2018-2019年中考数学专题突破:反比例函数(含答案和解析)

合集下载

2018年全国各地中考数学试题《反比例函数》解答题试题汇编含答案解析

2018年全国各地中考数学试题《反比例函数》解答题试题汇编含答案解析

2018年全国各地中考数学试题《反比例函数》解答题试题汇编(含答案解析)1.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.2.如图,在平面直角坐标系中有三点(1,2),(3,1),(﹣2,﹣1),其中有两点同时在反比例函数y=的图象上,将这两点分别记为A,B,另一点记为C.(1)求出k的值;(2)求直线AB对应的一次函数的表达式;(3)设点C关于直线AB的对称点为D,P是x轴上的一个动点,直接写出PC+PD 的最小值(不必说明理由).3.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tanC的值.4.如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.(1)求双曲线的解析式;(2)求点C的坐标,并直接写出y1<y2时x的取值范围.5.设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;(2)若反比例函数y2=的图象与函数y1的图象相交于点A,且点A的纵坐标为2.①求k的值;②结合图象,当y1>y2时,写出x的取值范围.6.如图,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k为常数,k≠0)的图象交于A、B两点,过点A作AC⊥x轴,垂足为C,连接OA,已知OC=2,tan∠AOC=,B(m,﹣2).(1)求一次函数和反比例函数的解析式.(2)结合图象直接写出:当y1>y2时,x的取值范围.7.已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.(1)当y1﹣y2=4时,求m的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x 轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).8.如图,直线y=3x﹣5与反比例函数y=的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;(2)求△AOB的面积.9.如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.10.如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.11.如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于A(4,1),B(n,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出y1<y2时x的取值范围.12.如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=的图象经过点E,与AB交于点F.(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF﹣AE=2,求反比例函数的表达式.13.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函效的解析式;(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E 点坐标.14.如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A(3,1),B (﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.15.如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(﹣2,0),与反比例函数y=(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=(x>0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.16.已知反比例函数y=的图象与一次函数y=kx+m的图象交于点(2,1).(1)分别求出这两个函数的解析式;(2)判断P(﹣1,﹣5)是否在一次函数y=kx+m的图象上,并说明原因.17.在平面直角坐标系中,反比例函数y=(k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.18.如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;=S△BOC,求点P的坐标.(2)若点P在x轴上,且S△ACP19.小明根据学习函数的经验,对函数y=x +的图象与性质进行了探究. 下面是小明的探究过程,请补充完整:(1)函数y=x +的自变量x 的取值范围是 .(2)下表列出了y 与x 的几组对应值,请写出m ,n 的值:m= ,n= ;(3)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)结合函数的图象,请完成:①当y=﹣时,x= .②写出该函数的一条性质 .③若方程x +=t 有两个不相等的实数根,则t 的取值范围是 .20.如图,已知点D 在反比例函数y=的图象上,过点D 作DB ⊥y 轴,垂足为B (0,3),直线y=kx +b 经过点A (5,0),与y 轴交于点C ,且BD=OC ,OC :OA=2:5.(1)求反比例函数y=和一次函数y=kx +b 的表达式;(2)直接写出关于x 的不等式>kx +b 的解集.21.参照学习函数的过程与方法,探究函数y=的图象与性质. 因为y=,即y=﹣+1,所以我们对比函数y=﹣来探究. 列表:y= 描点:在平面直角坐标系中,以自变量x 的取值为横坐标,以y=相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y 轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x <0时,y 随x 的增大而 ;(填“增大”或“减小”)②y=的图象是由y=﹣的图象向 平移 个单位而得到; ③图象关于点 中心对称.(填点的坐标)(3)设A (x 1,y 1),B (x 2,y 2)是函数y=的图象上的两点,且x 1+x 2=0,试求y1+y2+3的值.22.如图所示,四边形ABCD是菱形,边BC在x轴上,点A(0,4),点B(3,0),双曲线y=与直线BD交于点D、点E.(1)求k的值;(2)求直线BD的解析式;(3)求△CDE的面积.23.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A 作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标;(3)求△OAP的面积.24.如图,已知点A在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.25.如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.26.如图,已知双曲线y1=与直线y2=ax+b交于点A(﹣4,1)和点B(m,﹣4).(1)求双曲线和直线的解析式;(2)直接写出线段AB的长和y1>y2时x的取值范围.27.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(a≠0)的图象在第二象限交于点A(m,2).与x轴交于点C(﹣1,0).过点A作AB⊥x轴于点B,△ABC的面积是3.(1)求一次函数和反比例函数的解析式;(2)若直线AC与y轴交于点D,求△BCD的面积.28.如图,函数y=x的图象与函数y=(x>0)的图象相交于点P(2,m).(1)求m,k的值;(2)直线y=4与函数y=x的图象相交于点A,与函数y=(x>0)的图象相交于点B,求线段AB长.29.如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.30.如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x 轴的正半轴上,顶点C的坐标为(1,).(1)求图象过点B的反比例函数的解析式;(2)求图象过点A,B的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.31.如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A(4,﹣2)、B(﹣2,n)两点,与x轴交于点C.(1)求k2,n的值;(2)请直接写出不等式k1x+b的解集;(3)将x轴下方的图象沿x轴翻折,点A落在点A′处,连接A′B,A′C,求△A′BC 的面积.32.如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B (n,﹣1).(1)求直线与双曲线的解析式.=3,求点P的坐标.(2)点P在x轴上,如果S△ABP33.一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C(x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.34.如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(4,2),直线y=﹣x+与边AB,BC分别相交于点M,N,函数y=(x>0)的图象过点M.(1)试说明点N也在函数y=(x>0)的图象上;(2)将直线MN沿y轴的负方向平移得到直线M′N′,当直线M′N′与函数y═(x >0)的图象仅有一个交点时,求直线M'N′的解析式.35.探究函数y=x+(x>0)与y=x+(x>0,a>0)的相关性质.(1)小聪同学对函数y=x+(x>0)进行了如下列表、描点,请你帮他完成连线的步骤;观察图象可得它的最小值为,它的另一条性质为;(2)请用配方法求函数y=x+(x>0)的最小值;(3)猜想函数y=x+(x>0,a>0)的最小值为.36.如图,点M在函数y=(x>0)的图象上,过点M分别作x轴和y轴的平行线交函数y=(x>0)的图象于点B、C.(1)若点M的坐标为(1,3).①求B、C两点的坐标;②求直线BC的解析式;(2)求△BMC的面积.37.如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为1.(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.38.设一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(﹣1,﹣1)两点.(1)求该一次函数的表达式;(2)若点(2a+2,a2)在该一次函数图象上,求a的值.(3)已知点C(x1,y1)和点D(x2,y2)在该一次函数图象上,设m=(x1﹣x2)(y1﹣y2),判断反比例函数y=的图象所在的象限,说明理由.39.反比例函数y=(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).(1)求反比例函数的解析式及B点的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.40.在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A(4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.1.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.【分析】(1)把A的坐标代入反比例函数的解析式即可求得;(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程求得b的值,进而求得a的值,根据待定系数法,可得答案.【解答】解:(1)由题意得,k=xy=2×3=6∴反比例函数的解析式为y=.(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b)∵反比例函数y=的图象经过点B(a,b)∴b=∴AD=3﹣.=BC•AD∴S△ABC=a(3﹣)=6解得a=6∴b==1∴B(6,1).设AB的解析式为y=kx+b,将A(2,3),B(6,1)代入函数解析式,得,解得,直线AB的解析式为y=﹣x+4.【点评】本题考查了反比例函数,利用待定系数法求反比例函数的解析式,正确利用a,b表示出BC,AD的长度是关键.2.如图,在平面直角坐标系中有三点(1,2),(3,1),(﹣2,﹣1),其中有两点同时在反比例函数y=的图象上,将这两点分别记为A,B,另一点记为C.(1)求出k的值;(2)求直线AB对应的一次函数的表达式;(3)设点C关于直线AB的对称点为D,P是x轴上的一个动点,直接写出PC+PD 的最小值(不必说明理由).【分析】(1)确定A、B、C的坐标即可解决问题;(2)理由待定系数法即可解决问题;(3)作D关于x轴的对称点D′(0,﹣4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′的长;【解答】解:(1)∵反比例函数y=的图象上的点横坐标与纵坐标的积相同,∴A(1,2),B(﹣2,﹣1),C(3,1)∴k=2.(2)设直线AB的解析式为y=mx+n,则有,解得,∴直线AB的解析式为y=x+1(3)∵C、D关于直线AB对称,∴D(0,4)作D关于x轴的对称点D′(0,﹣4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′==【点评】本题考查反比例函数图形上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题.3.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tanC的值.【分析】(1)先利用正比例函数解析式确定A(1,2),再把A点坐标代入y=中求出k得到反比例函数解析式为y=,然后解方程组得B点坐标;(2)作BD⊥AC于D,如图,利用等角的余角相等得到∠C=∠ABD,然后在在Rt△ABD中利用正切的定义求解即可.【解答】解:(1)把A(1,a)代入y=2x得a=2,则A(1,2),把A(1,2)代入y=得k=1×2=2,∴反比例函数解析式为y=,解方程组得或,∴B点坐标为(﹣1,﹣2);(2)作BD⊥AC于D,如图,∴∠BDC=90°,∵∠C+∠CBD=90°,∠CBD+∠ABD=90°,∴∠C=∠ABD,在Rt△ABD中,tan∠ABD===2,即tanC=2.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.4.如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.(1)求双曲线的解析式;(2)求点C的坐标,并直接写出y1<y2时x的取值范围.【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=2x﹣2,可得A的坐标,从而得双曲线的解析式;(2)一次函数和反比例函数解析式列方程组,解出可得点C的坐标,根据图象可得结论.【解答】解:(1)∵点A在直线y1=2x﹣2上,∴设A(x,2x﹣2),过A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=OB=OC,∴x=2x﹣2,x=2,∴A(2,2),∴k=2×2=4,∴;(2)∵,解得:,,∴C(﹣1,﹣4),由图象得:y1<y2时x的取值范围是x<﹣1或0<x<2.【点评】此题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.5.设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;(2)若反比例函数y2=的图象与函数y1的图象相交于点A,且点A的纵坐标为2.①求k的值;②结合图象,当y1>y2时,写出x的取值范围.【分析】(1)写出函数解析式,画出图象即可;(2)①分两种情形考虑,求出点A坐标,利用待定系数法即可解决问题;②利用图象法分两种情形即可解决问题;【解答】解:(1)由题意y1=|x|.函数图象如图所示:(2)①当点A在第一象限时,由题意A(2,2),∴2=,∴k=4.同法当点A在第二象限时,k=﹣4,②观察图象可知:当k>0时,x>2时,y1>y2或x<0时,y1>y2.当k<0时,x<﹣2时,y1>y2或x>0时,y1>y2.【点评】本题考查反比例函数图象上点的特征,正比例函数的应用等知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.6.如图,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k为常数,k≠0)的图象交于A、B两点,过点A作AC⊥x轴,垂足为C,连接OA,已知OC=2,tan∠AOC=,B(m,﹣2).(1)求一次函数和反比例函数的解析式.(2)结合图象直接写出:当y1>y2时,x的取值范围.【分析】(1)求得A(2,3),把A(2,3)代入y2=可得反比例函数的解析式为y=,求得B(﹣3,﹣2),把A(2,3),B(﹣3,﹣2)代入一次函数y1=ax+b,可得一次函数的解析式为y=x+1.(2)由图可得,当y1>y2时,x的取值范围为﹣3<x<0或x>2.【解答】解:(1)∵OC=2,tan∠AOC=,∴AC=3,∴A(2,3),把A(2,3)代入y2=可得,k=6,∴反比例函数的解析式为y=,把B(m,﹣2)代入反比例函数,可得m=﹣3,∴B(﹣3,﹣2),把A(2,3),B(﹣3,﹣2)代入一次函数y1=ax+b,可得,解得,∴一次函数的解析式为y=x+1.(2)由图可得,当y1>y2时,x的取值范围为﹣3<x<0或x>2.【点评】本题考查一次函数与反比例函数的交点问题,解题的关键是学会利用待定系数法确定函数解析式,知道两个函数图象的交点坐标可以利用解方程组解决,学会利用图象确定自变量取值范围.7.已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.(1)当y1﹣y2=4时,求m的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x 轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).【分析】(1)先根据反比例函数的图象经过点A(﹣4,﹣3),利用待定系数法求出反比例函数的解析式为y=,再由反比例函数图象上点的坐标特征得出y1==,y2==,然后根据y1﹣y2=4列出方程﹣=4,解方程即可求出m 的值;(2)设BD与x轴交于点E.根据三角形PBD的面积是8列出方程••PE=8,求出PE=4m,再由E(2m,0),点P在x轴上,即可求出点P的坐标.【解答】解:(1)设反比例函数的解析式为y=,∵反比例函数的图象经过点A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函数的解析式为y=,∵反比例函数的图象经过点B(2m,y1),C(6m,y2),∴y1==,y2==,∵y1﹣y2=4,∴﹣=4,∴m=1;(2)设BD与x轴交于点E.∵点B(2m,),C(6m,),过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,∴D(2m,),BD=﹣=.∵三角形PBD的面积是8,∴BD•PE=8,∴••PE=8,∴PE=4m,∵E(2m,0),点P在x轴上,∴点P坐标为(﹣2m,0)或(6m,0).【点评】本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征以及三角形的面积,正确求出双曲线的解析式是解题的关键.8.如图,直线y=3x﹣5与反比例函数y=的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;(2)求△AOB的面积.【分析】(1)先求出B点的坐标,再代入反比例函数解析式求出即可;(2)先求出直线与x轴、y轴的交点坐标,再求出即可.【解答】解:(1)∵点B(n,﹣6)在直线y=3x﹣5上,∴﹣6=3n﹣5,解得:n=﹣,∴B (﹣,﹣6),∵反比例函数y=的图象过点B ,∴k ﹣1=﹣×(﹣6),解得:k=3;(2)设直线y=3x ﹣5分别与x 轴、y 轴交于C 、D ,当y=0时,3x ﹣5=0,x=,即OC=,当x=0时,y=﹣5,即OD=5,∵A (2,m )在直线y=3x ﹣5上,∴m=3×2﹣5=1,即A (2,1),∴△AOB 的面积S=S △BOD +S △COD +S △AOC =××5+×5+×1=.【点评】本题考查了用待定系数法求反比例函数的解析式,反比例函数与一次函数的交点问题、函数图象上点的坐标特征等知识点,能求出反比例函数的解析式是解此题的关键.9.如图,已知反比例函数y=(x >0)的图象与一次函数y=﹣x +4的图象交于A 和B (6,n )两点.(1)求k 和n 的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.【分析】(1)利用一次函数图象上点的坐标特征可求出n值,进而可得出点B 的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;(2)由k=6>0结合反比例函数的性质,即可求出:当2≤x≤6时,1≤y≤3.【解答】解:(1)当x=6时,n=﹣×6+4=1,∴点B的坐标为(6,1).∵反比例函数y=过点B(6,1),∴k=6×1=6.(2)∵k=6>0,∴当x>0时,y随x值增大而减小,∴当2≤x≤6时,1≤y≤3.【点评】本题考查了一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征以及反比例函数的性质,解题的关键是:(1)利用一次(反比例)函数图象上点的坐标特征,求出n、k的值;(2)利用一次函数的性质找出当x>0时,y 随x值增大而减小.10.如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.【分析】(1)将C、D两点代入一次函数的解析式中即可求出一次函数的解析式,然后将点D代入反比例函数的解析式即可求出反比例函数的解析式;(2)根据一元一次不等式的解法即可求出答案.(3)根据图象即可求出答案该不等式的解集.【解答】解:(1)∵一次函数y1=k1x+b的图象经过点C(﹣4,﹣2),D(2,4),∴,解得.∴一次函数的表达式为y1=x+2.∵反比例函数的图象经过点D(2,4),∴.∴k2=8.∴反比例函数的表达式为.(2)由y1>0,得x+2>0.∴x>﹣2.∴当x>﹣2时,y1>0.(3)x<﹣4或0<x<2.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是熟练运用待定系数法以及数形结合的思想,本题属于中等题型.11.如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于A(4,1),B(n,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出y1<y2时x的取值范围.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征可求出k2的值,进而可得出反比例函数的解析式,由点B的纵坐标结合反比例函数图象上点的坐标特征可求出点B的坐标,再由点A、B的坐标利用待定系数法,即可求出一次函数的解析式;(2)根据两函数图象的上下位置关系,找出y1<y2时x的取值范围.【解答】解:(1)∵反比例函数y2=(k2≠0)的图象过点A(4,1),∴k2=4×1=4,∴反比例函数的解析式为y2=.∵点B(n,﹣2)在反比例函数y2=的图象上,∴n=4÷(﹣2)=﹣2,∴点B的坐标为(﹣2,﹣2).将A(4,1)、B(﹣2,﹣2)代入y1=k1x+b,,解得:,∴一次函数的解析式为y=x﹣1.(2)观察函数图象,可知:当x<﹣2和0<x<4时,一次函数图象在反比例函数图象下方,∴y1<y2时x的取值范围为x<﹣2或0<x<4.【点评】本题考查了待定系数法求一次函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用反比例函数图象上点的坐标特征求出点B的坐标;(2)根据两函数图象的上下位置关系,找出不等式y1<y2的解集.12.如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=的图象经过点E,与AB交于点F.(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF﹣AE=2,求反比例函数的表达式.【分析】(1)根据矩形的性质,可得A,E点坐标,根据待定系数法,可得答案;(2)根据勾股定理,可得AE的长,根据线段的和差,可得FB,可得F点坐标,根据待定系数法,可得m的值,可得答案.【解答】解:(1)点B坐标为(﹣6,0),AD=3,AB=8,E为CD的中点,∴点A(﹣6,8),E(﹣3,4),函数图象经过E点,∴m=﹣3×4=﹣12,设AE的解析式为y=kx+b,,解得,一次函数的解析是为y=﹣x;(2)AD=3,DE=4,∴AE==5,∵AF﹣AE=2,∴AF=7,BF=1,设E点坐标为(a,4),则F点坐标为(a﹣3,1),∵E,F两点在函数y=图象上,∴4a=a﹣3,解得a=﹣1,∴E(﹣1,4),∴m=﹣1×4=﹣4,∴y=﹣.【点评】本题考查了反比例函数,解(1)的关键是利用待定系数法,又利用了矩形的性质;解(2)的关键利用E,F两点在函数y=图象上得出关于a的方程.13.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函效的解析式;(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E 点坐标.【分析】(1)由垂直的定义及锐角三角函数定义求出AO的长,利用勾股定理求出OD的长,确定出A坐标,进而求出m的值确定出反比例解析式,把B的坐标代入反比例解析式求出n的值,确定出B坐标,利用待定系数法求出一次函数解析式即可;(2)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可.【解答】解:(1)∵一次函数y=kx+b与反比例函数y=图象交于A与B,且AD ⊥x轴,∴∠ADO=90°,在Rt△ADO中,AD=4,sin∠AOD=,∴=,即AO=5,根据勾股定理得:DO==3,∴A(﹣3,4),代入反比例解析式得:m=﹣12,即y=﹣,把B坐标代入得:n=6,即B(6,﹣2),代入一次函数解析式得:,解得:,即y=﹣x+2;(2)当OE3=OE2=AO=5,即E2(0,﹣5),E3(0,5);当OA=AE1=5时,得到OE1=2AD=8,即E1(0,8);当AE4=OE4时,由A(﹣3,4),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1.5,2),∴AO垂直平分线方程为y﹣2=(x+),令x=0,得到y=,即E4(0,),综上,当点E(0,8)或(0,5)或(0,﹣5)或(0,)时,△AOE是等腰三角形.【点评】此题考查了反比例函数与一次函数的交点问题,熟练掌握各自的性质是解本题的关键.14.如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A(3,1),B (﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.【分析】(1)根据反比例函数y=的图象经过A(3,1),即可得到反比例函数的解析式为y=;(2)把B(﹣,n)代入反比例函数解析式,可得n=﹣6,把A(3,1),B(﹣,﹣6)代入一次函数y=mx+b,可得一次函数的解析式为y=2x﹣5.【解答】解:(1)∵反比例函数y=的图象经过A(3,1),∴k=3×1=3,∴反比例函数的解析式为y=;(2)把B(﹣,n)代入反比例函数解析式,可得﹣n=3,解得n=﹣6,∴B(﹣,﹣6),把A(3,1),B(﹣,﹣6)代入一次函数y=mx+b,可得,解得,∴一次函数的解析式为y=2x﹣5.【点评】本题考查了利用图象解决一次函数和反比例函数的问题.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.15.如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(﹣2,0),与反比例函数y=(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=(x>0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.【分析】(1)根据一次函数y=x+b的图象经过点A(﹣2,0),可以求得b的值,从而可以解答本题;(2)根据平行四边形的性质和题意,可以求得点M的坐标,注意点M的横坐标大于0.【解答】解:(1)∵一次函数y=x+b的图象经过点A(﹣2,0),∴0=﹣2+b,得b=2,∴一次函数的解析式为y=x+2,∵一次函数的解析式为y=x+2与反比例函数y=(x>0)的图象交于B(a,4),∴4=a+2,得a=2,∴4=,得k=8,即反比例函数解析式为:y=(x>0);(2)∵点A(﹣2,0),∴OA=2,设点M(m﹣2,m),点N(,m),当MN∥AO且MN=AO时,四边形AOMN是平行四边形,||=2,解得,m=2或m=+2,∴点M的坐标为(﹣2,)或(,2+2).【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.16.已知反比例函数y=的图象与一次函数y=kx+m的图象交于点(2,1).(1)分别求出这两个函数的解析式;(2)判断P(﹣1,﹣5)是否在一次函数y=kx+m的图象上,并说明原因.【分析】(1)将点(2,1)代入y=,求出k的值,再将k的值和点(2,1)代入解析式y=kx+m,即可求出m的值,从而得到两个函数的解析式;(2)将x=﹣1代入(1)中所得解析式,若y=﹣5,则点P(﹣1,﹣5)在一次函数图象上,否则不在函数图象上.【解答】解:(1)∵y=经过(2,1),∴2=k.∵y=kx+m经过(2,1),∴1=2×2+m,∴m=﹣3.∴反比例函数和一次函数的解析式分别是:y=和y=2x﹣3.(2)当x=﹣1时,y=2x﹣3=2×(﹣1)﹣3=﹣5.∴点P(﹣1,﹣5)在一次函数图象上.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是知道函数图象的交点坐标符合两个函数的解析式.17.在平面直角坐标系中,反比例函数y=(k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.【分析】先求出P点的坐标,再把P点的坐标代入反比例函数的解析式,即可求出答案.【解答】解:∵把x=1代入y=x+2得:y=3,即P点的坐标是(1,3),把P点的坐标代入y=得:k=3,即反比例函数的解析式是y=.【点评】本题考查了用待定系数法求反比例函数的解析式和函数图象上点的坐标特征,能求出P点的坐标是解此题的关键.18.如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S=S△BOC,求点P的坐标.△ACP。

2018-2019年全国中考数学真题《反比例函数》分类汇编解析

2018-2019年全国中考数学真题《反比例函数》分类汇编解析

反比例函数考点一、反比例函数(3~10分)1、反比例函数的概念一般地,函数xky=(k是常数,k≠0)叫做反比例函数。

反比例函数的解析式也可以写成1-=kxy的形式。

自变量x的取值范围是x≠0的一切实数,函数的取值范围也是一切非零实数。

2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

由于反比例函数中自变量x≠0,函数y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

3、反比例函数的性质反比例函数)0(≠=kxkyk的符号k>0 k<0图像性质①x的取值范围是x≠0,y的取值范围是y≠0;②当k>0时,函数图像的两个分支分别在第一、三象限。

