运筹学资料1线性规划
运筹学课后习题答案
第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。
1.线性规划
通常是求最大值或 最小值;
2.解决问题的约束条件是一组多个决策变量的线性不
等式或等式。
【例1.2】某商场决定:营业员每周连续工作5天后连续休息2天, 轮流休息。根据统计,商场每天至少需要的营业员如表1.2所示。
表1.2 营业员需要量统计表
min f (x), s.t. x∈.
约束条件
可行解域
线性规划(Linear Programming,缩写为LP) 是运筹学的重要分支之一,在实际中应用得较广 泛,其方法也较成熟,借助计算机,使得计算更方便, 应用领域更广泛和深入。 线性规划通常研究资源的最优利用、设备最佳运 行等问题。例如,当任务或目标确定后,如何统筹兼 顾,合理安排,用最少的资源(如资金、设备、原标 材料、人工、时间等)去完成确定的任务或目标;企 业在一定的资源条件限制下,如何组织安排生产获得 最好的经济效益(如产品量最多 、利润最大)。
运筹学的主要内容
数 学 规 划 组 合 优 化 随 机 优 化
线性规划 非线性规划 整数规划 动态规划 多目标规划 双层规划 最优计数问题 网络优化 排序问题 统筹图 对策论 排队论 库存论 决策分析 可靠性分析
学 科
内
容
许多生产计划与管理问题都可以归纳为最优 化问题, 最优化模型是数学建模中应用最广泛的 模型之一,其内容包括线性规划、整数线性规划、 非线性规划、动态规划、变分法、最优控制等. 近几年来的全国大学生数学建模竞赛中,几 乎每次都有一道题要用到此方法. 此类问题的一般形式为: 目标函数
星 期 需要 人数 星 期 需要 人数
一
二 三 四
300
300 350 400
《运筹学》复习资料整理总结
《运筹学》复习资料整理总结1. 建立线性规划模型的步骤。
确定决策变量 确定目标函数 确定约束条件方程2. 线性规划问题的特征。
都有一个追求的目标,这个目标可表示为一组变量的线性函数,按照问题的不同,追求的目标可以为最大,也可以为最小。
问题中有若干个约束条件,用来表示问题中的限制或要求,这些约束条件可以用线性等式或线性不等式表示。
问题中用一组决策变量来表示一种方案。
3. 线性规划问题标准型的特征。
4. 化标准型的方法。
123123123123min z 2+223-8340,0,x x x x x x x x x x x x =+-+=⎧⎪-+-≤⎨⎪≤≥⎩为自由变量123123123123min z 2+223-634,0,x x x x x x x x x x x x =+-+=⎧⎪-+-≥⎨⎪≥⎩为自由变量5. 基本解:令其余的变量取值为0,则得到Ax=b 的一个解y,称此解为线性规划问题的基本解。
6. 基本可行解:若基本解y 满足y ≥0,则称这个解为基本可行解。
7. 可行解:满足约束条件的解x=(x1、x2、……xn )T 称为线性规划问题的可行解。
8. 最优解:函数达到最优的可行解叫做最优解。
9.图解法适合于变量个数为2个的线性规划问题。
10.单纯形法解线性规划问题如何确定初始基本可行解。
(1)约束条件为≤,先加入松弛变量x1、x2……xm后变为等式,取松弛变量为基本变量(2)约束条件为=,先加入人工变量xm+1、xm+2……xm+n,人工变量价值系数为m(3)约束条件为≥,先加入多于变量xn+1、xn+2……xm+n后变为等式,在添加人工变量xn+m+111.单纯形法最优解的检验准则。
(1)若基本可行解x’对应的典式的目标函数中非基变量的系数全部满足cN-cBB-1Pj≤0,则基本可行解x’为原问题的最优解。
(2)若基本可行解x’对应的典式的目标函数中所有非基变量的系数满足cN-cBB-1Pj≤0,且有一非基变量的系数满足Ck-Zk=0,则原问题有无穷多组最优解12.对目标函数为极小(min)型的线性规划问题,用单纯形法解的三种处理方法。
《运筹学》课件 第一章 线性规划
10
解:令
xi=
1, Si被选中
min z= ci xi i 1 10
0, Si没被选中
xi 5
i 1
x1 x8 1 x7 x8 1
称为技术系数
b= (b1,b2, …, bm) 称为资源系数
2、非标准型
标准型
(1)Min Z = CX
Max Z' = -CX
(2)约束条件
• “≤”型约束,加松弛变量;
松弛变量
例如: 9 x1 +4x2≤360
9 x1 +4x2+ x3=360
• “≥”型约束,减松弛变量;
例、将如下问题化为标准型
数据模型与决策 (运筹学)
课程教材:
吴育华,杜纲. 《管理科学基础》,天津大学出版社。
绪论
一、运筹学的产生与发展
运筹学(Operational Research) 直译为“运作研究”。
• 产生于二战时期 • 60年代,在工业、农业、社会等各领域得到广泛应用 • 在我国,50年代中期由钱学森等引入
Min z x1 2x2 3x3
x1 x2 x3 7
s.t
.
