球()A.个B.个C.个D.无法确定6. 如果事件发生的概率是,那么在相同条件下重复试验,下列陈述中,正确的是()A.说明做次这种试验,事件必发生次B.说明事件发生的频率是C.说明做次这种试验中,前次事件没发生,后次事件才发生D.说明做次这种试验,事件可能发生次7. 在抛掷一枚均匀硬币的实验中,如果没有硬币,我们可以用替代物,但下列物品不能作替代物的是()A.一枚均匀的普通六面体骰子B.两张扑克牌(一张黑桃,一张红桃)C.两只只有颜色不同的袜子D.一枚图钉8. 一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球次,其中次摸到黑球,估计盒中大约有白球()A.个B.个C.个D.个9. 盒子中有白色乒乓球个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复次,摸出白色乒乓球次,则黄色乒乓球的个数估计为()A.个B.个C.个D.个10. 某人在做掷硬币实验时,投掷次,正面朝上有次(即正面朝上的频率是).则下列说法中正确的是()A.一定等于B.一定不等于C.多投一次,更接近D.投掷次数逐渐增加,稳定在附近二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 在“抛掷正六面体”的试验中,如果正六面体的六个面分别标有数字“”、“”、“”、“”、“”和“”,如果试验的次数增多,出现数字“”的频率的变化趋势是________.12. 在一个暗箱中,只装有个白色乒乓球和个黄色乒乓球,每次搅拌均匀后,任意摸出一个球后又放回,通过大量重复摸球实验后发现,摸到黄球的频率稳定在,则________.13. 在用模拟试验估计名同学中有两个是同一天生日的概率中,将小球每次搅匀的目的是________.14. 对某名牌衬衫抽检的结果如下表:抽检件数不合格件数如果销售件该名牌衬衫,那么至少要多准备________件合格品,以便供顾客更换.15. 在一个不透明的布袋中,红色、黑色、白色的玻璃球共有个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在和,则口袋中白色球的个数很可能是________个.某设计运动员在相同的条件下的射击成绩记录如下:设计次数射中环以上次数17. 一个不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球次,其中次摸到黑球,估计盒中大约有白球________个.18. 小射手为练习射击,共射击次,其中有次击中靶子,由此可估计,小射手射击一次击中靶子的概率是________.19. 口袋中有红色、黄色、蓝色(除颜色外都相同)的玻璃球共个,小明通过大量的摸球试验,发现摸到红球的概率为,摸到篮球的概率为,估计这个口袋中大约有________个红球,________个黄球,________篮球.20. 在一次实验中,一个不透明的袋子里放有个完全相同的小球,从中摸出个球做好标记,然后放回袋子中搅拌均匀,任意摸出一个球记下是否有标记再放回袋子中搅拌均匀,通过大量重复模球试验后发现,摸到有标记的球的频率稳定在,那么可以推算出大约是________个.三、解答题(本题共计5 小题,共计60分,)21. 甲、乙两位同学做抛骰子(均匀正方体形状)实验,他们共抛了次,出现向上点数。
2020年中考数学第一轮复习专题 第25课 图形变换(含答案)
第七单元图形变化第25课图形变换本节内容考纲要求考查图形的平移、旋转及轴对称,是中考必考知识,特别是轴对称与旋转考查的深度逐步增加。
广东省近5年试题规律:以选择、填空题形式考查平移、对称及旋转每年必考,也可能出现与矩形、正方形结合的综合题目,难度较大,可作压轴题。
知识清单知识点一图形的平移课前小测1.(平移)下面的每组图形中,左面的图形平移后可以得到右面图形的是()A.B.C.D.2.(轴对称图形)下列所给图形是中心对称图形但不是轴对称图形的是()A.B.C.D.3.(中心对称)在平面直角坐标系中,点(1,﹣2)关于原点对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(2,﹣1)D.(2,1)4.(轴对称的性质)在平面直角坐标系中,点(2,3)关于y轴对称的点的坐标是()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣2,3)D.(2,3)5.(旋转的性质)如图,把图形绕着它的中心旋转后可以与原来的图形重合,则至少要旋转().A.60°B.120°C.180 °D.270°经典回顾考点一轴对称图形与中心对称图形【例1】(2018•广东)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【点拨】轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.考点二平移、旋转、翻折【例2】(2016•广东)如图,矩形ABCD中,对角线AC3E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB=.【点拨】本题考查了矩形的性质和翻折问题,明确翻折前后的图形全等是关键.【例3】(2018•湛江模拟)如图,点P是正方形ABCD内一点,将△ABP绕着B 沿顺时针方向旋转到与△CBP′重合,若PB=3,则PP′的长为()A.2B.32C.3 D.无法确定【点拨】本题考查了旋转的性质,对应点到旋转中心的距离相等,旋转角相等,又利用了勾股定理.考点三点坐标的对称规律【例4】(2019•贵港)若点P(m﹣1,5)与点Q(3,2﹣n)关于原点成中心对称,则m+n的值是()A.1 B.3 C.5 D.7【点拔】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.对应训练1.(2019•广东)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.(2016•广东)下列所述图形中,是中心对称图形的是()A.直角三角形B.平行四边形C.正五边形D.正三角形3.(2015•广东)下列所述图形中,既是中心对称图形,又是轴对称图形的是()A.矩形B.平行四边形C.正五边形D.正三角形4.(2017•广东)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆5.(2019•内江)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A顺时针旋转得到△ADE,当点B的对应点D恰好落在BC边上时,则CD 的长为()A.1.6 B.1.8 C.2 D.2.6 6.(2019•盘锦)如图,四边形ABCD是矩形纸片,将△BCD沿BD折叠,得到△BED,BE交AD于点F,AB=3.AF:FD=1:2,则AF=.中考冲刺夯实基础1.(2019•湘西州)在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)2.(2019•常德)点(﹣1,2)关于原点的对称点坐标是()A.(﹣1,﹣2)B.(1,﹣2)C.(1,2)D.(2,﹣1)3.(2019•永州)改革开放以来,我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是()A.B.C.D.4.(2019•本溪)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(2019•湘潭)如图,将△OAB绕点O逆时针旋转70°到△OCD的位置,若∠AOB =40°,则∠AOD=()A.45°B.40°C.35°D.30°6.(2019•枣庄)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为()A.4 B.5C.6 D.6 7.(2019•泸州)在平面直角坐标系中,点M(a,b)与点N(3,﹣1)关于x 轴对称,则a+b的值是.8.(2019•镇江)将边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置(如图),使得点D落在对角线CF上,EF与AD相交于点H,则HD=.(结果保留根号)声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布能力提升9.(2019•广元)如图,△ABC中,∠ABC=90°,BA=BC=2,将△ABC绕点C 逆时针旋转60°得到△DEC,连接BD,则BD2的值是.10.(2019•青岛)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.11.(2019•江西)如图,在△ABC中,点D是BC上的点,∠BAD=∠ABC=40°,将△ABD沿着AD翻折得到△AED,则∠CDE=°.12.(2019•甘肃)如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F处,则CE的长为.13.(2019•苏州)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A 点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.14.(2019•滨州)如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.第七单元图形变化第25课图形变换课前小测1.D.3.B.4.C.5.B.经典回顾考点一轴对称图形与中心对称图形【例1】D.考点二平移、旋转、翻折【例2【例3】B.考点三点坐标的对称规律【例4】C.对应训练1.C.2.B.3.A.4.D.5.A.6中考冲刺夯实基础1.B.2.B.3.B.4.B.5.D.6.D.81. 能力提升 9.10.6﹣11.20. 12.103. 13.(1)证明:∵∠CAF =∠BAE , ∴∠BAC =∠EAF .由旋转的性质可得:AC =AF . 在△ABC 与△AEF 中,AB AE BAC EAF AC AF =⎧⎪=⎨⎪=⎩∠∠, ∴△ABC ≌△AEF (SAS ), ∴EF =BC ;(2)解:∵AB =AE ,∠ABC =65°, ∴∠BAE =180°﹣65°×2=50°, ∴∠FAG =∠BAE =50°. ∵△ABC ≌△AEF , ∴∠F =∠C =28°,∴∠FGC =∠FAG +∠F =50°+28°=78°. 14.(1)证明:由折叠可得: ∠BEC =∠BEF ,FE =CE , ∵FG ∥CE , ∴∠FGE =∠CEB , ∴∠FGE =∠FEG , ∴FG =FE ,∴FG=EC,∴四边形CEFG是平行四边形,又∵CE=FE,∴四边形CEFG是菱形;(2)∵矩形ABCD中,AB=6,AD=10,BC=BF,∴∠BAF=90°,AD=BC=BF=10,∴AF=8,∴DF=2,设EF=x,则CE=x,DE=6﹣x,∵FDE=90°,∴22+(6﹣x)2=x2,解得,x=103,∴CE=103,∴四边形CEFG的面积是:CE•DF=103×2=203.。
2018届中考数学复习 专题25 等腰三角形、等边三角形试题(B卷,含解析)
等腰三角形、等边三角形一、选择题 1. .(广东省广州市,13,3分)如图,△ABC 中,AB =AC ,BC =12cm ,点D 在AC 上,DC =4cm ,将线段DC 沿CB 方向平移7cm 得到线段EF ,点E ,F 分别落在边AB ,BC 上,则△EBF 的周长为 cm .【答案】13【逐步提示】利用平移的性质可以求得EF 与FC 的长,进而可得BF 的长;再根据等腰三角形的判定可得BE =EF ,这样求得了△EBF 的三边长,其和即为△EBF 的周长.【详细解答】解:根据平移的性质,将线段DC 沿着CB 的方向平移7cm 得到线段EF ,则EF =DC =4cm ,FC =7cm ,∠EFB =∠C .∵AB =AC ,∴∠B =∠C ,∴∠B =∠BFE ,∴BE =EF =4cm .又BF =BC -FC =12-7=5cm ,∴△EBF 的周长=4+4+5=13(cm ).故答案为13.【解后反思】图形平移后,对应线段平行(或在同一条直线上)且相等,这样往往存在平行四边形与全等三角形或等腰三角形,给我解决问题提供了重要途径. 【关键词】平移的性质;等腰三角形的判定2. ( 河北省,16,2分)如图,∠AOB =120°,OP 平分∠AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( )A .1个B .2个C .3个D .3个以上【答案】D【逐步提示】先找出符合要求的特殊点,如点M 与点O 重合,点N 与点O 重合等,不难发现以上特殊情形都满足OM+ON=2,再研究一般情形下△PMN 是否为等边三角形,问题得解. 【详细解答】解:如图,在OA 上截取OC=OP=2,∵∠AOP =60°,∴△OCP 是等边三角形,∴CP=OP ,∠OCP=∠CPO=60°.在线段OC 任取一点M ,在OB 上截取ON ,使ON+OM=2,连接MN ,PM ,PN.∵MC+OM =2,∴CM=ON.在△MCP 和△NOP 中,∵CM=ON,∠MCP =∠NOP =60°,CP=OP ,∴△MCP ≌△NOP (SAS ),∴PM=PN ,∠MPC=∠NPO ,∴∠MPC+∠MPO=∠NPO+∠MPO ,即∠CPO =∠MPN,∴∠MPN =60°,∴△PMN 是等边三角形.故满足条件的△PMN 有无数个,答案为选项D.A B CE D F【解后反思】如图所示,本题是含有60°内角的菱形问题的变式,掌握其中等边三角形和全等三角形的判定有助于我们解决此题.【关键词】等边三角形的判定和性质;全等三角形的判定;存在性问题3.(湖南省怀化市,8,4分)等腰三角形的两边长分别为4cm和8cm,则它的周长为()A. 16cmB. 17cmC. 20cmD. 16cm或20cm【答案】C.【逐步提示】此题考查等腰三角形的定义和三角形三边的关系.题中给出了等腰三角形的两条边长,而没有明确其腰长或底边长,因此需要分腰为4cm长或腰为8cm长两种情况讨论等腰三角形的周长即可.【详细解答】解:若4cm的边长为腰,8cm的边长为底,4+4=8,由三角形三边的关系知,该等腰三角形不存在;若8cm的边长为腰,4cm的边长为底,则等腰三角形的周长为20cm,故选择C.【解后反思】此题考查等腰三角形的定义和三角形三边的关系,解此题的关键是能根据题意,考虑到需要分类讨论等腰三角形的周长.此题的易错点是审题不认真,忽略分类讨论.【关键词】等腰三角形的定义;三角形三边的关系4.(湖南湘西,14,4分)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是A.13cm B .14cm C. 13 cm或14cm D.以上都不对【答案】C【逐步提示】本题考查了三角形的三边关系及等腰三角形的性质,解题的关键是应用三角形三边关系定理讨论.分4cm为等腰三角形的腰和5cm为等腰三角形的腰,先判断符合不符合三边关系,再求出周长.【详细解答】解:①当等腰三角形的腰为4,底为5时,等腰三角形的周长为2×4+5=13;②当等腰三角形的腰为5,底为4时,等腰三角形的周长为2×5+4=14,∴这个等腰三角形的周长是13 cm或14cm,故选择C . 【解后反思】在解有关等腰三角形边长问题时,通常要进行讨论,注意分类讨论后一定要运用三边关系检验,所求的结果若能够组成三角形后,才能继续进行有关的计算.【关键词】三角形三边的关系;等腰三角形的性质5.(山东滨州6,3分)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE 的度数为()A.50° B.51° C.51.5° D.52.5°【答案】D .【逐步提示】先根据AC =CD ,∠A =50°,计算出∠ADC 的度数,再由CD =BD ,可知∠B=∠BCD ,从而求出∠B 的度数,BD =BE ,∠BDE =∠BED ,求出∠BDE 的度数,最后根据∠ADC +∠CDE +∠BDE =180°,计算出∠CDE 的度数. 【详细解答】解:∵AC =CD ,∴∠ADC=∠A =50°,又∵CD =BD ,∴∠B=∠BCD ,∠ADC=∠B+∠BCD ,∴∠B=25°,∵BD =BE ,∠BDE =∠BED=77.5°,∠ADC +∠CDE +∠BDE =180°,∴∠CDE =52.5°. 【解后反思】根据“等腰三角形两底角相等”得到角的度数,再根据三角形的一个外角等于和它不相邻的2个内角的度数之和.【关键词】等腰三角形 三角形的外角和定理6.(江苏省扬州市,8,3分)如图,矩形纸片ABCD 中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是 ( )A .6B .3C .2.5D .2(第8题)BC【答案】C【逐步提示】本题考查了操作活动中的估算和大小比较,解题的关键是合理构造等腰直角三角形,使得剩余部分面积的最小,此时每次都要考虑以最大边做斜边才使得剪去的等腰直角三角形面积最大.【详细解答】解:如图所示,剩余三角形的面积为24—1442创—12—1332创=2.5,故选择C .【解后反思】本题属于数学实验的简单类的问题,在构造等腰直角三角形时,学生可能会构造出如图所示的方法,剩余三角形的面积为24—1442创—12创—12创,错选答案B .【关键词】 三角形;等腰三角形与直角三角形;等腰三角形的性质;勾股定理;四边形;特殊的平行四边形;矩形的性质;面积最小化;化归思想二、填空题1. ( 甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市等9市,17,4分)将一张矩形纸片折叠成如图所示的图形,若AB =6cm ,则AC =_____________cm .第17题图 【答案】6【逐步提示】本题考查轴对称变换的性质,解题的关键是画出折叠之前的矩形纸片,画出折叠之前的矩形纸片之后,一目了然,通过角度之间代换得到△ABC 是等腰三角形,得解.【详细解答】解:由折叠得∠1=∠2,再由矩形纸片对边平行得到∠1=∠3,从而得到∠2=∠3,所以△ABC 是等腰三角形且AB =AC =6cm ,故答案为6.【解后反思】折叠也就是翻折或轴对称,它连同平移、旋转一样是全等变换,即不改变图形的形状和大小,所以看到折叠就要想到全等,进一步得到对应角相等、对应边相等为进一步解题提供条件. 【关键词】 折叠;矩形的性质;等腰三角形的判定;2. ( 河北省,19,4分)如图,已知∠AOB =7°,一条光线从点A 出发后射向OB 边.若光线与OB 边垂直,则光线沿原路返回到点A ,此时∠A =90°-7°=83°.当∠A <83°时,光线射到OB 边上的点A 1后,经OB 反射到线段AO 上的点A 2,易知∠1=∠2.若A 1A 2⊥AO ,光线又会沿A 2→A 1→A 原路返回到点A ,此时∠A =_____°. ……若光线从点A发出后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=_______°.【答案】76 6 【逐步提示】本题属于规律探究题,对于(1)先在Rt△A1A2O中根据三角形内角和定理求出∠2的度数,由此得到∠1和∠AA1A2的度数,再在△AA1A2中根据三角形内角和定理求出∠A的度数;(2)由(1)可知当光线垂直于OA时光线会沿原路返回,画出符合题意的图形,分别求出有公共顶点的光线夹角的度数,从而找出夹角变化的规律,问题可解.【详细解答】解:(1)∵A1A2⊥AO,∴∠A1A2A=∠A1A2O=90°.在Rt△A1A2O中,∠O=7°,∴∠2=90°-7°=83°,∴∠1=83°,∴∠AA1A2=180°-2×83°=14°.在Rt△AA1A2中,∴∠A=90°-14°=76°.(2)如图,当A n-1A n ⊥OA时,易求得∠A n A n-1A n-2=14°=1×14°,∠A n-1A n-2A n-3=28°=2×14°,∠A n-2A n-3A n-4=42°=3×14°,……,由此可知当∠A1AC=12×14°=168°时,∠A1AO=12×(180°-168°)=6°,且此时∠A1AO最小.【解后反思】对于规律探究题,解决问题的一般思路是从特殊情形中发现一般规律,进而应用一般规律求解. 【关键词】规律探究题3.(湖北省黄冈市,12,3分)如图,⊙O是ΔABC的外接圆,∠AOB=700,AB=AC,则∠ABC= 。
2022中考数学专题25 命题与证明(专项训练)(解析版)