在每个象限内,y随x的增大而减小。

①x的取值范围是x≠0,y的取值范围是y≠0;②当k<0时,函数图像的两个分支分别在第二、四象限。

在每个象限内,y随x的增大而增大。

4、反比例函数解析式的确定确定及诶是的方法仍是待定系数法。

由于在反比例函数xky=中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。

5、反比例函数中反比例系数的几何意义如下图,过反比例函数)0(≠=kxky图像上任一点P作x轴、y轴的垂线PM,PN,则所得的矩形PMON的面积S=PM∙PN=xyxy=∙。

kSkxyxky==∴=,,。

一、选择题1.(2017·山东省菏泽市·3分)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36 B.12 C.6 D.32.(2017·山东省济宁市·3分)如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.403.(2017·福建龙岩·4分)反比例函数y=﹣的图象上有P1(x1,﹣2),P2(x2,﹣3)两点,则x1与x2的大小关系是()A.x1>x2 B.x1=x2 C.x1<x2 D.不确定4.(2017贵州毕节3分)如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.﹣4 B.4 C.﹣2 D.25.(2017海南3分)某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷6.(2017河南)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2 B.3 C.4 D.57. (2017·黑龙江龙东·3分)已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.68.(2017·湖北荆州·3分)如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB 绕点B逆时针旋转90°后得到△A′O′B.若反比例函数的图象恰好经过斜边A′B的中点C,S△ABO=4,tan∠BAO =2,则k的值为()A .3B .4C .6D .8二、 填空题1. (2017·江西·3分)如图,直线l ⊥x 轴于点P ,且与反比例函数y 1=(x >0)及y 2=(x >0)的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则k 1﹣k 2= .2. (2017·辽宁丹东·3分)反比例函数y=的图象经过点(2,3),则k = . 3.(2017·四川内江)如图10,点A 在双曲线y =5x 上,点B 在双曲线y =8x上,且AB ∥x 轴,则△OAB 的面积等于______.3.(2017·山东省滨州市·4分)如图,已知点A 、C 在反比例函数y=的图象上,点B ,D 在反比例函数y=的图象上,a >b >0,AB ∥CD ∥x 轴,AB ,CD 在x 轴的两侧,AB=,CD=,AB 与CD 间的距离为6,则a ﹣b 的值是 .4. (2017·云南省昆明市·3分)如图,反比例函数y =(k ≠0)的图象经过A ,B 两点,过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD ⊥x 轴,垂足为D ,连接AO ,连接BO 交AC 于点E ,若OC =CD ,四边形BDCE 的面积为2,则k 的值为 .5. (2017·浙江省湖州市·4分)已知点P 在一次函数y =kx +b (k ,b 为常数,且k <0,b >0)的图象上,将点P 向左平移1个单位,再向上平移2个单位得到点Q ,点Q 也在该函数y =kx +b 的图象上.图10(1)k 的值是 ;(2)如图,该一次函数的图象分别与x 轴、y 轴交于A ,B 两点,且与反比例函数y =图象交于C ,D 两点(点C 在第二象限内),过点C 作CE ⊥x 轴于点E ,记S 1为四边形CEOB 的面积,S 2为△OAB 的面积,若=,则b 的值是 .6. (2017·浙江省绍兴市·5分)如图,已知直线l :y =﹣x ,双曲线y =,在l 上取一点A (a ,﹣a )(a >0),过A 作x 轴的垂线交双曲线于点B ,过B 作y 轴的垂线交l 于点C ,过C 作x 轴的垂线交双曲线于点D ,过D 作y 轴的垂线交l 于点E ,此时E 与A 重合,并得到一个正方形ABCD ,若原点O 在正方形ABCD 的对角线上且分这条对角线为1:2的两条线段,则a 的值为 .7.(2017广西南宁3分)如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(2017•南宁)如图所示,反比例函数y =(k ≠0,x >0)的图象经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为8,则k 的值为 .8.(2017·黑龙江齐齐哈尔·3分)如图,已知点P (6,3),过点P 作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,反比例函数y =的图象交PM 于点A ,交PN 于点B .若四边形OAPB 的面积为12,则k = .9.(2017·湖北荆门·3分)如图,已知点A (1,2)是反比例函数y =图象上的一点,连接AO 并延长交双曲线的另一分支于点B ,点P 是x 轴上一动点;若△P AB 是等腰三角形,则点P 的坐标是 _______________ .10.(2017·湖北荆州·3分)若12x m ﹣1y 2与3xy n+1是同类项,点P (m ,n )在双曲线上,则a 的值为 . 三、 解答题1. (2017·湖北武汉·8分)已知反比例函数xy 4=. (1) 若该反比例函数的图象与直线y =kx +4(k ≠0)只有一个公共点,求k 的值; (2) 如图,反比例函数xy 4=(1≤x ≤4)的图象记为曲线C 1,将C 1向左平移2个单位长度,得曲线C 2,请在图中画出C 2,并直接写出C 1平移至C 2处所扫过的面积.2. (2017·吉林·7分)如图,在平面直径坐标系中,反比例函数y=(x>0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=(1)点D的横坐标为(用含m的式子表示);(2)求反比例函数的解析式.3.(2017·四川泸州)如图,一次函数y=kx+b(k<0)与反比例函数y=的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.4.(2017·四川南充)如图,直线y=x+2与双曲线相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.5.(2017·四川攀枝花)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.6.(2017·四川宜宾)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积.7.(2017·湖北黄石·12分)如图1所示,已知:点A(﹣2,﹣1)在双曲线C:y=上,直线l1:y=﹣x+2,直线l2与l1关于原点成中心对称,F1(2,2),F2(﹣2,﹣2)两点间的连线与曲线C在第一象限内的交点为B,P是曲线C上第一象限内异于B的一动点,过P作x轴平行线分别交l1,l2于M,N两点.(1)求双曲线C及直线l2的解析式;(2)求证:PF2﹣PF1=MN=4;(3)如图2所示,△PF1F2的内切圆与F1F2,PF1,PF2三边分别相切于点Q,R,S,求证:点Q与点B重合.(参考公式:在平面坐标系中,若有点A(x1,y1),B(x2,y2),则A、B两点间的距离公式为AB=.)8.(2017·青海西宁·2分)如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点C的坐标,并结合图象写出不等式组0<x+m≤的解集.9.(2017·广西百色·6分)△ABC的顶点坐标为A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐标原点O为旋转中心,顺时针旋转90°,得到△A′B′C′,点B′、C′分别是点B、C的对应点.(1)求过点B′的反比例函数解析式;(2)求线段CC′的长.10..(2017·贵州安顺·10分)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)m(m≠0)的图象交于A、B两点,与x轴交于C点,点A的图象与反比例函数y=x的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标.11. (2017·浙江省湖州市)湖州市菱湖镇某养鱼专业户准备挖一个面积为2000平方米的长方形鱼塘.(1)求鱼塘的长y(米)关于宽x(米)的函数表达式;(2)由于受场地的限制,鱼塘的宽最多只能挖20米,当鱼塘的宽是20米,鱼塘的长为多少米?12. (2017·重庆市A卷·10分)在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH =,点B的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.13. (2017·重庆市B卷·10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.14.(2017·山东省菏泽市·3分)如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.15.(2017·山东省德州市·4分)某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?16.(2017·山东省东营市·9分)如图,在平面直角坐标系中,直线AB 与x 轴交于点B ,与y 轴交于点A ,与反比例函数y =x m 的图象在第二象限交于点C ,CE ⊥x 轴,垂足为点E ,tan ∠ABO =12,OB =4,OE =2.(1)求反比例函数的解析式;(2)若点D 是反比例函数图象在第四象限上的点,过点D 作DF ⊥y 轴,垂足为点F ,连接OD 、BF ,如果S △BAF =4S △DFO ,求点D 的坐标.答案反比例函数一、选择题1.(2017·山东省菏泽市·3分)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36 B.12 C.6 D.3【考点】反比例函数系数k的几何意义;等腰直角三角形.【分析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.【解答】解:设△OAC和△BAD的直角边长分别为a、b,则点B的坐标为(a+b,a﹣b).∵点B在反比例函数y=的第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=6.∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×6=3.故选D.【点评】本题考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.本题属于基础题,难度不大,解决该题型题目时,设出等腰直角三角形的直角边,用其表示出反比例函数上点的坐标是关键.2.(2017·山东省济宁市·3分)如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.40【考点】反比例函数与一次函数的交点问题.【分析】过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF 的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.【解答】解:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.设OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM==a,∴点A的坐标为(a,a).∵点A在反比例函数y=的图象上,∴a×a==48,解得:a=10,或a=﹣10(舍去).∴AM=8,OM=6.∵四边形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AO B.在Rt△BNF中,BF=b,sin∠FBN=,∠BNF=90°,∴FN=BF•sin∠FBN=b,BN==b,∴点F的坐标为(10+b,b).∵点B在反比例函数y=的图象上,∴(10+b)×b=48,解得:b=,或b=(舍去).∴FN=,BN=﹣5,MN=OB+BN﹣OM=﹣1.S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=(AM+FN)•MN=(8+)×(﹣1)=×(+1)×(﹣1)=40.故选D.3.(2017·福建龙岩·4分)反比例函数y=﹣的图象上有P1(x1,﹣2),P2(x2,﹣3)两点,则x1与x2的大小关系是()A.x1>x2 B.x1=x2 C.x1<x2 D.不确定【考点】反比例函数图象上点的坐标特征.【分析】直接利用反比例函数的增减性进而分析得出答案.【解答】解:∵反比例函数y=﹣的图象上有P1(x1,﹣2),P2(x2,﹣3)两点,∴每个分支上y随x的增大而增大,∵﹣2>﹣3,∴x1>x2,故选:A.4.(2017贵州毕节3分)如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO 的面积为()A.﹣4 B.4 C.﹣2 D.2【考点】反比例函数系数k的几何意义.【分析】根据反比例函数系数k的几何意义:在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变,可计算出答案.【解答】解:△ABO的面积为:×|﹣4|=2,故选D.5.(2017海南3分)某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷【考点】反比例函数的应用;反比例函数的图象.【分析】解:如图所示,人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数关系是反比例函数,它的图象在第一象限,根据反比例函数的性质可推出A,B错误,再根据函数解析式求出自变量的值与函数值,有可判定C,D.【解答】解:如图所示,人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数关系是反比例函数,它的图象在第一象限,∴y随x的增大而减小,∴A,B错误,设y=(k>0,x>0),把x=50时,y=1代入得:k=50,∴y=,把y=2代入上式得:x=25,∴C错误,把x=1代入上式得:y=,∴D正确,故答案为:D.【点评】本题主要考查了反比例函数的性质,图象,求函数值与自变量的值,根据图象找出正确信息是解题的关键.6.(2017河南)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2 B.3 C.4 D.5【考点】反比例函数系数k的几何意义;反比例函数的性质.【分析】根据点A在反比例函数图象上结合反比例函数系数k的几何意义,即可得出关于k的含绝对值符号的一元一次方程,解方程求出k值,再结合反比例函数在第一象限内有图象即可确定k值.【解答】解:∵点A是反比例函数y=图象上一点,且AB⊥x轴于点B,∴S△AOB=|k|=2,解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选C.【点评】本题考查了反比例函数的性质以及反比例函数系数k的几何意义,解题的关键是找出关于k的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k的几何意义找出关于k的含绝对值符号的一元一次方程是关键.7. (2017·黑龙江龙东·3分)已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.6【考点】反比例函数的性质.【分析】根据反比例函数系数k>0,结合反比例函数的性质即可得知该反比例函数在x>0中单调递减,再结合x 的取值范围,可得出y的取值范围,取其内的最小整数,本题得解.【解答】解:在反比例函数y=中k=6>0,∴该反比例函数在x>0内,y随x的增大而减小,当x=3时,y==2;当x=1时,y==6.∴当1<x<3时,2<y<6.∴y的最小整数值是3.故选A.8.(2017·湖北荆州·3分)如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB 绕点B逆时针旋转90°后得到△A′O′B.若反比例函数的图象恰好经过斜边A′B的中点C,S△ABO=4,tan∠BAO =2,则k的值为()A.3 B.4 C.6 D.8【分析】先根据S△ABO=4,tan∠BAO=2求出AO、BO的长度,再根据点C为斜边A′B的中点,求出点C的坐标,点C的横纵坐标之积即为k值.【解答】解:设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,∵tan∠BAO=2,∴=2,∵S△ABO=•AO•BO=4,∴AO=2,BO=4,∵△ABO≌△A′O′B,∴AO=A′0′=2,BO=BO′=4,∵点C为斜边A′B的中点,CD⊥BO′,∴CD=A′0′=1,BD=BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x•y=3•2=6.故选C..【点评】本题考查了反比例函数图象上点的坐标特征,解答本题的关键在于读懂题意,作出合适的辅助线,求出点C的坐标,然后根据点C的横纵坐标之积等于k值求解即可.二、填空题1. (2017·江西·3分)如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2=4.【考点】反比例函数与一次函数的交点问题;反比例函数系数k的几何意义.【分析】由反比例函数的图象过第一象限可得出k1>0,k2>0,再由反比例函数系数k的几何意义即可得出S△OAP=k1,S△OBP=k2,根据△OAB的面积为2结合三角形之间的关系即可得出结论.【解答】解:∵反比例函数y1=(x>0)及y2=(x>0)的图象均在第一象限内,∴k1>0,k2>0.∵AP⊥x轴,∴S△OAP=k1,S△OBP=k2.∴S△OAB=S△OAP﹣S△OBP=(k1﹣k2)=2,解得:k1﹣k2=4.故答案为:4.2. (2017·辽宁丹东·3分)反比例函数y=的图象经过点(2,3),则k=7.【考点】反比例函数图象上点的坐标特征.【分析】根据点的坐标以及反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解方程即可得出结论.【解答】解:∵反比例函数y=的图象经过点(2,3),∴k﹣1=2×3,解得:k=7.故答案为:7.3.(2017·四川内江)如图10,点A在双曲线y=5x上,点B在双曲线y=8x上,且AB∥x轴,则△OAB的面积等于______.[答案]3 2[考点]反比例函数,三角形的面积公式。

2019年中考数学专题:反比例函数及答案

2019年中考数学专题:反比例函数及答案

反比例函数一、单选题1.在函数y=的图象上有三点(-1,y1),(-,y2),(,y3)则函数值y1、y2、y3的大小关系是( )A. y2<y3<y1B. y3<y2<y1C. y1<y2<y3D. y3<y1<y2.2.如图,Rt△ABC中AB=3,BC=4,∠B=90°,点B、C在两坐标轴上滑动.当边AC⊥x轴时,点A刚好在双曲线y=上,此时下列结论不正确的是()A. 点B为(0,)B. AC边的高为C. 双曲线为y=D. 此时点A与点O距离最大3.如图,菱形ABCD的两个顶点B、D在反比例函数的图像上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A. ﹣5B. ﹣4C. ﹣3D. ﹣24.已知A(2,y1),B(﹣3,y2),C(﹣5,y3)三个点都在反比例函数y=﹣的图象上,比较y1,y2,y3的大小,则下列各式正确的是()A. y1<y2<y3B. y1<y3<y2C. y2<y3<y1D. y3<y2<y15.一次函数y=-x+1(0≤x≤10)与反比例函数y= (-10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1,y1),(x2,y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A. - ≤x≤1B. - ≤x≤C. - ≤x≤D. 1≤x≤6.如图,一次函数y=ax+b的图象与x轴、y轴交于A、B两点,与反比例函数的图象相交于C、D 两点,分别过C、D两点作y轴,x轴的垂线,垂足为E、F,连接CF、DE,有下列结论:①△CEF与△DEF 的面积相等;②EF∥CD;③△DCE≌△CDF;④AC=BD;⑤△CEF的面积等于,其中正确的个数有()A. 2B. 3C. 4D. 57.如图,有反比例函数,的图象和一个圆,则图中阴影部分的面积是()A. πB. 2πC. 4πD. 条件不足,无法求8.如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,与OA交于点P,且OA2﹣AB2=18,则点P的横坐标为()A. 9B. 6C. 3D. 39.如图,直线y=﹣x+m(m>0)与x轴交于点C,与y轴交于点D,以CD为边作矩形ANCD,点A在x 轴上.双曲线y= 经过点B,与直线CD交于点E,则点E的坐标为()A. (,﹣)B. (4,﹣)C. (,﹣)D. (6,﹣1)二、填空题10.如图,它是反比例函数y= 图象的一支,根据图象可知常数m的取值范围是________.11.若反比例函数的图象在第二、四象限,m的值为________12.如图,正方形ABCD的两个顶点A,D分别在x轴和y轴上,CE⊥y轴于点E,OA=2,∠ODA=30°.若反比例函数y=的图象过CE的中点F,则k的值为________.13.如图,已知直线y=x+4与双曲线y= (x<0)相交于A、B两点,与x轴、y轴分别相交于D、C两点,若AB= ,则k=________三、解答题14.若函数y=(m+1)x m²+3m+1是反比例函数,求m的值.15.如图,点P(-3,1)是反比例函数的图象上的一点.(1)求该反比例函数的解析式;(2)设直线与双曲线的两个交点分别为P和P′,当<时,直接写出x的取值范围.四、综合题16.如图,一次函数y=kx+b与反比例函数y= (x>0)的图象交于A(m,6),B(3,n)两点.(1)直接写出m=________,n=________;(2)根据图象直接写出使kx+b<成立的x的取值范围________;(3)在x轴上找一点P使PA+PB的值最小,求出P点的坐标.17.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线y= 上的概率.18.如图,已知反比例函数y=的图象经过点A(﹣3,﹣2).(1)求反比例函数的解析式;(2)若点B(1,m),C(3,n)在该函数的图象上,试比较m与n的大小.参考答案一、单选题1. D2. D3.C4.B5.B6. C7. B8.C9.D二、填空题10.m>511.-212.6+213.-3三、解答题14.解:由函数y=(m+3)x m²+3m+1为反比例函数可知m2+3m+1=-1,且m+1≠0解得m=-1(舍去),m=-2,m的值是-215.(1)∵点P(-3,1)在反比例函数的图象上,由得.∴反比例函数的解析式为.(2)或.四、综合题16.(1)1;2(2)0<x<1或x>3(3)解:由(1)知A点坐标为(1,6),B点坐标为(3,2),则点A关于x的轴对称点C的坐标(1,﹣6),设直线BC的解析式为y=kx+b,将点B、C坐标代入,得:,解得:,则直线BC的解析式为y=4x﹣10,当y=0时,由4x﹣10=0得:x= ,∴点P的坐标为(,0).17.(1)解:根据题意画出树状图如下:(2)解:当x=﹣1时,y= =﹣2;当x=1时,y= =2;当x=2时,y= =1.∴一共有9种等可能的情况,点(x,y)落在双曲线y= 上有2种情况:(1,2),(2,1),∴点(x,y)落在双曲线y= 上的概率为:18.(1)解:因为反比例函数y=的图象经过点A(﹣3,﹣2),把x=﹣3,y=﹣2代入解析式可得:k=6,所以解析式为:y=(2)解:∵k=6>0,∴图象在一、三象限,y随x的增大而减小,又∵0<1<3,∴B(1,m)、C(3,n)两个点在第一象限,∴m>n.。

2019年全国各地中考数学真题分类解析:反比例函数

2019年全国各地中考数学真题分类解析:反比例函数

反比例函数一、选择题1. ( 2018•福建泉州,第7题3分)在同一平面直角坐标系中,函数y=mx+m 与y=(m ≠0)的图象可能是( )By=2. (2018•广西贺州,第10题3分)已知二次函数y=ax 2+bx+c (a ,b ,c 是常数,且a ≠0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是( )A .B .C .D .考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:先根据二次函数的图象得到a>0,b<0,c<0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.解答:解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴一次函数y=cx+的图象过第二、三、四象限,反比例函数y=分布在第二、四象限.故选B.点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了一次函数图象和反比例函数的图象.3.(2019年天津市,第9 题3分)已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y <5 B. 1<y<2 C. 5<y<10 D. y>10考点:反比例函数的性质.分析:将x=1和x=2分别代入反比例函数即可确定函数值的取值范围.解答:解:∵反比例函数y=中当x=1时y=10,当x=2时,y=5,∴当1<x<2时,y的取值范围是5<y<10,故选C.点评:本题考查了反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.4.(2018•新疆,第11题5分)若点A(1,y1)和点B(2,y2)在反比例函数y=图象上,则y1与y2的大小关系是:y1y2(填“>”、“<”或“=”).,求出点y==1,∵1>5.(2018•温州,第10题4分)如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A 的反比例函数y=(k≠0)中k的值的变化情况是()ABAB AD=abk=AD=ab6.(2018•四川自贡,第9题4分)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()B关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()B7.(2018·云南昆明,第8题3分)左下图是反比例函数)0(≠=k k xky 为常数,的图像,则一次函数k kx y -=的图像大致是( )8. (2018•湘潭,第8题,3分)如图,A 、B两点在双曲线y=上,分别经过A 、B 两点向轴作垂线段,已知S 阴影=1,则S 1+S 2=( )(第1题图)9. (2018•益阳,第6题,4分)正比例函数y=6x 的图象与反比例函数y=的图象的交点位于( )DC BA根据反比例函数与一次函数的交点问题解方程组即可得到两函数的交点坐标,然后根据交点坐标解:解方程组得或y=数图象上的是()11. (2018•扬州,第3题,3分)若反比例函数y=(k≠0)的图象经过点P(﹣2,3),则该函数的图象的点是()y=二.填空题1. ( 2018•广西玉林市、防城港市,第18题3分)如图,OABC是平行四边形,对角线OB在轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①=;②阴影部分面积是(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是①④(把所有正确的结论的序号都填上).=ON所以有|k((OM|k=|k((2.(2019年天津市,第14题3分)已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为 1 .考点:反比例函数的性质.专题:开放型.分析:反比例函数y=(k为常数,k≠0)的图象在第一,三象限,则k>0,符合上述条件的k的一个值可以是1.(正数即可,答案不唯一)解答:解:∵反比例函数的图象在一、三象限,∴k>0,只要是大于0的所有实数都可以.例如:1.故答案为:1.点评:此题主要考查反比例函数图象的性质:(1)k>0时,图象是位于一、三象限;(2)k<0时,图象是位于二、四象限.3.(2018•武汉,第15题3分)如图,若双曲线y=与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为.x CE=坐标为(xx DF=﹣,k=k=x×1故答案为:4.(2018•邵阳,第13题3分)若反比例函数的图象经过点(﹣1,2),则k的值是﹣2 .5.(2018•孝感,第17题3分)如图,Rt△AOB的一条直角边OB在x轴上,双曲线y=经过斜边OA 的中点C,与另一直角边交于点D.若S△OCD=9,则S△OBD的值为 6 .|k|=.,kk=6三角形的面积是6.(2018•浙江湖州,第15题4分)如图,已知在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA的解析式为.分析:设OC=a,根据点D在反比例函数图象上表示出CD,再根据相似三角形对应边成比例列式求出AC,然后根据中点的定义表示出点B的坐标,再根据点B在反比例函数图象上表示出a、k的关系,然后用a表示出点B的坐标,再利用待定系数法求一次函数解析式解答.解:设OC=a,∵点D在y=上,∴CD=,∵△OCD∽△ACO,∴=,∴AC==,∴点A(a,),∵点B是OA的中点,∴点B的坐标为(,),∵点B在反比例函数图象上,∴=,解得,a2=2k,∴点B的坐标为(,a),设直线OA的解析式为y=mx,则m•=a,解得m=2,所以,直线OA的解析式为y=2x.故答案为:y=2x.点评:本题考查了相似三角形的性质,反比例函数图象上点的坐标特征,用OC的长度表示出点B的坐标是解题的关键,也是本题的难点.7.(2019年江苏南京,第11题,2分)已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣3时,y= .考点:反比例函数分析:先把点A(﹣2,3)代入y=求得k的值,然后将x=﹣3代入,即可求出y的值.解答:∵反比例函数y=的图象经过点A(﹣2,3),∴k=﹣2×3=﹣6,∴反比例函数解析式为y=﹣,∴当x=﹣3时,y=﹣=2.故答案是:2.点评:本题考查了反比例函数图象上点的坐标特征.利用待定系数法求得反比例函数解析式是解题的关键.8.(2018•滨州,第17题4分)如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为﹣6 .y=,解得9.(2018•菏泽,第13题3分)如图,Rt△ABO中,∠AOB=90°,点A在第一象限、点B在第四象限,且AO:BO=1:,若点A(x0,y0)的坐标x0,y0满足y0=,则点B(x,y)的坐标x,y所满足的关系式为 y=﹣2.x=)),轴的正半轴上,点C 在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为2 .,,(三.解答题1. ( 2018•福建泉州,第26题14分)如图,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).(1)求该反比例函数的关系式;(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;①求△A′BC的周长和sin∠BA′C的值;②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC=.y=BMC=y=.+2A∴2×3=3CD=.+2.=.,.EG=.OM=OH=EG=的坐标为(,MH=EG=OH=EG=+(′((﹣′(﹣的坐标为(,)和(﹣的坐标为(﹣﹣联想到点2. ( 2018•广东,第23题9分)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.考点:反比例函数与一次函数的交点问题.分析:(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据三角形面积相等,可得答案.解答:解:(1)由图象得一次函数图象在上的部分,﹣4<x<﹣1,当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P(x,x+)由△PCA和△PDB面积相等得(x+4)=|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).点评:本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.3. ( 2018•珠海,第19题7分)如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边在AD 在x轴上,点B在第四象限,直线BD与反比例函数y=的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.的图象过点,,,解得.y=,解得4.(2019年四川资阳,第20题8分)如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?考点:反比例函数与一次函数的交点问题.分析:(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.解答:解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.点评:本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键.5.(2019年云南省,第17题6分)将油箱注满k升油后,轿车科行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=(k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?考点:反比例函数的应用.分析:(1)将a=0.1,s=700代入到函数的关系S=中即可求得k的值,从而确定解析式;(2)将a=0.08代入求得的函数的解析式即可求得s的值.解答:解:(1)由题意得:a=0.1,s=700,代入反比例函数关系S=中,解得:k=sa=70,所以函数关系式为:s=;(2)将a=0.08代入s=得:s===875千米,故该轿车可以行驶多875米;点评:本题考查了反比例函数的应用,解题的关键是从实际问题中抽象出反比例函数模型.6.(2018•舟山,第22题10分)实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.,则y=7.(2018•襄阳,第22题6分)如图,一次函数y1=﹣x+2的图象与反比例函数y2=的图象相交于A,B两点,与x轴相交于点C.已知tan∠BOC=,点B的坐标为(m,n).(1)求反比例函数的解析式;(2)请直接写出当x<m时,y2的取值范围.=,=,即﹣==,即;8.(2018•四川自贡,第22题12分)如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.)代入,,函数y=的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.分析:(1)根据待定系数法,可得答案;(2)根据三角形的面积公式,可得答案.解:(1)把A(2,5)分别代入y=和y=x+b,得,解得k=10b=3;(2)作AC⊥x轴与点C,,由(1)得直线AB的解析式为y=x+3,∴点B的坐标为(﹣3,0),OB=3,点A的坐标是(2,5),∴AC=5,∴=5=.点评:本题考查了反比例函数与一次函数的交点问题,利用了待定系数法,三角形的面积公式.10.(2018•浙江宁波,第22题10分)如图,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA=,反比例函数y=(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,是判断点G是否在反比例函数的图象上,并说明理由.y=的图象上.,AD=,AC==1y=的图象上.11. (2018•泰州,第26题,14分)平面直角坐标系xOy中,点A、B分别在函数y1=(x>0)与y2=﹣(x <0)的图象上,A、B的横坐标分别为a、b.(第1题图)(1)若AB∥x轴,求△OAB的面积;(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值;(3)作边长为3的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于4的任意实数a,CD 边与函数y1=(x>0)的图象都有交点,请说明理由.、﹣,根据两点间的距离公式得到))((﹣)﹣=(,)),FC=﹣,然后比较﹣×|﹣、﹣,((﹣)(﹣(﹣(=0∴1﹣(=,))FC=,﹣)=12.(2018•呼和浩特,第23题8分)如图,已知反比例函数y=(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)写出反比例函数解析式;(2)求证:△ACB∽△NOM;(3)若△ACB与△NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.可得=,再根据反比例函数解析式可得=m=m,而,可得,再由∠(;==上,=m=m,而,=,,x+.13.(2018•德州,第21题10分)如图,双曲线y=(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3).(1)确定k的值;(2)若点D(3,m)在双曲线上,求直线AD的解析式;(3)计算△OAB的面积.,得:,得:m=)代入得:的中点,即==)y==(2)如图,在平面直角坐标系xOy中,已知一次函数y=kx+b的图象经过点A(1,0),与反比例函数y=(x>0)的图象相交于点B(2,1).①求m的值和一次函数的解析式;②结合图象直接写出:当x>0时,不等式kx+b>的解集.,解得:15.(2019年山东泰安,第26题)如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,得到△O′A′B′.(1)当m=4时,如图②.若反比例函数y=的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.分析:(1)根据题意得出:A′点的坐标为:(4,2),B′点的坐标为:(8,0),进而利用待定系数法求一次函数解析式即可;(2)首先得出A′B′的中点M的坐标为:(m+4﹣2,1)则2m=m+2,求出m的值即可.解:(1)由图②值:A′点的坐标为:(4,2),B′点的坐标为:(8,0),∴k=4×2=8,∴y=,把(4,2),(8,0)代入y=ax+b得:,解得:,∴经过A′、B′两点的一次函数表达式为:y=﹣x+4;(2)当△AOB向右平移m个单位时,A′点的坐标为:(m,2),B′点的坐标为:(m+4,0)则A′B′的中点M的坐标为:(m+4﹣2,1)∴2m=m+2,解得:m=2,∴当m=2时,反比例函数y=的图象经过点A′及A′B′的中点M.点评:此题主要考查了待定系数法求一次函数解析式以及坐标的平移等知识,得出A′,B′点坐标是解题关键.。