x1 x2 x3 3x1 x2 2
x3
2
5
x1, x2 , x3 0
解:令 Min z Max z' (z' z) ,第一个约束加松弛变量x5,
第二个约束减松弛变量x6,得标准型:
Max z' x1 2x2 +3x3
x1 x2 x3 x4 7
s.t .
x1 x2 3x1
x3 x2
x5 2 2x3 5
x1 , , x5 0
运筹学第1章-线性规划
下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。
运筹学-1、线性规划
则:
x1 x2 100
x1 ( x3 ) x4 x2 2
设x3为第二年新的投资; x4为第二年的保留资金;
则:
18
•设x5为第三年新的投资;x6为第三年的保留资金;
则:
x3 ( x5 ) x6 x4 2 x1 2
•设x7为第四年新的投资;第四年的保留资金为x8;
max Z 2 x7 x9 x1 x2 100 x 2x 2x 2x 0 2 3 4 1 4 x1 x3 2 x4 2 x5 2 x6 0 s.t 4 x3 x5 2 x6 2 x7 2 x8 0 4 x5 x7 2 x 8 2 x9 0 x 0, j 1, 2, , 9 j
13
例3:(运输问题)设有两个砖厂A1 、A2 ,产 量分别为23万块、27万块,现将其产品联合供应三 个施工现场B1 、 B2 、 B3 ,其需要量分别为17万 块、18万块、15万块。各产地到各施工现场的单位 运价如下表: 现场 砖厂 B1 B2 B3
A1 A2
5 6
14 18
7 9
问如何调运才能使总运费最省?
20
例5:(下料问题) 某一机床需要用甲、乙、 丙三种规格的钢轴各一根,这些轴的规格分别是 2.9,2.1, 1.5(m),这些钢轴需要用同一种圆钢来做,圆 钢长度为7.4m。现在要制造100台机床,最少要用多 少根圆钢来生产这些钢轴?
解:第一步:设一根圆钢切割成甲、乙、丙三 种钢轴的根数分别为y1,y2,y3,则切割方式可用不等 式2.9y1+2.1y2+1.5y3≤7.4 表示,求这个不等式的有实 际意义的非负整数解共有8组,也就是有8种不同的 下料方式,如下表所示:
运筹学第1章:线性规划问题及单纯型解法
原料甲 原料乙 最低含量 VA 0.5 0.5 2 VB1 1.0 0.3 3 VB2 0.2 0.6 1.2 VD 0.5 0.2 2 0.3 0.5 单价
分别代表每粒胶丸中甲, 设 x1, x2分别代表每粒胶丸中甲, 乙两种原料的用量
5
例3,合理下料问题 , 分别代表采用切割方案1~8的套数, 的套数, 设 xj 分别代表采用切割方案 的套数
19
( f(x
)= 3
6
1.2.2 单纯型法的基本思路
确定初试基础可行解
检查是否为 最优解? 最优解?