专题25 命题与证明一、单选题1.(2021·河南九年级)能说明命题“关于x 的方程240x x n -+=一定有实根”是假命题的反例为( )A .2n =-B .1n =-C .0n =D . 6.8n =【答案】D【分析】计算一元二次方程根的判别式即可【详解】依题意“关于x 的方程240x x n -+=一定有实根”是假命题则:2(4)40n ∆=--< 解得:4n >故选D.【点睛】本题考查了一元二次方程根的判别式,命题与假命题的概念,熟悉概念是解题的关键.2.(2021·沙坪坝区·重庆八中)下列命题,真命题是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .有一个角为直角的四边形为矩形C .对角线互相垂直的四边形是菱形D .一组邻边相等的矩形是正方形【答案】D【分析】由题意根据平行四边形的判定定理、矩形、菱形、正方形的判定定理判断即可.【详解】解:A 、一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,本选项说法是假命题;B 、有一个角为直角的平行四边形为矩形,本选项说法是假命题;C 、对角线互相垂直的平行四边形是菱形,本选项说法是假命题;D 、一组邻边相等的矩形是正方形,本选项说法是真命题;故选:D .【点睛】本题考查的是命题的真假判断,注意掌握正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.(2021·山西九年级)《几何原本》是欧几里得的一部不朽之作,本书以公理和原始概念为基础,推演出更多的结论,这种做法为人们提供了一种研究问题的方法.这种方法所体现的数学思想是()A.数形结合思想B.分类讨论思想C.转化思想D.公理化思想【答案】D【分析】结合题意,根据公理化思想的性质分析,即可得到答案.【详解】根据题意,这种方法所体现的数学思想是:公理化思想故选:D.【点睛】本题考查了公理化思想的知识;解题的关键是熟练掌握公理化思想的性质,从而完成求解.4.(2021·湖南九年级)下列各命题是真命题的是()A.矩形的对称轴是两条对角线所在的直线B.平行四边形一定是中心对称图形C.有一个内角为60 的平行四边形是菱形D.三角形的外角等于它的两个内角之和【答案】B【分析】根据矩形的性质、轴对称图形和中心对称图形的概念、三角形的外角性质判断即可.【详解】解:A、矩形的对称轴是任意一边的垂直平分线,两条对角线所在的直线不一定是矩形的对称轴,本选项是假命题;B、平行四边形一定是中心对称图形,本选项是真命题;C、有一个内角为60°的平行四边形不一定是菱形,本选项是假命题;D、三角形的外角等于与它不相邻的两个内角之和,本选项是假命题;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.(2021·广西九年级)下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连结矩形四边中点得到的四边形是菱形;④等边三角形既是轴对称图形又是中心对称图形.其中真命题共有( )A .1个B .2个C .3个D .4个【答案】B【详解】①一组对边平行,且一组对角相等,则可以判定另外一组对边也平行,所以该四边形是平行四边形,故该命题正确;②对角线互相垂直且相等的四边形不一定是正方形,也可以是普通的四边形(例如筝形,筝形的对角线垂直但不相等,不是正方形),故该命题错误;③因为矩形的对角线相等,所以连接矩形的中点后都是对角线的中位线,所以四边相等,所以是菱形,故该命题正确;④等边三角形是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故该命题错误;故选B .6.(2021·浙江)下列选项中,可以用来证明命题“若a >b ,则1a <1b ”是假命题的反例是( )A .a =2,b =1B .a =2,b =﹣1C .a =﹣2,b =1D .a =﹣2,b =﹣1 【答案】B【分析】把各选项提供的数据代入计算,进行比较即可求解.【详解】解:A.当 a =2,b =1时,111,12a b ==,则11a b <,无法说明原命题为假命题,不合题意; B. 当a =2,b =﹣1时,111,12a b ==-,则11a b>,说明原命题为假命题,符合题意; C.当 a =﹣2,b =1时,a <b ,条件错误,无法说明原命题为假命题,不合题意.D.当 a =﹣2,b =﹣1时,a <b ,条件错误,无法说明原命题为假命题,不合题意. 故选:B【点睛】本题考查了命题真假的判断,要说明一个命题是真命题,一般需要推理、论证,而判断一个命题是假命题,只需要举出一个反例即可.7.(2021·辽宁九年级)下列命题的逆命题是真命题的是( )A .若a b =,则a b =B .同位角相等,两直线平行C .对顶角相等D .若0a >,0b >,则0a b +>【答案】B【分析】 分别写出原命题的逆命题,然后判断真假即可.【详解】解:A 、若a b =,则||||a b =的逆命题是若||||a b =,则a b =,逆命题是假命题,不符合题意;B 、同位角相等,两直线平行的逆命题是两直线平行,同位角相等,逆命题是真命题,符合题意;C 、对顶角相等的逆命题是相等的角是对顶角,逆命题是假命题,不符合题意;D 、若0a >,0b >,则0a b +>的逆命题是若0a b +>,则0a >,0b >,逆命题是假命题,不符合题意;故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是正确的写出一个命题的逆命题,难度不大.8.(2021·辽宁九年级)下列说法错误..的是( ) A .“对顶角相等”的逆命题是真命题B .通过平移或旋转得到的图形与原图形全等C .“经过有交通信号灯的路口,遇到红灯”是随机事件D .函数1y x=-的图象经过点()1,1- 【答案】A【分析】根据平移、旋转的性质、对顶角的性质、反比例函数图象上点的坐标特征、随机事件的概念判断即可.【详解】解:“对顶角相等”的逆命题是相等的角是对顶角,是假命题,A 错误,符合题意; 通过平移或旋转得到的图形与原图形全等,B 正确,不符合题意;“经过有交通信号灯的路口,遇到红灯”是随机事件,C 正确,不符合题意;因为1x =时,11y x =-=-,所以函数1y x=-的图象经过点(1,1)-,D 正确,不符合题意; 故选:A .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.(2021·湖南九年级)下列说法正确的是( )A .有两条边和一个角对应相等的两个三角形全等B .平分弦的直径垂直于这条弦C .正方形既是轴对称图形又是中心对称图形D .一组对边平行,另一组对边相等的四边形是平行四边形【答案】C【分析】根据全等三角形的判定、垂径定理、正方形的性质、平行四边形的判定定理判断即可.【详解】解:A 、有两条边和其夹角对应相等的两个三角形全等,原命题是假命题;B 、平分弦(非直径)的直径垂直于这条弦,原命题是假命题;C 、正方形既是轴对称图形又是中心对称图形,是真命题;D 、一组对边平行且相等的四边形是平行四边形,原命题是假命题;故选:C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(2021·重庆九年级)下列命题中,是真命题的是( )A .对角线相等的四边形是平行四边形B .对角线互相垂直的平行四边形是矩形C .菱形的对角线相等D .有一组邻边相等的平行四边形是菱形【答案】D【分析】由平行四边形的判定得出A 错误;由矩形的判定得出B 不正确;由菱形的定义得出C 正确;由菱形的判定得出D 正确;即可得出答案.【详解】解:A. 对角线互相平分的四边形是平行四边形,∴A 不正确;B. 对角线互相垂直的平行四边形是菱形,∴B 不正确;C. 菱形的对角线互相垂直平分∴C 不正确;D. 有一组邻边相等的平行四边形是菱形∴不正确;故选:D .【点睛】本题考查了命题与定理:判断事物的语句叫命题,正确的命题称为真命题,错误的命题称为假命题,经过推理论证的真命题称为定理.二、填空题11.(2021·山西九年级)若举反例说明命题“若a b <,则ac bc <”是假命题时,令a 的值为5,b -的值为2-,则可给c 取一个具体的值为_______.【答案】1c =-(答案不唯一)【分析】“若a b <时,则ac bc <”是假命题,则a b <时,ac ≥bc ,即可.【详解】解:ac -bc ≥0,c (a -b )≥0-3c ≥0c ≤0即可.故答案为:1c =-(答案不唯一).【点睛】本题考查了命题,掌握真假命题是解题的关键.12.(2021·江苏无锡市·)请写出“两直线平行,同位角相等”的逆命题:_____________________________.【答案】如果同位角相等,那么两直线平行【分析】命题是由题设和结论两部分组成的,把原命题的题设作结论,原命题的结论作题设,这样就将原命题变成了它的逆命题.【详解】解:原命题是:两直线平行,同位角相等.改成如果…那么…的形式为:如果两直线平行,那么同位角相等.∴逆命题为:如果同位角相等,那么两直线平行,故答案为:如果同位角相等,那么两直线平行.【点睛】本题是一道命题与定理的概念试题,考查了命题的组成,原命题与逆命题的关系.13.(2021·安徽合肥·)直角三角形斜边上的中线等于斜边的一半逆命题________________【答案】如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.【分析】把一个命题的条件和结论互换就得到它的逆命题.命题“直角三角形斜边上的中线等于斜边的一半”的条件是直角三角形,结论是斜边上的中线等于斜边的一半,故其逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.【详解】解:定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.【点睛】本题考查了互逆命题的知识及命题的真假判定,两个命题中,如果第一个命题的条件是第二个命题结论,而第一个命题的结论是第二个命题条件,那么这两个命题叫做互逆命题,其中一个命题成为另一个命题的逆命题.14.(2021·安徽九年级)命题“对顶角相等”的逆命题是__________.【答案】相等的角是对顶角【分析】把一个命题的条件和结论互换就得到它的逆命题.【详解】:“对顶角相等”的条件是:两个角是对顶角,结论是:这两个角相等,所以逆命题是:相等的角是对顶角.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.15.(2021·江苏九年级)命题“等腰三角形两底角相等”的逆命题是_______【答案】有两个角相等的三角形是等腰三角形【分析】根据逆命题的条件和结论分别是原命题的结论和条件写出即可.【详解】∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.故答案为:有两个角相等的三角形是等腰三角形.【点睛】本题考查命题与逆命题,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.三、解答题16.(2021·贵州九年级)同学们,你们知道吗?三角形的内角和不一定是180°.德国数学家黎曼创立的黎曼几何中描述:在球面上选三个点连线构成一个三角形,这个三角形的内角和大于180°.黎曼几何开创了几何学的新领域,近代黎曼几何在广义相对论里有着重要的应用.同样,在俄国数学家罗巴切夫斯基发表的新几何(简称罗氏几何)中,描述了在双曲面里画出的三角形,它的内角和永远小于180°.罗氏几何在天体理论中有着广泛的应用.而我们所学习的欧氏几何中描述“在平面内,三角形的内角和等于180°”是源于古希腊数学家欧几里得编写的《原本》.欧几里得创造的公理化体系影响了世界2000多年,是整个人类文明史上的里程碑.请你证明:在平面内,三角形的内角和等于180°.要求画出图形....,写出已知....、求证和证明...... 【答案】见解析【分析】过点A 作//EF BC ,由两直线平行,内错角相等得到1B ∠=∠,2C ∠=∠,再根据平角的定义解题.【详解】已知:如图,ABC .求证:180A B C ∠+∠+∠=︒.证明:过点A 作//EF BC ,∴1B ∠=∠,2C ∠=∠,∵12180BAC ∠+∠+∠=︒,∴180B BAC C ∠+∠+∠=︒.【点睛】本题考查三角形内角和定理的证明,涉及平行线性质、平角定义等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.(2021·潍坊市寒亭区教学研究室九年级)如图是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票的数量分别为5张,4张,3张,2张.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位号之和最小.(1)如果按“甲、乙、丙、丁”的先后顺序购票,那么他们4人是否都能购买到满足条件的票?如果能,请写出每人购买的座位号;如果不能,请说明理由.(2)若乙第一个购票,要使其他3人也能购买到满足条件的票,甲、丙、丁应该按怎样的顺序购票?写出所有符合要求的购票顺序.【答案】(1)甲:1,2,3,4,5;乙:6,8,10,12;丙:7,9,11;丁:13,15;(2)甲丙丁、甲丁丙、丙甲丁、丁甲丙,共4种情况【分析】(1)由所选的座位号之和最小和购票的先后顺序即可推理.(2)根据题意可确定乙的购票结果.再结合所选的座位号之和最小并利用分类讨论的思想确定甲、丙、丁的购票顺序即可得出结果.【详解】(1)由所选的座位号之和最小可知,甲先选:5,3,1,2,4;则乙选:6,8,10,12;丙选11,9,7;丁选15,13.(2)根据题意可确定乙选的座位号为3,1,2,4.①若甲在乙选完之后选,则甲选的座位号为13,11,9,7,5.Ⅰ若丙在甲选完之后选,则丙选的座位号为6,8,10.此时丁可选的座位号为12,14.即在乙选完之后的顺序为:甲、丙、丁.Ⅱ若丁在甲选完之后选,则丁选的座位号为6,8.此时丙可选的座位号为10,12,14.即在乙选完之后的顺序为:甲、丁、丙.②若丙在乙选完之后选,则丙选的座位号为9,7,5.Ⅰ若甲在丙选完之后选,则甲可选的座位号为6,8,10,12,14.此时丁可选的座位号为13,11.即在乙选完之后的顺序为:丙、甲、丁.Ⅱ若丁在丙选完之后选,则丁选的座位号为6,8.此时没有5个相邻的座位的票可供甲选择,此顺序不成立.③若丁在乙选完之后选,则丁选的座位号为7,5.Ⅰ若甲在丁选完之后选,则甲可选的座位号为6,8,10,12,14.此时丙可选的座位号为13,11,9.即在乙选完之后的顺序为:丁、甲、丙.Ⅱ若丙在丁选完之后选,则丙选的座位号为6,8,12.此时没有5个相邻的座位的票可供甲选择,此顺序不成立.综上可知,甲、丙、丁的购票顺序可以为:甲、丙、丁或甲、丁、丙或丙、甲、丁或丁、甲、丙.【点睛】本题考查推理与论证,理解题意并利用分类讨论的思想是解答本题的关键.18.(2021·河南九年级)阅读下列相关材料,并完成相应的任务.婆罗摩笈多是古印度著名的数学家、天文学家,他编著了《婆罗摩修正体系》,他曾经提出了“婆罗摩笈多定理”,也称“布拉美古塔定理”.定理的内容是:“若圆内接四边形的对角线互相垂直,则垂直于一边且过对角线交点的直线平分对边”.任务:(1)按图(1)写出了这个定理的已知和求证,并完成这个定理的证明过程;已知:__________________求证:_________________证明:(2)如图(2),在O 中,弦AB CD ⊥于M ,连接,,,,,AC CB BD DA E F 分别是,AC BC 上的点,EM BD ⊥于,G FM AD ⊥于H ,当M 是AB 中点时,直接写出四边形EMFC 是怎样的特殊四边形:__________.【答案】(1)见解析;(2)菱形【分析】(1)先写出已知、求证,先证明BMF MAF ∠=∠,再证明DE ME =,DE CE =即可证明 (2)先证明CE CF =,再证明AC BC =,由布拉美古塔定理证明ME EC CF FM ===即可证明 【详解】(1)已知:如图,在圆内接四边形ABCD 中,对角线AC BD ⊥于点M ,过点M 作AB 的垂线分别交AB DC 、于点,F E . 求证:点E 是DC 的中点 证明:,AC BD EF AB ⊥⊥9090BMF AMF MAF AMF ∴∠+∠=︒∠+∠=︒,,BMF MAF ∴∠=∠,EDM MAF EMD BMF ∠=∠∠=∠,, EDM EMD ∴∠=∠, DE ME ∴=,同理可证ME CE =,DE CE ∴=, ∴点E 是DC 的中点故答案为:已知:如图,在圆内接四边形ABCD 中,对角线AC BD ⊥于点M ,过点M 作AB 的垂线分别交AB DC 、于点,F E . 求证:点E 是DC 的中点 (2)四边形EMFC 是菱形理由:由布拉美古塔定理可知,,E F 分别是,AC BC 的中点, 11,22CE AC CF CB ∴== AB CD ⊥ 11,22ME AC MF CB ∴== AB CD M ⊥,是AB 中点AC BC ∴=ME EC CF FM ∴===∴四边形EMFC 是菱形 故答案为:四边形EMFC 是菱形 【点睛】本题考查菱形的判定、根据题意写已知求证、灵活进行角的和差关系的转换是解题的关键 19.(2020·江苏鼓楼区·)点E 、F 分别是菱形ABCD 边BC 、CD 上的点. (1)如图,若CE =CF ,求证AE =AF ;(2)判断命题“若AE =AF ,则CE =CF ”的真假.若真,请证明;若假,请在备用图上画出反例.【答案】(1)见解析;(2)假命题,见解析 【分析】(1)连接AC ,利用菱形的性质和全等三角形的判定和性质解答即可; (2)举出反例解答即可. 【详解】解:(1)连接AC ,∵四边形ABCD 是菱形, ∴∠ACE =∠ACF , 在△ACE 与△ACF 中CE CF ACE ACF AC AC =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△ACF (SAS ), ∴AE =AF ,(2)当AE =AF =AF'时,CE ≠CF',如备用图,∴命题“若AE =AF ,则CE =CF ”是假命题. 【点睛】此题考查命题与定理,关键是根据菱形的性质和全等三角形的判定和性质解答.20.(2020·丰台·北京十八中)某次数学竞赛中有5道选择题,每题1分,每道题在A、B、C三个选项中,只有一个是正确的.下表是甲、乙、丙、丁四位同学每道题填涂的答案和这5道题的得分:(1)则甲同学错的是第题;(2)丁同学的得分是;(3)如果有一个同学得了1分,他的答案可能是(写出一种即可).【答案】(1)5;(2)3;(3)A【分析】(1)分甲从第1题到第5题依次错一道,进而得出其余四道的正确选项,再根据乙,丙的选项和得分判断,进而得出甲具体选错的题号,即可得出结论;(2) 分甲从第1题到第5题依次错一道,进而得出其余四道的正确选项,再根据乙丙的选项和得分判断,进而得出甲具体选错的题号,即可得出结论.(3)由(1)先得出五道题的正确选项,然后留一个正确,其他都错误即可得出结论.【详解】解:(1)当甲选错了第1题,那么,其余四道全对, 针对于乙来看,第1,3,5道错了,做对两道,此时,得分为2,而乙得分3,所以,此种情况不符合题意,当甲选错了第2题,那么其余四道全对,针对于乙来看,第2,3,5道错了,做对2道,此时,得分为2分,而乙得分3分,所以,此种情况不符合题意,当甲选错第3题时,那么其余四道都对,针对于乙来看,第5道错了,而乙的得分是3分,所以,乙只能做对3道,即:第3题乙也选错,即:第3题的选项C正确,针对于丙来看,第1题错了,做对4道,此时,丙的得分为4分,而丙的得分为2分,所以此种情况不符合题意,当甲选错第4题,那么其余四道都对, 针对于乙来看,第3,4,5道错了,做对了2道,此时,得分2分,而乙的得分为3分,所以,此种情况不符合题意,当甲选错第5题,那么其余四道都对,针对于乙来看,第3道错了,而乙的得分为3分,所以,乙只能做对3道,所以,乙第5题也错了,所以,第5题的选项A是正确的,针对于丙来看,第1,3,5题错了,做对了2道,得分2分,针对于丁来看,第1,3题错了,做对了3道,得分3分,故答案为5;(2)当甲选错了第1题,那么,其余四道全对, 针对于乙来看,第1,3,5道错了,做对两道,此时,得分为2,而乙得分3,所以,此种情况不符合题意,当甲选错了第2题,那么其余四道全对,针对于乙来看,第2,3,5道错了,做对2道,此时,得分为2分,而乙得分3分,所以,此种情况不符合题意,当甲选错第3题时,那么其余四道都对,针对于乙来看,第5道错了,而乙的得分是3分,所以,乙只能做对3道,即:第3题乙也选错,即:第3题的选项C正确,针对于丙来看,第1题错了,做对4道,此时,丙的得分为4分,而丙的得分为2分,所以,此种情况不符合题意,当甲选错第4题,那么其余四道都对, 针对于乙来看,第3,4,5道错了,做对了2道,此时,得分2分,而乙的得分为3分,所以,此种情况不符合题意,当甲选错第5题,那么其余四道都对,针对于乙来看,第3道错了,而乙的得分为3分,所以,乙只能做对3道,所以,乙第5题也错了,所以,第5题的选项A是正确的,针对于丙来看,第1,3,5题错了,做对了2道,得分2分,针对于丁来看,第1,3题错了,做对了3道,得分3分,故答案为3;(3)由(1)知,五道题的正确选项分别是:CCABA, 如果有一个同学得了1分,那么,只选对1道, 即:他的答案可能是CACCC或CBCCC或CABAB或BBBBB等,故答案为:CACCC或BBBBB(答案不唯一).【点睛】本题主要考查是推理与论证问题和分类讨论的思想,确定出甲选错的题号是解本题的关键. 21.(2020·浙江台州·九年级期末)定义:连结菱形的一边中点与对边的两端点的线段把它分成三个三角形,如果其中有两个三角形相似,那么称这样的菱形为自相似菱形.(1)判断下列命题是真命题,还是假命题?①正方形是自相似菱形;②有一个内角为60°的菱形是自相似菱形.③如图1,若菱形ABCD 是自相似菱形,∠ABC =α(0°<α<90°),E 为BC 中点,则在△ABE ,△AED ,△EDC 中,相似的三角形只有△ABE 与△AED .(2)如图2,菱形ABCD 是自相似菱形,∠ABC 是锐角,边长为4,E 为BC 中点. ①求AE ,DE 的长;②AC ,BD 交于点O ,求tan ∠DBC 的值.【答案】(1)见解析;(2)①DEtan ∠DBC. 【分析】(1)①证明△ABE ≌△DCE (SAS ),得出△ABE ∽△DCE 即可; ②连接AC ,由自相似菱形的定义即可得出结论; ③由自相似菱形的性质即可得出结论; (2)①由(1)③得△ABE ∽△DEA ,得出AB BE AEDE AE AD==,求出AE =,DE =②过E 作EM ⊥AD 于M ,过D 作DN ⊥BC 于N ,则四边形DMEN 是矩形,得出DN =EM ,DM =EN ,∠M =∠N =90°,设AM =x ,则EN =DM =x +4,由勾股定理得出方程,解方程求出AM =1,EN =DM =5,由勾股定理得出DN =EM,求出BN =7,再由三角函数定义即可得出答案. 【详解】解:(1)①正方形是自相似菱形,是真命题;理由如下: 如图3所示:∵四边形ABCD 是正方形,点E 是BC 的中点, ∴AB =CD ,BE =CE ,∠ABE =∠DCE =90°, 在△ABE 和△DCE 中 AB CD ABE DCE BE CE =⎧⎪=⎨⎪=⎩∠∠, ∴△ABE ≌△DCE (SAS ), ∴△ABE ∽△DCE , ∴正方形是自相似菱形,故答案为:真命题;②有一个内角为60°的菱形是自相似菱形,是假命题;理由如下:如图4所示:连接AC,∵四边形ABCD是菱形,∴AB=BC=CD,AD∥BC,AB∥CD,∵∠B=60°,∴△ABC是等边三角形,∠DCE=120°,∵点E是BC的中点,∴AE⊥BC,∴∠AEB=∠DAE=90°,∴只能△AEB与△DAE相似,∵AB∥CD,∴只能∠B=∠AED,若∠AED=∠B=60°,则∠CED=180°﹣90°﹣60°=30°,∴∠CDE=180°﹣120°﹣30°=30°,∴∠CED=∠CDE,∴CD=CE,不成立,∴有一个内角为60°的菱形不是自相似菱形,故答案为:假命题;③若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED,是真命题;理由如下:∵∠ABC=α(0°<α<90°),∴∠C >90°,且∠ABC +∠C =180°,△ABE 与△EDC 不能相似, 同理△AED 与△EDC 也不能相似, ∵四边形ABCD 是菱形, ∴AD ∥BC , ∴∠AEB =∠DAE ,当∠AED =∠B 时,△ABE ∽△DEA ,∴若菱形ABCD 是自相似菱形,∠ABC =α(0°<α<90°),E 为BC 中点, 则在△ABE ,△AED ,△EDC 中,相似的三角形只有△ABE 与△AED , 故答案为:真命题;(2)①∵菱形ABCD 是自相似菱形,∠ABC 是锐角,边长为4,E 为BC 中点, ∴BE =2,AB =AD =4, 由(1)③得:△ABE ∽△DEA , ∴AB BE AEDE AE AD== ∴AE 2=BE •AD =2×4=8,∴AE DE =AB AE BE ⋅,故答案为:AE DE②过E 作EM ⊥AD 于M ,过D 作DN ⊥BC 于N ,如图2所示:则四边形DMEN 是矩形, ∴DN =EM ,DM =EN ,∠M =∠N =90°, 设AM =x ,则EN =DM =x +4,由勾股定理得:EM 2=DE 2﹣DM 2=AE 2﹣AM 2,即2﹣(x +4)22﹣x 2, 解得:x =1, ∴AM =1,EN =DM =5,∴DN =EM = 在Rt △BDN 中, ∵BN =BE +EN =2+5=7,∴tan ∠DBC =DN BN =【点睛】本题考查了自相似菱形的定义和判定,菱形的性质应用,三角形全等的判定和性质,相似三角形的判定和性质,勾股定理的应用,锐角三角函数的定义,掌握三角形相似的判定和性质是解题的关键.22.(2020·渠县崇德实验学校九年级)某次数学竞赛中有5道选择题,每题1分,每道题在A、B、C三个选项中,只有一个是正确的.下表是甲、乙、丙、丁四位同学每道题填涂的答案和这5道题的得分:)则丁同学的得分是;(2)如果有一个同学得了1分,他的答案可能是(写出一种即可)【答案】(1)3;(2)CACCC【分析】(1)分甲从第1题到第5题依次错一道,进而得出其余四道的正确选项,再根据乙,丙的选项和得分判断,进而得出甲具体选错的题号,即可得出结论;(2)由(1)先得出五道题的正确选项,然后留一个正确,其他都错误即可得出结论.【详解】解:(1)当甲选错了第1题,那么,其余四道全对,针对于乙来看,第1,3,5道错了,做对两道,此时,得分为2,而乙得分3,所以,此种情况不符合题意,当甲选错了第2题,那么其余四道全对,针对于乙来看,第2,3,5道错了,做对2道,此时,得分为2分,而乙得分3分,所以,此种情况不符合题意,当甲选错第3题时,那么其余四道都对,。