中考数学压轴题之反比例函数(中考题型整理,突破提升)及详细答案

中考数学压轴题之反比例函数(中考题型整理,突破提升)及详细答案
y1= 中,当 x=1 时,y=4, ∴ P(1,4). 设直线 AP 的函数关系式为 y=mx+n, 把点 A(﹣4,﹣1)、P(1,4)代入 y=mx+n,


解得

故直线 AP 的函数关系式为 y=x+3,
则点 C 的坐标(0,3),OC=3,
∴ S△ AOP=S△ AOC+S△ POC
= OC•AR+ OC•PS
又∵ 点 F 在反比例函数
(k>0)的图象上,∴ k=12,
∴ 该函数的解析式为 y= (x>0)
(2)解:由题意知 E,F 两点坐标分别为 E( ,4),F(6,
∴ 当 k=12 时,S 有最大值.S 最大=3
【解析】【分析】)当 F 为 AB 的中点时,点 F 的坐标为(3,1),由此代入求得函数解
C 与 D 横纵坐标乘积相等,求出 b 的值确定出 B 坐标,进而求出 k 的值,确定出双曲线解 析式;(3)抓住两个关键点,将 A 坐标代入双曲线解析式求出 b 的值;将 C 坐标代入双 曲线解析式求出 b 的值,即可确定出平行四边形与双曲线总有公共点时 b 的范围.
5.如图,正比例函数和反比例函数的图象都经过点 A(3,3),把直线 OA 向下平移后, 与反比例函数的图象交于点 B(6,m),与 x 轴、y 轴分别交于 C、D 两点.
(1)求 m 的值; (2)求过 A、B、D 三点的抛物线的解析式; (3)若点 E 是抛物线上的一个动点,是否存在点 E,使四边形 OECD 的面积 S1
, 是四边
形 OACD 面积 S 的 ?若存在,求点 E 的坐标;若不存在,请说明理由. 【答案】(1)解:∵ 反比例函数的图象都经过点 A(3,3),

2019全国中考数学真题分类汇编:反比例函数图象、性质及其应用及参考答案

2019全国中考数学真题分类汇编:反比例函数图象、性质及其应用及参考答案

一、选择题1.(2019·温州)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表.根据表中数据,可得y 关于x 的函数表达式为 ( )A .y x =B .100y =C .y x =D .400y = 【答案】A【解析】从表格中的近视眼镜的度数y (度)与镜片焦距x (米)的对应数据可以知道,它们满足xy=100,因此,y 关于x 的函数表达式为100y x=.故选A. 2.(2019·株洲)如图所示,在直角坐标系xOy 中,点A 、B 、C 为反比例函数(0)ky k x=>上不同的三点,连接OA 、OB 、OC ,过点A 作AD ⊥y 轴于点D ,过点B 、C 分别作BE ,CF ⊥x 轴于点E 、F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF 的面积分别为S 1、S 2、S 3,则( ) A .S 1=S 2+S 3 B .S 2=S 3 C .S 3>S 2>S 1 D .S 1S 2<S 32第9题【答案】B【解析】由题意知S 1=2k ,S △BOE =S △COF =2k,因为S 2=S △BOE -S △OME ,S 3=S △COF -S △OME ,所以S 2=S 3 ,所以选B 。

3.(2019·娄底)将1y x=的图象向右平移1个单位长度,再向上平移1个单位长度所得图象如图(3).则所得图象的解析式为( )A.111yx=++B.111yx=-+C.111yx=+-D.111yx=--【答案】C.【解析】二次函数平移的规律“左加右减,上加下减”对所有函数的图象平移均适合.∵将1yx=的图象向右平移1个单位长度后所得函数关系式为11yx=-,∴将1yx=的图象向右平移1个单位长度,再向上平移1个单位长度所得图象的解析式为111yx=+-.故选C.4.(2019·娄底)如图(1),⊙O的半径为2,双曲线的解析式分别为1yx=和1yx=-,则阴影部分的面积为( )A.4π B.3π C.2π D.π【答案】C【解析】根据反比例函数1yx=,1yx=-及圆的中心对称性和轴对称性知,将二、四象限的阴影部分旋转到一、三象限对应部分,显然所有阴影部分的面积之和等于一、三象限内两个扇形的面积之和,也就相当于一个半径为2的半圆的面积. ∴21222S ππ=⨯=阴影. 故选C .5.(2019·衡阳)如图,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=mx(m 为常数且m ≠0)的图象,都经过A (-1,2),B (2,-1),结合图象,则不等式kx +b >mx的解集是( ). A. x <-1 B. -1<x <0 C. x <-1或0<x <2 D.-1<x <0或x >2【答案】C .【解析】由图象得,不等式kx +b >mx的解集是x <-1或0<x <2,故选C . 6. (2019·滨州)如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴的正半轴上,反比例函数y =kx(x>0)的图象经过对角线OB 的中点D 和顶点C .若菱形OABC 的面积为12,则k 的值为( )A .6B .5C .4D .3【答案】C【解析】如图,连接AC ,∵四边形OABC 是菱形,∴AC 经过点D ,且D 是AC 的中点.设点A 的坐标为(a ,0),点C 坐标为(b ,c ),则点D 坐标为(2ab ,2c ).∵点C 和点D 都在反比例函数y=k x 的图象上,∴bc=2a b×2c,∴a=3b ;∵菱形的面积为12,∴ac=12,∴3bc=12,bc=4,即k=4.故选C .法2:设点A 的坐标为(a ,0),点C 的坐标为(c ,),则,点D 的坐标为(),∴,解得,k =4,故选C .7. (2019·无锡)如图,已知A 为反比例函数ky x(x <0)的图像上一点,过点A 作AB ⊥y 轴,垂足为B .若△OAB 的面积为2,则k 的值为( ) A.2B. -2C. 4D.-4【答案】D【解析】如图,∵AB ⊥y 轴, S △OAB =2,而S △OAB 12|k |,∴12|k |=2,∵k <0,∴k =﹣4.故选D .xy-6O8. (2019·济宁)如图,点A的坐标是(-2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A'BC'.若反比例函数y=kx的图象恰好经过A'B的中点D,则k的值是()A.9 B.12 C.15 D.18【答案】C【解析】取AB的中点(-1,3),旋转后D(3,5)∴k=3×5=15,故选C.9. (2019·枣庄) 如图,在平面直角坐标系中等腰直角三角形ABC的顶点A,B分别在x轴,y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数kyx(x>0)的图象上,若AB=1,则k的值为A.1B.2D.2【答案】A【解析】在等腰直角三角形ABC中,AB=1,∴AC∵CA⊥x轴,∴y C,Rt△ABC中,∠BAC=45°,CA⊥x轴,∴∠BAO=45°,∴∠ABO=45°,∴△ABO是等腰直角三角形,∴OA,∴x C,k=x C`y C=1,故选A10. (2019·淄博)如图,11122233,,,OA B A A B A A B ∆∆∆…是分别以123,,,A A A …为直角顶点,一条直角边在x轴正半轴上的等腰直角三角形,其斜边的中点111222333(,),(,),(,),C x y C x y C x y …均在反比例函数4y x=(x >0)的图象上,则12100y y y +++的值为( )A .10B .6C .42D .27【答案】20【解析】如图,过点C 1作C 1M ⊥x 轴,∵△OC 1A 1是等腰直角三角形,∴C 1M =OM =MA 1,设C 1的坐标是(a ,a )(a >0),,把(a ,a )代入解析式4y x=(a >0)中,得a =2, ∴y 1=2,∴A 1的坐标是(4,0),又∵△C 2A 1A 2是等腰直角三角形,∴设C 2的纵坐标是b (b >0),则C 2的横坐标是4+b , 把(4+b ,b )代入函数解析式得b =44b+,解得b =2﹣2, ∴y 2=2﹣2,∴A 2的坐标是(20),设C 3的纵坐标是c (c >0),则C 3横坐标为2+c ,把(2+c ,c )代入函数解析式得c 42c+解得c =32,∴y 3=23﹣22.∵y 1=21﹣20,y 2=22﹣21,y 3=23﹣22,…∴y 100=2100﹣299,∴y 1+y 2+y 3+…+y 100=2+22﹣2+2﹣22+…+2100﹣299=2100=20.11.(2019·凉山)如图,正比例函数y =kx 与反比例函数y =x4的图象相交于A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则△ABC 的面积等于( )A.8B.6C.4 D .2【答案】C【解析】设A 点的坐标为(m ,4m ),则C 点的坐标为(-m ,-4m),∴1414422ABC OBC OAB S S S m m m m ∆∆∆=+=⨯+-⨯-=,故选C.12. (2019·天津) 若点A(-3,y 1),B(-2,y 2),C(1,y 3)都在反比例函数xy 12-=的图像上,则y 1,y 2,y 3的大小关系是A. y 2<y 1<y 3B. y 3 <y 1 <y 2C. y 1 <y 2<y 3D. y 3 <y 2<y 1 【答案】B【解析】因为反比例函数x y 12-=的图像在二四象限, 将A,B,C 三点在图像上表示,答案为B13. (2019·台州)已知某函数的图象C 与函数3y x =的图象关于直线y =2对称.下列命题:①图象C 与函数3y x=的图象交于点(32,2);②点(12,-2)在图象C 上;③图象C 上的点的纵坐标都小于4;④A(x 1,y 1),B(x 2,y 2)是图象C 上任意两点,若x 1>x 2,则y 1>y 2.其中真命题是( )A.①②B.①③④C.②③④D.①②③④【答案】A【解析】令y =2,得x =32,这个点在直线y =2上,∴也在图象C 上,故①正确;令x =12,得y =6,点(12,6)关于直线y =2的对称点为(12,-2),∴点(12,-2)在图象C 上,②正确;经过对称变换,图象C 也是类似双曲线的形状,没有最大值和最小值,故③错误;在同一支上,满足x 1>x 2,则y 1>y 2,但是没有限制时,不能保证上述结论正确,故④错误.综上所述,选A.【知识点】反比例函数图象的性质,对称变换,交点坐标,增减性14.(2019·重庆B 卷)如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,点A (10,0),sin ∠COA =45.若反比例函数y =kx(k ﹥0,x ﹥0)经过点C ,则k 的值等于( )【答案】C【解析】过C 作CD ⊥OA 交x 轴于D9题图∵OABC 为菱形,A (10,0)∴OC=OA =10. ∵sin ∠COA =45 ∴CD OC =45 即10CD =45∴CD =8, ∴OC =6, ∴C (6,8) ∵反比例函数y =kx(k ﹥0,x ﹥0)经过点C , k =6×8=48. 故选C.15. (2019·重庆A 卷)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线BD∥x 轴,反比例函数y =kx(k >0,x >0)的图象经过矩形对角线的交点E .若点A (2,0),D (0,4),则k 的值为 ( )A .16B .20C .32D .40【答案】B .【解析】如图,过点B 作BF ⊥x 轴于点F ,则∠AFB =∠DOA =90°.∵四边形ABCD 是矩形, ∴ED =EB ,∠DAB =90°.∴∠OAD +∠BAF =∠BAF +∠ABF =90°. ∴∠OAD =∠FBA . ∴△AOD ∽△BFA .∴OA ODBF AF=. ∵BD ∥x 轴,A (2,0),D (0,4), ∴OA =2,OD =4=BF . ∴244AF=. ∴AF =8.∴OF =10,E (5,4). ∵双曲线y =kx过点E , ∴k =5×4=20. 故选B .二、填空题 1.(2019·威海)如图,在平面直角坐标系中,点A ,B 在反比例函数()0ky k x=≠的图像上运动,且始终保持线段AB =长度不变,M 为线段AB 的中点,连接OM .则线段OM 的长度的最小值是 (用含k 的代数式表示).【解析】过点A 作x 轴⊥AC ,过点B 作y 轴⊥BD ,垂足为C ,D ,AC 与BD 相交于点F ,连接OF .当点O 、F 、M 在同一直线上时OM 最短.即OM 垂直平分AB .设点A 坐标为(a ,a +4),则点B 坐标为(a +4,a ),点F 坐标为(a ,a ).由题意可知△AFB 为等腰直角三角形, ∵AB= ∴AF =BF =4,∵点A 在反比例函数y =的图像上,∴a (a +4)=k , 解得a =2,在RT △OCF 中,OFa =2)=, ∴OM =OF +FM =2.(2019·山西)如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 的坐标为(-4,0),点D 的坐标为(-1,4),反比例函数y =kx(x>0)的图象恰好经过点C,则k 的值为________.第14题图【答案】16【解析】分别过点D,C 作x 轴的垂线,垂足为E,F,则AD =5,∴AB =CB =5,∴B(1,0),由△DAE ≌△CBF,可得BF =AE =3,CF =DE =4,∴C(4,4),∴k =xy =16.第14题答图3.(2019·黄冈) 如图,一直线经过原点0,且与反比例函数y =kx(k >0)相交于点A ,点B ,过点A 作AC ⊥y 轴,垂足为C.连接B C.若△ABC 的面积为8,则k = .【答案】8【解析】因为反比例函数与正比例函数的图象相交于A 、B 两点,∴A 、B 两点关于原点对称,∴OA =OB ,∴△BOC 的面积=△AOC 的面积=8÷2=4, 又∵A 是反比例函数y =kx图象上的点,且AC ⊥y 轴于点C , ∴△AOC 的面积=12|k |,∴12|k |=2,∵k >0,∴k =8.4.(2019·益阳)反比例函数xky =的图象上有一点P(2,n),将点P 向右平移1个单位,再向下平移1个单位得到点Q.若点Q 也在该函数的图象上,则k = . 【答案】6【解析】∵P(2,n)向右平移1个单位,再向下平移1个单位得到点Q (3,n-1),且点P 、Q 均在反比例函数xky =的图象上,∴⎪⎪⎩⎪⎪⎨⎧=-=312kn k n ,∴312k k =-,解得k=6.5. (2019·潍坊)如图,Rt △AOB 中,∠AOB =90°,顶点A ,B 分别在反比例函数1(0)y x x =>与5(0)y x x-=<的图象上.则tan ∠BAO 的值为 .【解析】分别过点A 、B 作x 轴的垂线AC 和BD ,垂足为C 、D .则△BDO ∽△OCA ,∴2S=()SBDO OCABD OA∵S △BDO =52,S △ACO =12, ∴2()=5BD OA, ∴tan ∠BAO=BDOA=6. (2019·巴中)如图,反比例函数kyx(x>0)经过A,B 两点,过点A 作AC ⊥y 轴于点C,过点B 作BD ⊥y 轴于点D,过点B 作BE ⊥x 轴于点E,连接AD,已知AC =1,BE =1,S 矩形BDOE =4,则S △ACD =________.【答案】32【解析】连接AO,由反比例函数k 的几何意义可知,S △AOC =12S 矩形BDOE =2,因为AC =1,所以CO =4,因为DO =BE =1,所以CD =3,所以S △ACD =32.7. (2019·达州) 如图,A 、B 两点在反比例函数x k y 1=的图像上,C 、D 两点在反比例函数xky 2=的图像上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC=2,BD=4,EF=3,则12k k -=___________..〈【答案】4【解析】设A (m ,m k 1) B (m ,m k 2) C (n ,n k 1) D (n ,nk 2) 由题意得:m-n=3 ,212=-m k k ,421=-n kk , 联立三个式子,解得:412=-k k . 8.(2019·长沙)如图,函数ky x=(k 为常数,k >0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①△ODM 与△OCA 的面积相等;②若BM ⊥AM 于点M ,则∠MBA=30°;③若M 点的横坐标为1,△OAM 为等边三角形,则k =2;④若MF=25MB ,则MD=2MA .其中正确的结论的序号是 .【答案】①③④9. (2019·眉山)如图,反比例函数()0ky x x=>的图像经过矩形OABC 对角线的交点M ,分别交AB 、BC 于点D 、E ,若四边形ODBE 的面积为12,则k 的值为 .【答案】4【解析】由题意得:E 、M 、D 位于反比例函数图象上,则S △OCE =12|k|,S △OAD =12|k|, 过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S 矩形ONMG =|k|,又∵M 为矩形ABCO 对角线的交点,则S 矩形ABCO =4S矩形ONMG=4|k|,由于函数图象在第一象限,∴k >0,则12422k kk ++=,∴k=4.故选:B.10.(2019·湖州)如图,已知在平面直角坐标系xOy中,直线y=12x-1分别交x轴、y轴于点A和点B,分别交反比例函数y1=kx(k>0,x>0),y2=2kx(x<0)的图像于点C和点D,过点C作CE⊥x轴于点E,连结OC,OD.若△COE的面积与△DOB的面积相等,则k的值是.【答案】2.【解析】如答图,过点D作DF⊥y轴于点F,则由CE⊥x轴于点E可知:S△OCE=k,S△ODF=2k.∵△COE的面积与△DOB的面积相等,∴S△OBD=S△FBD.易知A(2,0),B(0,-1),从而OB=BF=1,OF=2.令D(m,-2),则由D点在直线y=12x-1上,得-2=12m-1,解得m=-2,故D(-2,-2),从而2k=(-2)×(-2),解得k=2.yxEDCBAOFyxEDCBAO11.(2019·宁波)如图,过原点的直线与反比例函数kyx(k>0)的图象交于A,B两点,点A在第一象限,点C在x轴正半轴上,连接AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连接DE,若AC=3DC,△ADE的面积为8,则k的值为________.【答案】6【解析】连接OE,在Rt△ABE中,点O是AB的中点,∴OE=12AB=OA,∴∠OAE=∠OEA,∵AE为∠BAC的平分线,∴∠OAE=∠DAE,∴∠OEA=∠DAE,∴AD∥OE,∴S△ADE=S△ADO,过点A作AM⊥x轴于点M,过点D作DN⊥x轴于点N,易得S梯AMND=S△ADO,∵△CAM∽△CDN,CD:CA=1:3,∴S△CAM=9,延长CA交y轴于点P,易得△CAM∽△CPO,可知DC=AP,∴CM:MO=CA:AP=3:1,∴S△CAM:S△AMO=3:1,∴S△AMO=3,∵反比例函数图象在一,三象限,∴k=6.12. (2019·衢州)如图,在平面直角坐标系中,O为坐标原点,口ABCD的边AB在x轴上,顶点D在y轴的正半轴上,点C在第一象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处,点B恰好为OE的中点,DE与BC交于点F.若y=kx(k≠0)图象经过点C.且S△BEF=1,则k的值为 .【答案】24【解析】连接OC ,作FM ⊥AB 于M ,延长MF 交CD 于N ,设BE= a ,FM=b ,由题意知OB=BE=a ,OA=2a ,DC=3a,因为四这形ABCD 为平行四边形,所以DC∥AB,所以△BEF ∽△CDF,所以BE :CD=EF:DF=1:3,所以NF=3b ,OD=FM+FN=4b ,因为S △BEF =1,即12ab=1,S △CDO =12CD ·OD=123a ×4b=6ab=12,所以k=xy=2S △CDO =24.三、解答题1.(2019浙江省杭州市,20,10分)(本题满分10分)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速股为v(单位:千米/小时),且全程速度限定为不超过120千米/小时. (1) 求v 关于t 的函数表达式.(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地.求小汽车行驶速度v 的范围. ②方方能否在当天11点30分前到达B 地?说明理由.【解题过程】(1)∵ vt=480,且全程速度限定为不超过120千米/小时,∴ v 关于t 的函数表达式为:v=480t(0≤t ≤4); (2)① 8点至12点48分时间长为245小时,8点至14点时间长为6小时, 将t=6代入v=480t 得v=80;将t=245代入v=480t得v=100.∴ 小汽车行驶速度v 的范围为:80≤v ≤100. ② 方方不能在当天11点30分前到达B 地.理由如下:FNMF8点至11点30分时间长为72小时,将t=72代入v=480t得v=9607>120千米/小时,超速了.故方方不能在当天11点30分前到达B地.2.(2019·苏州,25,8)如图,A为反比例函数y=kx(其中k>0)图像上的一点,在上轴正半轴上有一点B,OB=4连接OA,A B.且OA =AB (1)求K的值;(2)过点B作BC⊥OB,交反比例函数y=kx(其中k>0)的图像于点C,连接OC交AB于点D,求ADDB的值.第25题图【解题过程】解:(1)过点A作AE⊥OB于E.∵OA=AB OB=4,∴OE=BE=12OB=2,在Rt△OAE中,AE=6=,∴点A坐标为(2,6),∵点A是反比倒函数kyx=图像上的点,∴ 6=2k,解得k=12.第25题答图(2)记AE 与OC 的交点为F .∵OB =4且BC ⊥OB ,点C 的横坐标为4,又∵点C 为反比例函数y =12x图像上的点,∴点C 的坐标为(4,3),∴BC =3. 设直线OC 的表达式y =mx ,将C (4,3)代入可得m =34,∴直线OC 的表达式y =34x ,∵AE ⊥OB ,OE =2,∴点F 的横坐标为2.将x =2代入y =34x 可得y =32,即EF =32;∴AF =A E -EF =6 -32=92.∵AE ,BC 都与x 轴垂直,∴AE ∥BC ,∴△ADF ∽△BD C .∴32AD AF EB BC ==. 3.(2019山东威海,21,8分) (1)阅读理解如图,点A ,B 在反比例函数的图象上,连接AB ,取线段AB 的中点C ,分别过点A ,C ,B 作x 轴的垂线,垂足为E ,F ,G ,CF 交反比例函数的图象于点D ,点E ,F ,G 的横坐标分别为n -1,n ,n +1(n >1). 小红通过观察反比例的图象,并运用几何知识得到结论: AE +BG =2CF ,CF >DF .由此得出一个关于之间数量关系的命题: 若n >1,则(2)证明命题小东认为:可以通过“若≥0,则≥”的思路证明上述命题.小晴认为:可以通过“若>0,>0,且≥1,则≥”的思路证明上述命题. 请你选择一种方法证明(1)中的命题.1y x=1y x=1y x=112,,11n n n-+a b -a b a b a b ÷a b【解题过程】(1)∵A ,D ,B 都在反比例的图象上,且点E ,F ,G 的横坐标分别为n -1,n ,n +1(n >1), ∴AE =BG =DF =. 又∵AE +BG =2CF ,∴CF = 又∵CF >DF ,n >1,∴>,即>. 故答案为>. (2)选择选择小东的思路证明结论>, ∵n >1,∴>0, ∴>. 4、(2019江苏盐城卷,19,8) 如图,一次函数y =x +1的图像交y 轴于点A ,与反比例函数xk y =(x >0)图像交于点B (m ,2).(1)求反比例函数的表达式.(2)求△AOB 的面积. 1y x =1,1n -1,1n +1n111(),211n n +-+111()211n n +-+1n 1111n n +-+2n1111n n +-+2n1111n n +-+2n 2221122(1)2()11(1)(1)(1)(1)n n n n n n n n n n n n n n ++---+-==-+-+-+1111n n +-+2n【思路分析】(1)根据已知条件,可以求出点A 的坐标,在根据一次函数与反比例函数交于点B ,就可以求出点B 点的横坐标m ,则点B 的坐标就有了,所以就可以求出反比例函数的表达式。