是
求最优解的目标函数值
否 确定改善方向
求新的基础可行解
20
1.2.3 单纯型表及其格式
IV CB III XB II x1 b c1 a11 a21 c1′′= cn+1 xn+1 b1 c2′′= cn+2 xn+2 b2 x2 … xn c2 … cn a12 … a1n a22 … a2n I xn+1 cn+1 1 0 0 zn+1 xn+2 cn+2 0 1 0 zn+2 … … … … … … xn+m cn+m 0 0 1 zn+m
OBJ : max f ( x) = 6x1 + 4x2 2x1 + x2 ≤ 10 铜资源约束 x1 + x2 ≤ 8 铅资源约束 s.t. x2 ≤ 7 产量约束 x1, x2 ≥ 0 产量不允许为负值 最优解: x1 = 2, x2 = 6, max f ( x) = 36.
4
例2,配料问题(min, ≥) ,配料问题(
2 max 1 O 1 2 3 4 D 5 6 7 H 8
运筹学:第1章 线性规划 第3节 对偶问题与灵敏度分析
s.t.
4x1 3x1
5x2 200 10x2 300
x1, x2 0
9x1 4x2 360
s.t.
34xx11
5x2 10 x
200 2 300
3x1 10x2 300
x1, x2 0
则D为
min z 360y1 200y2 300y3 300y4
9 y1 4 y2 3y3 3y4 7 s.t.4 y1 5y2 10 y3 10 y4 12
amn xn bm ym xn 0
机会成本 a1 j y1 a2 j y2 aij yi amj ym
表示减少一件产品所节省的可以增加的利润
(3)对偶松弛变量的经济解释——产品的差额成本
机会成本
利润
min w b1 y1 b2 y2 bm ym
a11 y1
st
a12
y1
a1n y1
max z CX
(P)
AX b
s
.t
.
X
0
(D)
min w Yb
s.t.
YA C Y 0
• (2)然后按照(D)、(P)式写出其对偶
例:写出下面线性规划的对偶规划模型:
max z 2x1 3x2
min w 3 y1 5y2 1y3
x1 2x2 3 y1 0
s.t.
2xx11
例如,在前面的练习中已知
max z 2.5x1 x2 的终表为
3x1 5x2 15 s.t.5x1 2x2 10
x1, x2 0
0 x3 9 2.5 x1 2
0 19 1 - 3
5
5
1
2
0
1
5
运筹学课件1-1线性规划问题及其数学模型
• 第三步:确定目标函数 第三步: 以 Z 表示生产甲和乙两种产品各为x1 表示生产甲和乙两种产品各为x 时产生的经济价值, 和x2(吨)时产生的经济价值,总经济价值 最高的目标可表示为: 最高的目标可表示为:
max z=7 x1十5 x2 z=
这就是该问题的目标函数 这就是该问题的目标函数。 目标函数。
上页
下页
返回
• 第1步 -确定决策变量
•设 ——I x1——I的产量 ——II x2 ——II的产量
是问题中要确定的未知量, 是问题中要确定的未知量, 表明规划中的用数量表示的 方案、措施,可由决策者决 方案、措施, 定和控制。 定和控制。
x1
x2
上页
下页
返回
第2步 --定义目标函数
利润
Max Z =
x1 +
x2
上页
下页
返回
第2步 --定义目标函数
Max Z = 2 x1 + 3 x2
上页
下页
返回
对我们有 何限制?