人教版 九年级数学 第25章 概率初步 综合复习(含答案)
人教版九年级数学第25章概率初步综合复习一、选择题(本大题共10道小题)1. 下列事件中,是必然事件的为()A.三点确定一个圆B.抛掷一枚骰子,朝上的一面点数恰好是5C.四边形有一个外接圆D.圆的切线垂直于过切点的半径2. 下列事件中随机事件的个数是()①投掷一枚硬币正面朝上;①明天太阳从东方升起;①五边形的内角和是560°;①购买一张彩票中奖.A.0 B.1 C.2 D.33. 用频率估计概率可以发现,抛掷一枚均匀的硬币,“正面朝上”的概率为0.5,是指()A.连续抛掷2次,结果一定是“正面朝上”和“反面朝上”各1次B.连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C.抛掷2n次,恰好有n次“正面朝上”D.抛掷n次,当n越来越大时,正面朝上的频率会越来越接近0.54. 下列说法正确的是()A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生5. 某路口交通信号灯的时间设置为红灯35秒,绿灯m秒,黄灯3秒,当车经过该路口时,遇到红灯的可能性最大,则m的值不可能是()A.3 B.15 C.30 D.406. 三名九年级同学坐在仅有的三个座位上,起身后重新就座,恰好有两名同学没有坐回原位的概率是 ( ) A.19B.16C.14D.127. 在-2,-1,0,1,2这五个数中任取两数m ,n ,则二次函数y =(x -m)2+n的图象的顶点在坐标轴上的概率为( ) A.25B.15C.14D.128. 如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;①随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;①若再次用计算机模拟此试验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.其中合理的是( ) A .① B .① C .①① D .①①9. 如图,①ABC是一块绿化带,将阴影部分修建为花圃,已知AB =13,AC =5,BC =12,阴影部分是①ABC 的内切圆.一只自由飞翔的小鸟随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.115πB.215πC.415πD.π510. 如图,在4×4的正方形网格中,阴影部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂上阴影,使阴影部分的图形仍然构成一个轴对称图形的概率是()A.613 B.5 13C.413 D.3 13二、填空题(本大题共7道小题)11. 写一个你喜欢的实数m的值:________,使得事件“对于二次函数y=12x2-(m-1)x+3,当x<-3时,y随x的增大而减小”成为随机事件.要使此事件成为随机事件,则抛物线的对称轴应位于直线x=-3的左侧.12. 有五张卡片(形状、大小、质地等均相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中任取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是________.13. 从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球10个和白球若干个,这些球除颜色不同外,其他都一样,由此估计口袋中有________个白球.14.①①①①①①①①①①①①①①①3①①(①①①①①①)①①①2①①①①①1①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①________①15.①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①________①16. 有三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机从中抽取一张,记录下牌上的数字后并把牌放回,再重复这样的步骤两次,共得到三个数字a,b,c,则以a,b,c为边长正好构成等边三角形的概率是________.17. 某校欲从初三年级3名女生、2名男生中任取两名学生代表学校参加全市举办的“中国梦·青春梦”演讲比赛,则恰好选中一男一女的概率是________.三、解答题(本大题共4道小题)18. 某路口红绿灯的时间设置为红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据是什么?19. 方案设计盒中装有红球、黄球共10个,每个球除颜色不同外其余都相同,每次从盒中摸出1个球,摸三次,不放回,请你按要求设计盒中红球的个数.(1)“摸出的3个球都是红球”是不可能事件;(2)“摸出红球”是必然事件;(3)“至少摸出2个黄球”是确定性事件;(4)“至少摸出2个黄球”是随机事件.20. 如图所示,有一个可以自由转动的转盘,其盘面被分为4等份,在每一等份分别标有对应的数字2,3,4,5.小明打算自由转动转盘10次,现已经转动了8次.每一次停止后,小明将指针所指数字记录如下:(1)求前8次的指针所指数字的平均数.(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时视为无效转次)21. 在一个不透明的布袋中,有2个红球,1个白球,这些球除颜色不同外其余都相同.(1)搅匀后从中任意摸出1个球,摸到红球的概率是________;(2)搅匀后先从中任意摸出1个球(不放回),再从余下的球中任意摸出1个球,求两次都摸到红球的概率.(用树状图或表格列出所有等可能出现的结果)人教版九年级数学第25章概率初步综合复习-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】C[解析] 掷一枚硬币正面朝上是随机事件;明天太阳从东方升起是必然事件;五边形的内角和是560°是不可能事件;购买一张彩票中奖是随机事件.所以随机事件有2个.3. 【答案】D4. 【答案】C5. 【答案】D[解析] 因为车遇到红灯的可能性最大,可知亮红灯的时间最长,故m <35.6. 【答案】D[解析] 利用列举法可知,三人全部的坐法有6种,其中恰好有两名同学没有坐回原位的情况有3种,因此恰好有两名同学没有坐回原位的概率是36=12. 故选D.7. 【答案】A[解析] 画树状图如下:由树状图可知,共有20种等可能的结果,其中取到0的结果有8种, 所以函数图象的顶点在坐标轴上的概率为820=25.8. 【答案】B9. 【答案】B[解析] 因为132=122+52,即AB2=BC2+AC2,所以①ABC 为直角三角形,所以①ABC 的内切圆半径=12×(12+5-13)=2. 所以S①ABC =12AC·BC =12×12×5=30,S 圆=4π. 所以小鸟落在花圃上的概率=S 圆S①ABC =4π30=215π. 故选B.10. 【答案】B[解析] 因为根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,共13种情况,而能构成一个轴对称图形的有下列5种情况:所以使图中阴影部分的图形仍然构成一个轴对称图形的概率是513.故选B.二、填空题(本大题共7道小题)11. 【答案】答案不唯一,如-4[解析] y =12x 2-(m -1)x +3,图象的对称轴为直线x =-b2a =m -1.∵事件“对于二次函数y =12x 2-(m -1)x +3,当x <-3时,y 随x 的增大而减小”是随机事件,∴m -1<-3,解得m <-2, ∴m 为小于-2的任意实数.12. 【答案】25 [解析] 五种图形中,既是中心对称图形,又是轴对称图形的有线段、圆2种,所以所求概率为25.13. 【答案】20[解析] 摸了150次,其中有50次摸到黑球,则摸到黑球的频率是50150=13.设口袋中有x 个白球,则10x +10=13, 解得x =20.经检验,x =20是原方程的解, 故答案为20.14. 【答案】49①①①①①①①①①①①①①①①①①①①9①①①①①①①①①①①①①①①①①①①4①①①①①①①①①①①①①①①P①m n ①49.15.【答案】13①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①26①13.16. 【答案】19 [解析] 画树状图如下:∵共有27种等可能的结果,能构成等边三角形的结果有3种,∴以a ,b ,c 为边长正好构成等边三角形的概率是327=19.17. 【答案】35 [解析] 解法1:列表如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种,所以恰好选中一男一女的概率P=1220=35.解法2:画树状图如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种,所以恰好选中一男一女的概率P=1220=35.三、解答题(本大题共4道小题)18. 【答案】解:当人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.根据:绿灯持续的时间最长,黄灯持续的时间最短.19. 【答案】解:(1)2个或1个.(2)8个或9个.(3)9个或1个.(4)多于1个且小于9个.20. 【答案】解:(1)3+5+2+3+3+4+3+58=3.5.答:前8次的指针所指数字的平均数为3.5.(2)可能.若这10次的指针所指数字的平均数不小于3.3,且不大于3.5,则所指数字之和应不小于33,且不大于35.而前8次所指数字之和为28,所以最后2次所指数字之和应不小于5,且不大于7.第9次和第10次指针可能所指的数字如下表所示:一共有16种等可能的结果,其中指针所指数字之和不小于5,且不大于7的结果有9种,其概率为9 16.21. 【答案】解:(1)布袋中共有3个球,这些球除颜色外都相同,故能摸到红球的概率为2 3.(2)两个红球分别记为红1,红2,用表格列出所有可能出现的结果如下:由表格可知,一共有6种可能出现的结果,它们是等可能的,其中“两次都摸到红球”的结果有2种,所以P(两次都摸到红球)=26=13.。
中考数学复习考点题型专题讲解25 坐标与新定义问题大题提升训练
中考数学复习考点题型专题讲解中考数学复习考点题型专题讲解(重难点培优30题)专题25 坐标与新定义问题大题提升训练坐标与新定义问题大题提升训练(小题))解答题((共30小题一.解答题1.(2023秋•埇桥区期中)已知当m、n都是实数,且满足2m=6+n,则称点ܣ(݉−1,݊2)为“智慧点”.(1)判断点P(4,10)是否为“智慧点”,并说明理由.(2)若点M(a,1﹣2a)是“智慧点”.请判断点M在第几象限?并说明理由.【分析】(1)根据P点坐标,代入(݉−1,݊2)中,求出m和n的值,然后代入2m,6+n 检验等号是否成立即可;(2)直接利用“智慧点”的定义得出a的值进而得出答案.【解答】解(1)点P不是“智慧点”,由题意得݉−1=4,݊2=10,∴m=5,n=20,∴2m=2×5=10,6+n=6+20=26,∴2m≠6+n,∴点P(4,10)不是“智慧点”;(2)点M在第四象限,理由∵点M(a,1﹣2a)是“智慧点”,∴݉−1=ܽ,݊2=1−2ܽ,∴m=a+1,n=2﹣4a,∵2n=6+n,∴2(a+1)=6+2﹣4a,解得a=1,∴点M(1,﹣1),∴点M在第四象限.2.(2023春•镇巴县期末)已知a,b都是实数,设点P(a,b),若满足3a=2b+5,则称点P为“新奇点”.(1)判断点A(3,2)是否为“新奇点”,并说明理由;(2)若点M(m﹣1,3m+2)是“新奇点”,请判断点M在第几象限,并说明理由.【分析】(1)直接利用“新奇点”的定义得出a,b的值,进而得出答案;(2)直接利用“新奇点”的定义得出m的值,进而得出答案.【解答】解(1)当A(3,2)时,3×3=9,2×2+5=4+5=9,所以3×3=2×2+5,所以A(3,2)是“新奇点”;(2)点M在第三象限,理由如下∵点M(m﹣1,3m+2)是“新奇点”,∴3(m﹣1)=2(3m+2)+5,解得m=﹣4,∴m﹣1=﹣5,3m+2=﹣10,∴点M在第三象限.3.(2023秋•漳州期末)在平面直角坐标系xOy中,给出如下定义点A到x轴、y轴距离的较大值称为点A的“长距”,当点P的“长距”等于点Q的“长距”时,称P,Q两点为“等距点”.(1)求点A(﹣5,2)的“长距”;(2)若C(﹣1,k+3),D(4,4k﹣3)两点为“等距点”,求k的值.【分析】(1)即可“长距”的定义解答即可;(2)由等距点的定义求出不同情况下的k值即可.【解答】解(1)点A(﹣5,2)的“长距”为|﹣5|=5;(2)由题意可知,|k+3|=4或4k﹣3=±(k+3),解得k=1或k=﹣7(不合题意,舍去)或k=2或k=0(不合题意,舍去),∴k=1或k=2.4.(2023秋•渠县校级期中)在平面直角坐标系中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay)(其中a为常数),则称点Q是点P的“a级关联点”、例如,点P(1,4)的“3级关联点”为点Q(3×1+4,1+3×4),即点Q(7,13).在平面直角坐标系中,已知点A(﹣2,6)的“2级关联点”是点B,求点B的坐标;在平面直角坐标系中,已知点M(m,2m﹣1)的“3级关联点”是点N,且点N位于x 轴上,求点N的坐标.【分析】(1)根据关联点的定义,结合点的坐标即可得出结论;(2)根据关联点的定义和点M(m,2m﹣1)的“3级关联点”是点N位于x轴上,即可求出N的坐标.【解答】解(1)∵点A(﹣2,6)的“2级关联点”是点B,故点B的坐标为(2×(﹣2)+6,﹣2+2×6)∴B的坐标(2,10);(2)∵点M(m,2m﹣1)的“3级关联点”为N(3m+2m﹣1,m+3(2m﹣1)),当N位于x轴上时,m+3(2m﹣1)=0,解得m=37,∴3m+2m﹣1=87,∴点N的坐标为(଼,0).5.(2023秋•天长市月考)在平面直角坐标系中,对于点P、Q两点给出如下定义若点P 到x,y轴的距离的较大值等于点Q到x,y轴的距离的较大值,则称P、Q两点为“等距点”.如点P(﹣2,5)和点Q(﹣5,﹣1)就是等距点.(1)已知点B的坐标是(﹣4,2),点C的坐标是(m﹣1,m),若点B与点C是“等距点”,求点C的坐标;(2)若点D(3,4+k)与点E(2k﹣5,6)是“等距点”,求k的值.【分析】(1)根据“等距点”的定义解答即可;(2)根据“等距点”的定义分情况讨论即可.【解答】解(1)由题意,可分两种情况①|m﹣1|=|﹣4|,解得m=﹣3或5(不合题意,舍去);②|m|=|﹣4|,解得m=﹣4(不合题意,舍去)或m=4,综上所述,点C的坐标为(﹣4,﹣3)或(3,4);(2)由题意,可分两种情况①当|2k﹣5|≥6时,|4+k|=|2k﹣5|,∴4+k=2k﹣5或4+k=﹣(2k﹣5),解得k=9或k=13(不合题意,舍去);②当|2k﹣5|<6时,|4+k|=6,∴4+k=6或4+k=﹣6,解得k=2或k=﹣10(不合题意,舍去);综上所述,k=2或k=9.6.(2023秋•蚌山区月考)在平面直角坐标系中,对于点A(x,y),若点B的坐标为(ax+y,x+ay),则称点B是点A的“a级开心点”(其中a为常数,且a≠0),例如,点P(1,4)的“2级开心点”为Q(2×1+4,1+2×4),即Q(6,9).(1)若点P的坐标为(﹣1,5),则点P的“3级开心点”的坐标为(2,14) ;(2)若点P的“2级开心点”是点Q(4,8),求点P的坐标;(3)若点P(m﹣1,2m)的“﹣3级开心点”P'位于坐标轴上,求点P'的坐标.【分析】(1)根据关联点的定义,结合点的坐标即可得出结论.(2)根据关联点的定义,结合点的坐标即可得出结论.(3)根据关联点的定义和点P (m ﹣1,2m )的“﹣3级开心点”P ′位于坐标轴上,即可求出P ′的坐标.【解答】解 (1)3×(﹣1)+5=2;﹣1+3×5=14,∴若点P 的坐标为(﹣1,5),则它的“3级开心点”的坐标为(2,14). 故答案为 (2,14);(2)设点P 的坐标为(x ,y )的“2级开心点”是点Q (4,8), ∴൜2ݔ+ݕ=4ݔ+2ݕ=8 解得൜ݔ=0ݕ=4,∴点P 的坐标为(0,4);(3)∵点P (m ﹣1,2m )的“﹣3级开心点”为P ′(﹣3(m ﹣1)+2m ,m ﹣1+(﹣3)×2m ),①P ′位于x 轴上, ∴m ﹣1+(﹣3)×2m =0, 解得 m =−15,∴﹣3(m ﹣1)+2m =165, ∴P ′(ଵହ,0).②P ′位于y 轴上, ∴﹣3(m ﹣1)+2m =0, 解得 m =3∴m ﹣1+(﹣3)×2m =﹣16, ∴P ′(0,﹣16).综上所述,点P ′的坐标为(ଵହ,0)或(0,﹣16).7.(2023春•芜湖期中)在平面直角坐标系中,对于点A (x ,y ),若点B 的坐标为(x +ay ,ax+y),则称点B是点A的a级亲密点.例如点A(﹣2,6)的ଵଶ级亲密点为B(−2+12×6,12×(−2)+6),即点B的坐标为(1,5).(1)已知点C(﹣1,5)的3级亲密点是点D,则点D的坐标为(14,2) .(2)已知点M(m﹣1,2m)的﹣3级亲密点M1位于y轴上,求点M1的坐标.(3)若点E在x轴上,点E不与原点重合,点E的a级亲密点为点F,且EF的长度为OE长度的√3倍,求a的值.【分析】(1)根据题意,应用新定义进行计算即可得出答案;(2)根据新定义进行计算可得点M(m﹣1,2m)的﹣3级亲密点是点M1[m﹣1+(﹣3)×2m,﹣1×(m﹣1)+2m],根据y轴上点的坐标特征进行求解即可得出答案;(3)设E(x,0),则点E的a级亲密点为点F(x,ax),根据平面直角坐标系中距离的计算方法可得,OE=|x|,EF=|ax|,则|ax|=√3|x|,计算即可得出答案.【解答】解(1)根据题意可得,点C(﹣1,5)的3级亲密点是点D(﹣1+3×5,﹣1×3+5),即点D的坐标为(14,2);故答案为(14,2);(2)根据题意可得,点M(m﹣1,2m)的﹣3级亲密点是点M1[m﹣1+(﹣3)×2m,﹣3×(m﹣1)+2m],即点M1的坐标为(﹣5m﹣1,﹣m+3),∵M1位于y轴上,∴﹣5m﹣1=0,∴m=−15,∴M1(0,ଵହ);(3)设E(x,0),则点E的a级亲密点为点F(x,ax),根据题意可得,OE=|x|,EF=|ax|,则|ax |=√3|x |, 即|a |=√3, 解得 a =±√3.8.(2023秋•舒城县校级月考)点P 坐标为(x ,2x ﹣4),点P 到x 轴、y 轴的距离分别为d 1,d 2.(1)当点P 在坐标轴上时,求d 1+d 2的值; (2)当d 1+d 2=3时,求点P 的坐标; (3)点P 不可能在哪个象限内?【分析】(1)分点P 在x 轴和y 轴两种情况讨论即可;(2)将d 1+d 2用含x 的式子表示出来,根据x 的范围化简即可; (3)根据x 和2x ﹣4的范围即可得出答案.【解答】解 (1)若点P 在x 轴上,则x =0,2x ﹣4=﹣4, ∴点P 的坐标为(0,﹣4),此时d 1+d 2=4, 若点P 在y 轴上,则2x ﹣4=0,得x =2, ∴点P 的坐标为(2,0),此时d 1+d 2=2. (2)若x ≤0,则d 1+d 2=﹣x ﹣2x +4=3, 解得x =13(舍), 若0<x <2,则d 1+d 2=x ﹣2x +4=3,解得x =1, ∴P (1,﹣2),若x ≥2,则d 1+d 2=x +2x ﹣4=3, 解得x =73, ∴P (ଷ,ଶଷ);(3)∵当x <0时,2x ﹣4<0,∴点P不可能在第二象限.9.(2023春•新余期末)已知当m,n都是实数,且满足2m=8+n时,就称点P(m﹣1,ାଶଶ)为“爱心点”.(1)判断点A(5,3),B(4,8)哪个点为“爱心点”,并说明理由;(2)若点M(a,2a﹣1)是“爱心点”,请判断点M在第几象限?并说明理由.【分析】(1)直接利用“爱心点”的定义得出m,n的值,进而得出答案;(2)直接利用“爱心点”的定义得出a的值进而得出答案.【解答】解(1)当A(5,3)时,m﹣1=5,ାଶଶ=3,解得m=6,n=4,则2m=12,8+n=12,所以2m=8+n,所以A(5,3)是“爱心点”;当B(4,8)时,m﹣1=4,ାଶଶ=8,解得m=5,n=14,显然2m≠8+n,所以B点不是“爱心点”;(2)点M在第三象限,理由如下∵点M(a,2a﹣1)是“爱心点”,∴m﹣1=a,ାଶଶ=2a﹣1,∴m=a+1,n=4a﹣4,代入2m=8+n有2a+2=8+4a﹣4,∴a=﹣1 2a﹣1=﹣3,∴M(﹣1,﹣3)故点M在第三象限.10.(2023春•商南县校级期末)在平面直角坐标系xOy中,给出如下定义点A到x轴、y 轴距离中的较大值称为点A的“长距”,当点P的“长距”等于点Q的“长距”时,称P,Q两点为“等距点”.(1)点A(2,3)的“长距”等于3,点B(﹣7,5)的“长距”等于7.(2)若C(﹣1,2k+3),D(6,k﹣2)两点为“等距点”,求k的值.【分析】(1)根据“长距”的定义解答即可;(2)由等距点的定义求出不同情况下的k值即可.