2018年中考数学真题分类汇编(第二期)专题12反比例函数试题(含解析)

2018年中考数学真题分类汇编(第二期)专题12反比例函数试题(含解析)

反比例函数一.选择题1. (2018·湖南郴州·3分)如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.1【分析】先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(2,2),B(4,1).再过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,根据反比例函数系数k的几何意义得出S△AOC=S△BOD=×4=2.根据S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面积公式求出S梯形ABDC=(BD+AC)•CD=(1+2)×2=3,从而得出S△AOB=3.【解答】解:∵A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,∴当x=2时,y=2,即A(2,2),当x=4时,y=1,即B(4,1).如图,过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,则S△AOC=S△BOD=×4=2.∵S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,∴S△AOB=S梯形ABDC,∵S梯形ABDC=(BD+AC)•CD=(1+2)×2=3,∴S△AOB=3.故选:B.【点评】本题考查了反比例函数中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.也考查了反比例函数图象上点的坐标特征,梯形的面积.2. (2018·湖南怀化·4分)函数y=kx﹣3与y=(k≠0)在同一坐标系内的图象可能是()A. B. C. D.【分析】根据当k>0、当k<0时,y=kx﹣3和y=(k≠0)经过的象限,二者一致的即为正确答案.【解答】解:∵当k>0时,y=kx﹣3过一、三、四象限,反比例函数y=过一、三象限,当k<0时,y=kx﹣3过二、三、四象限,反比例函数y=过二、四象限,∴B正确;故选:B.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.3.(2018•江苏徐州•2分)如果点(3,﹣4)在反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(﹣2,﹣6)C.(﹣2,6)D.(﹣3,﹣4)【分析】将(3,﹣4)代入y=即可求出k的值,再根据k=xy解答即可.【解答】解:因为点(3,﹣4)在反比例函数y=的图象上,k=3×(﹣4)=﹣12;符合此条件的只有C:k=﹣2×6=﹣12.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.4.(2018•江苏无锡•3分)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n【分析】根据反比例函数的性质,可得答案.【解答】解:y=的k=﹣2<0,图象位于二四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故D正确;故选:D.【点评】本题考查了反比例函数的性质,利用反比例函数的性质:k<0时,图象位于二四象限是解题关键.5.(2018•江苏淮安•3分)若点A(﹣2,3)在反比例函数y=的图象上,则k的值是()A.﹣6 B.﹣2 C.2 D.6【分析】根据待定系数法,可得答案.【解答】解:将A(﹣2,3)代入反比例函数y=,得k=﹣2×3=﹣6,故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,利用函数图象上点的坐标满足函数解析式是解题关键.6.(2018•江苏苏州•3分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为()A.3 B.2 C.6 D.12【分析】由tan∠AOD==可设AD=3A.OA=4a,在表示出点D.E的坐标,由反比例函数经过点D.E列出关于a的方程,解之求得a的值即可得出答案.【解答】解:∵tan∠AOD==,∴设AD=3A.OA=4a,则BC=AD=3a,点D坐标为(4a,3a),∵CE=2BE,∴BE=BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数y=经过点D.E,∴k=12a2=(4+4a)a,解得:a=或a=0(舍),则k=12×=3,故选:A.【点评】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D.E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.8.(2018•内蒙古包头市•3分)以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为 3 .【分析】由双曲线y=(x>0)经过点D知S△ODF=k=,由矩形性质知S△AOB=2S△ODF=,据此可得OA•BE=3,根据OA=OB可得答案.【解答】解:如图,∵双曲线y=(x>0)经过点D,∴S△ODF=k=,则S△AOB=2S△ODF=,即OA•BE=,∴OA•BE=3,∵四边形ABCD是矩形,∴OA=OB,∴OB•BE=3,故答案为:3.【点评】本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k的几何意义及矩形的性质.9.(2018•遂宁•4分)已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)的图象如图所示,则当y1>y2时,自变量x满足的条件是()A.1<x<3 B.1≤x≤3C.x>1 D.x<3【分析】利用两函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【解答】解:当1<x<3时,y1>y2.故选:A.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.10.(2018•湖州•3分)如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是()A. (﹣1,﹣2)B. (﹣1,2)C. (1,﹣2)D. (﹣2,﹣1)【答案】A【解析】分析:直接利用正比例函数的性质得出M,N两点关于原点对称,进而得出答案.详解:∵直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点,∴M,N两点关于原点对称,∵点M的坐标是(1,2),∴点N的坐标是(-1,-2).故选:A.点睛:此题主要考查了反比例函数与一次函数的交点问题,正确得出M,N两点位置关系是解题关键.11. (2018•嘉兴•3分)如图,点在反比例函数的图象上,过点的直线与轴,轴分别交于点,且,的面积为1.则的值为()A. 1B. 2C. 3D. 4【答案】D【解析】【分析】过点C作轴,设点,则得到点C 的坐标,根据的面积为1,得到的关系式,即可求出的值.【解答】过点C作轴,设点,则得到点C的坐标为:的面积为1,即故选D.【点评】考查反比例函数图象上点的坐标特征,掌握待定系数法是解题的关键.12. (2018•广西玉林•3分)如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于()A.B.2 C.4 D.3【分析】依据点C在双曲线y=上,AC∥y轴,BC∥x轴,可设C(a,),则B(3a,),A(a,),依据AC=BC,即可得到﹣=3a﹣a,进而得出a=1,依据C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,进而得到Rt△ABC中,AB=2.【解答】解:点C在双曲线y=上,AC∥y轴,BC∥x轴,设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故选:B.13. (2018·黑龙江大庆·3分)在同一直角坐标系中,函数y=和y=kx﹣3的图象大致是()A.B.C.D.【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【解答】解:分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限.故选:B.14. (2018·黑龙江哈尔滨·3分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.2【分析】把点的坐标代入函数解析式得出方程,求出方程的解即可.【解答】解:∵反比例函数y=的图象经过点(1,1),∴代入得:2k﹣3=1×1,解得:k=2,故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,能根据已知得出关于k的方程是解此题的关键.15.(2018·黑龙江龙东地区·3分)如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y=(x>0)、y=(x<0)的图象于B.C两点,若△ABC的面积为2,则k值为()A.﹣1 B.1 C.D.【分析】连接OC.OB,如图,由于BC∥x轴,根据三角形面积公式得到S△ACB=S△OCB,再利用反比例函数系数k 的几何意义得到•|3|+•|k|=2,然后解关于k的绝对值方程可得到满足条件的k的值.【解答】解:连接OC.OB,如图,∵BC∥x轴,∴S△ACB=S△OCB,而S△OCB=•|3|+•|k|,∴•|3|+•|k|=2,而k<0,∴k=﹣1.故选:A.【点评】本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.16.(2018•贵州铜仁•4分)如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 B.x<﹣2 C.0<x<1 D.﹣2<x<0或x>1【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【解答】解:观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<的解集是﹣2<x<0或x>1.故选:D.17.(2018•海南•3分)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.二、三象限B.一、三象限C.三、四象限D.二、四象限【分析】先根据点P的坐标求出反比例函数的比例系数k,再由反比例函数的性质即可得出结果.【解答】解:反比例函数y=的图象经过点P(﹣1,2),∴2=.∴k=﹣2<0;∴函数的图象位于第二、四象限.故选:D.【点评】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.18.(2018•贵州遵义•3分)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=【分析】直接利用相似三角形的判定与性质得出=,进而得出S△AOD=2,即可得出答案.【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∴=tan30°=,∴=,∵×AD×DO=xy=3,∴S△BCO=×BC×CO=S△AOD=1,∴S△AOD=2,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣.故选:C.19. (2018•遂宁•4分)已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)的图象如图所示,则当y1>y2时,自变量x满足的条件是()A.1<x<3 B.1≤x≤3C.x>1 D.x<3【分析】利用两函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【解答】解:当1<x<3时,y1>y2.故选:A.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.二.填空题1. (2018·湖北随州·3分)如图,一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A.B 两点,与x轴交与点C,若tan∠AOC=,则k的值为 3 .【分析】根据题意设出点A的坐标,然后根据一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A.B两点,可以求得a的值,进而求得k的值,本题得以解决.【解答】解:设点A的坐标为(3a,a),∵一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A.B两点,∴a=3a﹣2,得a=1,∴1=,得k=3,故答案为:3.【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.2.(2018•江苏宿迁•3分)如图,在平面直角坐标系中,反比例函数(x>0)与正比例函数y=kx、(k>1)的图象分别交于点A.B,若∠AOB=45°,则△AOB的面积是________.【答案】2【分析】作BD⊥x轴,AC⊥y轴,OH⊥AB(如图),设A(x1,y1),B(x2, y2),根据反比例函数k的几何意义得x1y1=x2y2=2;将反比例函数分别与y=kx,y=联立,解得x1=,x2=,从而得x1x2=2,所以y1=x2,y2=x1,根据SAS得△ACO≌△BDO,由全等三角形性质得AO=BO,∠AOC=∠BOD,由垂直定义和已知条件得∠AOC=∠BOD=∠AOH=∠BOH=22.5°,根据AAS得△ACO≌△BDO≌△AHO≌△BHO,根据三角形面积公式得S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+ x2y2= ×2+ ×2=2.【详解】如图:作BD⊥x轴,AC⊥y轴,OH⊥AB,设A(x1,y1),B(x2, y2),∵A.B在反比例函数上,∴x1y1=x2y2=2,∵,解得:x1=,又∵,解得:x2=,∴x1x2=×=2,∴y1=x2, y2=x1,即OC=OD,AC=BD,∵BD⊥x轴,AC⊥y轴,∴∠ACO=∠BDO=90°,∴△ACO≌△BDO(SAS),∴AO=BO,∠AOC=∠BOD,又∵∠AOB=45°,OH⊥AB,∴∠AOC=∠BOD=∠AOH=∠BOH=22.5°,∴△ACO≌△BDO≌△AHO≌△BHO,∴S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+ x2y2= ×2+ ×2=2,故答案为:2.【点睛】本题考查了反比例函数系数k的几何意义,反比例函数与一次函数的交点问题,全等三角形的判定与性质等,正确添加辅助线是解题的关键.3.(2018•山东东营市•3分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A 的反比例函数的解析式为y=.【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【解答】解:设A坐标为(x,y),∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0﹣3,解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),设过点A的反比例解析式为y=,把A(﹣2,﹣3)代入得:k=6,则过点A的反比例解析式为y=,故答案为:y=【点评】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.4.(2018•山东烟台市•3分)如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k= ﹣3 .【分析】由平行四边形面积转化为矩形BDOA 面积,在得到矩形PDOE 面积,应用反比例函数比例系数k 的意义即可.【解答】解:过点P 做PE ⊥y 轴于点E∵四边形ABCD 为平行四边形 ∴AB=CD 又∵BD ⊥x 轴 ∴ABDO 为矩形 ∴AB=DO ∴S 矩形ABDO =S ▱ABCD =6∵P 为对角线交点,PE ⊥y 轴 ∴四边形PDOE 为矩形面积为3 即DO•EO=3∴设P 点坐标为(x ,y ) k=xy=﹣3 故答案为:﹣3【点评】本题考查了反比例函数比例系数k 的几何意义以及平行四边形的性质.5.(2018•山东济宁市•3分)如图,点 A 是反比例函数 y =x4(x >0)图象上一点,直线 y=kx+b过点 A 并且与两坐标轴分别交于点 B ,C ,过点 A 作 A D ⊥x 轴,垂足为 D ,连接DC,若△BOC 的面积是4,则△DOC 的面积是 2 ﹣2 .【解答】解:设A(a,)(a>0),∴AD=,OD=a,∵直线y=kx+b 过点A并且与两坐标轴分别交于点B,C,∴C(0,b),B(﹣,0),∵△BOC 的面积是4,∴S△BOC=OB×OC=××b=4,∴b 2=8k,∴k=①∴AD⊥x 轴,∴OC∥AD,∴△BOC∽△BDA,∴,∴,∴a 2k+ab=4②,联立①②得,ab=﹣4﹣4(舍)或a b=4﹣4,∴S△DOC=OD•OC=ab=2 ﹣2故答案为2﹣2.6. (2018•上海•4分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是.【分析】由于在反比例函数y=的图象有一支在第二象限,故k﹣1<0,求出k的取值范围即可.【解答】解:∵反比例函数y=的图象有一支在第二象限,∴k﹣1<0,解得k<1.故答案为:k<1.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.7. (2018•遂宁•4分)已知反比例函数y=(k≠0)的图象过点(﹣1,2),则当x>0时,y随x的增大而.【分析】把(﹣1,2)代入解析式得出k的值,再利用反比例函数的性质解答即可.【解答】解:把(﹣1,2)代入解析式y=,可得:k=﹣2,因为k=﹣2<0,所以当x>0时,y随x的增大而增大,故答案为:增大【点评】此题考查了反比例函数y=(k≠0),的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.8. (2018•贵州安顺•4分)函数中自变量的取值范围是__________.【答案】【解析】试题解析:根据题意得,x+1>0,解得x>-1.故答案为:x>-1..9. (2018•贵州安顺•4分)如图,已知直线与轴、轴相交于、两点,与的图象相交于、两点,连接、.给出下列结论:①;②;③;④不等式的解集是或.其中正确结论的序号是__________.【答案】②③④【解析】分析:根据一次函数和反比例函数的性质得到k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得到-2m=n故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得到y=-mx-m,求得P(-1,0),Q(0,-m),根据三角形的面积公式即可得到S△AOP=S△BOQ;故③正确;根据图象得到不等式k1x+b>的解集是x<-2或0<x<1,故④正确.详解:由图象知,k1<0,k2<0,∴k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得-2m=n,∴m+n=0,故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得,∴,∵-2m=n,∴y=-mx-m,∵已知直线y=k1x+b与x轴、y轴相交于P、Q两点,∴P(-1,0),Q(0,-m),∴OP=1,OQ=m,∴S△AOP=m,S△BOQ=m,∴S△AOP=S△BOQ;故③正确;由图象知不等式k1x+b>的解集是x<-2或0<x<1,故④正确;故答案为:②③④.点睛:本题考查了反比例函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的关键.10. (2018•广西南宁•3分)如图,矩形ABCD的顶点A,B在x轴上,且关于y轴对称,反比例函数y=(x >0)的图象经过点C,反比例函数y=(x<0)的图象分别与AD,CD交于点E,F,若S△BEF=7,k1+3k2=0,则k1等于9 .【分析】设出点A坐标,根据函数关系式分别表示各点坐标,根据割补法表示△BEF的面积,构造方程.【解答】解:设点B的坐标为(a,0),则A点坐标为(﹣a,0)由图象可知,点C(a,),E(﹣a,﹣),D(﹣a,),F(﹣,)矩形ABCD面积为:2a•=2k1∴S△DEF=S△BCF=S△ABE=∵S△BEF=7∴2k1+﹣+k1=7 ①∵k1+3k2=0∴k2=﹣k1代入①式得解得k1=9故答案为:9【点评】本题是反比例函数综合题,解题关键是设出点坐标表示相关各点,应用面积法构造方程.11. (2018·黑龙江齐齐哈尔·3分)已知反比例函数y=的图象在第一、三象限内,则k的值可以是1 .(写出满足条件的一个k的值即可)【分析】根据反比例函数的性质:反比例函数y=的图象在第一、三象限内,则可知2﹣k>0,解得k的取值范围,写出一个符合题意的k即可.【解答】解:由题意得,反比例函数y=的图象在第一、三象限内,则2﹣k>0,故k<2,满足条件的k可以为1,故答案为:1.【点评】本题主要考查反比例函数的性质,当k>0时,双曲线的两个分支在一,三象限,y随x的增大而减小;当k<0时,双曲线的两个分支在二,四象限,y随x的增大而增大.12.(2018•福建A卷•4分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC 面积的最小值为 6 .【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C(a,).将y=x+m代入y=,整理得x2+mx﹣3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以A.b是方程x2+mx﹣3=0的两个根,根据根与系数的关系得出a+b=﹣m,ab=﹣3,那么(a﹣b)2=(a+b)2﹣4ab=m2+12.再根据三角形的面积公式得出S△ABC=AC•BC=m2+6,利用二次函数的性质即可求出当m=0时,△ABC的面积有最小值6.【解答】解:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.∵S△ABC=AC•BC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了函数图象上点的坐标特征,根与系数的关系,三角形的面积,二次函数的性质.13.(2018•福建B卷•4分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC 面积的最小值为 6 .【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C(a,).将y=x+m代入y=,整理得x2+mx﹣3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以A.b是方程x2+mx﹣3=0的两个根,根据根与系数的关系得出a+b=﹣m,ab=﹣3,那么(a﹣b)2=(a+b)2﹣4ab=m2+12.再根据三角形的面积公式得出S△ABC=AC•BC=m2+6,利用二次函数的性质即可求出当m=0时,△ABC的面积有最小值6.【解答】解:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.∵S△ABC=AC•BC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了函数图象上点的坐标特征,根与系数的关系,三角形的面积,二次函数的性质.14.(2018•广东•3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2.B3.B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2.B3.B4的坐标进而得出点B n的规律是解题的关键.15.(2018•广西北海•3分)如图,矩形ABCD 的顶点A, B 在x 轴上,且关于y 轴对称,反比例函数 y = k1 (x > 0) 的图像经过点C ,反比例函数xy = k2 (x < 0)的图像分别与 AD , CD 交于点 E , F ,x若S ∆BEF= 7, k 1 + 3k 2 = 0,则k 1 等于.【答案】k 1 = 9【考点】反比例函数综合题【解析】设 B 的坐标为(a ,0),则 A 为(-a ,0),其中 k 1 + 3k 2 = 0,即 k 1 = -3k 2根据题意得到C (a , k 1 ) a, E (-a ,- k 2 ), D (-a , a k 1 ) a, F (- a , 3 k 1 )a矩形面积= 2a ⨯ k1 = 2ka12a ⨯(- 2k 2 )S ∆DE F= DF ⨯ DE = 3 2a = - 2 k23 24a ⨯ k 1S =CF ⨯ BC= 3a = 2 k∆BCF2 2 312a ⨯(-k2)S∆AB E =AB ⨯AE=2a =-k22!S∆BEF =7∴2k +2k -2k +k = 713 231 2把k =-1k 代入上式,得到2314k +5⨯(-1k ) = 73 13 314k -5k = 731917k = 791k1 = 9【点评】该题考察到反比例函数中k 值得计算,设点是关键,把各点坐标求出来,根据割补法求面积列式,求出k1 的值。

2018中考反比例函数(含解析)

2018中考反比例函数(含解析)