上页
下页
返回
第3步 --表示约束条件
x1 + 2 x2 ≤ 8 4 x1 ≤ 16 4 x2 ≤ 12 x1、 x2 ≥ 0
设备 原材料A 原材料 原材料B 原材料 利润 I 1 4 0 2 II 2 0 4 3 资源限量 8 台时 16kg 12kg
上页 下页 返回
– 用向量表示
m Z = CX ax n ∑Pj xj = b i=1 x ≥ 0 j =1 2,...n , j 其 : 中 x1 x 2 X= ... xn C = (c1, c2 , ) a1 j a2 j Pj = ... amj b 1 b 2 b= ... bm
运筹学中的线性规划与整数规划
运筹学中的线性规划与整数规划在运筹学中,线性规划和整数规划是两个常用且重要的数学模型。
它们被广泛应用于资源分配、生产调度、物流管理等问题的决策过程中。
本文将介绍线性规划和整数规划的基本概念、数学模型以及求解方法。
一、线性规划线性规划是一种通过线性关系来描述问题的数学模型。
它的目标是在给定的约束条件下,找到使目标函数达到最优的决策变量取值。
线性规划模型一般可以表示为如下形式:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t. a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z表示目标函数值,c₁, c₂, ..., cₙ表示目标函数的系数,x₁, x₂, ..., xₙ为决策变量,a₁₁, a₁₂, ..., aₙₙ为约束条件的系数,b₁,b₂, ..., bₙ为约束条件的右侧常数。
线性规划的求解方法主要有两类:图形法和单纯形法。
图形法适用于二维问题,通过绘制目标函数和约束条件在坐标系中的图形,找到交点来确定最优解。
而单纯形法适用于多维问题,通过迭代计算,逐步接近最优解。
二、整数规划整数规划是线性规划的一种特殊情况,它要求决策变量的取值必须为整数。
整数规划模型可以表示为如下形式:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t. a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ∈ Z其中,Z表示目标函数值,c₁, c₂, ..., cₙ表示目标函数的系数,x₁, x₂, ..., xₙ为整数决策变量,a₁₁, a₁₂, ..., aₙₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右侧常数。
运筹学
12X1 + 6X2 ≤ 600 X1≥0,X2 ≥0 使 max f(x)=7X1 + 5X2
3.合理配料模型
例1-5 用三种原料A1、A2、A3配制一种食品,要求该食品中 蛋白质、脂肪、碳水化合物和维生素的含量分别不低于150、 200、250、300个单位,这三种原料的单价及每单位原料所含各 种成份的数量如表1-6所示。问如何配制这种食品,使成本最低?
X2 = 18 maxf(x) = 2600
第三节
解的结构
线性规划的解有三种情况:有最优解、有解但无 最优解和无可行解。有最优解又有两种情况:有惟一 的最优解和有无穷多个最优解。 当线性规划的约束条件中出现矛盾约束时,即二 元一次不等式组无解时,线性规划问题无可行解。
在例2-1中,加一个约束条件: 求x1,x2
令f(x)=-f(x) ′ 则maxf(x)=-min[-f(x)] =-minf(x) ′
例1-14 将下列线性规划数学模型化为标准形式: 求 x1,x2,x3
2x1 +
x2 + x3
≤ 8
满足
x1
-
x2
x2
+
x3
≥ 3
3x1 -
– 2x3 ≤ -5
≥0,X3是自由变量
X1≥0,x2
使 maxf(x) = x1 – 2x2 + 3x3
解:令X3=X4-X5,其中X4≥0,X5≥0, 在第一个约束条件的左边加入一个松驰变量X6,化为等式; 在第二个约束条件的左边减去一个松驰变量X7,化为等式; 在第三个约束条件的左边加入一个松驰变量X8,化为等式; 并且等式两边同乘以-1; 将求 maxf(x) = X1 - 2X2 + 3X3 化为求
运筹学 第01章 线性规划问题
线性规划建模步骤
设定决策变量 明确约束条件并用决策变量的线性等式或 不等式表示 用变量的线性函数表示要达到的目标,并 确定是求极小还是求极大 根据变量的物理性质确定变量是否具有非 负性 注:其中最关键是设定决策变量这一步
生产计划问题(1)
某工厂用三种原料生产三种产品,已知的 条件如下表所示,试制订总利润最大的日 生产计划
线性规划问题解的有关概念(2)
基本解:令模型中所有非基变量的值等于零后,由 模型的约束方程组得到的一组解。 基本可行解:满足非负条件的基本解称为基本可行 解。 可行基:对应于基本可行解的基称为可行基。 退化解:基本可行解的非零分量个数小于m时,称 为退化解。 最优基:若对应于基B的基本可行解X是线性规划的 最优解,则称B为线性规划的最优基
人员安排问题(1)
医院护士24小时值班,不同时段需要的护 士人数不等(见下表)。每个护士每天连 续值班8小时,在各时段开始时上班。问最 少需要多少护士?