【解答】解(1)点A(2,3)的“长距”为|3|=3;点B(﹣7,5)的“长距”为|﹣7|=7;故答案为3,7.(2)由题意可知,|2k+3|=6或2k+3=±(k﹣2),解得k=32或k=﹣4.5(不合题意,舍去)或k=﹣5或k=−13(不合题意,舍去),∴k=32或k=﹣5.11.(2023春•思明区校级期末)在平面直角坐标系xOy中,给出如下定义点A到x轴、y 轴距离的较大值称为点A的“长距”,当点P的“长距”等于点Q的“长距”时,称P,Q两点为“等距点”.(1)点A(﹣5,2)的“长距”为5;(2)点B(﹣2,﹣2m+1)的“长距”为3,求m的值;(3)若C(﹣1,k+3),D(4,4k﹣3)两点为“等距点”,求k的值.【分析】(1)根据“长距”的定义解答即可;(2)根据“长距”的定义解答即可;(3)由等距点的定义求出不同情况下的k值即可.【解答】解(1)点A(﹣5,2)的“长距”为|﹣5|=5;故答案为5.(2)由题意可知|﹣2m+1|=3,解得m =﹣1或2.(3)由题意可知,|k +3|=4或4k ﹣3=±(k +3),解得k =1或k =﹣7(不合题意,舍去)或k =2或k =0(不合题意,舍去), ∴k =1或k =2.12.(2023•南京模拟)在平面直角坐标系xOy 中,对于点P (x ,y ),若点Q 的坐标为(ax +y ,x +ay ),其中a 为常数,则称点Q 是点P 的“a 级关联点”例如,点P (1,4)的“3级关联点”为Q (3×1+4,1+3×4),即Q (7,13).(1)已知点A (2,﹣6)的“ଵଶ级关联点”是点B ,求点B 的坐标; (2)已知点P 的5级关联点为(9,﹣3),求点P 坐标;(3)已知点M (m ﹣1,2m )的“﹣4级关联点”N 位于坐标轴上,求点N 的坐标. 【分析】(1)根据关联点的定义,结合点的坐标即可得出结论;(2)设点P 的坐标为(a ,b ),根据关联点的定义,结合点的坐标列方程组即可得出结论;(3)根据关联点的定义和点M (m ﹣1,2m )的“﹣4级关联点”N 位于坐标轴上,即可求出N 的坐标.【解答】解(1)∵点A (2,﹣6)的“ଵଶ级关联点”是点B ,故点B 的坐标为(ଵଶ×2−6,2−12×6) ∴B 的坐标(﹣5,﹣1);(2)设点P 的坐标为(a ,b ), ∵点P 的5级关联点为(9,﹣3), ∴ቄ5ܽ+ܾ=9ܽ+5ܾ=−3, 解得ቄܽ=2ܾ=−1,∵P (2,﹣1);(3)∵点M (m ﹣1,2m )的“﹣4级关联点”为M ′(﹣4(m ﹣1)+2m ,m ﹣1+(﹣4)×2m ),当N位于y轴上时,﹣4(m﹣1)+2m=0,解得m=2,∴m﹣1+(﹣4)×2m)=﹣15,∴N(0,﹣15);当N位于x轴上时,m﹣1+(﹣4)×2m=0,解得m=−17,∴﹣4(m﹣1)+2m=307,∴N(ଷ,0);综上所述,点N的坐标为(0,﹣15)或(ଷ,0).13.(2023春•上杭县期中)在平面直角坐标系xOy中,对于P,Q两点给出如下定义若点P到x轴、y轴的距离之差的绝对值等于点Q到x轴、y轴的距离之差的绝对值,则称P,Q两点互为“等差点”.例如,点P(1,2)与点Q(﹣2,3)到x轴、y轴的距离之差的绝对值都等于1,它们互为“等差点”.(1)已知点A的坐标为(3,﹣6),在点B(﹣4,1).C(﹣3,7).D(2,﹣5)中,与点A互为等差点的是B与D.(2)若点M(﹣2,4)与点N(1,n+1)互为“等差点”,求点N的坐标.【分析】(1)利用“等差点”的定义,找出到x轴、y轴的距离之差(2)利用“等差点”的定义列方程解答即可.【解答】解(1)∵点A(3,﹣6)到x轴、y轴的距离之差的绝对值等于3,点B(﹣4,1)到x轴、y轴的距离之差的绝对值等于3,点C(﹣3,7)到x轴、y轴的距离之差的绝对值等于4,点D(2,﹣5)到x轴、y轴的距离之差的绝对值等于3,∴与点A互为等差点的是B与D;故答案为B与D;(2)∵点M(﹣2,4)与点N(1,n+1)互为“等差点”,∴n +1﹣1=|4|﹣|﹣2|或4解得n =2或n =﹣4,∴点N 的坐标为(1,3)感14.(2023秋•海淀区校级期中b ),P 2(c ,b ),P 3(c 的“完美间距″.例如 如图是1.(1)点Q 1(4,1),Q 2(2)已知点O (0,0①若点O ,A ,B 的“完美间②点O ,A ,B 的“完美间距③已知点C (0,4),D (m ,0),P (m ,n )的“【分析】(1)分别计算出(2)①分别计算出OA 以“最佳间距”为OA 即可求解y 的值;②由①可得,“最佳间距”﹣|﹣2|=﹣n ﹣1﹣1, )或(1,﹣3).本号资料全部来源于微 信公众号级期中)给出如下定义 在平面直角坐标系xOy 中,,d ),这三个点中任意两点间的距离的最小值称为点如图,点P 1(﹣1,2),P 2(1,2),P 3(1,3)(5,1),Q 3(5,5)的“完美间距”是 1 ),A (4,0),B (4,y ).完美间距”是2,则y 的值为 ±2 ; 美间距”的最大值为 4 ;(﹣4,0),点P (m ,n )为线段CD 上一动点,“完美间距”取最大值时,求此时点P 的坐标.算出Q 1Q 2,Q 2Q 3,Q 1Q 3的长度,比较得出最小值即可,AB 的长度,由于斜边大于直角边,故OB >或者AB 的长度,由于“最佳间距”为1,而”为OA 或AB 的长度,当OA ≤AB 时,“最佳间距公众号 数学第 六,已知点P 1(a ,称为点P 1,P 2,P 3)的“完美间距”; ,当O (0,0),E .值即可; OA ,OB >AB ,所OA =4,故OB =2,佳间距”为OA =4,当OA >AB 时,“最佳间距③同①,当点O (0,0先求出直线CD 的解析式≥PE 和OE <PE 时,求出各的最大值,进一步求解出【解答】解 (1)如图,∵Q 1(4,1),Q 2(5,∴Q 1Q 2=1,Q 2Q 3=4,在Rt △Q 1Q 2Q 3中,Q 1Q ∵1<4<√17, “最佳距离”为1; 故答案为 1; (2)①如图∵O (0,0),A (4,0∴OA =4,AB =|y |,间距”为AB <4,比较两个“最大间距”,即可解决),E (m ,0),P (m ,n )的“最佳间距”为OE 析式,用m 表示出线段OE 和线段PE 的长度,分两类求出各自条件下的“最佳间距”,比较m 的范围,解出P 点坐标.,在给出图形中标出点Q 1,Q 2,Q 3,1),Q 3(5,5),3=√17,),B (4,y ),解决;或者PE 的长度,分两类讨论,当OE 确定“最佳间距”在直角△ABO 中,OB >又∵点O ,A ,B 的“最佳间且4>2, ∴|y |=2, ∴y =±2, 故答案为 ±2;②由①可得,OB >OA ∴“最佳间距”的值为∵OA =4,AB =|y |,当AB ≥OA 时,“最佳间距当AB <OA 时,“最佳间距∴点O ,A ,B 的“最佳间距故答案为 4;③设直线CD 为y =kx +4,﹣4k +4=0, ∴k =1,∴直线CD 的解析式为 ∵E (m ,0),P (m ,n ,∴PE ∥y 轴,∴OE =﹣m ,PE =n =m Ⅰ、当﹣m ≥m +4时,即OA ,OB >AB , 最佳间距”是2, ,OB >AB ,OA 或者是AB 的长, 间距”为4, 间距”为|y |<4, 佳间距”的最大值为4, ,代入点D 得,如图,y =x +4,),且P 是线段CD 上的一个动点, +4,即OE ≥PE 时,m ≤﹣2,“最佳间距”为m +4,此时此时m +4≤2,Ⅱ、当﹣m <m +4时,即∴点O (0,0),E (m ∴m =﹣2, ∴n =m +4=2, ∴P (﹣2,2).15.(2023春•泗水县期末)对于y )的横坐标与纵坐标的绝对例如,点P (﹣1,2)的折(1)已知点A (﹣3,4(2)若点M 在x 轴的上方标.【分析】(1)根据题意可以(2)根据题意可知y >【解答】解 (1)[A ]=|所以点A ,点B 的折线距离(2)∵点M 在x 轴的上方∴x =±1时,y =1或x ∴点M 的坐标为(﹣116.(2023春•思明区校级期中即OE <PE 时,﹣2<m <0,“最佳间距“为﹣m ,,0),P (m ,n )的“最佳间距”取到最大值时,对于平面直角坐标系中的点P (x ,y )给出如下定义的绝对值之和叫做点P (x ,y )的折线距离,记作[P ]的折线距离为[P ]=|﹣1|+|2|=3.),B (√2,﹣2√2),求点A ,点B 的折线距离.的上方,点M 的横坐标为整数,且满足[M ]=2,直接写意可以求得折线距离[A ],[B ];0,然后根据[M ]=2,即可求得点M 的坐标. −3|+|4|=7,[B ]=|√2|+|﹣2√2|=3√2; 线距离分别为7、3√2;的上方,其横坐标均为整数,且[M ]=2, =0时,y =2,,1),(1,1),(0,2).级期中)在平面直角坐标系中,对于点P (x ,y ),若点,此时﹣m <2, ,m =﹣2, 下定义 把点P (x ,,即[P ]=|x |+|y |,.直接写出点M 的坐若点Q 的坐标为(ax +y ,x +ay ),其中a 为常数,则称点Q 是点P 的“a 级关联点”,例如,点P (1,4)的3级关联点”为Q (3×1+4,1+3×4)即Q (7,13),若点B 的“2级关联点”是B (3,3).(1)求点B 的坐标;(2)已知点M (m ﹣1,2m )的“﹣3级关联点”N 位于y 轴上,求N 的坐标. 【分析】(1)由点B 的“2级关联点”是B '(3,3)得出൜2ݔ+ݕ=3ݔ+2ݕ=3,解之求得x 、y 的值即可得;(2)由点M (m ﹣1,2m )的“﹣3级关联点”N 的坐标为(﹣m +3,﹣5m ﹣1),且点M ′在y 轴上知﹣m +3=0,据此求得m 的值,再进一步求解可得. 【解答】解 ∵点B 的“2级关联点”是B '(3,3), ∴൜2ݔ+ݕ=3ݔ+2ݕ=3, 解得 ൜ݔ=1ݕ=1,则点B 的坐标为(1,1);(2)∵点M (m ﹣1,2m )的“﹣3级关联点”N 的坐标为(﹣m +3,﹣5m ﹣1),且点N 在y 轴上, ∴﹣m +3=0, 解得m =3, 则﹣5m ﹣1=﹣16, ∴点N 坐标为(0,﹣16).17.(2023春•罗山县期末)阅读理解,解答下列问题在平面直角坐标系中,对于点A (x ,y )若点B 的坐标为(kx +y ,x ﹣ky ),则称点B 为A 的“k 级牵挂点”,如点A (2,5)的“2级牵挂点”为B (2×2+5,2﹣2×5),即B (9,5).(1)已知点P (﹣5,1)的“﹣3级牵挂点”为P 1,求点P 1的坐标,并写出点P 1到x 轴的距离;(2)已知点Q 的“4级牵挂点”为Q 1(5,﹣3),求Q 点的坐标及所在象限. 【分析】(1)根据“k 级牵挂点”的定义判定结论;(2)设Q (x ,y ),根据点Q 的“4级牵挂点”为Q 1(5,﹣3)可得关于x 、y 的二元一次方程组,解方程组求出x 、y 的值即可.【解答】解 (1)∵点P (﹣5,1)的“﹣3级牵挂点”为P 1, ∴﹣5×(﹣3)+1=16,﹣5﹣(﹣3)×1=﹣2, 即P 1(16,﹣2), 点P 1到x 轴的距离为2;(2)∵点Q 的“4级牵挂点”为Q 1(5,﹣3), 设Q (x ,y ). 则有൜4ݔ+ݕ=5ݔ−4ݕ=−3,解得൜ݔ=1ݕ=1,∴Q (1,1),点Q 在第一象限.18.(2023秋•东城区校级期中)对有序数对(m ,n )定义“f 运算” f (m ,n )=(ଵଶm +a ,ଵଶn +b ),其中a ,b 为常数,f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A (x ,y )规定“F 变换”;点A (x ,y )在F 的变换下的对应点即为坐标是f (x ,y )的点A '.(1)当a =0,b =0时,f (﹣2,4)= (﹣1,2) .(2)若点P (2,﹣2)在F 变换下的对应点是它本身,求ab 的值. 【分析】(1)根据新定义运算法则解得;(2)根据新定义运算法则得到关于a 、b 的方程,通过解方程求得它们的值即可. 【解答】解 (1)依题意得 f (﹣2,4)=(ଵଶ×(﹣2)+0,ଵଶ×4﹣0)=(﹣1,2). 故答案是 (﹣1,2);(2)依题意得 f (2所以ଵଶ×2+a =2,ଵଶ×(﹣所以a =1,b =﹣1. ∴ab =﹣1.19.(2023春•海门市期末)﹣x 1=y 2﹣y 1≠0,则称点因为2﹣(﹣1)=6﹣3(1)若点A 的坐标是(点A 的“对角点”为点(2)若点A 的坐标是(﹣(3)若点A 的坐标是(求m ,n 的取值范围.【分析】(1)、(2)读懂新定(3)根据新定义和直角坐标【解答】解 (1)根据新定故答案为 B 2(﹣1,﹣7(2)①当点B 在x 轴上时,﹣2)=(ଵଶ×2+a ,ଵଶ×(﹣2)﹣b )=(2,﹣2).(﹣2)+b =﹣2, )在平面直角坐标系xOy 中,点A (x 1,y 1),B 称点A 与点B 互为“对角点”,例如 点A (﹣1,3,≠0,所以点A 与点B 互为“对角点”.4,﹣2),则在点B 1(2,0),B 2(﹣1,﹣7),B 2(﹣1,﹣7),B 3(0,﹣6) ;(﹣2,4)的“对角点”B 在坐标轴上,求点B 的坐(3,﹣1)与点B (m ,n )互为“对角点”,且点懂新定义,根据新定义解题即可;角坐标系中第四象限x 、y 的取值范围确定m 、n 的取据新定义可以得B 2、B 3与A 点互为“对角点”; ),B 3(0,﹣6); 上时,). (x 2,y 2),若x 2),点B (2,6),B 3(0,﹣6)中,的坐标; 且点B 在第四象限,的取值范围即可.设B (t ,0),由题意得t ﹣(﹣2)=0﹣4, 解得t =﹣6, ∴B (﹣6,0). ②当点B 在y 轴上时, 设B (0,b ),由题意得0﹣(﹣2)=b ﹣4, 解得b =6, ∴B (0,6).综上所述 A 的“对角点”点B 的坐标为(﹣6,0)或(0,6). (3)由题意得m ﹣3=n ﹣(﹣1), ∴m =n +4. ∵点B 在第四象限, ∴ቊ݉>0݊<0, ∴ቊ݊+4>0݊<0,解得﹣4<n <0, 此时0<n +4<4, ∴0<m <4.由定义可知 m ≠3,n ≠﹣1,∴0<m <4且m ≠3,﹣4<n <0且n ≠﹣1. 故答案为 0<m <4且m ≠3,﹣4<n <0且n ≠﹣1.20.(2023•朝阳区校级开学)我们规定 在平面直角坐标系xOy 中,任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的“折线距离”为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|.例如图1中,点M (﹣2,3)与点N (1,﹣1)之间的“折线距离”为d (M ,N )=|﹣2﹣1|+|3﹣(﹣1)|=3+4=7.根据上述知识,解决下面问(1)已知点P (3,﹣4,与点P 之间的“折线距离(2)如图2,已知点P 的值;(3)如图2,已知点P 写出t 的取值范围.【分析】(1)分别求出(2)通过d (P ,Q )=(3)d (P ,Q )=|3﹣t 【解答】解 (1)由题意得d (P ,B )=|3﹣(﹣1d (P ,C )=|3﹣(﹣2d (P ,D )=|3﹣0|+|﹣4故答案为 A ,B ,D .(2)d (P ,Q )=|3﹣t 解得t =﹣1或t =7.(3)d (P ,Q )=|3﹣t 化简得d (P ,Q )=|3当﹣5≤t ≤3时,|3﹣t下面问题),在点A (5,2),B (﹣1,0),C (﹣2,1距离”为8的点是A ,B ,D ;(3,﹣4),若点Q 的坐标为(t ,2),且d (P (3,﹣4),若点Q 的坐标为(t ,t +1),且d (PA ,B ,C ,D 与点P 之间的“折线距离”求解.|3﹣t |+|﹣4﹣(t +1)|=8求解.|+|﹣4﹣(t +1)|=8,分类讨论t 的取值范围去绝对题意得d (P ,A )=|3﹣5|+|﹣4﹣2|=8, )|+|﹣4﹣0|=8, )|+|﹣4﹣1|=10, ﹣1|=8,|+|﹣4﹣2|=10, |+|﹣4﹣(t +1)|, ﹣t |+|5+t |,|+|5+t |=3﹣t +5+t =8,满足题意.),D (0,1)中,,Q )=10,求t ,Q )=8,直接. 去绝对值符号求解.当t <﹣5时,|3﹣t |+|5+t 当t >3时,|3﹣t |+|5+t |∴﹣5≤t ≤3.21.(2023春•丰台区期末)y 2),定义k |x 1﹣x 2|+(1M (1,3),N (﹣2,4)2).(1)若点B (0,4),求点(2)若点B 在x 轴上,且点(3)若点B (a ,b ),且点【分析】(1)根据“k 阶距(2)设出点B 的坐标,点B 的坐标,注意x轴上的|=3﹣t ﹣5﹣t =﹣2﹣2t ,不满足题意. =t ﹣3+5+t =2+2t ,不满足题意. )在平面直角坐标系xOy 中,对于任意两点M (﹣k )|y 1﹣y 2|为点M 和点N 的“k 阶距离”,其中0)的ଵହ阶距离”为ଵହ|1െሺെ2ሻ|ସହ|3െ4|ൌହ.求点A 和点B 的“ଵସ阶距离”;且点A 和点B 的“ଵଷ阶距离”为4,求点B 的坐标且点A 和点B 的“ଵଶ阶距离”为1,直接写出a +阶距离”的定义计算点A 与点B 之间的“ଵସ阶距离,再根据“ଵଷ阶距离”的定义列出方程,求出字母的轴上的点的纵坐标为0.x 1,y 1),N (x 2,≤k ≤1.例如 点.已知点A (﹣1,的坐标;b 的取值范围. 距离”.字母的值,从而确定(3)根据“ଵଶ阶距离”的定义列出关于字母a 和b 的式子,当a 和b 在不同的取值范围内将含有a 和b 的式子中的绝对值去掉,从而求得a +b 的取值范围.【解答】解 (1)由题知,点A (﹣1,2)和点B (0,4)的“ଵସ阶距离”为ଵସ|−1−0|+(1−14)|2﹣4|=14+64=74.(2)∵点B 在x 轴上,∴设点B 的横坐标为m ,则点B 的坐标为(m ,0), ∵点A (﹣1,2)和点B (m ,0)的“ଵଷ阶距离”为4, ∴ଵଷ|−1−݉|+(1−ଵଷ)|2−0|=4,ଵଷ|−1−݉|=଼ଷ,|﹣1﹣m |=8,∴﹣1﹣m =8或﹣1﹣m =﹣8, ∴m =﹣9或7,∴点B 的坐标为(﹣9,0)或(7,0).(3)∵点A (﹣1,2)和点B (a ,b )的“ଵଶ阶距离”为1, ∴.ଵଶ|−1−ܽ|+(1−ଵଶ)|2−ܾ|=1,|﹣1﹣a |+|2﹣b |=2,①当a ≤﹣1,且b ≤2时,得|﹣1﹣a |+|2﹣b |=﹣1﹣a +2﹣b ,由此得出a +b =﹣1, ②当a ≤﹣1,且b >2时,得|﹣1﹣a |+|2﹣b |=﹣1﹣a +b ﹣2,由此得出b =5+a ,则a +b =2a +5, ∵b >2, 即5+a >2, ∴a >﹣3∵a≤﹣1,∴﹣3<a≤﹣1∴﹣1<2a+5≤3,即﹣1<a+b≤3,③当a>﹣1,且b<2时,得|﹣1﹣a|+|2﹣b|=1+a+2﹣b,由此得出a=b﹣1,则a+b=2b﹣1,∵a>﹣1,即b﹣1>﹣1,∴b>0,∵b<2,∴0<b<2,∴﹣1<2b﹣1<3,即﹣1<a+b<3,④当a>﹣1,且b≥2时,得|﹣1﹣a|+|2﹣b|=1+a+b﹣2,由此得出a+b=3,综上所得,﹣1≤a+b≤3.22.(2023春•福州期末)对于平面直角坐标系xOy中的任意一点P(x,y),给出如下定义;a=2x﹣y,b=x+y,将点M(a,b)与N(b,a)称为点P的一对“关联点”.例如P(2,3)的一对“关联点”是点(1,5)与(5,1).(1)点Q(4,3)的一对“关联点”是点(5,7) 与(7,5) .(2)点A(x,8)的一对“关联点”重合,求x的值.(3)点B一个“关联点”的坐标是(﹣1,7),求点B的坐标.【分析】(1)根据“关联点”定义求解;(2)根据“关联点”的定义列方程求解;(3)根据“关联点”的定义列方程组求解,注意分类讨论,不要漏解.【解答】解(1)∵2×4﹣3=5,4+3=7,∴点Q(4,3)的一对“关联点”是点(5,7)与(7,5).故答案为(5,7)与(7,5).(2)由题意得 2x ﹣8=x +8, 解得 x =16. (3)设B (x ,y ),∴൜2ݔ−ݕ=−1ݔ+ݕ=7或൜2ݔ−ݕ=7ݔ+ݕ=−1, ∴൜ݔ=2ݕ=5或൜ݔ=2ݕ=−3, ∴B (2,5)或B (2,﹣3).23.(2023春•雨花区校级期中)对于平面直角坐标系中任一点(a ,b ),规定三种变换如下①f (a ,b )=(﹣a ,b ).如 f (7,3)=(﹣7,3); ②g (a ,b )=(b ,a ).如 g (7,3)=(3,7); ③h (a ,b )=(﹣a ,﹣b ).如 h (7,3)=(﹣7,﹣3); 例如 f (g (2,﹣3))=f (﹣3,2)=(3,2) 规定坐标的部分规则与运算如下①若a =b ,且c =d ,则(a ,c )=(b ,d ),反之若(a ,c )=(b ,d ),则a =b ,且c =d .②(a ,c )+(b ,d )=(a +b ,c +d );(a ,c )﹣(b ,d )=(a ﹣b ,c ﹣d ).例如 f (g (2,﹣3))+h (g (2,﹣3))=f (﹣3,2)+h (﹣3,2)=(3,2)+(3,﹣2)=(6,0). 请回答下列问题(1)化简 f (h (6,﹣3))= (6,3) (填写坐标);(2)化简 h (f (﹣1,﹣2))﹣g (h (﹣1,﹣2))= (﹣3,1) (填写坐标); (3)若f (g (2x ,﹣kx ))﹣h (f (1+y ,﹣2))=h (g (ky ﹣1,﹣1))+f (h (y ,x ))且k 为绝对值不超过5的整数,点P (x ,y )在第三象限,求满足条件的k 的所有可能取值.【分析】(1)根据新定义进行化简即可. (2)根据新定义进行化简即可.(3)根据坐标的变换规则和运算规则,对式子进行化简,得到等式,根据点的坐标特点,列出不等式求解即可.【解答】解 (1)f (h (6,﹣3))=f (﹣6,3)=(6,3), 故答案为 (6,3);(2)h (f (﹣1,﹣2))﹣g (h (﹣1,﹣2))=h (1,﹣2)﹣g (1,2)=(﹣1,2)﹣(2,1)=(﹣3,1), 故答案为 (﹣3,1);(3)f (g (2x ,﹣kx ))﹣h (f (1+y ,﹣2))=f (﹣kx ,2x )﹣h (﹣1﹣y ,﹣2)=(kx ,2x )﹣(1+y ,2)=(kx ﹣1﹣y ,2x ﹣2),h (g (ky ﹣1,﹣1))+f (h (y ,x ))=h (﹣1,ky ﹣1)+f (﹣y ,﹣x )=(1,1﹣ky )+(y ,﹣x )=(y +1,1﹣ky ﹣x ),∵f (g (2x ,﹣kx ))﹣h (f (1+y ,﹣2))=h (g (ky ﹣1,﹣1))+f (h (y ,x )), ∴(kx ﹣1﹣y ,2x ﹣2)=(y +1,1﹣ky ﹣x ), ∴൜݇ݔ−1−ݕ=ݕ+12ݔ−2=1−݇ݕ−ݔ, ∴൜݇ݔ−2ݕ=23ݔ+݇ݕ=3, ∴൞ݔ=2݇+6݇2+6ݕ=3݇−6݇2+6, ∵点P (x ,y )在第三象限, ∴ቊ2݇+6<03݇−6<0,∴k <﹣3,∵k 为绝对值不超过5的整数, ∴k 的所有可能取值为﹣4、﹣5.24.