2018中考数学:反比例函数一.选择题(共21小题)1.(2018•玉林)等腰三角形底角与顶角之间的函数关系是()A.正比例函数 B.一次函数C.反比例函数D.二次函数【分析】根据一次函数的定义,可得答案.【解答】解:设等腰三角形的底角为y,顶角为x,由题意,得y=﹣x+90°,故选:B.2.(2018•怀化)函数y=kx﹣3与y=(k≠0)在同一坐标系内的图象可能是()A.B.C.D.【分析】根据当k>0、当k<0时,y=kx﹣3和y=(k≠0)经过的象限,二者一致的即为正确答案.【解答】解:∵当k>0时,y=kx﹣3过一、三、四象限,反比例函数y=过一、三象限,当k<0时,y=kx﹣3过二、三、四象限,反比例函数y=过二、四象限,∴B正确;故选:B.3.(2018•永州)在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A.B.C.D.【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【解答】解:A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a、b异号,即b<0.所以反比例函数y=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a、b同号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项正确;故选:D.4.(2018•菏泽)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【分析】直接利用二次函数图象经过的象限得出a,b,c的取值范围,进而利用一次函数与反比例函数的性质得出答案.【解答】解:∵二次函数y=ax2+bx+c的图象开口向上,∴a>0,∵该抛物线对称轴位于y轴的右侧,∴a、b异号,即b<0.∵当x=1时,y<0,∴a+b+c<0.∴一次函数y=bx+a的图象经过第一、二、四象限,反比例函数y=的图象分布在第二、四象限,故选:B.5.(2018•大庆)在同一直角坐标系中,函数y=和y=kx﹣3的图象大致是()A.B.C.D.【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【解答】解:分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限.故选:B.6.(2018•香坊区)对于反比例函数y=,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小【分析】根据反比例函数的性质用排除法解答.【解答】解:A、把点(﹣2,﹣1)代入反比例函数y=得﹣1=﹣1,故A选项正确;B、∵k=2>0,∴图象在第一、三象限,故B选项正确;C、当x>0时,y随x的增大而减小,故C选项错误;D、当x<0时,y随x的增大而减小,故D选项正确.故选:C.7.(2018•衡阳)对于反比例函数y=﹣,下列说法不正确的是()A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【解答】解:A、k=﹣2<0,∴它的图象在第二、四象限,故本选项正确;B、k=﹣2<0,当x>0时,y随x的增大而增大,故本选项正确;C、∵﹣=﹣2,∴点(1,﹣2)在它的图象上,故本选项正确;D、点A(x1,y1)、B(x2、y2)都在反比例函数y=﹣的图象上,若x1<x2<0,则y1<y2,故本选项错误.故选:D.8.(2018•柳州)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2B.a≠﹣2 C.a≠±2D.a=±2【分析】根据反比例函数解析式中k是常数,不能等于0解答即可.【解答】解:由题意可得:|a|﹣2≠0,解得:a≠±2,故选:C.9.(2018•德州)给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③【分析】分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.【解答】解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项错误;②y=,当x>1时,函数值y随自变量x增大而减小,故此选项错误;③y=2x2,当x>1时,函数值y随自变量x增大而减小,故此选项正确;④y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项正确;故选:B.10.(2018•嘉兴)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1 B.2 C.3 D.4【分析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据△AOB的面积为1,即可求得k的值.【解答】解:设点A的坐标为(a,0),∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,∴点C(﹣a,),∴点B(0,),∴=1,解得,k=4,故选:D.11.(2018•温州)如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为()A.4 B.3 C.2 D.【分析】先求出点A,B的坐标,再根据AC∥BD∥y轴,确定点C,点D的坐标,求出AC,BD,最后根据,△OAC与△ABD的面积之和为,即可解答.【解答】解:∵点A,B在反比例函数y=(x>0)图象上,点A,B的横坐标分别为1,2,∴点A的坐标为(1,1),点B的坐标为(2,),∵AC∥BD∥y轴,∴点C,D的横坐标分别为1,2,∵点C,D在反比例函数y=(k>0)的图象上,∴点C的坐标为(1,k),点D的坐标为(2,),∴AC=k﹣1,BD=,∴S△OAC=(k﹣1)×1=,S△ABD=•×(2﹣1)=,∵△OAC与△ABD的面积之和为,∴,解得:k=3.故选:B.12.(2018•宁波)如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8 B.﹣8 C.4 D.﹣4【分析】设A(a,h),B(b,h),根据反比例函数图象上点的坐标特征得出ah=k1,bh=k2.根据三角形的面积公式得到S△ABC=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,求出k1﹣k2=8.【解答】解:∵AB∥x轴,∴A,B两点纵坐标相同.设A(a,h),B(b,h),则ah=k1,bh=k2.∵S△ABC=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,∴k1﹣k2=8.故选:A.13.(2018•郴州)如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.1【分析】先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(2,2),B(4,1).再过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,根据反比例函数系数k的几何意义得出S△AOC=S△BOD=×4=2.根据S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面积公式求出S梯形ABDC=(BD+AC)•CD=(1+2)×2=3,从而得出S△AOB=3.【解答】解:∵A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,∴当x=2时,y=2,即A(2,2),当x=4时,y=1,即B(4,1).如图,过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,则S△AOC=S△BOD=×4=2.∵S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,∴S△AOB=S梯形ABDC,∵S梯形ABDC=(BD+AC)•CD=(1+2)×2=3,∴S△AOB=3.故选:B.14.(2018•无锡)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n【分析】根据反比例函数的性质,可得答案.【解答】解:y=的k=﹣2<0,图象位于二四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故D正确;故选:D.15.(2018•淮安)若点A(﹣2,3)在反比例函数y=的图象上,则k的值是()A.﹣6 B.﹣2 C.2 D.6【分析】根据待定系数法,可得答案.【解答】解:将A(﹣2,3)代入反比例函数y=,得k=﹣2×3=﹣6,故选:A.16.(2018•岳阳)在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1 B.m C.m2D.【分析】三个点的纵坐标相同,由图象可知y=x2图象上点横坐标互为相反数,则x1+x2+x3=x3,再由反比例函数性质可求x3.【解答】解:设点A、B在二次函数y=x2图象上,点C在反比例函数y=(x>0)的图象上.因为AB两点纵坐标相同,则A、B关于y轴对称,则x1+x2=0,因为点C(x3,m)在反比例函数图象上,则x3=,∴ω=x1+x2+x3=x3=, 故选:D.17.(2018•遵义)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x >0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=【分析】直接利用相似三角形的判定与性质得出=,进而得出S△AOD=2,即可得出答案.【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∴=tan30°=,∴=,∵×AD×DO=xy=3,∴S△BCO=×BC×CO=S△AOD=1,∴S△AOD=2,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣.故选:C.18.(2018•湖州)如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是()A.(﹣1,﹣2)B.(﹣1,2) C.(1,﹣2) D.(﹣2,﹣1)【分析】直接利用正比例函数的性质得出M,N两点关于原点对称,进而得出答案.【解答】解:∵直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点,∴M,N两点关于原点对称,∵点M的坐标是(1,2),∴点N的坐标是(﹣1,﹣2).故选:A.19.(2018•江西)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作x轴的垂线l1和l2,探究直线l1,直线l2与双曲线y=的关系,下列结论错误的是()A.两直线中总有一条与双曲线相交B.当m=1时,两直线与双曲线的交点到原点的距离相等C.当﹣2<m<0时,两直线与双曲线的交点在y轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2【分析】A、由m、m+2不同时为零,可得出:两直线中总有一条与双曲线相交;B、找出当m=1时两直线与双曲线的交点坐标,利用两点间的距离公式可得出:当m=1时,两直线与双曲线的交点到原点的距离相等;C、当﹣2<m<0时,0<m+2<2,可得出:当﹣2<m<0时,两直线与双曲线的交点在y轴两侧;D、由y与x之间一一对应结合两交点横坐标之差为2,可得出:当两直线与双曲线都有交点时,这两交点的距离大于2.此题得解.【解答】解:A、∵m、m+2不同时为零,∴两直线中总有一条与双曲线相交;B、当m=1时,点A的坐标为(1,0),点B的坐标为(3,0),当x=1时,y==3,∴直线l1与双曲线的交点坐标为(1,3);当x=3时,y==1,∴直线l2与双曲线的交点坐标为(3,1).∵=,∴当m=1时,两直线与双曲线交点到原点的距离相等;C、当﹣2<m<0时,0<m+2<2,∴当﹣2<m<0时,两直线与双曲线的交点在y轴两侧;D、∵m+2﹣m=2,且y与x之间一一对应,∴当两直线与双曲线都有交点时,这两交点的距离大于2.故选:D.20.(2018•铜仁市)如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1;B.x<﹣2 C.0<x<1 D.﹣2<x<0或x>1【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【解答】解:观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<的解集是﹣2<x<0或x>1.故选:D.21.(2018•聊城)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x (min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内【分析】利用图中信息一一判断即可;【解答】解:A、正确.不符合题意.B、由题意x=4时,y=8,∴室内空气中含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2.5或24,24﹣2.5=21.5<35,故本选项错误,符合题意;D、正确.不符合题意,故选:C.二.填空题(共9小题)22.(2018•上海)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是k<1.【分析】由于在反比例函数y=的图象有一支在第二象限,故k﹣1<0,求出k的取值范围即可.【解答】解:∵反比例函数y=的图象有一支在第二象限,∴k﹣1<0,解得k<1.故答案为:k<1.23.(2018•齐齐哈尔)已知反比例函数y=的图象在第一、三象限内,则k的值可以是1.(写出满足条件的一个k的值即可)【分析】根据反比例函数的性质:反比例函数y=的图象在第一、三象限内,则可知2﹣k>0,解得k 的取值范围,写出一个符合题意的k即可.【解答】解:由题意得,反比例函数y=的图象在第一、三象限内,则2﹣k>0,故k<2,满足条件的k可以为1,故答案为:1.24.(2018•连云港)已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,则y1与y2的大小关系为y1<y2.【分析】根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小,从而可以解答本题.【解答】解:∵反比例函数y=﹣,﹣4<0,∴在每个象限内,y随x的增大而增大,∵A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,﹣4<﹣1,∴y1<y2,故答案为:y1<y2.25.(2018•南京)已知反比例函数y=的图象经过点(﹣3,﹣1),则k=3.【分析】根据反比例函数y=的图象经过点(﹣3,﹣1),可以求得k的值.【解答】解:∵反比例函数y=的图象经过点(﹣3,﹣1),∴﹣1=,解得,k=3,故答案为:3.26.(2018•陕西)若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.【分析】设反比例函数的表达式为y=,依据反比例函数的图象经过点A(m,m)和B(2m,﹣1),即可得到k的值,进而得出反比例函数的表达式为.【解答】解:设反比例函数的表达式为y=,∵反比例函数的图象经过点A(m,m)和B(2m,﹣1),∴k=m2=﹣2m,解得m1=﹣2,m2=0(舍去),∴k=4,∴反比例函数的表达式为.故答案为:.27.(2018•东营)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为y=.【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【解答】解:设A坐标为(x,y),∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0﹣3,解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),设过点A的反比例解析式为y=,把A(﹣2,﹣3)代入得:k=6,则过点A的反比例解析式为y=,故答案为:y=28.(2018•成都)设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.【分析】以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,联立直线AB及双曲线解析式成方程组,通过解方程组可求出点A、B的坐标,由PQ的长度可得出点P的坐标(点P在直线y=﹣x上找出点P的坐标),由图形的对称性结合点A、B和P的坐标可得出点P′的坐标,再利用反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解之即可得出结论.【解答】解:以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.联立直线AB及双曲线解析式成方程组,,解得:,,∴点A的坐标为(﹣,﹣),点B的坐标为(,).∵PQ=6,∴OP=3,点P的坐标为(﹣,).根据图形的对称性可知:AB=OO′=PP′,∴点P′的坐标为(﹣+2,+2).又∵点P′在双曲线y=上,∴(﹣+2)•(+2)=k,解得:k=.故答案为:.29.(2018•安顺)如图,已知直线y=k1x+b与x轴、y轴相交于P、Q两点,与y=的图象相交于A(﹣2,m)、B(1,n)两点,连接OA、OB,给出下列结论:①k1k2<0;②m+n=0;③S△AOP=S△BOQ;④不等式k1x+b的解集是x<﹣2或0<x<1,其中正确的结论的序号是②③④.【分析】根据一次函数和反比例函数的性质得到k1k2>0,故①错误;把A(﹣2,m)、B(1,n)代入y=中得到﹣2m=n故②正确;把A(﹣2,m)、B(1,n)代入y=k1x+b得到y=﹣mx﹣m,求得P(﹣1,0),Q(0,﹣m),根据三角形的面积公式即可得到S△AOP=S△BOQ;故③正确;根据图象得到不等式k1x+b的解集是x<﹣2或0<x<1,故④正确.【解答】解:由图象知,k1<0,k2<0,∴k1k2>0,故①错误;把A(﹣2,m)、B(1,n)代入y=中得﹣2m=n,∴m+n=0,故②正确;把A(﹣2,m)、B(1,n)代入y=k1x+b得,∴,∵﹣2m=n,∴y=﹣mx﹣m,∵已知直线y=k1x+b与x轴、y轴相交于P、Q两点,∴P(﹣1,0),Q(0,﹣m),∴OP=1,OQ=m,∴S△AOP=m,S△BOQ=m,∴S△AOP=S△BOQ;故③正确;由图象知不等式k1x+b的解集是x<﹣2或0<x<1,故④正确;故答案为:②③④.30.(2018•安徽)如图,正比例函数y =kx 与反比例函数y =的图象有一个交点A (2,m ),AB ⊥x 轴于点B .平移直线y =kx ,使其经过点B ,得到直线l ,则直线l 对应的函数表达式是 y =x ﹣3 .【分析】首先利用图象上点的坐标特征得出A 点坐标,进而得出正比例函数解析式,再利用平移的性质得出答案.【解答】解:∵正比例函数y =kx 与反比例函数y =的图象有一个交点A (2,m ),∴2m =6,解得:m =3,故A (2,3),则3=2k ,解得:k =,故正比例函数解析式为:y =x ,∵AB ⊥x 轴于点B ,平移直线y =kx ,使其经过点B ,∴B (2,0),∴设平移后的解析式为:y =x +b ,则0=3+b ,解得:b =﹣3,故直线l 对应的函数表达式是:y =x ﹣3.故答案为:y =x ﹣3.三.解答题(共20小题)31.(2018•贵港)如图,已知反比例函数y =(x >0)的图象与一次函数y =﹣x +4的图象交于A 和B(6,n )两点.(1)求k 和n 的值;(2)若点C (x ,y )也在反比例函数y =(x >0)的图象上,求当2≤x ≤6时,函数值y 的取值范围.【分析】(1)利用一次函数图象上点的坐标特征可求出n 值,进而可得出点B 的坐标,再利用反比例函数图象上点的坐标特征即可求出k 值;(2)由k =6>0结合反比例函数的性质,即可求出:当2≤x ≤6时,1≤y ≤3.【解答】解:(1)当x=6时,n=﹣×6+4=1,∴点B的坐标为(6,1).∵反比例函数y=过点B(6,1),∴k=6×1=6.(2)∵k=6>0,∴当x>0时,y随x值增大而减小,∴当2≤x≤6时,1≤y≤3.32.(2018•泰安)如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=的图象经过点E,与AB交于点F.(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF﹣AE=2,求反比例函数的表达式.【分析】(1)根据矩形的性质,可得A,E点坐标,根据待定系数法,可得答案;(2)根据勾股定理,可得AE的长,根据线段的和差,可得FB,可得F点坐标,根据待定系数法,可得m的值,可得答案.【解答】解:(1)点B坐标为(﹣6,0),AD=3,AB=8,E为CD的中点,∴点A(﹣6,8),E(﹣3,4),函数图象经过E点,∴m=﹣3×4=﹣12,设AE的解析式为y=kx+b,,解得,一次函数的解析是为y=﹣x;(2)AD=3,DE=4,∴AE==5,∵AF﹣AE=2,∴AF=7,BF=1,设E点坐标为(a,4),则F点坐标为(a﹣3,1),∵E,F两点在函数y=图象上,∴4a=a﹣3,解得a=﹣1,∴E(﹣1,4),∴m=﹣1×4=﹣4,∴y=﹣.33.(2018•岳阳)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,A C.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.【分析】(1)把A的坐标代入反比例函数的解析式即可求得;(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b方程求得b的值,进而求得a的值,根据待定系数法,可得答案.【解答】解:(1)由题意得,k=xy=2×3=6∴反比例函数的解析式为y=.(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b)∵反比例函数y=的图象经过点B(a,b),∴b=,∴AD=3﹣.∴S△ABC=BC•AD=a(3﹣)=6,解得a=6,∴b==, ∴B(6,1).设AB的解析式为y=kx+b,将A(2,3),B(6,1)代入函数解析式,得,解得,直线AB的解析式为y=﹣x+4.34.(2018•柳州)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A(3,1),B(﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.【分析】(1)根据反比例函数y=的图象经过A(3,1),即可得到反比例函数的解析式为y=;(2)把B(﹣,n)代入反比例函数解析式,可得n=﹣6,把A(3,1),B(﹣,﹣6)代入一次函数y=mx+b,可得一次函数的解析式为y=2x﹣5.【解答】解:(1)∵反比例函数y=的图象经过A(3,1),∴k=3×1=3,∴反比例函数的解析式为y=;(2)把B(﹣,n)代入反比例函数解析式,可得﹣n=3,解得n=﹣6,∴B(﹣,﹣6),把A(3,1),B(﹣,﹣6)代入一次函数y=mx+b,可得,解得,∴一次函数的解析式为y=2x﹣5.35.(2018•白银)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标.【分析】(1)利用点A在y=﹣x+4上求a,进而代入反比例函数y=求k.(2)联立方程求出交点,设出点P坐标表示三角形面积,求出P点坐标.【解答】解:(1)把点A(﹣1,a)代入y=x+4,得a=3,∴A(﹣1,3),把A(﹣1,3)代入反比例函数y=,∴k=﹣3,∴反比例函数的表达式为y=﹣(2)联立两个函数的表达式得,解得或,∴点B的坐标为B(﹣3,1)当y=x+4=0时,得x=﹣4,∴点C(﹣4,0),设点P的坐标为(x,0)∵S△ACP=S△BOC,∴解得x1=﹣6,x2=﹣2,∴点P(﹣6,0)或(﹣2,0)36.(2018•菏泽)如图,已知点D在反比例函数y=的图象上,过点D作DB⊥y轴,垂足为B(0,3),直线y=kx+b经过点A(5,0),与y轴交于点C,且BD=OC,OC:OA=2:5.(1)求反比例函数y=和一次函数y=kx+b的表达式;(2)直接写出关于x的不等式>kx+b的解集.【分析】(1)由OC、OA、BD之间的关系结合点A、B的坐标可得出点C、D的坐标,由点D的坐标利用反比例函数图象上点的坐标特征可求出a值,进而可得出反比例函数的表达式,再由点A、C的坐标利用待定系数法,即可求出一次函数的表达式;(2)将一次函数表达式代入反比例函数表达式中,利用根的判别式△<0可得出两函数图象无交点,再观察图形,利用两函数图象的上下位置关系即可找出不等式>kx+b的解集.【解答】解:(1)∵BD=OC,OC:OA=2:5,点A(5,0),点B(0,3),∴OA=5,OC=BD=2,OB=3,又∵点C在y轴负半轴,点D在第二象限,∴点C的坐标为(0,﹣2),点D的坐标为(﹣2,3).∵点D(﹣2,3)在反比例函数y=的图象上,∴a=﹣2×3=﹣6,∴反比例函数的表达式为y=﹣.将A(5,0)、B(0,﹣2)代入y=kx+b,,解得:,∴一次函数的表达式为y=x﹣2.(2)将y=x﹣2代入y=﹣,整理得:x2﹣2x+6=0,∵△=(﹣2)2﹣4××6=﹣<0,∴一次函数图象与反比例函数图象无交点.观察图形,可知:当x<0时,反比例函数图象在一次函数图象上方,∴不等式>kx+b的解集为x<0.37.(2018•湘西州)反比例函数y=(k为常数,且k≠0)图象过点A(1,3)、B(3,m).(1)求反比例函数的解析式及B点的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【分析】(1)先把A点坐标代入y=求出k得到反比例函数解析式;然后把B(3,m)代入反比例函数解析式求出m得到B点坐标;(2)作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,﹣3),利用两点之间线段最短可判断此时此时PA+PB的值最小,再利用待定系数法求出直线BA′的解析式,然后求出直线与x轴的交点坐标即可得到P点坐标.【解答】解:(1)把A(1,3)代入y=得k=1×3=3,∴反比例函数解析式为y=;把B(3,m)代入y=得3m=3,解得m=1,∴B点坐标为(3,1);(2)作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,﹣3),∵PA+PB=PA′+PB=BA′,∴此时此时PA+PB的值最小,设直线BA′的解析式为y=mx+n,把A′(1,﹣3),B(3,1)代入得,解得,∴直线BA′的解析式为y=2x﹣5,当y=0时,2x﹣5=0,解得x=,∴P点坐标为(,0).38.(2018•大庆)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标;(3)求△OAP的面积.【分析】(1)将点A的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=5,由AB∥x轴即可得点B的坐标;(3)先根据点B坐标得出OB所在直线解析式,求得直线与双曲线交点P的坐标,再利用割补法求解可得.【解答】解:(1)将点A(4,3)代入y=,得:k=12,则反比例函数解析式为y=;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴OA==5,∵AB∥x轴,且AB=OA=5,∴点B的坐标为(9,3);(3)∵点B坐标为(9,3),∴OB所在直线解析式为y=x,由可得点P坐标为(6,2),过点P作PD⊥x轴,延长DP交AB于点E,则点E坐标为(6,3),∴AE=2、PE=1、PD=2,则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=5.39.(2018•枣庄)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.【分析】(1)根据三角形相似,可求出点C坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【解答】解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴,∴OB∥CD,∴△ABO∽△ACD,∴,∴,∴CD=20∴点C坐标为(﹣4,20),∴n=xy=﹣80,∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8,∴点E坐标为(10,﹣8),∴S△CDE=S△CDA+S△EDA=(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象∴由图象得,x≥10,或﹣4≤x<040.(2018•杭州)设一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(﹣1,﹣1)两点.(1)求该一次函数的表达式;(2)若点(2a+2,a2)在该一次函数图象上,求a的值.(3)已知点C(x1,y1)和点D(x2,y2)在该一次函数图象上,设m=(x1﹣x2)(y1﹣y2),判断反比例函数y=的图象所在的象限,说明理由.【分析】(1)根据一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(﹣1,﹣1)两点,可以求得该函数的表达式;(2)根据(1)中的解析式可以求得a的值;(3)根据题意可以判断m的正负,从而可以解答本题.【解答】解:(1)∵一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(﹣1,﹣1)两点,∴,得,即该一次函数的表达式是y=2x+1;(2)点(2a+2,a2)在该一次函数y=2x+1的图象上,∴a2=2(2a+2)+1,解得,a=﹣1或a=5,即a的值是﹣1或5;(3)反比例函数y=的图象在第一、三象限,理由:∵点C(x1,y1)和点D(x2,y2)在该一次函数y=2x+1的图象上,m=(x1﹣x2)(y1﹣y2),假设x1<x2,则y1<y1,此时m=(x1﹣x2)(y1﹣y2)>0,假设x1>x2,则y1>y1,此时m=(x1﹣x2)(y1﹣y2)>0,由上可得,m>0,∴m+1>0,∴反比例函数y=的图象在第一、三象限.41.(2018•杭州)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时).(1)求v关于t的函数表达式.(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?【分析】(1)直接利用vt=100进而得出答案;(2)直接利用要求不超过5小时卸完船上的这批货物,进而得出答案.【解答】解:(1)由题意可得:100=vt,则v=;(2)∵不超过5小时卸完船上的这批货物,∴t≤5,则v≥=20,答:平均每小时至少要卸货20吨.42.(2018•河北)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t (秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.【分析】(1)用待定系数法解题即可;(2)根据题意,分别用t表示x、y,再用代入消元法得出y与x之间的关系式;(3)求出甲距x轴1.8米时的横坐标,根据题意求出乙位于甲右侧超过4.5米的v乙.【解答】解:(1)由题意,点A(1,18)带入y=,得:18=,∴k=18设h=at2,把t=1,h=5代入∴a=5,∴h=5t2(2)∵v=5,AB=1,∴x=5t+1,∵h=5t2,OB=18,∴y=﹣5t2+18。

最新北师大版2018-2019学年数学九年级上册《反比例函数》全章热门考点整合及答案解析-精品试题

最新北师大版2018-2019学年数学九年级上册《反比例函数》全章热门考点整合及答案解析-精品试题

全章热门考点整合应用名师点金:反比例函数及其图象、性质是历年来中考的热点,既有与本学科知识的综合,也有与其他学科知识的综合,题型既有选择、填空,也有解答类型.其热门考点可概括为:一个概念,两个方法,两个应用及一个技巧.一个概念——反比例函数1.若y =(m -1)x |m|-2是反比例函数,则m 的取值为( )A .1B .-1C .±1 D.任意实数2.某学校到县城的路程为5 km ,一同学骑车从学校到县城的平均速度v(km/h)与所用时间t(h)之间的函数表达式是( )A .v =5tB .v =t +5C .v =5tD .v =t 53.判断下面哪些式子表示y 是x 的反比例函数:①xy=-13;②y=5-x ;③y=-25x ;④y=2ax (a 为常数且a≠0).其中________是反比例函数.(填序号)两个方法:方法1 画反比例函数图象的方法 4.已知y 与x 的部分取值如下表: x … -6 -5 -4 -3 -2 -1 1234 5 6…y…11.2 1.5236-6 -3 -2-1.5 -1.2-1 …(1)试猜想y 与x 的函数关系可能是你学过的哪类函数,并写出这个函数的表达式; (2)画出这个函数的图象.方法2 求反比例函数表达式的方法5.已知反比例函数y =kx 的图象与一次函数y =x +b 的图象在第一象限内相交于点A(1,-k +4).试确定这两个函数的表达式.6.如图,已知A(-4,n),B(2,-4)是一次函数y =kx +b 的图象和反比例函数y =mx 的图象的两个交点.求:(1)反比例函数和一次函数的表达式;(2)直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)方程kx +b -mx =0的解(请直接写出答案);(4)不等式kx +b -mx<0的解集(请直接写出答案).(第6题)两个应用应用1 反比例函数图象和性质的应用7.画出反比例函数y =6x 的图象,并根据图象回答问题:(1)根据图象指出当y =-2时x 的值;(2)根据图象指出当-2<x<1且x≠0时y 的取值范围; (3)根据图象指出当-3<y<2且y≠0时x 的取值范围.应用2 反比例函数的实际应用8.某厂仓库储存了部分原料,按原计划每时消耗2 t ,可用60 h .由于技术革新,实际生产能力有所提高,即每时消耗的原料量大于计划消耗的原料量.设现在每时消耗原料x(单位:t),库存的原料可使用的时间为y(单位:h).(1)写出y 关于x 的函数表达式,并求出自变量的取值范围;(2)若恰好经过24 h 才有新的原料进厂,为了使机器不停止运转,则x 应控制在什么范围内?一个技巧——用k 的几何性质巧求图形的面积9.【2015·眉山】如图,A ,B 是双曲线y =kx (k≠0)上的两点,过A 点作AC⊥x 轴,交OB 于D 点,垂足为C.若△ADO 的面积为1,D 为OB 的中点,则k 的值为( )A.43B.83C .3D .4(第9题)(第10题)10.如图,过x 轴正半轴上的任意一点P 作y 轴的平行线交反比例函数y =2x (x >0)和y=-4x(x >0)的图象于A ,B 两点,C 是y 轴上任意一点,则△ABC 的面积为________.11.【2015·东营】如图是函数y =3x 与函数y =6x 在第一象限内的图象,点P 是y =6x 的图象上一动点,PA⊥x 轴于点A ,交y =3x 的图象于点C ,PB⊥y 轴于点B ,交y =3x 的图象于点D.(1)求证:D 是BP 的中点; (2)求四边形ODPC 的面积.答案1.B 2.C3.①③④4.解:(1)反比例函数,函数的表达式为y =-6x .(2)如图.(第4题)5.解:∵反比例函数y =kx 的图象经过点A(1,-k +4),∴-k +4=k1,即-k +4=k.∴k=2.∴A(1,2).∵一次函数y =x +b 的图象经过点A(1,2), ∴2=1+b.∴b=1.∴反比例函数的表达式为y =2x ,一次函数的表达式为y =x +1.6.解:(1)将B(2,-4)的坐标代入y =m x ,得-4=m2,解得m =-8.∴反比例函数的表达式为y =-8x .∵点A(-4,n)在双曲线y =-8x上, ∴n=2.∴A(-4,2).把A(-4,2),B(2,-4)的坐标分别代入y =kx +b ,得⎩⎪⎨⎪⎧-4k +b =2,2k +b =-4,解得⎩⎪⎨⎪⎧k =-1,b =-2. ∴一次函数的表达式为y =-x -2. (2)令y =0,则-x -2=0,x =-2. ∴C(-2,0).∴OC=2.∴S △AOB =S △AOC +S △BOC =12×2×2+12×2×4=6.(3)x 1=-4,x 2=2. (4)-4<x<0或x>2. 7.解:如图.(1)当y =-2时,x =-3;(2)当-2<x<1且x≠0时,y<-3或y>6; (3)当-3<y<2且y≠0时,x<-2或x>3.(第7题)8.解:(1)库存原料为2×60=120(t),根据题意可知y 关于x 的函数表达式为y =120x .由于生产能力提高,每时消耗的原料量大于计划消耗的原料量,所以自变量的取值范围是x>2.(2)根据题意,得y ≥24, 所以120x ≥24.解不等式,得x ≤5,即每时消耗的原料量应控制在大于2 t 且不大于5 t 的范围内.点拨:(1)由“每时消耗的原料量×可使用的时间=原料总量”可得y 关于x 的函数表达式.(2)要使机器不停止运转,需y ≥24,解不等式即可.9.B 点拨:如图,过点B 作BE⊥x 轴于点E ,∵D 为OB 的中点,∴CD 是△OBE 的中位线,则CD =12BE.设A ⎝ ⎛⎭⎪⎫x ,k x ,易得B ⎝⎛⎭⎪⎫2x ,k 2x ,∴CD=k 4x .∴AD=k x -k4x .∵△ADO 的面积为1,∴12AD·OC=1,即12⎝ ⎛⎭⎪⎫k x -k 4x ·x=1.解得k =83.(第9题)10.3 点拨:连接AO ,BO ,由题可得S △ABC =S △ABO =S △APO +S △BPO ,又易知S △APO =12×2=1,S △BPO =12×|-4|=2,∴S △ABC =3.故答案为3.11.(1)证明:∵点P 在双曲线y =6x上,∴设P 点坐标为⎝ ⎛⎭⎪⎫6m ,m . ∵点D 在双曲线y =3x上,BP∥x 轴,D 在BP 上,∴D 点坐标为⎝ ⎛⎭⎪⎫3m ,m . ∴BD=3m ,BP =6m .∴D 是BP 的中点.(2)解:由题意可知S △BOD =32,S △AOC =32,S 四边形OBPA =6.∴S 四边形ODPC =S 四边形OBPA -S △BOD -S △AOC =6-32-23=3.。

各地2018年中考数学试卷精选汇编 反比例函数(含解析)

各地2018年中考数学试卷精选汇编 反比例函数(含解析)
8. (2018年江苏省南京市•2 分)已知反比例函数 y= 的图象经过点(﹣3,﹣1),则 k= 3 .
【分析】根据反比例函数 y= 的图象经过点(﹣3,﹣1),可以求得 k 的值.
【解答】解:∵反比例函数 y= 的图象经过点(﹣3,﹣1),
∴﹣1= ,
解得,k=3, 故答案为:3. 【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质 解答.
②∵S△AOP= ·AP·yA= ·( -a)·b=6- ab,
S△BOP= ·BP·xB= ·( ∴S△AOP=S△BOP. 故②正确; ③作 PD⊥OB,PE⊥OA,
-b)·a=6- ab,
∵OA=OB,S△AOP=S△BOP. ∴PD=PE, ∴OP平分∠AOB, 故③正确;
④∵S△BOP=6∴ab=4,
在函数 y= 图象的概率是( )
A. B. C. D.
【分析】根据反比例函数图象上点的坐标特征可得出 mn=6,列表找出所有 mn的值,根据表格中 mn=6所占 比例即可得出结论. 【解答】解:∵点(m,n)在函数 y= 的图象上,
∴mn=6.
列表如下:
m ﹣﹣ ﹣ 2 2 2 3 3 3 ﹣ ﹣ ﹣
14. (2018·广东深圳·3 分)如图,
是函数
上两点,为一动点,作
轴,
轴,下列说法正确的是(
)

;②
;③若
,则 平分
;④若
,则
A. ① ③ ③ ④ 【答案】B 【考点】反比例函数系数 k 的几何意义,三角形的面积,角的平分线判定
B. ②
C.