序号 1 2 3 4 时段 06—10 10—14 14—18 18—22 最少人数 60 70 60 50
5 6
22—02 02—06
20 30
人员安排问题(2)
设xj为第j时段开始值班的护士人数
目标函数为:使人数最少,则有
min f ( X ) x1 x2 x3 x4 x5 x6 x6 x1 60 x x 70 1 2 x2 x3 60 s.t. x3 x4 50 x x 20 5 4 x5 x6 30 x1 , x2 , x3 , x4 , x5 , x6 0且为整数
运筹学
第一章 线性规划问题
本章重点
线性规划建模 线性规划的图解法 线性规划的标准形式 单纯形法 两阶段法 大M法
运筹学复习资料(1)
运筹学复习一、单纯形方法(表格、人工变量、基础知识)线性规划解的情况:唯一最优解、多重最优解、无界解、无解。
其中,可行域无界,并不意味着目标函数值无界。
无界可行域对应着解的情况有:唯一最优解、多重最优解、无界解。
有界可行域对应唯一最优解和多重最优解两种情况。
线性规划解得基本性质有:满足线性规划约束条件的可行解集(可行域)构成一个凸多边形;凸多边形的顶点(极点)与基本可行解一一对应(即一个基本可行解对应一个顶点);线性规划问题若有最优解,则最优解一定在凸多边形的某个顶点上取得。
单纯形法解决线性规划问题时,在换基迭代过程中,进基的非基变量的选择要利用比值法,这个方法是保证进基后的单纯型依然在解上可行。
换基迭代要求除了进基的非基变量外,其余非基变量全为零。
检验最优性的一个方法是在目标函数中,用非基变量表示基变量。
要求检验数全部小于等于零。
“当x1由0变到45/2时,x3首先变为0,故x3为退出基变量。
”这句话是最小比值法的一种通俗的说法,但是很有意义。
这里,x1为进基变量,x3为出基变量。
将约束方程化为每个方程只含一个基变量,目标函数表示成非基变量的函数。
单纯型原理的矩阵描述。
在单纯型原理的表格解法中,有一个有趣的现象就是,单纯型表中的某一列的组成的列向量等于它所在的单纯型矩阵的最初的基矩阵的m*m矩阵与其最初的那一列向量的乘积。
最初基变量对应的基矩阵的逆矩阵。
这个样子:'1222 1 0 -32580 1 010 0 158P B P -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦51=5所有的检验数均小于或等于零,有最优解。
但是如果出现非基变量的检验数为0,则有无穷多的最优解,这时应该继续迭代。
解的结果应该是:X *= a X 1*+(1-a)X 2* (0<=a<=1)说明:最优解有时不唯一,但最优值唯一;在实际应用中,有多种方案可供选择;当问题有两个不同的最优解时,问题有无穷多个最优解。
运筹学1至6章习题参考答案
0
2
11/8
0
-3/4
0
9
X4
0
0
0
9/8
1
7/16
-1/4
27/4
6
X1
3
1
0
-1/2
0
1/4
0
3
M
X2
2
0
1
[11/16]
0
-3/32
1/8
1/8
0.181818
C(j)-Z(j)
0
0
0
0
-9/16
-1/4
37/4
X3进基、X2出基,得到另一个基本最优解。
C(j)
3
2
-0.125
6重油
7残油
辛烷值
80
115
105
蒸汽压:公斤/平方厘米
1.0
1.5
0.6
0.05
每天供应数量(桶)
2000
1000
1500
1200
1000
1000
800
问炼油厂每天生产多少桶成品油利润最大,建立数学模型。
解设xij为第i(i=1,2,3,4)种成品油配第j(j=1,2,…,7)种半成品油的数量(桶)。
10
-5
1
0
0
0
* Big M
5
3
1
0
0
0
X1
10
1
3/5
1/5
0
1/5
2
X4
0
0
4
-9
1
1
25
C(j)-Z(j)
0
-11
-1
运筹学第1章线性规划及单纯形法复习题
max (min)
Z = CX
AX ≤ ( = , ≥ ) b X ≥ 0
3、线性规划的标准形式 、
ma0
4、线性规划问题的解 、 (一)求解方法
一 般 有 两种方法 图 解 法 单纯形法 两个变量、 两个变量、直角坐标 三个变量、 三个变量、立体坐标