(2023春•嵩县期末)对于平面直角坐标系中的点P (x ,y )给出如下定义 把点P (x ,y )的横坐标与纵坐标的绝对值之和叫做点P (x ,y )的折线距离,记作[P ],即[P ]=|x |+|y |,例如,点P (﹣1,2)的折(1)已知点A (﹣3,4(2)若点M 在x 轴的上方标.【分析】(1)根据题意可以(2)根据题意可知y >【解答】解 (1)[A ]=|(2)∵点M 在x 轴的上方∴x =±1时,y =1或x ∴点M 的坐标为(﹣125.(2023春•濠江区期末)我们称点P 为“梦之点”(1)判断点A (3,2)是否(2)若点M (m ﹣1,3【分析】(1)直接利用“(2)直接利用“梦之点”【解答】解 (1)当A 解得a =1,b =1,的折线距离为[P ]=|﹣1|+|2|=3.),B (√2,െ3√2),求点A ,点B 的折线距离.的上方,点M 的横坐标为整数,且满足[M ]=2,直接写意可以求得折线距离[A ],[B ];0,然后根据[M ]=2,即可求得点M 的坐标. −3|+|4|=7,[B ]=|√2|+|−3√2|=4√2; 的上方,其横,纵坐标均为整数,且[M ]=2, =0时,y =2,,1),(1,1),(0,2).)已知a ,b 都是实数,设点P (a +2,ାଷଶ),且满”.是否为“梦之点”,并说明理由.m +2)是“梦之点”,请判断点M 在第几象限,并说“梦之点”的定义得出a ,b 的值,进而得出答案”的定义得出m 的值进而得出答案. (3,2)时,a +2=3,ାଷଶ=2,.直接写出点M 的坐且满足3a =2+b ,并说明理由. 答案;则3a=3,2+b=3,所以3a=2+b,所以A(3,2),是“梦之点”;(2)点M在第三象限,理由如下∵点M(m﹣1,3m+2)是“梦之点”,∴a+2=m﹣1,ାଷଶ=3݉+2,∴a=m﹣3,b=6m+1,∴代入3a=2+b有3(m﹣3)=2+(6m+1),解得m=﹣4,∴m﹣1=﹣5,3m+2=﹣10,∴点M在第三象限.26.(2023秋•兴化市校级期末)在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2),若x2﹣x1=y2﹣y1≠0,则称点A与点B互为“对角点”,例如点A(﹣1,3),点B(2,6),因为2﹣(﹣1)=6﹣3≠0,所以点A与点B互为“对角点”.(1)若点A的坐标是(4,﹣2),则在点B1(2,0),B2(﹣1,﹣7),B3(0,﹣6)中,点A的“对角点”为点B2(﹣1,﹣7),B3(0,﹣6); ;(2)若点A的坐标是(5,﹣3)的“对角点”B在坐标轴上,求点B的坐标;(3)若点A的坐标是(−√3,2√3)与点B(2m,﹣n)互为“对角点”,且m、n互为相反数,求B点的坐标.【分析】(1)、(2)读懂新定(3)根据新定义和直角坐标【解答】解 (1)根据新定故答案为 B 2(﹣1,﹣7(2)①当点B 在x 轴上时设B (t ,0),由题意得解得t =﹣8, ∴B (8,0). ②当点B 在y 轴上时,设B (0,b ),由题意得0﹣5=b ﹣(﹣解得b =﹣8, ∴B (0,﹣8).综上所述 A 的“对角点”(3)由题意得2m +√3=∴2m =﹣n ﹣3√3. ∵m 、n 互为相反数, ∴m +n =0,懂新定义,根据新定义解题即可;角坐标系中第四象限x 、y 的取值范围确定m 、n 的取据新定义可以得B 2、B 3与A 点互为“对角点”; ),B 3(0,﹣6); 上时,t ﹣5=0﹣(﹣3), (﹣3), ”点B 的坐标为(8,0)或(0,﹣8). =−n ﹣2√3,的取值范围即可.解得m +n +m =﹣3√3,∴m =﹣3√3,n =3√3∴2m =﹣6√3, ∴B (﹣6√3,﹣3√3).27.(2023秋•朝阳区校级期末得到射线OY ,如果点示点P 在平面内的位置,那么点M 在平面内的位置记(1)如图3,若点N 在平面内(2)已知点A 在平面内的位①若点B 在平面内的位置记②若点B 在平面内的位置记③若点B 在平面内的位置记【分析】(1)根据新定义直(2)①先根据新定义画图画图,证明△AOB 是等边三△AOB 1是直角三角形,从而【解答】解 (1)点N 在平故答案为 6,30; (2)①如图,.期末)如图①,将射线OX 按逆时针方向旋转β角(P 为射线OY 上的一点,且OP =m ,那么我们规定用,并记为P (m ,β).例如,图2中,如果OM =5,位置记为M (5,110°),根据图形,解答下列问题平面内的位置记为N (6,30°),则ON = 6 ,∠面内的位置记为A (4,30°),位置记为B (3,210°),则A 、B 两点间的距离为位置记为B (m ,90°),且AB =4,则m 的值为 位置记为B (3,α),且AB =5,则a 的值为 定义直接得到答案;画图,证明A ,O ,B 三点共线,从而可得答案;等边三角形,从而可得答案;③先根据新定义画图从而可得答案.在平面内的位置记为N (6,30°),则ON =6,0°≤β<360°),规定用(m ,β)表∠XOM =110°,问题XON = 30 °. 离为 7 . 4 .120°或300° .;②先根据新定义画图,证明△AOB ,,∠XON =30°.∵A(4,30°),B(3,210°),∴OA=4,∠AOX=30°,OB=3,∠BOX=360°﹣210°=150°,∴∠AOX+∠BOX=180°,∴A,O,B三点共线,∴AB=4+3=7;故答案为7;②如图,∵A(4,30°),B(m,90°),∴OA=4,∠AOX=30°,OB=m,∠BOX=90°,∴∠AOB=90°﹣30°=60°,∵AB=4,∴AB=OA,∴△AOB是等边三角形,∴OB=m=4;故答案为4;③如图,∵A (4,30°),B (3,α),∴OA =4,∠AOX =30°,OB =3=OB 1,∠BOX =α或∠B 1OX =360°﹣α, ∵AB =5,∴OB 2+OA 2=25=AB 2, ∴∠AOB =90°=∠AOB 1,∴α=90°+30°=120°或α=120°+180°=300°. 故答案为 120°或300°.28.(2023秋•大兴区期中)在平面直角坐标系xOy 中,点A ,B ,P 不在同一直线上,对于点P 和线段AB 给出如下定义 过点P 向线段AB 所在直线作垂线,若垂足Q 在线段AB 上,则称点P 为线段AB 的内垂点,当垂足Q 满足|AQ ﹣BQ |最小时,称点P 为线段AB 的最佳内垂点.已知点S (﹣3,1),T (1,1).(1)在点P 1(2,4),P 2(﹣4,0),P 3(﹣2,ଵଶ),P 4(1,3)中,线段ST 的内垂点为 P 3,P 4;(2)若点M 是线段ST 的最佳内垂点,则点M 的坐标可以是 (﹣1,4),(﹣1,2) (写出两个满足条件的点M 即可); (3)已知点C (m ﹣2,3),D (m ,3),若线段CD 上的每一个点都是线段ST 的内垂点,直接写出m 的取值范围;(4)已知点E (n +2,0),F (n +4,﹣1),若线段EF 上存在线段ST 的最佳内垂点,直接写出n 的取值范围.【分析】(1)利用图象法画(2)满足条件的点在线段(3)构建不等式组解决问题(4)构建不等式组解决问题【解答】解 (1)如图故答案为 P 3,P 4;(2)如图,点M (﹣1故答案为 (﹣1,4)(3)由题意,ቄ݉−2݉1解得﹣1≤m ≤1.象法画出图形解决问题即可; 线段ST 的中垂线上; 决问题即可; 决问题即可.1中,观察图象可知,线段ST 的内垂点为P 3,,4),M ′(﹣1,2)是线段ST 的最佳内垂点,,(﹣1,2)(答案不唯一); −3ቄ݉−3݉−21,P 4. ,故答案为 ﹣1≤m ≤1.(4)如图2中,观察图象可解得﹣5≤n ≤﹣3.29.(2023春•嘉鱼县期末)以BC 为边在x 轴的上方作(1)点A 的坐标为 (2)将正方形ABCD OMN 重叠的区域(不①当m =3时,区域内整点②若区域W 内恰好有3个整【分析】(1)先求出方形(2)①画出正方形A 'B '②在△OMN 中共有6个整数图象可知,m 满足ቄ݊+4െ1݊2െ1,)如图,在平面直角坐标系xOy 中,点B (1,0,上方作正方形ABCD ,点M (﹣5,0),N (0,5(1,4) ;点D 的坐标为 (5,4) ;向左平移m 个单位,得到正方形A 'B 'C 'D ',记含边界)为W内整点(横,纵坐标都是整数)的个数为 3 ;个整点,请直接写出m 的取值范围.正方形的边长为BC =4,再求点的坐标即可; C 'D ',结合图形求解即可;个整数点,在平移正方形ABCD ,找到恰好有3个整),点C (5,0),). 正方形A 'B 'C 'D '与△ 个整数解的情况即可.【解答】解 (1)∵点∴BC =4,∵四边形ABCD 是正方形∴A (1,4),D (5,4故答案为 (1,4),(5(2)①如图 共有3个,故答案为 3;②在△OMN 中共有6个整数2,2),(﹣3,1),∵区域W 内恰好有3个整点∴2<m ≤3或6≤m <730.(2023春•李沧区期末)补法来求它们的面积.下面如图1,2所示,分别过三角间的距离d 叫做水平宽;BD 的长叫做这个三角形的l 4,l 3,l 4之间的距离h叫做B (1,0),点C (5,0), 方形, ), ,4); , 个整数点,分别是(﹣1,1),(﹣1,2),(﹣1,3(个整点, .)对于某些三角形或四边形,我们可以直接用面积下面我们再研究一种求某些三角形或四边形面的新过三角形或四边形的顶点A ,C 作水平线的铅;如图1所示,过点B 作水平线的铅垂线交形的铅垂高;如图2所示,分别过四边形的顶点B 叫做四边形的铅垂高.),(﹣2,1),(﹣用面积公式或者用割积的新方法 垂线l 1,l 2,l 1,l 2之AC 于点D ,称线段,D 作水平线l 3,【结论提炼】容易证明“三角形的面积等于水平宽与铅垂高乘积的一半”,即“S=12dh”【结论应用】为了便于计算水平宽和铅垂高,我们不妨借助平面直角坐标系.已知如图3,点A(﹣5,2),B(5,0),C(0,5),则△ABC的水平宽为10,铅垂高为4,所以△ABC面积的大小为20.【再探新知】三角形的面积可以用“水平宽与铅垂高乘积的一半”来求,那四边形的面积是不是也可以这样求呢?带着这个问题,我们进行如下探索(1)在图4所示的平面直角坐标系中,取A(﹣4,2),B(1,5),C(4,1),D(﹣2,﹣4)四个点,得到四边形ABCD.运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小是36;用其它的方法进行计算得到其面积的大小是37.5,由此发现用“S=12dh”这一方法对求图4中四边形的面积不合适.(填“适合”或“不适合”)(2)在图5所示的平面直角坐标系中,取A(﹣5,2),B(1,5),C(4,2),D(﹣2,﹣3)四个点,得到了四边形ABCD.运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小是36,用其它的方法进行计算得到面积的大小是36,由此发现用“S=12dh”这一方法对求图5中四边形的面积合适.(“适合”或“不适合”)(3)在图6所示的平面直角坐标系中,取A(﹣4,2),B(1,5),C(5,1),D(1,﹣5)四个点,得到了四边形ABCD.通过计算发现用“S=12dh”这一方法对求图6中四边形的面积合适.(填“适合”或“不适合”)【归纳总结】我们经历上面的探索过程,通过猜想、归纳,验证,便可得到当四边形满足某些条件时,可以用“S=12dh”来求面积.那么,可以用“S=12dh”来求面积的四边。
人教版 九年级数学上册 第25章 概率初步 章末复习 (含答案)
人教版 九年级数学上册 第25章 概率初步 章末复习 (含答案)一、选择题(本大题共10道小题)1. 甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏,游戏规则:转动两个转盘各一次,转盘停止后,若指针所在区域的数字之和为偶数,则甲获胜;若数字之和为奇数,则乙获胜;若指针落在分界线上,则重新转动转盘.甲获胜的概率是( )A.13B.49C.59D.232. 2018·大连一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,从中随机摸出一个小球,记下标号后放回,再从中随机摸出一个小球并记下标号,两次摸出的小球标号之和是偶数的概率是( ) A.13B.49C.12D.593. 在一个箱子里放有1个白球和2个红球,它们除颜色不同外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是( ) A .1B.23C.13D.124. 重复抛掷同一枚啤酒瓶盖多次,经过统计得“凸面朝上”的频率约为0.44,则可以估计抛掷这枚啤酒瓶盖,出现“凸面朝上”的概率为( ) A .22% B .44% C .50% D .56%5. 如图,有一块质地均匀的圆铁片,两面上分别写有数字1,2,有一个均匀的三棱锥旋转器和一个均匀的四棱锥旋转器,它们的侧面上分别写有数字1,2,3和数字1,2,3,4.在桌面上同时旋转这三件器物,停下来后,面向桌面的三个数字的积为奇数的概率是( )A.12B.13C.16D.186. 2019·毕节 在平行四边形ABCD 中,AC ,BD 是两条对角线,现从以下四个关系:①AB =BC ;②AC =BD ;③AC ⊥BD ;④AB ⊥BC 中随机取出一个作为条件,能推出平行四边形ABCD 是菱形的概率为( ) A.14B.12C.34D .17. 掷一枚质地均匀的正方体骰子,观察向上一面的点数,与点数3相差2的概率是( ) A.12B.13C.15D.168. 小宝的妈妈让他从袋子里挑选一颗糖果.小宝无法看到袋子里的糖果,图25-1-6是袋子里各种颜色糖果的数量,则小宝选到红色糖果的概率是( )A.12B.14C.15D.1109. 在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何区别.已知布袋中有红球若干个,白球5个,袋中的球已被搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是( ) A .4个B .5个C .不足4个D .6个或6个以上10. 2018·巴彦淖尔如图25-1-8,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB=13,AC=5,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()图25-1-8A.π15 B.2π15 C.4π15 D.π5二、填空题(本大题共6道小题)11. 从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球10个和白球若干个,这些球除颜色不同外,其他都一样,由此估计口袋中有________个白球.12. 2018·湘西州农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了1个,则吃到腊肉棕的概率为________.13. 为调查某批乒乓球的质量,根据所做试验,绘制了这批乒乓球中“优等品”频率的折线统计图(如图25-3-2),则这批乒乓球中“优等品”的概率的估计值为________.(精确到0.01)14. 如图,在△ABC中,∠C=90°,AC=BC.如果在AB上任取一点M,那么AM≤AC的概率是________.15. 如图,A 是正方体小木块(质地均匀)的一个顶点,将小木块随机投掷在水平桌面上,则点A 与桌面接触的概率是________.16. 任取不等式组⎩⎨⎧k -3≤0,2k +5>0的一个整数解,则能使关于x 的方程2x +k =-1的解为非负数的概率为________.三、解答题(本大题共5道小题)17. 公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高,如果用a(单位:cm)表示脚印长度,b(单位:cm)表示身高,关系接近于b =7a -3.07.(1)某人的脚印长度为24.5 cm ,则他的身高约为多少厘米?(2)在某次案件中,抓获了两名可疑人员,一个身高为1.87 m ,另一个身高为1.75 m ,现场测量的脚印长度为26.7 cm ,请你帮助侦查一下,哪个可疑人员作案的可能性更大?18. 定义一种“各个数位上的数字从左向右逐渐减小”的数叫做“下降数”,如876就是一个“下降数”.在一个不透明的布袋中有三个质地相同的小球,小球上分别标有1,2,3三个数字.随机从中摸出一球,记下数字作为百位数字,然后放回摇匀.重复上面的操作两次,记下数字分别作为十位数字和个位数字,求三次摸球后得到的三位数是“下降数”的概率.19. 如图①,在Rt △ABC 中,∠C =90°,两条直角边长分别为a ,b ,斜边长为c.如图②,现将与Rt△ABC全等的四个直角三角形拼成一个正方形EFMN.(1)若Rt△ABC的两直角边长之比为2∶3,现随机向图②掷一枚小针,则针尖落在四个直角三角形区域的概率是多少?(2)若正方形EFMN的边长为8,Rt△ABC的周长为18,求Rt△ABC的面积.20. 想经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时:(1)求三辆车全部同向而行的概率;(2)求至少有两辆车向左转的概率;(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为25,向左转和直行的频率均为310.目前在此路口,汽车左转、右转、直行的绿灯亮的时间均为30秒,在绿灯总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.21. 2019·孝感一个不透明的袋子中装有四个小球,上面分别标有数字-2,-1,0,1,它们除了数字不一样外,其他完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是________;(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图10-ZT-3,已知四边形ABCD的四个顶点的坐标分别为A(-2,0),B(0,-2),C(1,0),D(0,1),请用画树状图法或列表法,求点M落在四边形ABCD所围成的图形内(含边界)的概率.人教版九年级数学第25章概率初步章末复习-答案一、选择题(本大题共10道小题)1. 【答案】C[解析] 列表得:B盘A盘3 4 51 4 5 62 5 6 73 6 7 8所以甲获胜的概率是5 9.2. 【答案】D[解析] 列表得:共有9种等可能的结果,其中两次摸出的小球标号之和是偶数的结果有5种,所以两次摸出的小球标号之和是偶数的概率为59.3. 【答案】C4. 【答案】B5. 【答案】C[解析] 画树状图如下:因为共有24种等可能结果,面向桌面的三个数字的积为奇数的结果有4种,所以所求概率为16.6. 【答案】B7. 【答案】B[解析] 掷一枚质地均匀的正方体骰子,向上一面的点数一共有6种等可能结果,分别为1,2,3,4,5,6,其中与点数3相差2的点数为1,5,所以P (与点数3相差2)=26=13.8. 【答案】C[解析] 由条形图知,共有糖果6+5+3+3+2+4+2+5=30(颗),其中红色糖果有6颗,∴小宝选到红色糖果的概率是630=15.9. 【答案】D10. 【答案】B[解析] ∵AB =13,BC =12,AC =5,∴AB 2=BC 2+AC 2, ∴△ABC 为直角三角形,∴△ABC 的内切圆半径=12+5-132=2. ∵S △ABC =12AC ·BC =12×5×12=30,S 圆=4π, ∴小鸟落在花圃上的概率=4π30=2π15.二、填空题(本大题共6道小题)11. 【答案】20[解析] 摸了150次,其中有50次摸到黑球,则摸到黑球的频率是50150=13. 设口袋中有x 个白球,则10x +10=13,解得x =20.经检验,x =20是原方程的解, 故答案为20.12. 【答案】12[解析] 一共有10种等可能的结果,其中吃到腊肉粽的结果有5种,所以吃到腊肉粽的概率为12.13. 【答案】0.9514. 【答案】22 [解析] 在等腰直角三角形ABC 中,设边AC 的长为1,则边AB的长为 2.在AB 上取点D ,使AD =1,则点M 在线段AD 上时,才满足条件.故在AB 上任取一点M ,AM ≤AC 的概率为12=22.15. 【答案】12 [解析] 正方体小木块共有6个面,其中包含点A 的面有3个,所以P(点A 与桌面接触)=36=12.16. 【答案】13 [解析] 因为不等式组⎩⎨⎧k -3≤0,2k +5>0的解集为-52<k≤3,所以不等式组的整数解为-2,-1,0,1,2,3. 关于x 的方程2x +k =-1的解为x =-k +12. 因为关于x 的方程2x +k =-1的解为非负数, 所以k +1≤0,解得k≤-1,所以能使关于x 的方程2x +k =-1的解为非负数的k 的值为-1,-2, 所以能使关于x 的方程2x +k =-1的解为非负数的概率为26=13.三、解答题(本大题共5道小题)17. 【答案】解:(1)当a =24.5时, b =7×24.5-3.07=168.43. 答:他的身高约为168.43 cm.(2)当a =26.7时,b =7×26.7-3.07=183.83, 因为1.87 m 比较接近183.83 cm ,所以身高为1.87 m 的可疑人员作案的可能性更大.18. 【答案】解:根据题意,画树状图如下:由树状图可知共有27种等可能的结果,其中组成的“下降数”只有1个,即321,∴三次摸球后得到的三位数是“下降数”的概率=127.19. 【答案】(1)因为Rt △ABC 的两直角边长之比为2∶3, 所以设b =2k ,a =3k ,由勾股定理,得c =a2+b2=13k ,所以针尖落在四个直角三角形区域的概率为4×12×2k×3k 13k2=1213. (2)因为正方形EFMN 的边长为8,所以c =8,所以a2+b2=c2=64. 因为Rt △ABC 的周长为18, 即a +b +c =18, 所以a +b =10,所以Rt △ABC 的面积=12ab =14[(a +b)2-(a2+b2)] =9.20. 【答案】(1)根据题意,画出树状图如下:故P(三辆车全部同向而行)=19. (2)P(至少有两辆车向左转)=727.(3)依题意得,汽车右转、左转、直行的概率分别为25,310,310,在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下: 左转绿灯亮的时间为90×310=27(秒); 直行绿灯亮的时间为90×310=27(秒); 右转绿灯亮的时间为90×25=36(秒).21. 【答案】解:(1)14(2)由题意,列表如下:由表可知,点M的所有等可能的结果有16种,点M落在四边形ABCD所围成的图形内(含边界)的结果有(-2,0),(-1,-1),(-1,0),(0,-2),(0,-1),(0,0),(0,1),(1,0),共8个,所以满足条件的概率为P=816=12.。