D. ③④
【解析】【解答】解:设 P(a,b),则 A( ,b),B(a, ),①∴AP= -a,BP= -b, ∵a≠b, ∴AP≠BP,OA≠OB, ∴△AOP和△BOP不一定全等, 故①错误;

2019年中考数学压轴题专项训练:反比例函数(附解析)

2019年中考数学压轴题专项训练:反比例函数(附解析)

2019年中考数学压轴题专项训练:反比例函数一.选择题1.已知反比例函数y=﹣,下列结论错误的是()A.y随x的增大而减小B.图象位于二、四象限内C.图象必过点(﹣2,4)D.当﹣1<x<0时,y>82.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣4,﹣4),则k的值为()A.16 B.﹣3 C.5 D.5或﹣33.如图,在平面直角坐标系中,▱ABOC的顶点B,C在反比例函数y=(x>0)的图象上,点A在反比例函数y=(x>0)的图象上,若点B的坐标为(1,2),∠OBC=90°,则k的值为()A.B.3 C.5 D.4.如图,是反比例函数y=和y=﹣在x轴上方的图象,x轴的平行线AB分别与这两个函数图象相交于点A.B,则△AOB的面积是()A .5B .4C .10D .205.我们知道,如果一个矩形的宽与长之比为,那么这个矩形就称为黄金矩形.如图,已知A 、B 两点都在反比例函数y =(k >0)位于第一象限内的图象上,过A 、B 两点分别作坐标轴的垂线,垂足分别为C 、D 和E 、F ,设AC 与BF 交于点G ,已知四边形OCAD 和CEBG 都是正方形.设FG 、OC 的中点分别为P 、Q ,连接PQ .给出以下结论:①四边形ADFG 为黄金矩形;②四边形OCGF 为黄金矩形;③四边形OQPF 为黄金矩形.以上结论中,正确的是( )A .①B .②C .②③D .①②③6.如图,平行于x 轴的直线与函数y 1=(a >0,x >0),y 2=(b >0.x >0)的图象分别相交于A 、B 两点,且点A 在点B 的右侧,在X 轴上取一点C ,使得△ABC 的面积为3,则a ﹣b 的值为( )A .6B .﹣6C .3D .﹣37.如图,正比例函数y 1=﹣2x 的图象与反比例函数y 2=的图象交于A 、B 两点,点C 在x 轴负半轴上,AC =AO ,△ACO 的面积为6.则k 的值为( )A.3 B.﹣3 C.﹣6 D.68.如图,在菱形OABC中,点A的坐标为(10,0),对角线OB、AC相交于点D,OB•AC=160.双曲线y=(x>0)经过点D,交BC的延长线于点E,则过点E的双曲线表达式为()A.y=B.y=C.y=D.y=9.如图,一次函数与反比例函数的图象交于A(1,8)和B(4,2)两点,点P是线段AB 上一动点(不与点A和B重合),过P点分别作x轴,y轴的垂线PC,PD交反比例函数图象于点E,F,则四边形OEPF面积的最大值是()A.3 B.4 C.D.610.如图,平行四边形AOBC中,∠AOB=60°,AO=8,AC=15,反比例函数y=(x>0)图象经过点A,与BC交于点D,则的值为()A.B.C.D.二.填空题11.如图,在△OAB中,AO=AB,S=36,反比例函数y=(x>0)的图象与OA交于点△AOBC,点D是函数y=(x>0)的图象一点,且CD∥x轴,若∠ADC=90°,则k的值是.12.如图,点A是反比例函数y=﹣的图象第二象限分支上的动点,连结AO并延长交另一支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第三象限,AC与x轴交于点D,连结BD.当BD平分∠ABC时,点C的坐标是.13.如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=和y=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=的图象于点C,连接AC.若△ABC是等腰三角形,则k的值是.14.如图,直线y =2x ﹣1交y 轴于A ,交双曲线y =(k >0,x >0)于B ,将线段AB 绕B 点逆时针方向旋转90°,A 点的对应点为C ,若C 点落在双曲线y =(k >0,x >0)上,则k 的值为 .15.如图,点B 1(1,)在直线l 2:y =x 上,过点B 1作A 1B 1⊥l 1交直线l 1:y =x于点A 1,以A 1B 1为边在△OA 1B 1外侧作等边三角形A 1B 1C 1,过C 1的反比例函数为y =;再过点C 1作A 2B 2⊥l 1,分别交直线l 1和l 2于A 2,B 2两点,以A 2B 2为边在△OA 2B 2外侧作等边三角形A 2B 2C 2,过C 2的反比例函数为y =,…,按此规律进行下去,则第n 个反比例函数的k n = .(用含n 的代数式表示)16.如图,已知点A 在反比例函数上,作Rt △ABC ,使边BC 在x 轴上且∠ABC =90°,点D 在AC 上且CD =2AD ,连DB 并延长交y 轴于点E ,若△BCE 的面积为8,△ABC 的面积为3,则k = .17.如图,菱形ABCD的对角线BD与x轴平行,点B、C的坐标分别为(0,2)、(3,0),点A、D在函数(x>0)的图象上,则k的值为.18.如图,在△ABC中,∠ACB=90°,BC在x轴上,点B与点C关于原点对称,AB=5,AO=,边AC上的点P满足∠COP=∠CAO,且双曲线y=经过点P,则k值等于.19.如图,A、B是反比例函数y=在第一象限内的图象上的两点,且A、B两点的横坐标分别是4和8,则△OAB的面积是.20.如图,在直角坐标系中,四边形OABC为菱形,OA在x轴的正半轴上,∠AOC=60°,过点C的反比例函数的图象与AB交于点D,则△COD的面积为.三.解答题21.如图,一次函数y=kx+b与反比例函数y=的图象交于A(n,3),B(﹣3,﹣2)两点.(1)求反比例函数与一次函数的解析式;(2)过点B作BC⊥x轴,垂足为C,求S.△ABC22.如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k ≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH的中点,AC=4,cos∠ACH=,点B的坐标为(4,﹣4).(1)求该反比例函数和一次函数的解析式;(2)求△BCH的面积;(3)观察图象,直接写出ax+b>的x取值范围.23.如图所示,一次函数y =kx +b 的图象与反比例函数y =的图象交于M 、N 两点.(1)根据图中条件求出反比例函数和一次函数的解析式;(2)连结OM 、ON ,求△MON 的面积;(3)根据图象,直接写出使一次函数的值大于反比例函数的值的x 的取值范围.24.如图,双曲线y 1=与直线y 2=的图象交于A 、B 两点.已知点A 的坐标为(4,1),点P (a ,b )是双曲线y 1=上的任意一点,且0<a <4.(1)分别求出y 1、y 2的函数表达式;(2)连接PA 、PB ,得到△PAB ,若4a =b ,求三角形ABP 的面积;(3)当点P 在双曲线y 1=上运动时,设PB 交x 轴于点E ,延长PA 交x 轴于点F ,判断PE 与PF 的大小关系,并说明理由.25.制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600°C.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图),已知该材料初始温度是26℃(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于400°C时,须停止操作.那么锻造的操作时间有多长?26.如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象相交于点A(﹣4,2),B(n,﹣4)(1)求一次函数和反比例函数的表达式;(2)观察图象,直接写出不等式y1<y2的解集.27.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m ≠0)的图象交于A,B两点,与x轴交于点C,点A的坐标为(n,12),点C的坐标为(﹣4,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标;(3)连接OA,OB,求△AOB的面积.28.如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别交于点A,B,且与反比例函数y=(k为常数,k≠0)的图象在第二象限内交于点C,作CD⊥x轴于,若OA=OD=OB=3.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax+b≤的解集.29.如图1,反比例函数图象经过等边△OAB 的一个顶点B ,点A 坐标为(2,0),过点B 作BM ⊥x 轴,垂足为M .(1)求点B 的坐标和k 的值; (2)若将△ABM 沿直线AB 翻折,得到△ABM ',判断该反比例函数图象是从点M '的上方经过,还是从点M '的下方经过,又或是恰好经过点M ',并说明理由;(3)如图2,在x 轴上取一点A 1,以AA 1为边长作等边△AA 1B 1,恰好使点B 1落在该反比例函数图象上,连接BB 1,求△ABB 1的面积.30.如图,已知反比例函数y =(x >0)的图象与反比例函数y =(x <0)的图象,A (1,4),B (4,m )是函数y =(x >0)图象上的两点,连接AB ,点C (﹣2,n )是函数y =(x <0)图象上的一点,点C 关于y 轴的对称点在y =(x >0)图象上,连接AC ,BC .(1)求m ,n 的值;(2)求BC 所在直线的表达式;(3)求△ABC 的面积.参考答案一.选择题1.解:反比例函数y =﹣中k =﹣8<0,在每个象限内y 随着x 的增大而增大,故A 错误,符合题意,故选:A .2.解:设C (x ,y ),如图,∵矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,∴△ABD 和△CDB 的面积相等,∴矩形AEOF 的面积等于矩形OMCN 的面积,∴xy =k 2﹣2k +1=4×4,即(k ﹣1)2=16,解得k 1=﹣3,k 2=5.故选:D .3.解:将B (1,2)代入反比例函数y =(x >0)中得:m =2,∴y =,∵∠OBC =90°,∴k OB ×k BC =﹣1,∵k OB =2,∴k BC =﹣,∵B (1,2),∴直线BC :y =﹣x +,联立,得:点C (4,),∴线段BC 的中点坐标为(,),∵▱ABOC ,∴线段OA 的中点坐标为(,),∴点A 的坐标为(5,),∵点A 在反比例函数y =(x >0)的图象上,∴k =5×=; 故选:D .4.解:∵x 轴的平行线AB 分别与这两个函数图象相交于点A .B ,∴AB ⊥y 轴,∵点A 、B 在反比例函数y =和y =﹣在x 轴上方的图象上,∴S △AOB =S △COB +S △AOC =(3+7)=5,故选:A .5.解:∵OCAD 和CEBG 都是正方形.∴设BE =a ,AD =b ,∴B (a +b ,a ),A (b ,b ),∵A 、B 两点都在反比例函数y =,∴a (a +b )=b •b ,∴,①四边形ADFG 中宽与长的比为,将代入,得到=, ∴四边形ADFG 不是黄金矩形;①不正确;四边形OCGF中宽与长的比为=,∴四边形OCGF为黄金矩形,②正确;∵FG、OC的中点分别为P、Q,∴OQ=b,四边形OQPF中宽与长的比为=,∴四边形OQPF不是黄金矩形;③不正确;故选:B.6.解:设A(,m),B(,m),则:△ABC的面积=•AB•y A=•(﹣)•m=3,则a﹣b=6.故选:A.7.解:设A(m,﹣2m),∵AC=AO,∴△ACO是等腰三角形,∴CO=﹣2m,∴S=×(﹣2m)×(﹣2m)=6,△ACO∴m2=3,∵k=2m2,∴k=﹣6,故选:C.8.解:如图,过B作BF⊥x轴于点F,过D作DG⊥x轴于点G,过C作CH⊥x轴于点H,∵A(10,0),∴OA=10,∴S菱形ABCD=OA•BF=AC•OB=×160=80,即10BF=80,∴BF=8,在Rt△ABF中,AB=10,BF=8,由勾股定理可得AF=6,∴OF=OA+AF=10+6=16,∵四边形OABC为菱形,∴D为OB中点,∴DG=BF=×8=4,OG=OF=×16=8,∴D(8,4),∵双曲线过点D,∴4=,解得k=32,∴双曲线解析式为y=,故选:D.9.解:设一次函数解析式为y=kx+b,反比例函数解析式为y=,∵A(1,8)和B(4,2)是两个函数图象的交点,∴y=,∴,∴,∴y=﹣2x+10,∵S△ODF =S△ECO=4,设点P的坐标(x,﹣2x+10),∴四边形OEPF面积=xy﹣8=x(﹣2x+10)﹣8=﹣2x2+10x﹣8=﹣2(x﹣)2+,∴当x=时,面积最大为;故选:C.10.解:作AE⊥OB于E,DF⊥OB于F,∵∠AOB=60°,AO=8,∴OE=OA=4,AE=OA=4,∴A(4,4),∵反比例函数y=(x>0)图象经过点A,∴k=4×=16,∴y=,∵四边形AOBC是平行四边形,∴OA∥BC,∴∠DBF=∠AOB=60°,设D点的纵坐标为n,∴DF=n,∴BF=n,∵OB=AC=15,∴D(15+n,n),∵点D在反比例函数y=(x>0)图象上,∴(15+n)•n=16,解得n1=,n2=﹣16(舍去),∴DF=,∵∠DBF=∠AOB=60°,∠OEA=∠BFD=90°,∴△BFD∽△OEA,∴===,故选:C.二.填空题(共10小题)11.解:过点C 作CE ⊥x 轴于点E ,延长AD ,交x 轴于点F ,连接OD ,如图所示. ∵AO =AB ,CD ∥x 轴,∠ADC =90°,∴AF ⊥OB ,∴S △AOF =S △AOB =18.∵函数y =(x >0)图象与OA 交于点C ,点D 是函数y =(x >0)的图象上一点,∴S △OCE =k ,S △ODF =×4=2,∴===.∵CE ⊥x 轴,AF ⊥x 轴,CD ∥x 轴,∴△OCE ∽△OAF ,CE =DF ,∴=()2=,∴S △O CE =k =×18=,∴k =.故答案为:.12.解:连接OC ,过点A 作AE ⊥x 轴于E ,过点C 作CF ⊥x 轴于F ,过点D 作DH ⊥AB 于H ,如图所示.∵△ABC 为等腰直角三角形,∴OA=OC,OC⊥AB,∴∠AOE+∠COF=90°.∵∠COF+∠OCF=90°,∴∠AOE=∠OCF.在△AOE和△OCF中,,∴△AOE≌△OCF(AAS),∴AE=OF,OE=CF.∵BD平分∠ABC,∴CD=DH,∵∠CFD=∠AED=90°,∠CDF=∠ADE,∴△CDF∽△ADE,∴=,∴=,∵∠BAC=45°,∴sin45°==∴==,∵OE=CF,∴=.∵k=﹣,∴设点A的坐标为(a,﹣)(a<0),∴=,解得:a=1或a=﹣1,∴A(﹣1,),∴OE=1,AE=,∴CF=OE=1,OF=AE=,∴点C的坐标为(﹣,﹣1).故答案为:(﹣,﹣1).13.解:∵点B是y=kx和y=的交点,y=kx=,∴点B坐标为(,4),同理可求出点A的坐标为(,2),∵BD⊥x轴,∴点C横坐标为,纵坐标为,∴BA=,AC=,BC=3,∴BA2﹣AC2=3k>0,∴BA≠AC,若△ABC是等腰三角形,①AB=BC,则=3,解得:k=;②AC=BC,则=3,解得:k=;故答案为:或.14.解:过点B作BE∥x轴交y轴于点E,过点C作CD⊥BD于点D,如图:则易证△ABE ≌△BCD ,∴BE =CD ,AE =BD ,∵直线y =2x ﹣1交y 轴于A ,∴A (0,﹣1),设点B (x ,),则BE =CD =x ,AE =BD =+1,∴C (x ++1,﹣x ),∵C 点落在双曲线y =(k >0,x >0)上,∴k =(x ++1)(﹣x )①,∵点B 在直线y =2x ﹣1上,∴=2x ﹣1②,∴联立①②解得:k =6,故答案为:6.15.解:直线l 2:y =x 与x 轴夹角为30°,直线l 1:y =x 与x 轴夹角为60°, ∴l 1与l 2的夹角30°,∵A 1B 1上l 1,∴∠OB 1A 1=60°,∵等边三角形A 1B 1C 1,∴B 1C 1⊥x 轴,∵B 1(1,),∴OB 1=,∴B 1C 1=,∴C 1(1,), ∴k 1=;∴OB 2=+=,∴A 2B 2=OB 2sin30°=,∴B 2的横坐标OB 2×cos30°=,B 2的纵坐标OB 2×sin30°=,∴C 2(,), ∴k 2=,以此得到OB n =×,∁n 的横坐标OB n ×cos30°=,∁n 的纵坐标2OB n×sin30°=×,∴k n =××=×,故答案为×; 16.解:∵BD 为Rt △ABC 的斜边AC 上的中线,∴BD =DC ,∠DBC =∠ACB ,又∠DBC =∠EBO ,∴∠EBO =∠ACB ,又∠BOE =∠CBA =90°,∴△BOE ∽△CBA ,∴=,即BC ×OE =BO ×AB .又∵S △BEC =3,∴BC •EO =3,即BC ×OE =6=BO ×AB =|k |.∵反比例函数图象在第二象限,k <0.∴k =﹣6.故答案为:﹣6.17.解:菱形ABCD 的对角线BD 与x 轴平行,点B 、C 的坐标分别为(0,2)、(3,0),∵菱形对角线互相垂直平分,∴A (3,4),将点A (3,4)代入中,∴k =12;故答案为12;18.解:∵点B 与点C 关于原点对称,∴BC =2OC ,在Rt △ABC 中,AB 2=AC 2+BC 2,∵AB =5,∴25=AC 2+4OC 2,在Rt △AOC 中,AO 2=AC 2+OC 2,∵AO =, ∴13=AC 2+OC 2,∴OC =2,AC =3,∵∠COP =∠CAO ,∴tan ∠COP =tan ∠CAO ,∴,∴PC =,∴P (2,),∴k =;故答案为;19.解:∵A ,B 是反比例函数y =在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是4和8,∴当x =4时,y =2,即A (4,2),当x =8时,y =1,即B (8,1).如图,过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则S △AOC =S △BOD =×8=4. ∵S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,∴S △AOB =S 梯形ABDC ,∵S 梯形ABDC =(BD +AC )•CD =(1+2)×4=6,∴S △AOB =6.故答案为:6.20.解:作DF ∥AO ,CE ⊥AO ,∵∠AOC =60°,∴tan ∠AOC =,∴设OE =x ,CE =x , ∴x •x =4,∴x =±2,∴OE =2,CE =2,由勾股定理得:OC =4,∴S 菱形OABC =OA •CE =4×2=8,∵四边形OABC 为菱形,∴AB ∥CO ,AO ∥BC ,∵DF ∥AO ,∴S △ADO =S △DFO ,同理S △BCD =S △CDF ,∵S 菱形ABCO =S △ADO +S △DFO +S △BCD +S △CDF ,∴S 菱形ABCO =2(S △DFO +S △CDF )=2S △CDO =8,∴S △CDO =4;故答案为4.三.解答题(共10小题)21.解:(1)将点B(﹣3,﹣2)代入y=,∴m=6,∴y=,∴n=2,∴A(2,3),将A(2,3),B(﹣3,﹣2)代入y=kx+b,,∴,∴y=x+1;(2)y=x+1与x轴交点坐标(﹣1,0),∴S=×1×(3+2)=;22.解:(1)∵反比例函数y=(k≠0)的图象过点B(4,﹣4),∴k=4×(﹣4)=﹣16,∴反比例函数解析式为:y=﹣.∵AH⊥x轴于点H,AC=4,cos∠ACH=,∴==,解得:HC=4,∵点O是线段CH的中点,∴HO=CO=2,将x=﹣2代入y=﹣,得y=8,,∴A(﹣2,8).设一次函数解析式为:y=kx+b,将A(﹣2,8),B(4,﹣4)代入,得:,解得:,∴一次函数解析式为:y=﹣2x+4;(2)∵HC=4,B(4,﹣4),∴△BCH的面积为:×4×4=8;(3)观察图象可知:当x<﹣2或0<x<4时,一次函数图象在反比例函数图象的上方,所以ax+b>的x取值范围是x<﹣2或0<x<4.故答案为x<﹣2或0<x<4.23.解:(1)∵一次函数y=kx+b的图象与反比例函数y=的图象交于M(3,2)、N(﹣1,a)两点∴m=6,a=﹣6,∴反比例函数y=,N(﹣1,﹣6),把M(3,2),N(﹣1,﹣6)代入y=kx+b得,解得∴一次函数的解析式的解析式为y=2x﹣4.(2)设直线MN交x轴于点A,当y=0时,2x﹣4=0,∴x=2,∴A(2,0),∴S△MON=S△MOA+S△NOA=•OA•(y M﹣y N)=×2×8=8;(3)由图象可知,当﹣1<x<0或x>3时一次函数的值大于反比例函数的值.24.解:(1)把点A(4,1)代入双曲线y1=得k1=4,∴双曲线y1=;代入直线y2=得k2=4,∴直线为y=x;(2)∵点P(a,b)在y1=的图象上,∴ab=4,∵4a=b,∴4a2=4,则a=±1,∵0<a<4,∴a=1,∴P(1,4),又∵双曲线y1=与直线y2=的图象交于A、B两点,且A(4,1)∴B(﹣4,﹣1),过点P作PQ∥y轴交AB于点G,如图所示,把x=1代入y=x,得到y=,∴G(1,),∴PG=4﹣=,∴S△ABP=PG(x A﹣x B)=××8=15;(3)PE=PF.理由如下:∵点P(a,b)在y=的图象上,∴b=,∵B(﹣4,﹣1),设直线PB的表达式为y=mx+n,∴,∴∴直线PB的表达式为y=x+﹣1,当y=0时,x=a﹣4,∴E点的坐标为(a﹣4,0),同理F点的坐标为(a+4,0),过点P作PH⊥x轴于H,如图所示,∵P点坐标为(a,b),∴H点的坐标为(a,0),∴EH=x H﹣x E=a﹣(a﹣4)=4,同理可得:FH=4,∴MH=HN,∴PM=PN.25.解:(1)材料锻造时,设y=(k≠0),由题意得600=,解得k=4800,当y=800时,,解得x=6,∴点B的坐标为(6,800)材料煅烧时,设y=ax+26(a≠0),由题意得800=6a+26,解得a=129,∴材料煅烧时,y与x的函数关系式为y=129x+26(0≤x≤6).∴锻造操作时y与x的函数关系式为y=(6<x≤150);(2)把y=400代入y=,得x=12,12﹣6=6(分),答:锻造的操作时间6分钟.=,26.【解答】解:(1)将点A(﹣4,2)代入y2∴m=﹣8,∴y=,将B(n,﹣4)代入y=,∴n=2,∴B(2,﹣4),=kx+b,将A(﹣4,2),B(2,﹣4)代入y1得到,∴,∴y=﹣x﹣2,(2)由图象直接可得:x>2或﹣4<x<0;27.解:(1)过点A作AD⊥x轴,垂足为D.由A(n,12),C(﹣4,0),可得OD=n,AD=12,CO=4.∵tan∠ACO=2,∴=2,即=2,∴n=2,∴A(2,12).将A(2,12)代入反比例函数y=,得m=2×12=24.∴反比例函数的解析式为y=.将A(2,12),C(﹣4,0)代入一次函数y=kx+b,得,解得.∴一次函数的解析式为y=2x+8.(2)y=与y=2x+8的交点为,2x+8=,∴x2+4x﹣12=0,∴x=﹣6或x=2,∴点B的坐标为(﹣6,﹣4).(3)∵C(﹣4,0),=×OC(y A﹣y B)=×4×[12﹣(﹣4)]=32.∴S△AOB28.解:(1)∵CD⊥OA,∴DC∥OB,∴,∴CD=2OB=8,∵OA=OD=OB=3,∴A(3,0),B(0,4),C(﹣3,8),把A、B两点的坐标分别代入y=ax+b可得,解得,∴一次函数解析式为,∵反比例函数y=的图象经过点C,∴k=﹣24,∴反比例函数的解析式为y=﹣;(2)由题意可知所求不等式的解集即为直线AC在x轴上方且在反比例函数图象下方的图象所对应的自变量的取值范围,即线段BC(包含C点,不包含B点)所对应的自变量x的取值范围,∵C(﹣3,8),∴0<﹣x+4≤﹣的解集为﹣3≤x<0;29.解:(1)∵△OAB为等边三角形,OA=2,∴OM=OA=1,BM=OA=,∴点B的坐标为(1,).∵反比例函数图象经过点B,∴k=.(2)该反比例函数图象是从点M'的下方经过,理由如下:过点M′作M′C⊥x轴,垂足为点C,如图1所示.由折叠的性质,可知:AM′=AM=1,∠BAM′=∠BAM=60°,∴∠M′AC=180°﹣∠BAM﹣∠BAM′=60°.在Rt△ACM′中,AM′=1,∠ACM′=90°,∠M′AC=60°,∴∠AM′C=30°,∴AC=AM′=,CM′=AM′=.∴OC=OA+AC=,∴点M′的坐标为(,).当x=时,y==,∵<,∴该反比例函数图象是从点M '的下方经过.(3)过点B 1作B 1D ⊥x 轴,垂足为点D ,如图2所示.设AA 1=a ,则AD =a ,B 1D =a ,OD =2+a ,∴点B 1的坐标为(2+a ,a ).∵点B 1在该反比例函数y =的图象上,∴(2+a )•a =,解得:a 1=﹣2﹣2(舍去),a 2=2﹣2,∴MD =AM +AD =,B 1D =a =﹣,AD =a =﹣1,∴=﹣S △BMA ﹣,=(BM +B 1D )•MD ﹣BM •AM ﹣B 1D •AD ,=(+﹣)×﹣××1﹣×(﹣)×(﹣1),=﹣.30.解:(1)因为点A 、点B 在函数y =(x >0)图象上,∴k 1=1×4=4,∴m×4=k1=4,∴m=1,∵点C(﹣2,n)关于y轴的对称点在y=(x>0)图象上.∴对称点为(2,n),∴2×n=4,∴n=2;(2)设直线BC所在的直线表达式为y=kx+b把B(4,1),C(﹣2,2)代入,得,解得,∴BC所在直线的表达式为:y=﹣x+;(3)如图所示:过点A、B作x轴的平行线,过点C、B作y轴的平行线,它们的交点分别是E、F、B、G.∴四边形EFBG是矩形.则AF=3,BF=3,AE=3,EC=2,CG=1,GB=6,EG=3∴S△ABC=S矩形EFBG﹣S△AFB﹣S△AEC﹣S△CBG=BG×EG﹣AF×FB﹣AE×EC﹣BG×CG=18﹣﹣3﹣3=.。