适用于任意多个变量、 适用于任意多个变量、但需将 一般形式变成标准形式
(二)线性规划问题的解
1、解的概念 可行解:满足约束条件② 的解为可行解。 ⑴ 可行解:满足约束条件②、③的解为可行解。 所有解的集合为可行解的集或可行域。 所有解的集合为可行解的集或可行域。 最优解: 达到最大值的可行解。 ⑵ 最优解:使目标函数①达到最大值的可行解。 ⑶ 基:B是矩阵A中m×m阶非奇异子矩阵 是矩阵A ≠0), ),则 是一个基。 (∣B∣≠0),则B是一个基。
§2 图 解 法
例一、 例一、 max
Z = 2 x 2 x 2 x 4 x
2 2 1
+ 3 x
2
2 x1 + x + 1 4 x1 x1 ≥
≤ 12 ≤ 8 ≤ 16 ≤ 12
2
⑴ ⑵ ⑶ ⑷
2
0, x
≥ 0
max
Z = 2 x1 + 3 x 2 x 2 x
2 2
当xj=0时, 必有 j=zj=0, 因此 时 必有y
∑P x = ∑P y = ∑P z
j =1
r
r
r
r
j
j
j =1
j
j
j =1
j
j
=b
∑(y
j =1
j
− z j ) Pj = 0
运筹学第一章
第一章、 线性规划和单纯形法1.1 线性规划的概念一、线性规划问题的导出1.(引例) 配比问题——用浓度为45%和92%的硫酸配置100t 浓度为80%的硫酸。
取45%和92%的硫酸分别为x1和x2t,则有: 求解二元一次方程组得解。
目的相同,但有5种不同浓度的硫酸可选(30%,45%,73%,85%,92%)会出现什么情况?设取这5种硫酸分别为 x1、x2、x3、x4、x5 t, 则有: ⎩⎨⎧⨯=++++=++++1008.092.085.073.045.03.01005432154321x x x x x x x x x x 请问有多少种配比方案?为什么?哪一种方案最好?假设5种硫酸价格分别为:400,700,1400,1900,2500元/t ,则有:2.生产计划问题如何制定生产计划,使三种产品总利润最大?考虑问题:⎩⎨⎧⨯=+=+1008.092.045.01002121x x x x ⎪⎩⎪⎨⎧=≥⨯=++++=++++++++=5,,2,1,01008.092.085.073.045.03.0100..250019001400700400543215432154321 j x x x x x x x x x x x t s x x x x x MinZ j(1)何为生产计划?(2)总利润如何描述?(3)还要考虑什么因素?(4)有什么需要注意的地方(技巧)?(5)最终得到的数学模型是什么?二、线性规划的定义和数学描述(模型)1.定义:对于求取一组变量xj (j =1,2,......,n),使之既满足线性约束条件,又使具有线性表达式的目标函数取得极大值或极小值的一类最优化问题称为线性规划问题,简称线性规划。
2.配比问题和生产计划问题的线性规划模型的特点:用一组未知变量表示要求的方案,这组未知变量称为决策变量;存在一定的限制条件,且为线性表达式;有一个目标要求(最大化,当然也可以是最小化),目标表示为未知变量的线性表达式,称之为目标函数; 对决策变量有非负要求。
运筹学_线性规划1
x1 x 2 x3 10 3 x 2 x x 8 1 2 3 s.t. x1 3 x 2 x3 1 x1 , x 2 0, x3 符号不受限制
Байду номын сангаас
标 准 化
maxZ 2x1 3x2 ( x3 x4 ) 0 x5 0 x6
I 设备A(h) 设备B(h) 调试工序(h) 利润(千元) 0 6 1 2
II 5 2 1 1
课堂练习
一家家电公司准备将一种新型电视机在三家商场进行销 售,每一个商场的批发价和推销费及产品的利润如表所示。 由于该电视机的性能良好,各商场都纷纷争购,但公司每 月的生产能力有限,只能生产1000台,故公司规定:商场 1至少经销100台,至多200台,商场2至少经销300台,商 场3至少经销200台。公司计划在一个月内的广告预算费为 8000元,推销人员最高可用工时数为1500。同时,公司只 根据经销数进行生产,试问公司下个月的市场对策?