人教版九年级数学上册 25.1---25.3巩固练习带答案
人教版九年级数学上册第二十五章概率初步25.1随机事件与概率一、选择题1.下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.打开电视,正在播放广告C.抛掷一枚质地均匀且6个面上分别标上数字1~6的骰子,朝上一面的数字小于7D.一个不透明的袋子中只装有2个黑球,搅匀后从中随机摸出一个球,结果是红球2.下列事件中,是必然事件的是()A.内错角相等B.掷两枚硬币,必有一个正面朝上,一个反面朝上C.13人中至少有两个人的生肖相同D.打开电视,一定能看到三水新闻3.下列成语所描述的事件是随机事件的是()A.旭日东升B.不期而遇C.海枯石烂D.水中捞月4.在平行四边形、矩形、菱形、等腰梯形中任选一个图形,那么下列事件中为不可能事件的().A.这个图形是中心对称图形;B.这个图形既是中心对称图形又是轴对称图形;C.这个图形是轴对称图形;D.这个图形既不是中心对称图形又不是轴对称图形.5.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是()A.必然事件B.不可能事件C.随机事件D.确定事件6.下列说法中,正确的是()A.“掷一次质地均匀的骰子,向上一面的点数是6”是必然事件B.“经过有交通信号灯的路口,遇到红灯”是随机事件C.“发热病人的核酸检测呈阳性”是必然事件D.“13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月”是不可能事件7.下列说法不正确...的是( )A.机场对乘客进行安检不能采用抽样调查B.一组数据10,11,12,9,8的平均数是10,方差是2C.“清明时节雨纷纷”是随机事件D.一组数据6,5,3,5,4的众数是5,中位数是38.下列说法正确的是()A.“穿十条马路连遇十次红灯”是不可能事件B.任意画一个三角形,其内角和是180°是必然事件C.某彩票中奖概率为1%,那么买100张彩票一定会中奖D.“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是1 29.甲口袋有x个黑球与若干个白球,乙口袋有若干个黑球与x个白球.现交换甲乙口袋中的小球,每次交换的数量相等.交换数次后,下列说法错误的是( )A.甲口袋中的黑球数量与乙口袋中的白球数量之和始终为2x个B.甲口袋中的黑球数量与乙口袋中的白球数量之差可能为1个C.甲口袋中的黑球数量可能是乙口袋中的白球数量的2倍D.甲口袋中的黑球数量与乙口袋中的白球数量始终相等10.某初中七(5)班学生军训排列成7 7=49 人的方阵,做了一个游戏,起初全体学生站立,教官每次任意点4 个不同学号的学生,被点到的学生,站立的蹲下,蹲下的站立,且学生都正确完成指令,同一名学生可以多次被点,则15 次点名后蹲下的学生人数可能是()A.3B.27C.49D.以上都不可能二、填空题11.高速公路某收费站出城方向有编号为,,,,A B C D E的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:在,,,,A B C D E 五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________.12.某商场为消费者设置了购物后的抽奖活动,总奖项数量若干,小红妈妈在抽奖的时候,各个奖项所占的比例如图,则小红妈妈抽到三等奖以上(含三等奖)的可能性为__________.13.为了了解学生每月的零用钱情况,从甲、乙、丙三个学校各随机抽取200名学生,调查了他们的零用钱情况(单位:元)具体情况如下:在调查过程中,从__(填“甲”,“乙”或“丙”)校随机抽取学生,抽到的学生“零用钱不低于300元”的可能性最大. 14.八年级(4)班有男生24人,女生16人,从中任选1人恰是男生的事件是_______事件(填“必然”或“不可能”或“随机”).15.写一个你喜欢的实数m 的值,使得事件“对于二次函数21(53)42y x m x =--+,当2x >时,y 随x 的增大而增大”成为随机事件,这个实数m 的值______________.三、解答题16.在一个不透明的口袋里,装有6个除颜色外其余都相同的小球,其中2个红球,2个白球,2个黑球.它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n 个球,红球、白球、黑球至少各有一个.(1)当n为何值时,这个事件必然发生?(2)当n为何值时,这个事件不可能发生?(3)当n为何值时,这个事件可能发生?17.在一个不透明的口袋中装着大小、外形等一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了.请判断以下事情是不确定事件、不可能事件,还是必然事件.()1从口袋中任意取出一个球,是一个白球;()2从口袋中一次任取5个球,全是蓝球;()3从口袋中一次任意取出9个球,恰好红蓝白三种颜色的球都齐了.18.如图,有一个转盘被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①①①①①①①;①①①①①①①;(①①①①①①①;①①①①①①①①,估计各事件的可能性大小,完成下列问题.(1)①①①①①①①①①①①① ;(2)多次实验,指针指向绿色的频率的估计值是;(3)将这些事件的序号按发生的可能性从小到大的顺序排列为: <<< .19.某班从三名男生(含小强)和五名女生中选四名学生参加学校举行的“中华古诗文朗诵大赛”,规定女生选n名.(1)当n为何值时,男生小强参加是确定事件?(2)当n为何值时,男生小强参加是随机事件?20.一黑色口袋中有4只红球,2只白球,1只黄球,这些球除了颜色外都相同, 小明认为袋中共有三种颜色不同的球,所以认为摸到红球、白球或者黄球的可能性是相同的,你认为呢?21.请用“一定”“很可能”“可能”“不太可能”“不可能”等语言来描述下列事件的可能性.(1)袋中有50个球,1个红的,49个白的,从中任取一球,取到红色的球;(2)掷一枚质地均匀的骰子,6点朝上;(3)100件产品中有2件次品,98件正品,从中任取一件,刚好是正品;(4)早晨太阳从东方升起;(5)小丽能跳100 m 高.22.一盒乒乓球中共有6只,其中2只次品,4只正品,正品和次品大小和形状完全相同,每次任取3只,出现了下列事件:(1)3只正品;(2)至少有一只次品;(3)3只次品;(4)至少有一只正品指出这些事件分别是什么事件.23.下列事件,哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)用长度分别为2 dm ,3 dm ,5 dm 的三根钢筋,首尾相连能焊成一个三角形;(2)如果两个角相等,那么这两个角是对顶角;(3)任意画一个三角形,其内角和是180°.【参考答案】1.C 2.C 3.B 4.D 5.C 6.B 7.D 8.B 9.D 10.D11.B12.1213.丙14.随机15.m >1的实数16.(1)n =5或6;(2)n =1或2;(3)n =3或417.()1不确定事件;()2不可能事件;()3必然事件18.(1)23;(2)16;(3)①、①①①、①. 19.(1)14n n ==或;(2)23n n ==或.20.摸到红球、白球、黄球的可能性不相同.因为红球最多,所以摸到红球的可能性最大,而摸到黄球的可能性最小. 21.(1)不太可能;(2)可能;(3)很可能;(4)一定;(5)不可能.22.略23.(1)是不可能事件.(2)是随机事件.(3)是必然事件.人教版 九年级数学 25.2 用列举法求概率一、选择题1. 某校开展“文明小卫士”活动,从学生会“督查部”的三名学生(2男1女)中随机选两名进行督导,恰好选中两名男学生的概率是( )A.13B.49C.23D.292. 2019·临沂 经过某十字路口的汽车,可能直行,也可能向左转或向右转,若这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )A.23B.29C.13D.193. 一个布袋里装有2个红球、3个黄球和5个白球,这些球除颜色不同外其他都相同.搅匀后任意摸出1个球,是白球..的概率为( )A.12B.310C.15D.7104. 甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏,游戏规则:转动两个转盘各一次,转盘停止后,若指针所在区域的数字之和为偶数,则甲获胜;若数字之和为奇数,则乙获胜;若指针落在分界线上,则重新转动转盘.甲获胜的概率是( )A.13B.49C.59D.235. 从如图所示图形中任取一个,是中心对称图形的概率是( )A.14B.12C.34 D .16. 如图,正方形ABCD 内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在阴影区域内的概率为( )A.14B.12C.π8D.π47. 三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a ,b ,c ,则以a ,b ,c 为边长的三角形是等边三角形的概率是( )A.19B.127C.59D.138. 在▱ABCD 中,AC ,BD 是两条对角线,现从以下四个关系式:① AB =BC ,②AC =BD ,③AC⊥BD ,④ AB⊥BC 中任选一个作为条件,可推出▱ABCD 是菱形的概率为( )A.12B.14C.34D.25二、填空题9. 2018·滨州若从-1,1,2这三个数中任取两个分别作为点M 的横、纵坐标,则点M 在第二象限的概率是________.10. 某市初中毕业男生体育测试项目有四项,其中“立定跳远”“1000米跑”“肺活量测试”为必测项目,另外从“引体向上”“推铅球”中选一项进行测试.小亮、小明和小刚从“引体向上”“推铅球”中选择同一个测试项目的概率是________.11. 掷一枚硬币三次,其中有两次正面朝上、一次反面朝上的概率为________.12. 如图所示的圆面图案是用半径相同的圆与圆弧构成的.若向圆面投掷飞镖,则飞镖落在阴影区域的概率为________.13. 如图,A是正方体小木块(质地均匀)的一个顶点,将小木块随机投掷在水平桌面上,则点A与桌面接触的概率是________.14. 淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式决定,那么她们两人都抽到物理实验的概率是________.15. 点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是________.16. 已知电路AB由如图所示的开关控制,闭合a,b,c,d,e五个开关中的任意两个,则能使电路形成通路的概率是________.三、解答题17. 如图所示,有一个可以自由转动的转盘,其盘面被分为4等份,在每一等份分别标有对应的数字2,3,4,5.小明打算自由转动转盘10次,现已经转动了8次.每一次停止后,小明将指针所指数字记录如下:(1)求前8次的指针所指数字的平均数.(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时视为无效转次)18. 汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲、乙两队每局获胜的机会相同.(1)若前四局双方战成2∶2,则甲队最终获胜的概率是________;(2)现甲队在前两局比赛中已取得2∶0的领先,那么甲队最终获胜的概率是多少?19. 2019·孝感一个不透明的袋子中装有四个小球,上面分别标有数字-2,-1,0,1,它们除了数字不一样外,其他完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是________;(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图10-ZT-3,已知四边形ABCD的四个顶点的坐标分别为A(-2,0),B(0,-2),C(1,0),D(0,1),请用画树状图法或列表法,求点M落在四边形ABCD所围成的图形内(含边界)的概率.人教版九年级数学25.2 用列举法求概率-答案一、选择题1. 【答案】A2. 【答案】B3. 【答案】A4. 【答案】C[解析] 列表得:所以甲获胜的概率是59.5. 【答案】C [解析] 因为共有4种等可能的结果,任取一个,是中心对称图形的有3种结果,所以任取一个,是中心对称图形的概率是34. 故选C.6. 【答案】C [解析] 设正方形ABCD 的边长为2a ,针尖落在阴影区域内的概率=12×π×a24a2=π8. 故选C.7. 【答案】A [解析] 画树状图如下:由树状图知,共有27种等可能的结果,构成等边三角形的结果有3种,所以以a ,b ,c 为边长的三边形是等边三角形的概率是327=19.故选A.8. 【答案】A [解析] ①AB =BC ,③AC ⊥BD 能够推出▱ABCD 为菱形,4种情形中有2种符合要求,所以所求概率为24=12.二、填空题9. 【答案】13[解析] 若从-1,1,2这三个数中任取两个分别作为点M 的横、纵坐标,一共有(-1,1),(-1,2),(1,-1),(1,2),(2,-1),(2,1)6种等可能结果,其中在第二象限的结果一共有2种,所以点M 在第二象限的概率是13.10. 【答案】14[解析] 分别用A ,B 代表“引体向上”与“推铅球”,画树状图如图所示.由图可知共有8种等可能的结果,小亮、小明和小刚从“引体向上”“推铅球”中选择同一个测试项目的有2种结果,所以小亮、小明和小刚从“引体向上”“推铅球”中选择同一个测试项目的概率是28=14.11. 【答案】38[解析] 画树状图如下:∵共有8种等可能的结果,其中有两次正面朝上、一次反面朝上的结果有3种, ∴掷一枚硬币三次,其中有两次正面朝上、一次反面朝上的概率为38.12. 【答案】1313. 【答案】12[解析] 正方体小木块共有6个面,其中包含点A 的面有3个,所以P(点A 与桌面接触)=36=12.14. 【答案】19[解析] 列表如下:由表可知,共有9种等可能的结果,其中两人都抽到物理实验的结果只有1种,所以她们两人都抽到物理实验的概率是19.15. 【答案】15[解析] 画树状图如下:共有20种等可能的结果,其中点P(a ,b)在平面直角坐标系中第二象限内的结果有4种, 所以点P(a ,b)在平面直角坐标系中第二象限内的概率为420=15.16. 【答案】35[解析] 列表如下:∴一共有20种等可能的结果,使电路形成通路的结果有12种, ∴使电路形成通路的概率是1220=35.三、解答题17. 【答案】解:(1)3+5+2+3+3+4+3+58=3.5. 答:前8次的指针所指数字的平均数为3.5. (2)可能.若这10次的指针所指数字的平均数不小于3.3,且不大于3.5,则所指数字之和应不小于33,且不大于35.而前8次所指数字之和为28,所以最后2次所指数字之和应不小于5,且不大于7. 第9次和第10次指针可能所指的数字如下表所示:一共有16种等可能的结果,其中指针所指数字之和不小于5,且不大于7的结果有9种,其概率为916.18. 【答案】解:(1)12(2)画树状图如下:由图可知,共有8种等可能的结果,其中甲至少胜一局的结果有7种, 所以P(甲队最终获胜)=78.19. 【答案】解:(1)14(2)由题意,列表如下:由表可知,点M 的所有等可能的结果有16种,点M 落在四边形ABCD 所围成的图形内(含边界)的结果有(-2,0),(-1,-1),(-1,0),(0,-2),(0,-1),(0,0),(0,1),(1,0),共8个,所以满足条件的概率为P =816=12.25.3用频率估计概率一、填空题1、黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg ,由此估计该果农今年的“优质蓝莓”产量约是________ kg .2、在一个不透明的盒子中装有n 个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n 大约是________3、一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球____个.4、为了估算湖里有多少条鱼,从湖里捕上100条做上标记,然后放回湖里,经过一段时间待标记的鱼全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,我们可以估算湖里有鱼 条.5、.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同,从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有 个.6、在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有 个.7、某口袋中装有红色、黄色、蓝色三种颜色的小球(小球出颜色外完全相同)共60个.通过多次摸球实验后,发现摸到红球、黄球的频率分别是30%和45%,由此估计口袋中蓝球的数目约为 个.8、在一个不透明的盒子中装有n 个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n 大约是 .9、在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球有4个,黑、白色小球的数目相同,小明从布袋右随机摸出一球,记下颜色放回布袋中,搅匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小明发现其中摸出红球频率稳定于20%,由此可以估计布袋中的黑色小球有________个.10、小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球共3 000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是________.11、在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是12、如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为.二、选择题13、一个口袋中有红球、白球共20只,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一只球,记下它的颜色后再放回,不断重复这一过程,共摸了50次,发现有30次摸到红球,则估计这个口袋中有红球大约多少只?()A、8只B、12只C、18只D、30只14、在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共20只,某学习小组作摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表示活动进行中的一组统计数据:请估算口袋中白球约是( )只.A.8 B.9 C.12 D.1315、在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( ) A.12 B.15 C.18 D.2116、在一个不透明的盒子里,装有5个黑球和若干个白球,这些球除颜色外都相同,将其摇匀后从中随机摸出一个球,记下颜色后再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,请估计盒子中白球的个数是( ) A.10个B.15个 C.20个D.25个17、为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条 B.380条 C.400条 D.420条18、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是()A.24 B.18 C.16 D.619、2015年4月30日,苏州吴江蚕种全部发放完毕,共计发放蚕种6460张(每张上的蚕卵有200粒左右),涉及6个镇,各镇随即开始孵化蚕种,小李所记录的蚕种孵化情况如表所示,则可以估计蚕种孵化成功的概率为()A.0.95 B.0.9 C.0.85 D.0.820、为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条 B.380条 C.400条 D.420条21、某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x=________时,游戏对甲、乙双方公平( ) A.3 B.4 C.5 D.622、在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个 B.20个 C.30个 D.35个参考答案一、填空题1、5602、103、84、800 条.5、15 个.6、12 个.7、15 个.8、109、810、2 100个11、10.12、0.600 .二、选择题13、B14、C15、B16、B17、C18、C19、B20、C21、B22、D。
中考数学25题专题训练
(1)(3分)先通过配方求抛物线的顶点坐标(坐标可用含 的代数式表示),再求 的值;
(2)(3分)设点N的横坐标为 ,试用含 的代数式表示点N的纵坐标,并说明NF=NB;
(1)求A点坐标及线段AB的长;
(2)若点P由点A出发以每秒1个单位的速度沿AB边向点B移动,1秒后点Q也由点A出发以每秒7个单位的速度沿AO,OC,CB边向点B移动,当其中一个点到达终点时另一个点也停止移动,点P的移动时间为t秒.
①当PQ⊥AC时,求t的值;
②当PQ∥AC时,对于抛物线对称轴上一点H,∠HOQ>∠POQ,求点H的纵坐标的取值范围.
(1)求抛物线所对应的函数关系式;
(2)求 的面积;
(3)将 绕点 逆 时针旋转90°,点 对应点为点 ,问点 是否在该抛物线上?请说明理由.
22. (2012福建省宁德市)如图,在平面直角坐标系中,直线 交 轴于点A,交 轴于点B,将△AOB绕原点O顺时针旋转90º后得到△COD,抛物线 经过点A、C、D.
(1)当 时,求点A的坐标及BC的长;
(2)当 时,连结CA,问 为何值时 ?
(3)过点P作 且 ,问是否存在 ,使得点E落在坐标轴上?若存在,求出所有满足要求的 的值,并写出相对应的点E坐标;若不存在,请说明理由.
21. (2012江苏省连云港市)如图,抛物线 与 轴交于 两点,与 轴交于点 ,点 为坐标原点,点 为抛物线的顶点,点 在抛物线上,点 在 轴上,四边形 为矩形,且 , .