2018年全国各地中考数学真题汇编:反比例函数(含答案)

2018年全国各地中考数学真题汇编:反比例函数(含答案)

中考数学真题汇编:反比例函数一、选择题1. 给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y 随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B2. 已知点、都在反比例函数的图象上,则下列关系式一定正确的是()A. B. C. D.【答案】A3. 一次函数和反比例函数在同一直角坐标系中大致图像是()A. B. C. D.【答案】A4. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B5.如图,菱形ABCD的两个顶点B、D在反比例函数的图像上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A. ﹣5B. ﹣4C. ﹣3D. ﹣2【答案】C6.如图,是函数上两点,为一动点,作轴,轴,下列说法正确的是( )①;②;③若,则平分;④若,则A. ①③B. ②③C. ②④D. ③④【答案】B7. 如图,平行于x轴的直线与函数(k1>0,x>0),(k2>0,x>0)的图像分别交于A,B两点,点A在点B的右侧,C为x轴上的一个动点.若△ABC的面积为4,则k1-k2的值为()A. 8B. -8C. 4D. -4【答案】A8.如图,点C在反比例函数(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A. 1B. 2C. 3D. 4【答案】D9.如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数(,)的图象上,横坐标分别为1,4,对角线轴.若菱形ABCD的面积为,则k的值为()A. B. C. 4 D. 5【答案】D10.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD// 轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则的值为()A. 4B. 3C. 2D.【答案】B二、填空题11.已知反比例函数的图像经过点,则________.【答案】12.已知点在直线上,也在双曲线上,则的值为________.【答案】613.已知A(﹣4,)、B(﹣1,)是反比例函数图像上的两个点,则与的大小关系为________.【答案】14.如图,点A,B是反比例函数图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x 于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC=________。

2019年全国中考数学试卷分类汇编:反比例函数【含解析】

2019年全国中考数学试卷分类汇编:反比例函数【含解析】

反比例函数一、选择题1. (2018•山东潍坊,第11题3分)已知一次函数y 1=kx+b (k<O )与反比例函数y 2=xm(m≠O)的图象相交于A 、B 两点,其横坐标分别是-1和3,当y 1>y 2时,实数x 的取值范围是( )A .x<-l 或O<x<3B .一1<x<O 或O<x<3C .一1<x<O 或x>3D .O<x<3 考点:反比例函数与一次函数的交点问题.分析:画出函数图象,取反比例函数图象位于一次函数图象下方时对应的x 的取值范围即可. 解答:一次函数y 1=kx+b 与反比例函数y 2=xm的图象相交于A 、B 两点,且A ,B 两点的横坐标分别为-1,3, 故满足y 2<y 1的x 的取值范围是x <-1或0<x <3. 故选A .点评:本题主要考查了反比例函数与一次函数的交点问题的知识点,熟练掌握反比例的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题. 1.(2018•湖南怀化,第8题,3分)已知一次函数y=kx+b 的图象如图,那么正比例函数y=kx 和反比例函数y=在同一坐标系中的图象大致是( )B2. (2018•山东聊城,第10题,3分)如图,一次函数y 1=k 1x+b 的图象和反比例函数y 2=的图象交于A (1,2),B (﹣2,﹣1)两点,若y 1<y 2,则x 的取值范围是( )A.x<1 B.x<﹣2 C.﹣2<x<0或x>1 D.x<﹣2或0<x<1考点:反比例函数与一次函数的交点问题分析:根据一次函数图象位于反比例函数图象的下方,可得不等式的解.解答:解;一次函数图象位于反比例函数图象的下方.,x<﹣2,或0<x<1,故选:D.点评:本题考查了反比例函数与一次函数的交点问题,一次函数图象位于反比例函数图象的下方是解题关键.3. (2018•浙江杭州,第6题,3分)函数的自变量x满足≤x≤2时,函数值y满足≤y≤1,则这个函数可以A.y=B.y= C.y=D.y=考点:反比例函数的性质.分析:把x=代入四个选项中的解析式可得y的值,再把x=2代入解析式可得y的值,然后可得答案.解答:解:A、把x=代入y=可得y=1,把x=2代入y=可得y=,故此选项正确;B、把x=代入y=可得y=4,把x=2代入y=可得y=1,故此选项错误;C、把x=代入y=可得y=,把x=2代入y=可得y=,故此选项错误;D、把x=代入y=可得y=16,把x=2代入y=可得y=4,故此选项错误;故选:A.点评:此题主要考查了反比例函数图象的性质,关键是正确理解题意,根据自变量的值求出对应的函数值.轴于点C,则△ABC的面积为()A. 1 B. 2 C.D.考点:反比例函数系数k的几何意义.专题:计算题.分析:由于正比例函数y=x与反比例函数y=的图象相交于A、B两点,则点A与点B关于原点对称,所以S△AOC=S△BOC,根据反比例函数比例系数k的几何意义得到S△BOC=,所以△ABC的面积为1.解答:解:∵正比例函数y=x与反比例函数y=的图象相交于A、B两点,∴点A与点B关于原点对称,∴S△AOC=S△BOC,∵BC⊥x轴,∴△ABC的面积=2S△BOC=2××|1|=1.故选A.点评:本题考查了反比例函数比例系数k的几何意义:在反比例函数y=的图象中任取一点,过这一个点向x 轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.5. (2019年湖北咸宁8.(3分))如图,双曲线y=与直线y=kx+b交于点M、N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x的方程=kx+b的解为()A.﹣3,1 B.﹣3,3 C.﹣1,1 D.﹣1,3考点:反比例函数与一次函数的交点问题.专题:压轴题.分析:首先把M点代入y=中,求出反比例函数解析式,再利用反比例函数解析式求出N点坐标,求关于x的方程=kx+b的解就是看一次函数与反比例函数图象交点横坐标就是x的值.解答:解:∵M(1,3)在反比例函数图象上,∴m=1×3=3,∴反比例函数解析式为:y=,∵N也在反比例函数图象上,点N的纵坐标为﹣1.∴x=﹣3,∴N(﹣3,﹣1),∴关于x的方程=kx+b的解为:﹣3,1.故选:A.点评:此题主要考查了反比例函数与一次函数交点问题,关键掌握好利用图象求方程的解时,就是看两函数图象的交点横坐标.6. (2018•江苏盐城,第8题3分)如图,反比例函数y=(x<0)的图象经过点A(﹣1,1),过点A作AB⊥y 轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是()的值为7 .(2018•年山东东营,第17题4分)如图,函数y=和y=﹣的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB的面积为8 .考点:反比例函数系数k的几何意义.分析:设P的坐标是(a,),推出A的坐标和B的坐标,求出∠APB=90°,求出PA、PB的值,根据三角形的面积公式求出即可.解答:解:∵点P在y=上,∴|x p|×|y p|=|k|=1,∴设P的坐标是(a,)(a为正数),∵PA⊥x轴,∴A的横坐标是a,∵A在y=﹣上,∴A的坐标是(a,﹣),∵PB⊥y轴,∴B的纵坐标是,∵B在y=﹣上,∴代入得: =﹣,解得:x=﹣3a,∴B的坐标是(﹣3a,),∴PA=|﹣(﹣)|=,PB=|a﹣(﹣3a)|=4a,∵PA⊥x轴,PB⊥y轴,x轴⊥y轴,∴PA⊥PB,∴△PAB的面积是:PA×PB=××4a=8.故答案为:8.点评:本题考查了反比例函数和三角形面积公式的应用,关键是能根据P点的坐标得出A、B的坐标,本题具有一定的代表性,是一道比较好的题目.8.(2018•四川泸州,第8题,3分)已知抛物线y=x2﹣2x+m+1与x轴有两个不同的交点,则函数y=的大致图象是()B9.(2018•四川凉山州,第11题,4分)函数y=mx+n与y=,其中m≠0,n≠0,那么它们在同一坐标系中的图象经过第二、四象限.图象经过第二、四象限.图象经过第二、四象限.图象经过第一、三象限.10.(2018•福建福州,第10题4分)如图,已知直线y x 2=-+分别与x 轴,y 轴交于A ,B 两点,与双曲线ky x=交于E ,F 两点. 若AB=2EF ,则k 的值是【 】A .1-B .1C .12 D .34考点:1.反比例函数与一次函数交点问题;2.曲线上点的坐标与方程的关系;3.相似三角形的判定和性质;4.轴对称的性质.11.(2018•甘肃兰州,第9题4分)若反比例函数的图象位于第二、四象限,则k 的取值可以是( )反比例函数解:∵反比例函数对于反比例函数(k≠0)二、填空题1. (2018•上海,第14题4分)已知反比例函数y=kx(k 是常数,k≠0),在其图象所在的每一个象限内,y的值为 ﹣8 . ,解得3. (2018山东济南,第21题,3分)如图,OAC ∆和BAD ∆都是等腰直角三角形,90=∠=∠ADB ACO ,反比例函数xk y =在第一象限的图象经过点B ,若1222=-AB OA ,则k 的值为________.【解析】设点B 的坐标为),(00y x B ,则DB OC AD AC y DB OC x -=-=+=00,,于是62121222200=-=-=-⋅+=⋅=AB OA DB OC DB OC DB OC y x k )()(,所以应填6.4. (2018•山东聊城,第17题,3分)如图,在x 轴的正半轴上依次间隔相等的距离取点A 1,A 2,A 3,A 4,…,A n 分别过这些点做x 轴的垂线与反比例函数y=的图象相交于点P 1,P 2,P 3,P 4,…P n 作P 2B 1⊥A 1P 1,P 3B 2⊥A 2P 2,P 4B 3⊥A 3P 3,…,P n B n ﹣1⊥A n ﹣1P n ﹣1,垂足分别为B 1,B 2,B 3,B 4,…,B n ﹣1,连接P 1P 2,P 2P 3,P 3P 4,…,P n ﹣1P n ,得到一组Rt △P 1B 1P 2,Rt △P 2B 2P 3,Rt △P 3B 3P 4,…,Rt △P n ﹣1B n ﹣1P n ,则Rt △P n ﹣1B n ﹣1P n 的面积为. .考点: 反比例函数系数k 的几何意义. 专题: 规律型.分析: 根据反比例函数图象上点的坐标特征和三角形面积公式得到Rt △P 1B 1P 2的面积=×a×(﹣),Rt △P 2B 2P 3的面积=×a×(﹣),Rt △P 3B 3P 4的面积=×a×(﹣),由此得出△P n ﹣1B n ﹣1P n 的面积=×a×[﹣],化简即可.解答: 解:设OA 1=A 1A 2=A 2A 3=…=A n ﹣2A n ﹣1=a ,∵x=a 时,y=,∴P 1的坐标为(a ,),∵x=2a 时,y=2×,∴P 2的坐标为(2a ,),∴Rt △P 1B 1P 2的面积=×a×(﹣), Rt △P 2B 2P 3的面积=×a×(﹣), Rt △P 3B 3P 4的面积=×a×(﹣),…,∴△P n ﹣1B n ﹣1P n 的面积=×a×[﹣]=×1×(﹣)=.故答案为.点评: 本题考查了反比例函数图象上点的坐标特征和三角形面积公式,有一定难度.是AB 的中点,S △BEF =2,则k 的值为 8 .DCAOxyB第21题图考点:反比例函数系数k的几何意义.分析:设E(a,),则B纵坐标也为,代入反比例函数的y=,即可求得F的横坐标,则根据三角形的面积公式即可求得k的值.解答:解:设E(a,),则B纵坐标也为,E是AB中点,所以F点横坐标为2a,代入解析式得到纵坐标:,BF=﹣=,所以F也为中点,S△BEF=2=,k=8.故答案是:8.点评:本题考查了反比例函数的性质,正确表示出BF的长度是关键.6. (2018•山东淄博,第16题4分)关于x的反比例函数y=的图象如图,A、P为该图象上的点,且关于原点成中心对称.△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a﹣1)x2﹣x+=0的根的情况是没有实数根.考点:根的判别式;反比例函数的性质.分析:由比例函数y=的图象位于一、三象限得出a+4>0,A、P为该图象上的点,且关于原点成中心对称,得出2xy>12,进一步得出a+4>6,由此确定a的取值范围,进一步利用根的判别式判定方程根的情况即可.解答:解:∵反比例函数y=的图象位于一、三象限,∴a+4>0,a>﹣4,∵A、P关于原点成中心对称,PB∥y轴,AB∥x轴,△PAB的面积大于12,∴2xy>12,即a+4>6,a>2∴a>2.∴△=(﹣1)2﹣4(a﹣1)×=2﹣a<0,∴关于x的方程(a﹣1)x2﹣x+=0没有实数根.故答案为:没有实数根.点评:此题综合考查了反比例函数的图形与性质,一元二次方程根的判别式,注意正确判定a的取值范围是解决问题的关键.7. (2018•山东临沂,第18题3分)(3分)(2018•临沂)如图,反比例函数y=的图象经过直角三角形OAB的顶点A,D为斜边OA的中点,则过点D的反比例函数的解析式为y= .3),动点F在边BC上(不与B、C重合),过点F的反比例函数的图象与边AC交于点E,直线EF分别与y 轴和x轴相交于点D和G.给出下列①若k=4,则△OEF的面积为;②若,则点C关于直线EF的对称点在x轴上;③满足题设的k的取值范围是0<k≤12;④若DE•EG=,则k=1.其中正确的≠,故)如答图所示,若,求出,,,=EN=CE=MN==NF===,解得,x+3m+3,解得三、解答题1. (2018•四川巴中,第30题10分)如图,在平面直角坐标系xOy中,已知四边形DOBC是矩形,且D(0,4),B(6,0).若反比例函数y=(x>0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.设直线EF的解析式为y=k2x+b.(1)求反比例函数和直线EF的解析式;(2)求△OEF的面积;(3)请结合图象直接写出不等式k2x+b﹣>0的解集.考点:反比例函数和一次函数.分析:(1)先利用矩形的性质确定C点坐标(6,4),再确定A点坐标为(3,2),则根据反比例函数图象上点的坐标特征得到k1=6,即反比例函数解析式为y=;然后利用反比例函数解析式确定F点的坐标为(6,1),E点坐标为(,4),再利用待定系数法求直线EF的解析式;(2)利用△OEF的面积=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF进行计算;(3)观察函数图象得到当<x<6时,一次函数图象都在反比例函数图象上方,即k2x+b>.解答:(1)∵四边形DOBC是矩形,且D(0,4),B(6,0),∴C点坐标为(6,4),∵点A为线段OC的中点,∴A点坐标为(3,2),∴k1=3×2=6,∴反比例函数解析式为y=;把x=6代入y=得x=1,则F点的坐标为(6,1);把y=4代入y=得x=,则E点坐标为(,4),把F(6,1)、E(,4)代入y=k2x+b得,解得,∴直线EF的解析式为y=﹣x+5;(2)△OEF的面积=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF=4×6﹣×6﹣×6﹣×(6﹣)×(4﹣1)=;(3)不等式k2x+b﹣>0的解集为<x<6.点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法确定函数解析式.2. (2018•山东威海,第22题9分)已知反比例函数y=(m为常数)的图象在一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A、B的坐标分别为(0,3),(﹣2,0).①求出函数解析式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为(﹣2,﹣3),(3,2),(﹣3,﹣2);若以D、O、P为顶点的三角形是等腰三角形,则满足条件的点P的个数为 4 个.点(3,2)关于原点的对称点也满足OP=OD,此时P点坐标为(﹣3,﹣2),综上所述,P点的坐标为(﹣2,﹣3),(3,2),(﹣3,﹣2);由于以D、O、P为顶点的三角形是等腰三角形,则以D点为圆心,DO为半径画弧交反比例函数图象于点P1,P2,则点P1,P2满足条件;以O点为圆心,OD为半径画弧交反比例函数图象于点P3,P4,则点P3,P4也满足条件,如图.点评:本题考查了反比例函数的综合题:掌握反比例函数图象的性质和其图象上点的坐标特征、平行四边形的性质和等腰三角形的性质;会运用分类讨论的思想解决数学问题.轴于点D,BC⊥x 轴于点C,DC=5.(1)求m,n的值并写出反比例函数的表达式;(2)连接AB,在线段DC上是否存在一点E,使△ABE的面积等于5?若存在,求出点E的坐标;若不存在,请说明理由.考点:反比例函数综合题.分析:(1)根据题意列出关于m与n的方程组,求出方程组的解得到m与n的值,确定出A与B坐标,设出反比例函数解析式,将A坐标代入即可确定出解析式;(2)存在,设E(x,0),表示出DE与CE,连接AE,BE,三角形ABE面积=四边形ABCD面积﹣三角形ADE 面积﹣三角形BCE面积,求出即可.解答:(1)由题意得:,解得:,∴A(1,6),B(6,1),设反比例函数解析式为y=,将A(1,6)代入得:k=6,则反比例解析式为y=;(2)存在,设E(x,0),则DE=x﹣1,CE=6﹣x,∵AD⊥x轴,BC⊥x轴,∴∠ADE=∠BCE=90°,连接AE,BE,则S△ABE=S四边形ABCD﹣S△ADE﹣S△BCE=(BC+AD)•DC﹣DE•AD﹣CE•BC=×(1+6)×5﹣(x﹣1)×6﹣(6﹣x)×1=﹣x=5,解得:x=5,则E(5,0).点评: 此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.4. (2018•江西抚州,第18题,7分) 如图,在平面直角坐标系中,过点02M ,()的直线与x 轴平行,且直线分别与反比例函数6y x x =(>0)和0y x x=<()k 的图象交于点P 、点Q .⑴ 求点P 的坐标;⑵ 若△POQ 的面积为8 ,求k 的值 .解析:(1)∵PQ ∥x 轴,∴P 点纵坐标为2, 当y =6时,x=62 , ∴x =3 , ∴P(3,2).(2)∵S ⊿POQ =PQ OM ⋅12, ∴ PQ 2=8⋅12, ∴PQ=8, ∵PM=3, ∴QM=5, ∴Q(-5,2) , 代入y x=k得: =-10k5. (2018山东济南,第26题,9分)(本小题满分9分)如图1,反比例函数)0(>=x xky 的图象经过点A (32,1),射线AB 与反比例函数图象交与另一点B (1,a ),射线AC 与y 轴交于点C ,y AD BAC ⊥=∠,75轴,垂足为D . (1)求k 的值;(2)求DAC ∠tan 的值及直线AC 的解析式;(3)如图2,M 是线段AC 上方反比例函数图象上一动点,过M 作直线x l ⊥轴,与AC 相交于N ,连接CM ,求CMN ∆面积的最大值.【解析】(1)由反比例函数)0(>=x xky 的 图象经过点A (32,1),得32132=⨯=k ;(2)由反比例函数)0(32>=x xy 得 点B 的坐标为(1,32),于是有30,45=∠∴=∠DAC BAD ,33tan =∠DAC , AD=32,则由33tan =∠DAC 可得CD=2,C 点纵坐标是-1,直线AC 的截距是-1,而且过点A (32,1)则直线解析式为133-=x y . (3)设点M 的坐标为)1)(,32(>m m m ,则点N 的坐标为)12,32(-mm ,于是CMN ∆面积为)12(3221+-⨯⨯=∆m m m S CMN])422(89[3)112(322--=++-⨯=m m m ,所以,当4=m 时,CMN ∆面积取得最大值839.6.(2018•十堰23.(8分))如图,点B (3,3)在双曲线y=(x >0)上,点D 在双曲线y=﹣(x <0)上,点A 和点C 分别在x 轴,y 轴的正半轴上,且点A ,B ,C ,D 构成的四边形为正方形. (1)求k 的值; (2)求点A 的坐标.,为2,则k的值为 4 .8.(( 2019年河南) 20.9分)如图,在直角梯形OABC中,BC//AO,∠AOC=900,点A、B的坐标分别为(5,0)、(2,6),点D为AB上一点,且BD=2AD.双曲线y=kx(x>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积。

2019年全国各地中考数学解析汇编21 反比例函数

2019年全国各地中考数学解析汇编21 反比例函数

2019年全国各地中考数学解析汇编21 反比例函数(2018江苏省无锡市,4,3′)若双曲线ky x=与直线21y x =+一个交点的横坐标为-1,则k 的值为( )A .-1. B. 1 C.-2 D.2【解析】双曲线与直线的交点坐标适合两者的解析式,利用21y x =+可以求出交点坐标为(-1,-1),进而求出k=1 【答案】B【点评】本题主要考查学生对坐标与解析式之间的关系的理解,适合解析式的点在图象上,图象上的点适合解析式。

(2018浙江省温州市,16,5分)如图,已知动点A 在函数4(0)y x x=>的图象上,AB x ⊥轴于点B ,AC y⊥轴于点C ,延长CA 至点D ,使AD=AB ,延长BA 至点E ,使AE=AC 。

直线DE 分别交x 轴于点P ,Q 。

当49QE DP =::时,图中阴影部分的面积等于_______【解析】本题是一道难度较大的反比例函数综合题,可构造相似三角形,利用相似计算求解。

【答案】133(2018四川省南充市,6,3分) 矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系用图象表示大致为( )解析:由矩形的面积知xy =9,可知它的长x 与宽y 之间的函数关系式为y=9 x (x >0),是反比例函数图象,且其图象在第一象限. 故选C .点评:由矩形的面积公式,得出它的长y 与宽x 之间的函数关系式,然后根据函数的图象性质确定图象的形状及所处象限.注意实际问题中的函数问题需要注意自变量x 的取值范围。

(2018山东省荷泽市,6,3)反比例函数2y x=图象上的两上点为(x 1,y 1),(x 2,y 2),且x 1<x 2,则下列关系成立的是( )A.y 1>y 2B.y 1<y 2C.y 1=y 2D.不能确定 【解析】反比例函数2y x=的图象在一、三象限,在每个象限内y 随x 的增大而减小,因为x 1<x 2,当两点分在两个象限时y 1<y 2,当两点在同一个象限时,y 1>y 2,故先D. 【答案】D【点评】首先确定反比例函数所在的象限,注意反比例函数图象在每个象限的变化规律,当比较两函数值的大小时,一定要分为在两个象限或在同一个象限两种情况.(2018广州市,10, 3分)如图3,正比例函数y 1=kx 和反比例函数y 2=2k x的图像交于A (-1,2)、(1,-2)两点,若y 1 <y 2,则x 的取值范围是( )A.x <-1或x >1B. x <-1或0<x <1C. -1<x <0或 0<x <1D. -1<x <0或x >1【解析】根据图像观察一次函数的图像在反比例函数图像的下方自变量的取值范围。

2019中考数学试题分项版解析汇编(第02期)专题3.4 反比例函数(含解析)

2019中考数学试题分项版解析汇编(第02期)专题3.4 反比例函数(含解析)