④ 右端非负。
标准型的紧缩形式:
max Z c j x j
j 1 n
标 准 型
n aij x j bi s.t. j 1 x 0 j
i 1,2,, m j 1,2,, n
标准型的矩阵形式:
max Z CX
AX b s.t. X 0
例2-3 某饲料公司生产一种鸡饲料,每份饲料
问 题 的 导 出
为100公斤,饲料中的营养成份要求、配料及 其成本数据如下:
配料 营养成分 单位 蛋白质 配料 钙 含量 粗纤维 单位配料成本 大豆粉 玉米粉 石灰石 0.50 0.002 0.08 2.50 0.09 0.001 0.02 0.926 0 0.38 0 0.164 含量要求 ≥22% ≥0.8%且≤1.2% ≤5%
运筹学复习题-1
第一章线性规划及单纯形法一、复习思考题1 试述线性规划数学模型的结构及各要素的特征。
2 线性规划的解有哪几种情况。
3 什么是线性规划问题的标准形式,如何将一个非标准型的线性规划问题转化为标准形式。
4 试述线性规划问题的可行解、基解、基可行解、最优解的概念以及上述解之间的相互关系。
5 试述单纯形法的计算步骤,如何在单纯形表上去判别问题是具有惟一最优解、无穷多最优解、无界解或无可行解。
6 如果线性规划的标准型式变换为求目标函数的极小化min z,则用单纯形法计算时如何判别问题已得到最优解。
7 在确定初始可行基时,什么情况下要在约束条件中增添人工变量,在目标函数中人工变量前的系数为(一M)的经济意义是什么。
8 什么是单纯形法计算的两阶段法,为什么要将计算分两个阶段进行,以及如何根据第一阶段的计算结果来判定第二阶段的计算是否需继续进行。
9 简述退化的含义及处理退化的勃兰特规则。
10 举例说明生产和生活中应用线性规划的方面,并对如何应用进行必要描述。
二、判断下列说法是否正确1、图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的;2、线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大;3、线性规划问题的每一个基解对应可行域的一个顶点.4、如线性规划问题有最优解,则最优解一定对应可行域边界上的一个点;5、用单纯形法求解标准型式的线性规划问题时,与>j对应的变量都可被选作换入变量;6、单纯形法计算中,选取最大正检验数σk 对应的变量xk作为换入变量,将使目标函数值得到最快的增长;7、线性规划问题任一可行解都可以用全部基可行解的线性组合表示;9、对一个有n个变量,m个约束的标准型的线性规划问题,其可行域的顶点恰好为mn C个;10、单纯形法的迭代计算过程是从一个可行解转换到目标函数值更大的另一个可行解;11、若线性规划问题具有可行解,且其可行域有界,则该线性规划问题最多具有有限个数的最优解;12、线形规划可行域的某一项点若其目标函数值优于所有顶点的目标函数值,则该顶点处的目标函数值达到最优。