(1)求双曲线和抛物线的解析式;
(2)计算 与 的面积;
山东济南中考数学第25题(反比例函数)、第26题、第27题(二次函数)解答题整理试题以及答案
九年级中考数学解答题练习试题一、解答题。
(第25题反比例函数)(x>0)的图象经过点A(2√3,1),射1、(2014年济南中考)如图1,反比例函数y=kx线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC 相交于点N,连接CM,求△CMN面积的最大值.2、(2015年济南中考)如图1,点A(8,1)、B(n,8)都在反比例函数y=m(x>0)x的图象上,过点A作AC⊥x轴,于点C,过点B作BD⊥y轴于点D。
(1)求m的值和直线AB的函数关系式;(2)动点P从O点出发,以每秒2个单位长度的速度沿折线OD﹣DB向B点运动,同时动点Q从O点出发,以每秒1个单位长度的速度沿折线OC向C点运动,当动点P运动到D 时,点Q也停止运动,设运动的时间为t秒.①设△OPQ的面积为S,写出S与t的函数关系式;②如图2,当的P在线段OD上运动时,如果作△OPQ关于直线PQ的对称图形△O’PQ,是否存在某时刻t,使得点Q’恰好落在反比例函数的图象上?若存在,求Q’的坐标和t的值;若不存在,请说明理由.3、(2016年济南中考)如图1,▱OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=m(x>0)的图象经过点A(1,4).x(1)求反比例函数的关系式和点B的坐标;(2)如图2,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP.①求△AOP的面积;②在▱OABC的边上是否存在点M,使得△POM是以PO为斜边的直角三角形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.4、(2017年济南中考)如图1,平行四边形OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=k(x>0)的图象经过点B.x(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B关于直线MN成轴对称,求线段ON的长;(3)如图3,将线段OA延长交y=k(x>0)于点D,过B,D的直线分别交x轴,y轴于xE,F两点,请探究线段ED与BF的数量关系,并说明理由.5、(2018年济南中考)如图,直线y=ax+2与x轴交于点A(1,0),与y轴交于点B(0,b).将线段AB先向右平移1个单位长度、再向上平移t(t>0)个单位长度,得到对应线段CD,反比例函数y=k(x>0)的图象恰好经过C、D两点,连接AC、BD.x(1)求a和b的值;(2)求反比例函数的表达式及四边形ABDC的面积;(3)点N在x轴正半轴上,点M是反比例函数y=k(x>0)的图象上的一个点,若△xCMN是以CM为直角边的等腰直角三角形时,求所有满足条件的点M的坐标.6、(2019年济南中考)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=k(x>0)的图象经过点B.x(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.的值;①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求DEEF②在线段AB运动过程中,连接BC,若△BCD是以BC为腰的等腰三形,求所有满足条件的m的值.图1 图27、(2020年济南中考)如图,矩形OABC的顶点A、C分别落在x轴、y轴正半轴上,顶点为(2,2√3),反比例函数y=k x (x >0)的图象与BC 、AB 分别交于D 、E ,BD=12. (1)求反比例函数表达式和点E 的坐标; (2)写出DE 、AC 的位置关系,并说明理由;(3)点F 在直线AC 上,点G 是坐标系内一点,当四边形BCFG 是菱形,求出点G 的坐标并判断点G 是否在反比例图象上;8、(2021年济南中考)如图,直线y=32x 与双曲线y=kx 交于A 、B 两点,点A 坐标为(m ,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD。
中考数学狙击重难点系列专题25----与平面展开有关的最短路径问题(含答案)
与平面展开有关的最短路径问题1. 如图是一块长、宽、高分别为6cm、4cm、3cm的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是()A. cmB. cmC. cmD. 9cm2. 如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A. (4+)cm B. 5cm C. 2cm D. 7cmπ3. 如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是()A. 15 dmB. 20dmC. 25dmD. 30dm4. 已知AB是圆锥(如图1)底面的直径,P是圆锥的顶点,此圆锥的侧面展开图如图2所示.一只蚂蚁从A点出发,沿着圆锥侧面经过PB上一点,最后回到A点.若此蚂蚁所走的路线最短,那么M,N,S,T(M,N,S,T均在PB上)四个点中,它最有可能经过的点是()A. MB. NC. SD. T5. 2015年是国际“光”年,某校“光学节”的纪念品是一个底面为等边三角形的三棱镜(如图).在三棱镜的侧面上,从顶点A到顶点A′镶有一圈金属丝,已知此三棱镜的高为8cm,底面边长为2cm,则这圈金属丝的长度至少为()A. 8cmB. 10cmC. 12cmD. 15cm6. 如图,圆柱形容器的底面周长是24cm,高为17cm,在外侧底面S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一苍蝇,急于捕获苍蝇充饥的蜘蛛所走的最短路线长度是()A. 20cmB. 8 cmC. cmD. 24cm7. 如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为()A. 20cmB. 2 cmC. (12+2 )cmD. 18cm8. 如图,长方体的底面是边长为1cm的正方形,高为3cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,请利用侧面展开图计算所用细线最短需要多少________cm.9. 在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为 ________cm.(结果保留π)10. 如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是________.11. 如图,是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为5m的半圆,其边缘AB=CD=20cm,小明要在AB上选取一点E,能够使他从点D滑到点E再到点C的滑行距离最短,则他滑行的最短距离为________m.(π取3)12. 如图,某风景区的沿湖公路AB=3千米,BC=4千米,CD=12千米,AD=13千米,其中AB^BC,图中阴影是草地,其余是水面。
九年级数学中考典型及竞赛训练专题25 平面几何的最值问题2(附答案解析)
第2题图 第3题图 第4题图 第5题图
3.如图⊙O的半径为2,⊙O内的一点P到圆心的距离为1,过点P的弦与劣弧 组成一个弓形,则此弓形面积的最小值为.
4.如图,△ABC的面积为1,点D,G,E和F分别在边AB,AC,BC上,BD<DA,DG∥BC,DE∥AC,GF∥AB,则梯形DEFG面积的最大可能值为.(上海市竞赛试题)
所以,应选择路线2.
(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1分米,高AB为5分米”继续按前面的路线进行计算.请你帮小明完成下面的计算:
路线1:l12=AC2=25+π2;
路线2:l22=(AB+BC)2=49.∵l12l22,∴l1<l2(填“>”或“<”),所以应选择路线1
8.(1)连结ME,过N作NF⊥AB于F,可证明Rt△EB A≌Rt△MNF,得MF=AE=x.∵ME2=AE2+AM2,故MB2=x2+AM2,即(2-AM)2=x2+AM2,AM=1- x2,∴S= ×AD= ×2=AM+AM+MF=2AM+AE=2(1- x2)+x=- x2+x+2.
(2)S=- (x2-2x+1)+ =- (x-1)2+ .故当AE=x=1时,四边形ADNM的面积最大,此时最大值为 .
(1)当MN为何值时,点P恰好落在BC上?
(2)设MN=x,△MNP与等腰△ABC重叠部分的面积为y,试写出y与x的函数关系式,当x为何值时,y的值最大,最大值是多少?(宁夏省中考试题)
B级
1.已知凸四边形ABCD中,AB+AC+CD= 16,且S四边彤ABCD=32,那么当AC=,BD=时,四边形ABCD面积最大,最大值是.(“华杯赛”试题)
2021年东莞市中考数学总复习第25章:概率初步(附答案解析)
第 1 页 共 33 页2021年东莞市中考数学复习第25章:概率初步2011-2020东莞市中考十年真题五年模拟一.选择题(共8小题)1.(2014•东莞市)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A .47B .37C .34D .13 2.(2020•东莞市一模)不透明袋子中有红球10个,黄球20个,还有一些蓝球,这些球除颜色外无其他差别,从袋子里随机摸出一个恰好是黄球的概率为13,则蓝球有( ) A .30个 B .60个 C .40个 D .20个3.(2019•东莞市模拟)下列事件中,是随机事件的是( )A .任意画一个三角形,其内角和是360°B .任意抛一枚图钉,钉尖着地C .通常加热到100℃时,水沸腾D .太阳从东方升起4.(2018•东莞市校级一模)一个不透明的袋子中装有2个红球、3个白球,每个球除颜色外都相同.从中任意摸出3个球,下列事件为必然事件的是( )A .至少有1个球是红球B .至少有1个球是白球C .至少有2个球是红球D .至少有2个球是白球5.(2017•东莞市三模)一个不透明的布袋里装有若干个只有颜色不同的红球和白球,其中3个红球,且从布袋中随机摸出一个球,摸出的球是红球的概率是13,则白球的个数是( ) A .6 B .7 C .8 D .96.(2017•东莞市校级二模)一个口袋中有红球、白球共20只,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一只球,记下它的颜色后再放回,不断重复这一过程,共摸了50次,发现有30次摸到红球,则估计这个口块中有红球大约多少只?( )A .8只B .12只C .18只D .30只7.(2017•东莞市校级一模)一个袋中装有2个红球,3个蓝球和5个白球,它们除颜色外完全相同,现在从中任意摸出一个球,则P (摸到红球)等于( )。
中考数学复习专题25:尺规作图(含中考真题解析)
专题25 尺规作图☞解读考点知识点名师点晴尺规作图尺规作图概念了解什么是尺规作图五种基本作图1.画一条线段等于已知线段会用尺规作图法完成五种基本作图,了解五种基本作图的理由,会使用精练、准确的作图语言叙述画图过程.2.画一个角等于已知角3.画线段的垂直平分线4.过已知点画已知直线的垂线5.画角平分线会利用基本作图画较简单的图形.1.画三角形会利用基本作图画三角形较简单的图形.2.画圆会利用基本作图画圆.☞2年中考【2015年题组】1.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.【答案】D.第1 页共32 页考点:作图—复杂作图.考点:作图—复杂作图.2.如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是(下列结论错误的是( )A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC 【答案】D.【解析】【解析】试题分析:∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°;∵∠ACB=90°,∴CD=BD;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED;∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.考点:1.作图—基本作图;2.线段垂直平分线的性质;3.直角三角形斜边上的中线..直角三角形斜边上的中线. 3.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为(的度数,结果为( )A.80°B.90°C.100°D.105°【答案】B.【解析】【解析】试题分析:如图,试题分析:如图,AB是以点C为圆心,BC长为半径的圆的直径,因为直径对的圆周角是90°,所以∠AMB=90°,所以测量∠AMB的度数,结果为90°.故选B.考点:1.等腰三角形的性质;2.作图—基本作图.基本作图.4.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:,按如下步骤作图:第一步,分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.的长是( )若BD=6,AF=4,CD=3,则BE的长是(A.2 B.4 C.6 D.8 【答案】D.基本作图.考点:1.平行线分线段成比例;2.菱形的判定与性质;3.作图—基本作图.5.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆分别作出了下列四个图形.其中作法错误的是( )规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是(A.B.C.D.【答案】A.考点:作图—基本作图.考点:作图—基本作图.6.数学课上,老师让学生尺规作图画Rt △ABC ,使其斜边AB=c ,一条直角边BC=a .小明的作法如图所示,你认为这种作法中判断∠ACB 是直角的依据是(是直角的依据是( )A .勾股定理.勾股定理B .直径所对的圆心角是直角.直径所对的圆心角是直角C .勾股定理的逆定理.勾股定理的逆定理D .90°的圆周角所对的弦是直径的圆周角所对的弦是直径 【答案】B . 【解析】【解析】试题分析:由作图痕迹可以看出O 为AB 的中点,以O 为圆心,AB 为半径作圆,然后以B 为圆心BC=a 为半径花弧与圆O 交于一点C ,故∠ACB 是直径所对的圆周角,所以这种作法中判断∠ACB 是直角的依据是:直径所对的圆心角是直角.故选B . 考点:1.作图—复杂作图;2.勾股定理的逆定理;3.圆周 角定理.角定理.7.如图,将线段AB 放在边长为1的小正方形网格,点A 点B 均落在格点上,请用无刻度直尺在线段AB 上画出点P ,使AP=3172,并保留作图痕迹.(备注:本题只是找点不是证明,∴只需连接一对角线就行)证明,∴只需连接一对角线就行)【答案】作图见试题解析.【答案】作图见试题解析.考点:作图—应用与设计作图.考点:作图—应用与设计作图.8.)阅读下面材料:在数学课上,老师提出如下问题:)阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是 .请回答:小芸的作图依据是【答案】到线段两个端点距离相等的点在线段的垂直平分线上;两点确定一条直线..作图题.考点:1.作图—基本作图;2.作图题.9.已知⊙O为△ABC的外接圆,圆心O在AB上.上.(1)在图1中,用尺规作图作∠BAC的平分线AD交⊙O于D(保留作图痕迹,不写作法与证明);(2)如图2,设∠BAC 的平分线AD 交BC 于E ,⊙O 半径为5,AC=4,连接OD 交BC 于F .①求证:OD ⊥BC ; ②求EF 的长.的长.【答案】(1)作图见试题解析;(2)①证明见试题解析;②3217.【解析】【解析】 试题分析:(1)按照作角平分线的方法作出即可;)按照作角平分线的方法作出即可;(2)①由AD 是∠BAC 的平分线,得到CD BD =,再由垂径定理推论可得到结论;,再由垂径定理推论可得到结论;②由勾股定理求得CF 的长,然后根据平行线分线段成比例定理求得34EFFD CEAC==,即可求得37EF CF =,继而求得EF 的长.的长.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.勾股定理;4.圆周.压轴题.角定理;5.作图—复杂作图;6.压轴题.10.如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)【答案】答案见试题解析.【答案】答案见试题解析.【解析】【解析】试题分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A为端点在AB上截取试题解析:满足条件的所有图形如图所示:试题解析:满足条件的所有图形如图所示:考点:1.作图—应用与设计作图;2.等腰三角形的判定;3.勾股定理;4.正方形的性质;5.综合题;6.压轴题..压轴题.11.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD ,已知OA=5,若扇形OAD (∠AOD <180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于的侧面,则这个圆锥底面圆的半径等于 .【答案】(1)作图见试题解析;(2)158.【解析】【解析】 试题分析:(1)作AE 的垂直平分线交⊙O 于C ,G ,作∠AOG ,∠EOG 的角平分线,分别交⊙O 于H ,F ,反向延长,反向延长 FO ,HO ,分别交⊙O 于D ,B 顺次连接A ,B ,C ,D ,E ,F ,G ,H ,八边形ABCDEFGH 即为所求;即为所求; (2)由八边形ABCDEFGH 是正八边形,求得∠AOD 的度数,得到AD 的长,设这个圆锥底面圆的半径为R ,根据圆的周长的公式即可求得结论.,根据圆的周长的公式即可求得结论. 试题解析:(1)如图所示,八边形ABCDEFGH 即为所求;即为所求;(2)∵八边形ABCDEFGH 是正八边形,∴∠AOD=3608×3=135°,∵OA=5,∴AD 的长=1355180p ´=154p ,设这个圆锥底面圆的半径为R ,∴2πR=154p,∴R=158,即这个圆锥底面圆的半径为158.故答案为:158.考点:1.正多边形和圆;2.圆锥的计算;3.作图—复杂作图.复杂作图.12.手工课上,老师要求同学们将边长为4cm 的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)等腰直角三角形面积(注:不同的分法,面积可以相等)【答案】答案见试题解析.【答案】答案见试题解析.(2)正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;分割后得到的最小等腰直角三角形面积即可;(3)正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;得到的最小等腰直角三角形面积即可;(4)正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.面积公式,求出分割后得到的最小等腰直角三角形面积即可.试题解析:根据分析,可得:试题解析:根据分析,可得:..操作型.考点:1.作图—应用与设计作图;2.操作型.13.如图,一条公路的转弯处是一段圆弧(AB).(要求保留作图痕迹,不写作法)(1)用直尺和圆规作出AB所在圆的圆心O;(要求保留作图痕迹,不写作法)所在圆的半径.(2)若AB的中点C到弦AB的距离为20m,AB=80m,求AB所在圆的半径.【答案】(1)作图见试题解析;(2)50m.试题解析:(1)如图1,点O为所求;为所求;(2)连接OA,OC,OC交AB于D,如图2,∵C为AB的中点,∴OC⊥AB,∴AD=BD=12AB=40,设⊙O的半径为r,则OA=r,OD=OD﹣CD=r﹣20,在Rt△OAD中,∵222OA OD BD=+,∴222(20)40r r=-+,解得r=50,即AB所在圆的半径是50m.考点:1.作图—复杂作图;2.勾股定理;3.垂径定理的应用;4.作图题..作图题.14.如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于12GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.(1)求证:AB=AE;(2)若∠A=100°,求∠EBC的度数.的度数.【答案】(1)证明见试题解析;(2)40°.°.考点:1.作图—基本作图;2.等腰三角形的判定与性质..等腰三角形的判定与性质.15.如图,射线P A切⊙O于点A,连接PO.(1)在PO的上方作射线PC,使∠OPC=∠OP A(用尺规在原图中作,保留痕迹,不写作法),并证明PC是⊙O的切线;的切线;(2)在(1)的条件下,若PC切⊙O于点B,AB=AP=4,求AB的长.的长.【答案】(1)作图见试题解析,证明见试题解析;(2)839p.【解析】【解析】试题分析:(1)按照作一个角等于已知角的作图方法作图即可,连接OA,作OB⊥PC,由角平分线的性质证明OA=OB即可证明PC是⊙O的切线;的切线;(2)先证明△P AB是等边三角形,则∠APB=60°,进而∠POA=60°,在Rt△AOP中求出OA,用弧长公式计算即可.,用弧长公式计算即可.试题解析:(1)作图如右图,作图如右图,连接连接OA,过O作OB⊥PC,∵P A切⊙O于点A,∴OA⊥P A,又∵∠OPC=∠OP A ,OB ⊥PC ,∴OA=OB ,即d=r ,∴PC 是⊙O 的切线;的切线;(2)∵P A 、PC 是⊙O 的切线,∴PA=PB ,又∵AB=AP=4,∴△P AB 是等边三角形,∴∠APB=60°,∴∠AOB=120°,∠POA=60°,在Rt △AOP 中,tan60°tan60°==4OA ,∴OA=433,∴431203180AB l p ´´==839p .考点:1.切线的判定与性质;2.弧长的计算;3.作图—基本作图.基本作图.16.如图,AC 是⊙O 的直径,点B 在⊙O 上,∠ACB=30°.(1)利用尺规作∠ABC 的平分线BD ,交AC 于点E ,交⊙O 于点D ,连接CD (保留作图痕迹,不写作法);(2)在(1)所作的图形中,求△ABE 与△CDE 的面积之比.的面积之比.【答案】(1)作图见试题解析;(2)12.试题解析:(1)如图所示;)如图所示;考点:1.作图—复杂作图;2.圆周角定理..圆周角定理.17.)图①,图②,图③都是4×4×44的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:图:为一边画一个等腰三角形;(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;为一边画一个正方形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.)作图见试题解析.【答案】(1)作图见试题解析;(2)作图见试题解析;(3)作图见试题解析.【解析】【解析】的等腰三角形即可; 试题分析:(1)根据勾股定理,结合网格结构,作出两边分别为5的等腰三角形即可;的正方形;(2)根据勾股定理逆定理,结合网格结构,作出边长为5的正方形;(3)根据勾股定理逆定理,结合网格结构,作出最长的线段作为正方形的边长即可.个:试题解析:(1)如图①,符合条件的C点有5个:;的面积最大.(3)如图③,边长为10的正方形ABCD的面积最大..考点:作图—应用与设计作图.考点:作图—应用与设计作图.18.)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均,每个小正方形的顶点叫做格点.为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).【答案】(1)答案见试题解析;(2)答案见试题解析.)答案见试题解析.所示;试题解析:(1)如图1所示;(2)如图2、3所示;所示;考点:作图—应用与设计作图.考点:作图—应用与设计作图. 19.)如图,已知Rt △ACB 中,∠C =90°,∠BAC =45°. (1)(4分)用尺规作图,在CA 的延长线上截取AD =AB ,并连接BD (不写作法,保留作图痕迹); (2)(4分)求∠BDC 的度数;的度数; (3)(4分)定义:在直角三角形中,一个锐角A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即的对边的邻边A A A ÐÐ=cot ,根据定义,利用图形求cot22.5°的值.的值.【答案】(1)答案见试题解析;(2)22.5°;(3)21+.试题解析:(1)如图,)如图,(2)∵AD=AB ,∴∠ADB=∠ABD ,而∠BAC=∠ADB+∠ABD ,∴∠ADB=12∠BAC=12×45°45°=22.5°=22.5°,即∠BDC 的度数为22.5°;(3)设AC=x ,∵∠C=90°,∠BAC=45°,∴△ACB 为等腰直角三角形,∴BC=AC=x ,AB=2AC=2x ,∴AD=AB=2x ,∴CD=2x x +=(21)x +,在Rt △BCD 中,cot∠BDC=DC BC =(21)xx+=21+,即cot22.5°cot22.5°==21+. 考点:1.作图—复杂作图;2.解直角三角形;3.新定义;4.综合题..综合题.20.)如图,△ABC 是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C ,使它与AB 相切于点D ,与AC 相交于点E ,保留作图痕迹,不写作法,请标明字母;作法,请标明字母;(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求DE 的长.的长.【答案】(1)作图见试题解析;(2)32p .试题解析:(1)如图,)如图,⊙C 为所求;为所求;(2)∵⊙C 切AB 于D ,∴CD ⊥AB ,∴∠ADC=90°,∴∠DCE=90°﹣∠A=90°﹣30°30°=60°=60°,∴∠BCD=90°﹣∠ACD=30°,在Rt △BCD 中,∵cos ∠BCD=CD BC ,∴CD=3cos30°CD=3cos30°==332,∴DE 的长=33602180p ×=32p. 考点:1.作图—复杂作图;2.切线的性质;3.弧长的计算;4.作图题..作图题.21.如图,在△ABC 中,AB=AC ,∠DAC 是△ABC 的一个外角.的一个外角. 实验与操作:实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法) (1)作∠DAC 的平分线AM ;(2)作线段AC 的垂直平分线,与AM 交于点F ,与BC 边交于点E ,连接AE ,CF . 猜想并判断四边形AECF 的形状并加以证明.的形状并加以证明.【答案】(1)作图见试题解析;(2)作图见试题解析,四边形AECF 的形状为菱形.的形状为菱形. 【解析】【解析】考点:1.作图—复杂作图;2.角平分线的性质;3.线段垂直平分线的性质;4.作图题;5.探究型;6.菱形的判定..菱形的判定.22.在边长为1的小正方形组成的方格纸中,的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点若多边形的各顶点都在方格纸的格点若多边形的各顶点都在方格纸的格点(横竖格(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a ,边界上的格点数为b ,则格点多边形的面积可表示为1-+=nb ma S ,其中m ,n 为常数.为常数. (1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;、菱形;(2)利用(1)中的格点多边形确定m ,n 的值.的值.【答案】(1)答案见试题解析;(2)112m n =ìïí=ïî.(2)∵格点多边形内的格点数为a ,边界上的格点数为b ,则格点多边形的面积可表示为:1-+=nb ma S ,其中m , n 为常数,为常数,∴三角形:3816S m n =+-=,平行四边形:3816S m n =+-=,菱形:5416S m n =+-=,则38165416m n m n +-=ìí+-=î,解得:112m n =ìïí=ïî. 考点:作图—应用与设计作图.考点:作图—应用与设计作图.23.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a ,b ,c ,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.的整数个单位长度. (1)用记号(a ,b ,c )(a≤b≤c )表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a <b <c 的三角形(用给定的单位长度,不写作法,保留作图痕迹).【答案】(1)共9种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4);(2)答案见试题解析.)答案见试题解析. 【解析】【解析】 试题分析:(1)应用列举法,根据三角形三边关系列举出所有满足条件的三角形;)应用列举法,根据三角形三边关系列举出所有满足条件的三角形;(2)首先判断满足条件的三角形只有一个:a=2,b=3,c=4,再作图:①作射线AB ,且取AB=4;②以点A 为圆心,3为半径画弧;以点B 为圆心,2为半径画弧,两弧交于点C ; ③连接AC 、BC .则△ABC 即为满足条件的三角形.即为满足条件的三角形.考点:1.作图—应用与设计作图;2.三角形三边关系..三角形三边关系.24.各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形..各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算如何计算它的面积?奥地利数学家皮克(G•Pick ,1859~1942年)证明了格点多边形的面积公式121-+=b a S ,其中a 表示多边形内部的格点数,b 表示多边形边界上的格点数,S 表示多边形的面积.如图,4=a ,6=b ,616214=-´+=S .(1)请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积.个格点,并写出它的面积.(2)请在图乙中画一个格点三角形,使它的面积为27,且每条边上除顶点外无其它格点.(注:图甲、图乙在答题纸上)(注:图甲、图乙在答题纸上)【答案】. 【解析】【解析】 试题分析:(1)根据皮克公式画图计算即可;)根据皮克公式画图计算即可;(2)根据题意可知a=3,b=3,画出满足题意的图形即可.,画出满足题意的图形即可. 试题解析:(1)方法不唯一,如图①或图②所示:)方法不唯一,如图①或图②所示:(2)方法不唯一,如图③或图④所示:)方法不唯一,如图③或图④所示:考点:作图—应用与设计作图.考点:作图—应用与设计作图. 25.【问题提出】【问题提出】用n 根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?,能搭成多少种不同的等腰三角形? 【问题探究】【问题探究】不妨假设能搭成m 种不同的等腰三角形,为探究m 与n 之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.手,通过试验、观察、类比、最后归纳、猜测得出结论. 【探究一】【探究一】(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? 此时,显然能搭成一种等腰三角形.此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? 只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.根木棒这一种情况,不能搭成三角形. 所以,当n=4时,m=0.(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? 若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.根木棒,则能搭成一种等腰三角形. 所以,当n=5时,m=1.(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? 若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.根木棒,则能搭成一种等腰三角形.所以,当n=6时,m=1. 综上所述,可得:表①综上所述,可得:表①n 3 4 5 6 m 1 0 1 1 【探究二】【探究二】(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?根相同的木棒搭一个三角形,能搭成多少种不同的三角形? (仿照上述探究方法,写出解答过程,并将结果填在表②中)(仿照上述探究方法,写出解答过程,并将结果填在表②中)(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? (只需把结果填在表②中)(只需把结果填在表②中) 表②表②n 7 8 9 10 m 你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n是正整数,把结果填在表③中)分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)表③表③n 4k﹣1 4k 4k+1 4k+2 m 【问题应用】:(写能搭成多少种不同的等腰三角形?(写用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形(木棒无剩余)(只填结果)出解答过程),其中面积最大的等腰三角形每腰用了,其中面积最大的等腰三角形每腰用了 根木棒.(只填结果)【答案】【探究二】:2;1;2;2;【问题解决】:k;k﹣1;k;k;【问题应用】:672.根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?试题解析:(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,能搭成二种等腰三角形,即分成2根木棒、2根木棒和3根木棒,则能搭成一种等腰三角形三角形根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?用10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根木棒,则能搭成一种等腰三角形分成3根木棒、3根木棒和4根木棒,则能搭成一种等腰三角形根木棒,则能搭成一种等腰三角形分成4根木棒、4根木棒和2根木棒,则能搭成一种等腰三角形所以,当n=10时,m=2.故答案为:2;1;2;2.问题解决:由规律可知,答案为:k;k﹣1;k;k.问题应用:2016÷2016÷4=5044=504,504﹣1=503,当三角形是等边三角形时,面积最大,2016÷2016÷3=6723=672,∴用2016根相同的木棒搭一个三角形,能搭成503种不同的等腰三角形,其中面积最大的等腰三角形每腰用672根木棒.根木棒.考点:1.作图—应用与设计作图;2.三角形三边关系;3.等腰三角形的判定与性质;4.探究型;5.综合题;6.压轴题..压轴题.【2014年题组】年题组】1.)用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是( )A .SASB .SSSC .ASAD .AAS 【答案】B .考点:作图—基本作图;全等三角形的判定与性质.考点:作图—基本作图;全等三角形的判定与性质.2.模)如图,AD 为⊙O 的直径,作⊙O 的内接正三角形ABC ,甲、乙两人的作法分别如下:下:甲:①作OD 的垂直平分线,交⊙O 于B ,C 两点.两点. ②连接AB ,AC .△ABC 即为所求作的三角形.即为所求作的三角形.乙:①以D为圆心,OD的长为半径作圆弧,交⊙O于B,C两点.两点.即为所求作的三角形.②连接AB,BC,CA.△ABC即为所求作的三角形.对于甲、乙两人的作法,可判断( )对于甲、乙两人的作法,可判断(A.甲、乙均正确.甲、乙均错误.甲、乙均正确 B.甲、乙均错误C.甲正确,乙错误.甲错误,乙正确.甲正确,乙错误 D.甲错误,乙正确【答案】A.【解析】【解析】试题分析:根据甲的思路,作出图形如下:试题分析:根据甲的思路,作出图形如下:连接OB,BD,∵OD=BD,OD=OB,∴OD=BD=OB,∴△BOD为等边三角形,∴∠OBD=∠BOD=60°,又BC垂直平分OD,∴OM=DM,∴BM为∠OBD的平分线,∴∠OBM=∠DBM=30°,又OA=OB,且∠BOD为△AOB的外角,∴∠BAO=∠ABO=30°,∴∠ABC=∠ABO+∠OBM=60°,同理∠ACB=60°,∴∠BAC=60°,∴∠ABC=∠ACB=∠BAC,∴△ABC 为等边三角形,故乙作法正确,故选A 考点:垂径定理;等边三角形的判定与性质;含30度角的直角三角形.度角的直角三角形.3.)如图,BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是,并直接写出旋转角度是 .【答案】90°.°.【解析】【解析】试题分析:如图所示:旋转角度是90°.°.考点:作图-旋转变换.旋转变换.4.)如图,在△ABC中,按以下步骤作图:中,按以下步骤作图:①分别以B,C为圆心,以大于12BC的长为半径作弧,两弧相交于M,N两点;两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为的度数为 【答案】105°.°.考点:作图—基本作图;线段垂直平分线的性质.考点:作图—基本作图;线段垂直平分线的性质.5.)如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于12AC长为半径画弧,。
中考数学第25题专题复习训练(含答案)
第25题专题复习训练(含答案)1.已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接DF、CF。
DE ,求CF;(1)如图1,当点D在AB上,点E在AC中点,2(2)如图2,在(1)的条件下将△ADE绕A点顺时针旋转45°时,线段DF、CF有何数量关系和位置关系?证明你的结论;(3)如图3,在(1)的条件下将△ADE绕A点顺时针旋转任意角度时,线段DF、CF又有何数量关系和位置关系?证明你的结论;2. 如图所示,△ABC,△ADE为等腰直角三角形,∠ACB=∠AED=90°.F为线段BD的中点.(1)如图1,点E在AB上,点D与C重合,EF=2,求AB的长.(2)如图2,当D、A、C在一条直线上时.线段EF与FC有何数量关系和位置关系?证明你的结论;(3)如图③,连接EF、FC,线段EF与FC又有何数量关系和位置关系?证明你的结论;.3.如图1,△ACB 、△AED 都为等腰直角三角形,∠AED=∠ACB=90°,点D 在AB 上,连CE ,M 、N 分别为BD 、CE 的中点.(1)求证:MN ⊥CE ;(2)如图2将△AED 绕A 点逆时针旋转30°,CE 与MN 有何数量关系和位置关系?证明你的结论.4. 已知,如图1,等腰直角△ABC 中,E 为斜边AB 上一点,过E 点作E F ⊥AB 交BC 于点F ,连接AF ,G 为AF 的中点,连接EG ,CG 。
(1)如果BE=2,∠BAF=30°,求EG ,CG 的长;(2)将图1中△BEF 绕点B 逆时针旋转45°,得如图2所示,取AF 的中点G ,连接EG ,CG 。
延长CG 至M ,使GM=GC ,连接EM=EC ,求证:△EMC 是等腰直角三角形;(3)将图1中△BEF 绕点B 旋转任意角度,得如图3所示,取AF 的中点G ,再连接EG ,CG ,问线段EG 和GC 有怎样的数量关系和位置关系?并证明你的结论。
中考数学复习专题25等腰三角形、等边三角形试题(A卷,含解析)(2021年整理)
2018届中考数学复习专题25 等腰三角形、等边三角形试题(A卷,含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018届中考数学复习专题25 等腰三角形、等边三角形试题(A卷,含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018届中考数学复习专题25 等腰三角形、等边三角形试题(A卷,含解析)的全部内容。
等腰三角形、等边三角形一、选择题1.(山东临沂,12,3分)如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形。
其中正确的个数是()(A)0 (B)1 (C)2 (D)3【答案】D【逐步提示】本题考查等边三角形的判定与性质,菱形的判定与性质,先由等边三角形的性质得出∠ACB=∠DCE=60°,AC=CD,从而得出△ACD是等边三角形,得出①正确;再判断四边形ABCD是菱形,得出②正确;然后根据①结论得出四边形ACED是菱形,得出③正确.【详细解答】解:∵△ABC、△EDC是等边三角形,∴∠ACB=∠DCE=60°,AC=CD,∴∠ACD=180°-∠ACB-∠DCE=60°,∴△ACD是等边三角形,∴AD=AC,故①正确;由①可得AD=BC=AB=CD,∴四边形ABCD是菱形,∴BD⊥AC,故②正确;由①可得AD=AC=CE=DE,故四边形ACED是菱形,即③正确.综上可得①②③正确,共3个.故选D.【解后反思】解答本题需掌握以下知识:(1)等边三角形的性质:等边三角形的三个内角都相等,并且每一个内角都等于60°;(2)等边三角形的判定:三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形;(3)菱形的判定:①一组邻边相等的平行四边形是菱形;②对角线互相垂直的四边形是菱形;③四条边都相等的四边形是菱形;(4)菱形的性质:①菱形是四条边都相等;②菱形的对角线互相垂直且平分;③菱形的每一条对角线平分一组对角.【关键词】 等边三角形的判定;等边三角形的性质;菱形的判定;菱形的性质2。
2021年重庆中考数学第25题二次函数综合专题训练1
2021级重庆中考数学第25题二次函数综合专题训练11.如图1,抛物线y=﹣x2+2x+3与x轴交于A,B,与y轴交于C,抛物线的顶点为D,直线l过C交x轴于E(4,0).(1)写出D的坐标和直线l的解析式;(2)P(x,y)是线段BD上的动点(不与B,D重合),PF⊥x轴于F,设四边形OFPC的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于N,连接CN,将△CMN沿CN翻转,M的对应点为M′.在图2中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.2.如图,抛物线y =−x 2−2x +3的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.(1)求A 、B 、C 的坐标;(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N.若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ.过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FG=DQ ,求点F 的坐标.3.已知:如图,二次函数y =﹣12x 2+32x +2的图象交x 轴于A 点和B 点(A 点在B 点左则),交y 轴于E 点,作直线EB ,D 是直线EB 上方抛物线上的一个动点,过D 点作直线l 平行于直线EB.M 是直线EB 上的任意点,N 是直线l 上的任意点,连接MO ,NO 始终保持∠MON 为90°,以MO 和ON 为边,做矩形MONC.(1)在D 点移动过程中,求出当△DEB 的面积最大时点D 的坐标:在△DEB 的面积最大时,求矩形MONC 的面积的最小值;(2)在△DEB 的面积最大时,线段ON 交直线EB 于点G ,当点D ,N ,G ,B 四个点组成平行四边形时,求此时线段ON 与抛物线的交点坐标.4.如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在2.的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.5.如图1,抛物线y=﹣x2+2x+3与x轴交于A,B,与y轴交于C,抛物线的顶点为D,直线l过C交x轴于E(4,0).(1)写出D的坐标和直线l的解析式;(2)P(x,y)是线段BD上的动点(不与B,D重合),PF⊥x轴于F,设四边形OFPC的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于N,连接CN,将△CMN沿CN翻转,M的对应点为M′.在图2中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.6.如图1,在平面直角坐标系中,抛物线y=﹣√33x 2+2√33x+√3与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D.(1)求直线BC 的解析式;(2)如图2,点P 为直线BC 上方抛物线上一点,连接PB 、PC.当△PBC 的面积最大时,在线段BC 上找一点E (不与B 、C 重合),使PE+12BE 的值最小,求点P 的坐标和PE+12BE 的最小值;(3)如图3,点G 是线段CB 的中点,将抛物线y=﹣√33x 2+2√33x+√3沿x 轴正方向平移得到新抛物线y′,y′经过点D ,y′的顶点为F.在抛物线y′的对称轴上,是否存在一点Q ,使得△FGQ 为直角三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.7.如图,抛物线y=ax 2+bx 过点B (1,﹣3),对称轴是直线x=2,且抛物线与x 轴的正半轴交于点A.(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x 的取值范围; (2)在第二象限内的抛物线上有一点P ,当PA ⊥BA 时,求△PAB 的面积.8.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y 轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.9.如图,已知抛物线y=ax2+bx+c的图象经过点A(3,3)、B(4,0)和原点O,P为直线OA上方抛物线上的一个动点.(1)求直线OA及抛物线的解析式;(2)过点P作x轴的垂线,垂足为D,并与直线OA交于点C,当△PCO为等腰三角形时,求D的坐标;(3)设P关于对称轴的点为Q,抛物线的顶点为M,探索是否存在一点P,使得△PQM的面积为1,8如果存在,求出P的坐标;如果不存在,请说明理由.x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10.如图,已知抛物线y=1310),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.m的顶点为A,与y轴交于点11.如图①,在平面直角坐标系中,抛物线y=x2﹣2mx+m2+43B.当抛物线不经过坐标原点时,分别作点A、B关于原点的对称点C、D,连结AB、BC、CD、DA.(1)分别用含有m的代数式表示点A、B的坐标.(2)判断点B能否落在y轴负半轴上,并说明理由.(3)连结AC,设l=AC+BD,求l与m之间的函数关系式.(4)过点A作y轴的垂线,交y轴于点P,以AP为边作正方形APMN,MN在AP上方,如图②,当正方形APMN与四边形ABCD重叠部分图形为四边形时,直接写出m的取值范围.12.如图,已知抛物线y=ax2+bx+c(a<0)分别交x轴、y轴于点A(2,0)、B(0,4),点P 是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若a+b=0.①求抛物线的解析式;②当线段PD的长度最大时,求点P的坐标;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B,P,D为顶点的三角形与ΔAOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.x2 bxc经过△ABC 的三个顶点,其中点A(0,1),点B(9,10),13.如图,已知抛物线y13AC∥x 轴,点P 是直线AC 下方抛物线上的动点,过点P 且与y 轴平行的直线l 与直线AB、AC 分别交于点E、F.(1)求抛物线的函数表达式;(2)如图1,当四边形AECP 的面积最大时,求点P 的坐标和四边形AECP 的最大面积;(3)如图2,当点P 为抛物线的顶点时,在直线AC 上是否存在点Q,使得以C,P,Q 为顶点的三角形与△ABC 相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.14.如图1,已知二次函数y=mx 2+3mx ﹣274m 的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),顶点D 和点B 关于过点A 的直线l :y=﹣√33x ﹣3√32对称.(1)求A 、B 两点的坐标及二次函数解析式;(2)如图2,作直线AD ,过点B 作AD 的平行线交直线1于点E ,若点P 是直线AD 上的一动点,点Q 是直线AE 上的一动点.连接DQ 、QP 、PE ,试求DQ+QP+PE 的最小值;若不存在,请说明理由:(3)将二次函数图象向右平移32个单位,再向上平移3√3个单位,平移后的二次函数图象上存在一点M ,其横坐标为3,在y 轴上是否存在点F ,使得∠MAF=45°?若存在,请求出点F 坐标;若不存在,请说明理由.15.如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.(1)求经过B、E、C三点的抛物线的解析式;(2)判断△BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.16.抛物线y=ax2+bx的顶点M(√3,3)关于x轴的对称点为B,点A为抛物线与x轴的一个交点,点A关于原点O的对称点为A′;已知C为A′B的中点,P为抛物线上一动点,作CD⊥x轴,PE⊥x轴,垂足分别为D,E.(1)求点A的坐标及抛物线的解析式;(2)当0<x<2√3时,是否存在点P使以点C,D,P,E为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.。
中考数学总复习全程考点训练25视图含解析
——教学资料参考参考范本——中考数学总复习全程考点训练25视图含解析______年______月______日____________________部门一、选择题1.如图所示的支架是由两个长方体构成的组合体,则它的主视图是(D),(第1题))【解析】从几何体的正面看可得此几何体的主视图是“”,故选D.2.由5个相同的正方体搭成的几何体如图所示,则它的左视图是(A),(第2题))【解析】从左面看,最底层是两个正方形,第二层是左边有一个正方形.故选A.3.下列几何体的主视图既是中心对称图形又是轴对称图形的是(D)【解析】A,B主视图是等腰三角形,是轴对称图形,不是中心对称图形,故错误;C.主视图是等腰梯形,是轴对称图形,不是中心对称图形,故错误;D.主视图是矩形,是轴对称图形,也是中心对称图形,故正确.故选D.(第4题)4.如图是一个正方体的展开图,则原正方体相对两个面上的数字之和的最小值是(C)A.8 B.7C.6 D.5【解析】提示:1对5,2对6,3对4.(第5题)5.由一些大小相同的小正方体组成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数不可能是(D) A.3 B.4C.5 D.6【解析】第一层最少有2个,最多有4个;第二层有1个,故最少有3个,最多有5个.故选D.(第6题)6.如图,它是由8个相同的小正方体搭成的几何体,它的三个视图都是2×2的正方形,若拿掉若干个小正方体后(几何体不倒掉),其三个视图仍都为2×2的正方形,则最多能拿掉小正方体的个数为(B) A.1 B.2C.3 D.4【解析】可以拿掉第二层对角的2个小正方体.(第7题)7.如图是某几何体的三视图及相关数据,则下列判断正确的是(D) A.a>cB.b>cC.a2+4b2=c2D.a2+b2=c2【解析】由三视图可知该几何体为圆锥,且圆锥底面半径r=b,高为a,母线长为c,∴a2+b2=c2.二、填空题(第8题)8.如图是某个几何体的三视图,则该几何体的形状是三棱柱.【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体是三棱柱.9.长方体的主视图、俯视图如图所示(单位:m),则其左视图的面积是3m2.(第9题)【解析】根据主视图及俯视图得长方体的长为4,宽为3,高为1,∴S左=宽×高=3×1=3(m2).(第10题)10.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,则其三种视图中,面积最小的是左视图.【解析】主视图、俯视图均由4个正方形组成,其面积为4,左视图由3个正方形组成,其面积为3,故面积最小的是左视图.11.由棱长为1的正方体搭成的积木的三视图如图所示,则图中棱长为1的正方体的个数是6.(第11题)【解析】在俯视图中标注个数如解图,故有6个.(第11题解)12.如图,观察由棱长为1的小正方体摆成的图形,寻找规律:在图①中,共有1个小正方体,其中1个看得见,0个看不见;在图②中,共有8个小正方体,其中7个看得见,1个看不见;在图③中,共有27个小正方体,其中19个看得见,8个看不见……则在图⑥中,看得见的小正方体有91个.(第12题)【解析】观察发现:每一个图中看不见的个数就是前一个图的个数,即第n个图中共有n3个小正方体,其中(n-1)3个看不见,剩余的看得见,∴图⑥中,看得见的小正方体有63-(6-1)3=91(个).三、解答题(第13题)13.画出图中立体图形的三视图.【解析】如解图.(第13题解)14.已知直四棱柱的底面是边长为a的正方形,高为h,体积为V,表面积为S.(1)当a=2,h=3时,分别求V和S.(2)当V=12,S=32时,求+的值.【解析】(1)V=a2h=22×3=12,S=2a2+4ah=2×22+4×2×3=32.(2)∵a2h=12,2a(a+2h)=32,∴h=,a+2h=,∴+===.(第15题)15.如图是一个由若干个棱长相等的正方体构成的几何体的三视图.(1)请写出构成这个几何体的正方体的个数.(2)请根据图中所标的尺寸,计算这个几何体的表面积.【解析】(1)5个.(2)S表=20S小正方形=20a2.16.如图所示是一个直四棱柱及其主视图和俯视图(等腰梯形).(第16题)(1)根据图中所给数据,可得俯视图(等腰梯形)的高为4.(2)在虚线框内画出其左视图,并标出各边的长(尺规作图,不写作法,保留作图痕迹).【解析】(1)过点A作AE⊥BC于点E,如解图①,则BE=(8-2)÷2=3,∴高AE==4.(2)如解图②.(第16题解)。