专题3.4 反比例函数一、单选题1.【黑龙江省哈尔滨市2018年中考数学试题】已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B. 0 C. 1 D. 2【答案】D点睛:本题考查了反比例函数图象上点的坐标特征,能根据已知得出关于k的方程是解此题的关键.2.【江苏省无锡市2018年中考数学试题】已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A. m+n<0 B. m+n>0 C. m<n D. m>n【答案】D【解析】分析:根据反比例函数的性质,可得答案.详解:y=−的k=-2<0,图象位于二四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故D正确;故选:D.点睛:本题考查了反比例函数的性质,利用反比例函数的性质:k<0时,图象位于二四象限是解题关键.3.【江苏省淮安市2018年中考数学试题】若点A(﹣2,3)在反比例函数y=的图象上,则k的值是()A.﹣6 B.﹣2 C. 2 D. 6【答案】A【解析】分析:根据待定系数法,可得答案.详解:将A(﹣2,3)代入反比例函数y=,得k=﹣2×3=﹣6,故选:A.点睛:本题考查了反比例函数图象上点的坐标特征,利用函数图象上点的坐标满足函数解析式是解题关键.4.【湖北省黄石市2018年中考数学试卷】已知一次函数y1=x﹣3和反比例函数y2=的图象在平面直角坐标系中交于A、B两点,当y1>y2时,x的取值范围是()A. x<﹣1或x>4 B.﹣1<x<0或x>4C.﹣1<x<0或0<x<4 D. x<﹣1或0<x<4【答案】B点睛:本题考查了一次函数与反比例函数的交点问题,能熟记函数的性质和图象是解此题的关键.5.【湖北省宜昌市2018年中考数学试卷】如图,一块砖的A,B,C三个面的面积比是4:2:1.如果A,B,C面分别向下放在地上,地面所受压强为p1,p2,p3,压强的计算公式为p=,其中P是压强,F是压力,S 是受力面积,则p1,p2,p3,的大小关系正确的是()A. p1>p2>p3 B. p1>p3>p2 C. p2>p1>p3 D. p3>p2>p1【答案】D【解析】分析:直接利用反比例函数的性质进而分析得出答案.详解:∵p=,F>0,∴p随S的增大而减小,∵A,B,C三个面的面积比是4:2:1,∴p1,p2,p3的大小关系是:p3>p2>p1.故选:D.点睛:此题主要考查了反比例函数的性质,正确把握反比例函数的性质是解题关键.6.【山东省威海市2018年中考数学试题】若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A. y1<y2<y3 B. y3<y2<y1 C. y2<y1<y3 D. y3<y1<y2【答案】D点睛:此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键.7.【浙江省湖州市2018年中考数学试题】如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是()A.(﹣1,﹣2) B.(﹣1,2) C.(1,﹣2) D.(﹣2,﹣1)【答案】A点睛:此题主要考查了反比例函数与一次函数的交点问题,正确得出M,N两点位置关系是解题关键.8.【山东省聊城市2018年中考数学试卷】春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过集中喷洒药物,室内空气中的含药量最高达到B.室内空气中的含药量不低于的持续时间达到了C.当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内【答案】C【解析】分析: 利用图中信息一一判断即可.详解: A、正确.不符合题意.B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2.5或24,24-2.5=21.5<35,故本选项错误,符合题意;D、正确.不符合题意,故选:C.点睛:本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.9.【浙江省宁波市2018年中考数学试卷】如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为A. 8 B. C. 4 D.【答案】A【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.10.【云南省昆明市2018年中考数学试题】如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A. 2 B. C. D.【答案】B【解析】分析:如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;详解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF=,∴AK=OK=,∴OA=,由△FOC∽△OBA,可得,∴,∴OB=,AB=,∴A(,),∴k=.故选:B.点睛:本题考查作图-复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.【湖南省郴州市2018年中考数学试卷】如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A. 4 B. 3 C. 2 D. 1【答案】B【详解】∵A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,∴当x=2时,y=2,即A(2,2),当x=4时,y=1,即B(4,1),如图,过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,则S△AOC=S△BOD=×4=2,∵S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,∴S△AOB=S梯形ABDC,∵S梯形ABDC=(BD+AC)•CD=×(1+2)×2=3,∴S△AOB=3,故选B.【点睛】本题考查了反比例函数中k的几何意义,反比例函数图象上点的坐标特征,梯形的面积,熟知反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S与k的关系为S=|k|是解题的关键.12.【吉林省长春市2018年中考数学试卷】如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k 的值为()A. 4 B. 2 C. 2 D.【答案】A【解析】【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.【详解】作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x轴,∴C(,2),把C(,2)代入y=得k=×2=4,故选A.【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=(k 为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.13.【湖南省怀化市2018年中考数学试题】函数y=kx﹣3与y=(k≠0)在同一坐标系内的图象可能是()A. B. C. D.【答案】B点睛:本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.二、填空题14.【上海市2018年中考数学试卷】已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是_____.【答案】k<1【解析】【分析】由于在反比例函数y=的图象有一支在第二象限,故k﹣1<0,求出k的取值范围即可.【详解】∵反比例函数y=的图象有一支在第二象限,∴k﹣1<0,解得k<1,故答案为:k<1.【点睛】本题考查了反比例函数y=(k≠0,k为常数)的图象与性质,反比例函数的图象是双曲线,k>0时,图象位于一、三象限,k<0时,图象位于二、四象限,熟知这些相关知识是解题的关键.15.【山东省东营市2018年中考数学试题】如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为_____.【答案】点睛:此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.16.【广西钦州市2018年中考数学试卷】如图,矩形ABCD的顶点A,B在x轴上,且关于y轴对称,反比例函数y=(x>0)的图象经过点C,反比例函数y=(x<0)的图象分别与AD,CD交于点E,F,若S△BEF=7,k1+3k2=0,则k1等于_____.【答案】9【解析】【分析】设出点A坐标,根据函数关系式分别表示各点坐标,根据割补法表示△BEF的面积,构造方程.∵S△BEF=7,∴2k1+﹣+k2=7,又∵k2=﹣k1,∴k1+×(﹣)=7,∴k1=9故答案为:9【点睛】本题是反比例函数综合题,解题关键是设出点B坐标继而表示出相关各点,应用面积的割补法构造方程.17.【湖北省荆门市2018年中考数学试卷】如图,在平面直角坐标系xOy中,函数y=(k>0,x>0)的图象经过菱形OACD的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为_____.【答案】【解析】【分析】过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),求出C、E的坐标,代入函数解析式,求出a,再根据勾股定理求出b,即可请求出答案.【详解】如图,过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,在Rt△DQO中,由勾股定理得:a2+b2=32,即22+b2=9,解得:b=(负数舍去),∴k=ab=2,故答案为:2.【点睛】本题考查了勾股定理、反比例函数图象上点的坐标特征、菱形的性质等,得出关于a、b的方程是解此题的关键.【湖北省孝感市2018年中考数学试题】如图,在平面直角坐标系中,正方形的顶点的坐标为,18.点在轴正半轴上,点在第三象限的双曲线上,过点作轴交双曲线于点,连接,则的面积为__________.【答案】7详解:如图,过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB,∴AG=DH=-x-1,∴DG=BM,∴1-=-1-x-,x=-2,∴D(-2,-3),CH=DG=BM=1-=4,∵AG=DH=-1-x=1,∴点E的纵坐标为-4,当y=-4时,x=-,∴E(-,-4),∴EH=2-=,∴CE=CH-HE=4-=,∴S△CEB=CE•BM=××4=7.故答案为:7.点睛:本题考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考填空题的压轴题.19.【湖南省邵阳市2018年中考数学试卷】如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是_____.【答案】4【解析】【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.【详解】∵点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,∴S△AOB=|k|=2,又∵函数图象位于一、三象限,∴k=4,故答案为:4.【点睛】本题考查了反比例函数系数k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,运用数形结合思想、正确理解k的几何意义是解此类问题的关键.20.【湖北省随州市2018年中考数学试卷】如图,一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,与x轴交与点C,若tan∠AOC=,则k的值为_____.【答案】3【详解】如图,过点A作AD⊥x轴,垂足为D,∵tan∠AOC==,∴设点A的坐标为(3a,a),∵一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,∴a=3a﹣2,得a=1,∴1=,得k=3,故答案为:3.【点睛】本题考查了正切,反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.【山东省烟台市2018年中考数学试卷】如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=_____.【答案】-3详解:过点P做PE⊥y轴于点E,∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO=S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=﹣3故答案为:﹣3点睛:本题考查了反比例函数比例系数k的几何意义以及平行四边形的性质.22.【江苏省盐城市2018年中考数学试题】如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若△BDE的面积为1,则k =________【答案】4【解析】分析:设D(a,),利用点D为矩形OABC的AB边的中点得到B(2a,),则E(2a,),然后利用三角形面积公式得到•a•(-)=1,最后解方程即可.详解:设D(a,),∵点D为矩形OABC的AB边的中点,∴B(2a,),∴E(2a,),∵△BDE的面积为1,∴•a•(-)=1,解得k=4.故答案为4.点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k的取值.23.【四川省内江市2018年中考数学试卷】已知,A、B、C、D是反比例函数y=(x>0)图象上四个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形(如图)的边长为半径作四分之一圆周的两条弧,组成四个橄榄形(阴影部分),则这四个橄榄形的面积总和是__________(用含π的代数式表示).【答案】5π﹣10一个顶点是B、C的正方形的边长为2,橄榄形的面积为:=2(π﹣2);∴这四个橄榄形的面积总和是:(π﹣2)+2×2(π﹣2)=5π﹣10.故答案为:5π﹣10.点睛:问题主要用过考查橄榄形的面积的计算来考查反比例函数图形的应用,关键是要分析出其图象特点,再结合性质作答.24.【山东省威海市2018年中考数学试题】如图,直线AB与双曲线y=(k<0)交于点A,B,点P是直线AB上一动点,且点P在第二象限.连接PO并延长交双曲线于点C.过点P作PD⊥y轴,垂足为点D.过点C作CE⊥x轴,垂足为E.若点A的坐标为(﹣2,3),点B的坐标为(m,1),设△POD的面积为S1,△COE 的面积为S2,当S1>S2时,点P的横坐标x的取值范围为__.【答案】﹣6<x<﹣2.点睛:本题考查反比例函数的性质、三角形的面积、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.【湖南省张家界市2018年初中毕业学业考试数学试题】如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数的图象上,则矩形ABCD的周长为________.【答案】12点睛:本题考查的是反比例函数图象上点的坐标特征、矩形的性质,掌握反比例函数图象上点的坐标特征是解题的关键.26.【广西壮族自治区桂林市2018年中考数学试题】如图,矩形OABC的边AB与x轴交于点D,与反比例函数(k>0)在第一象限的图像交于点E,∠AOD=30°,点E的纵坐标为1,ΔODE的面积是,则k的值是________【答案】【解析】分析:过E作EF⊥x轴,垂足为F,则EF=1,易求∠DEF=30°,从而DE=,根据ΔODE的面积是求出OD=,从而OF=3,所以k=3.详解:如图,过点E作EF⊥x轴,垂足为点F,∵点E的纵坐标为1,∴EF=1,∵ΔODE的面积是,∴OD=,∵四边形OABC是矩形,且∠AOD=30°,∴∠DEF=30°,∴DF=∴OF=3,所以点E的坐标为(3,1),把点E的坐标代入反比例函数的解析式,可得k=3.故答案为3.点睛:本题是正方形和反比例函数的综合试题,解题过程中涉及解直角三角形,确定反比例函数的解析式等,确定点E的坐标是解题关键.27.【四川省眉山市2018年中考数学试题】如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,A点坐标为(-10,0),对角线AC和OB相交于点D且AC·OB=160.若反比例函数y=(x<0)的图象经过点D,并与BC的延长线交于点E,则S△OCE∶S△OAB=________ .【答案】1:5【解析】分析:作CG⊥AO,BH⊥AO,根据菱形和三角形的面积公式可得S△OAC=S菱形=40,从而得OA=10,CG=8,在Rt△OGE中,根据勾股定理得OG=6,AG=4,即C(-6,8),根据全等三角形的性质和中点坐标公式可得B(-16,8),D(-8,4),将D代入反比例函数解析式可得k,设E(a,8),将点E坐标代入反比例函数解析式,可得E(-4,8);根据三角形面积公式分别求得S△OCE和S△OAB,从而得S△OCE:S△OAB.详解:作CG⊥AO,BH⊥AO,∵BO·AC=160,∴S菱形=·BO·AC=80,∴S△OAC=S菱形=40,∴·AO·CG=40,∵A(-10,0),∴OA=10,∴CG=8,又∵D在反比例函数上,∴k=-8×4=-32,∵C(-6,8),∴E(a,8),又∵E在反比例函数上,∴8a=-32,∴a=-4,∴E(-4,8),∴CE=2,∴S△OCE=·CE·CG=×2×8=8,S△OAB=·OA·BH=×10×8=40,∴S△OCE:S△OAB=8:40=1:5.故答案为:1:5.点睛:本题主要考查了反比例函数图象上点的坐标特征以及菱形性质的运用,解题时注意:菱形的对角线互相垂直平分.三、解答题28.【湖南省湘西州2018年中考数学试卷】反比例函数y=(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).(1)求反比例函数的解析式及B点的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1); B点坐标为(3,1);(2) P点坐标为(,0).【解析】【分析】(1)先把A点坐标代入y=求出k得到反比例函数解析式;然后把B(3,m)代入反比例函数解析式求出m得到B点坐标;(2)作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,﹣3),利用两点之间线段最短可判断此时此时PA+PB的值最小,再利用待定系数法求出直线BA′的解析式,然后求出直线与x轴的交点坐标即可得到P点坐标.(2)作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,﹣3),∵PA+PB=PA′+PB=BA′,∴此时PA+PB的值最小,设直线BA′的解析式为y=mx+n,把A′(1,﹣3),B(3,1)代入得,解得,∴直线BA′的解析式为y=2x﹣5,当y=0时,2x﹣5=0,解得x=,∴P点坐标为(,0).【点睛】本题考查了用待定系数法求反比例函数的解析式、最短路径问题,熟练掌握待定系数法求函数解析式是解题的关键.29.【湖南省长沙市2018年中考数学试题】如图,在平面直角坐标系xOy中,函数y=(m为常数,m>1,x>0)的图象经过点P(m,1)和Q(1,m),直线PQ与x轴,y轴分别交于C,D两点,点M(x,y)是该函数图象上的一个动点,过点M分别作x轴和y轴的垂线,垂足分别为A,B.(1)求∠OCD的度数;(2)当m=3,1<x<3时,存在点M使得△OPM∽△OCP,求此时点M的坐标;(3)当m=5时,矩形OAMB与△OPQ的重叠部分的面积能否等于4.1?请说明你的理由.【答案】(1)∠OCD=45°;(2)M(2,);(3)不存在.理由见解析.详解:(1)设直线PQ的解析式为y=kx+b,则有,解得,∴y=-x+m+1,令x=0,得到y=m+1,∴D(0,m+1),令y+0,得到x=m+1,∴C(m+1,0),∴OC=OD,∵∠COD=90°,∴∠OCD=45°.(2)设M(a,),∵△OPM∽△OCP,∴,∴OP2=OC•OM,当m=3时,P(3,1),C(4,0),OP2=32+12=10,OC=4,OM=,∴,∴10=4,∴4a4-25a2+36=0,(4a2-9)(a2-4)=0,∴a=±,a=±2,∵1<a<3,∴a=或2,当a=时,M(,2),PM=,CP=,,(舍去)当a=2时,M(2,),PM=,CP=,∴,成立,∴M(2,).(3)不存在.理由如下:当m=5时,P(5,1),Q(1,5),设M(x,),OP的解析式为:y=x,OQ的解析式为y=5x,①当1<x<5时,如图1中,∴E(,),F(x,x),S=S矩形OAMB-S△OAF-S△OBE=5-x•x-••=4.1,化简得到:x4-9x2+25=0,△<O,∴没有实数根.②当x≤1时,如图2中,S=S△OGH<S△OAM=2.5,∴不存在,③当x≥5时,如图3中,S=S△OTS<S△OBM=2.5,∴不存在,综上所述,不存在.点睛:本题考查反比例函数综合题、矩形的性质、待定系数法、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题.30.【浙江省台州市2018年中考数学试题】如图,函数y=x的图象与函数y=(x>0)的图象相交于点P(2,m).(1)求m,k的值;(2)直线y=4与函数y=x的图象相交于点A,与函数y=(x>0)的图象相交于点B,求线段AB长.【答案】(1)m=2,k=4;(2)AB=3.详解:(1)∵函数y=x的图象过点P(2,m),∴m=2,∴P(2,2),∵函数y=(x>0)的图象过点P,∴k=2×2=4;(2)将y=4代入y=x,得x=4,∴点A(4,4).将y=4代入y=,得x=1,∴点B(1,4).∴AB=4-1=3.点睛:本题考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.31.【四川省达州市2018年中考数学试题】矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF,求∠EFC的正切值;(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.【答案】(1)E(2,3);(2);(3).【解析】分析:(1)先确定出点C坐标,进而得出点F坐标,即可得出结论;(2)先确定出点F的横坐标,进而表示出点F的坐标,得出CF,同理表示出CF,即可得出结论;(3)先判断出△EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出结论.详解:(1)∵OA=3,OB=4,∴B(4,0),C(4,3),∵F是BC的中点,∴F(4,),∵F在反比例y=函数图象上,∴k=4×=6,∴反比例函数的解析式为y=,∵E点的坐标为3,∴E(2,3);(3)如图,由(2)知,CF=,CE=,,过点E作EH⊥OB于H,∴EH=OA=3,∠EHG=∠GBF=90°,∴∠EGH+∠HEG=90°,由折叠知,EG=CE,FG=CF,∠EGF=∠C=90°,∴∠EGH+∠BGF=90°,∴∠HEG=∠BGF,∵∠EHG=∠GBF=90°,∴△EHG∽△GBF,∴,∴,∴BG=,在Rt△FBG中,FG2﹣BF2=BG2,∴()2﹣()2=,∴k=,∴反比例函数解析式为y=.点睛:此题是反比例函数综合题,主要考查了待定系数法,中点坐标公式,相似三角形的判定和性质,锐角三角函数,求出CE:CF是解本题的关键.32.【山东省淄博市2018年中考数学试题】如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.【答案】(1);(2)x>1;(3)P(﹣,0)或(,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x>0时,不等式x+b>的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,进而得出点P的坐标.详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=,可得k=1×3=3,∴y与x之间的函数关系式为:y=;(2)∵A(1,3),∴当x>0时,不等式x+b>的解集为:x>1;点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.33.【北京市2018年中考数学试卷】在平面直角坐标系中,函数()的图象经过点(4,1),直线与图象交于点,与轴交于点.(1)求的值;(2)横、纵坐标都是整数的点叫做整点.记图象在点,之间的部分与线段,,围成的区域(不含边界)为.①当时,直接写出区域内的整点个数;②若区域内恰有4个整点,结合函数图象,求的取值范围.【答案】(1)4;(2)①3个.(1,0),(2,0),(3,0).②或.详解:(1)解:∵点(4,1)在()的图象上.∴,∴.(2)① 3个.(1,0),(2,0),(3,0).②.当直线过(4,0)时:,解得.当直线过(5,0)时:,解得.当直线过(1,2)时:,解得.当直线过(1,3)时:,解得∴综上所述:或.点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.34.【湖北省襄阳市2018年中考数学试卷】如图,已知双曲线y1=与直线y2=ax+b交于点A(﹣4,1)和点B(m,﹣4).(1)求双曲线和直线的解析式;(2)直接写出线段AB的长和y1>y2时x的取值范围.【答案】(1)反比例函数的解析式为y1=﹣;直线解析式为y2=﹣x﹣3;(2);﹣4<x<0或x>1【详解】(1)把A(﹣4,1)代入得k=﹣4×1=﹣4,∴反比例函数的解析式为,把B(m,﹣4)代入得﹣4m=﹣4,解得m=1,则B(1,﹣4),把A(﹣4,1),B(1,﹣4)代入y2=ax+b得,解得,∴直线解析式为y2=﹣x﹣3;(2)AB=,观察图象可知当﹣4<x<0或x>1时,y1>y2.【点睛】本题考查了反比例函数与一次函数的交点问题,涉及到待定系数法,数形结合思想的应用,两点间的距离,熟练掌握待定系数法是解本题的关键.35.【湖北省恩施州2018年中考数学试题】如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=的图象有唯一的公共点C.(1)求k的值及C点坐标;(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=交于D、E两点,求△CDE 的面积.【答案】(1)k=2; C(1,2);(2)8.详解:(1)令-2x+4=,则2x2-4x+k=0,∵直线y=-2x+4与反比例函数y=的图象有唯一的公共点C,∴△=16-8k=0,解得k=2,∴2x2-4x+2=0,解得x=1,∴y=2,即C(1,2);点睛:此题属于反比例函数与一次函数的交点问题,主要考查了解一元二次方程,坐标与图形性质以及三角形面积公式的运用,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.36.【山东省聊城市2018年中考数学试卷】如图,已知反比例函数的图象与反比例函数的图象关于轴对称,,是函数图象上的两点,连接,点是函数图象上的一点,连接,.(1)求,的值;(2)求所在直线的表达式;(3)求的面积.【答案】(1)m=1,n=2.(2)y=-x+5;(3)详解:(1)由A(1,4),B(4,m)是函数(x>0)图象上的两点,∴4=,k1=4,∴(x>0)∴m=.∵(x<0)的图象和(x>0)的图象关于y轴对称,∴点A(1,4)关于y轴的对称点A1(-1,4)在(x<0)的图象上,∴4=,k2=-4,∴由点C(-2,n)是函数图象上的一点,∴n=2.(2设AB所在直线的表达式为y=kx+b,将A(1,4),B(4,1)分别代入y=kx+b,得解这个二元一次方程组,得.∴AB所在直线表达式为:y=-x+5(3)自A,B,C三点分别向x轴作垂线,垂足分别为A′,B′,C′,CC′=2,AA′=4,BB′=1,C′A′=3,A′B′=3,C′B′=6.∴′=×(2+4)×3+×(1+4)×3-×(2+1)×6=点睛:本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.37.【2018年湖南省湘潭市中考数学试卷】如图,点M在函数y=(x>0)的图象上,过点M分别作x轴和y轴的平行线交函数y=(x>0)的图象于点B、C.(1)若点M的坐标为(1,3).①求B、C两点的坐标;②求直线BC的解析式;(2)求△BMC的面积.【答案】(1)①B(,3),C(1,1);②y=﹣3x+4;(2)【解析】分析:(1)把点M横纵坐标分别代入解析式得到点B、C坐标,应用待定系数法求BC解析式;(2)设出点M坐标(a,b),利用反比例函数性质,ab=3,用a、b表示BM、MC,求△BMC的面积.详解:(1)①∵点M的坐标为(1,3)且B、C函数(x>0)的图象上∴点C横坐标为1,纵坐标为1,点B纵坐标为3,横坐标为∴点C坐标为(1,1),点B坐标为②设直线BC解析式为把B、C点坐标代入得解得∴直线BC解析式为:点睛:本题考查反比例函数比例系数的几何意义、数形结合数学思想,解答过程中要注意用字母表示未知量,根据题意列出方程.38.【江苏省泰州市2018年中考数学试题】平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1═(x>0)的图象上,点A′与点A关于点O对称,一次函数y2=mx+n的图象经过点A′.(1)设a=2,点B(4,2)在函数y1、y2的图象上.①分别求函数y1、y2的表达式;②直接写出使y1>y2>0成立的x的范围;(2)如图①,设函数y1、y2的图象相交于点B,点B的横坐标为3a,△AA'B的面积为16,求k的值;(3)设m=,如图②,过点A作AD⊥x轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.。

专题06反比例函数(第01期)-2019年中考真题数学试题分项汇编(解析版)

专题06反比例函数(第01期)-2019年中考真题数学试题分项汇编(解析版)
所以 k=xy=12 ,
所以 y= 12 . x
( 2)当 x=4 时, y=3.
【名师点睛】此题主要考查了待定系数法求反比例函数解析式,正确假设出解析式是解题关键.
10.( 2019?广东)如图,一次函数 y=k1x+b 的图象与反比例函数 的坐标为(– 1, 4),点 B 的坐标为( 4, n).
∵函数 y= k ( k> 3,x> 0)的图象关于直线 AC 对称, x
∴ O、 A、 C 三点在同直线上,且∠ COE=45°,∴ OE=AE,
不妨设 OE=AE=a,则 A( a, a),
3
∵点 A 在反比例函数 y= ( x> 0)的图象上,
x ∴ a2=3,∴ a= 3 ,∴ AE =OE= 3 ,
x 轴对称的点的坐标的特征以及互为相反数
7.( 2019?山西)如图,在平面直角坐标中,点 O 为坐标原点,菱形 ABCD 的顶点 B 在 x 轴的正半轴上,
点 A 坐标为(– 4, 0),点 D 的坐标为(– 1, 4),反比例函数 y= k ( x> 0)的图象恰好经过点 C, x
则 k 的值为 __________ .
x
y3 的大小关系是
A . y1> y2> y3
B . y3> y2> y1
C.y1> y3>y2
D . y2> y3> y1
【答案】 C 【解析】∵ k<0 ,∴在每个象限内, y 随 x 值的增大而增大,∴当 ∵ 2<3,∴ y2<y3<y1,故选 C.
x=– 1 时, y1> 0,
【名师点睛】本题考查反比函数图象及性质;熟练掌握反比函数的图象及
【解析】∵正比例函数 y1 的图象与反比例函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、单选题
1.如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()
A. ﹣5
B. ﹣4
C. ﹣3
D. ﹣2
【来源】江苏省连云港市2018年中考数学试题
【答案】C
∵点B在反比例函数y=的图象上,
∴,
解得,k=-3,
故选:C.
点睛:本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.
2.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为()
A. 4
B. 3
C. 2
D.
【来源】浙江省温州市2018年中考数学试卷
【答案】B
详解: 把x=1代入得:y=1,
∴A(1,1),把x=2代入得:y=,
∴B(2, ),
∵AC//BD// y轴,
∴C(1,K),D(2,)
∴AC=k-1,BD=-,
∴S△OAC=(k-1)×1,
S△ABD=(-)×1,
又∵△OAC与△ABD的面积之和为,
∴(k-1)×1+(-)×1=,解得:k=3;
故答案为B.
点睛: 此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.
3.如图,是函数上两点,为一动点,作轴,轴,下列说法正确的是( )
①;②;③若,则平分;④若,则
A. ①③
B. ②③
C. ②④
D. ③④
【来源】广东省深圳市2018年中考数学试题
【答案】B
【详解】①显然AO与BO不一定相等,故△AOP与△BOP不一定全等,故①错误;
②延长BP,交x轴于点E,延长AP,交y轴于点F,
∵AP//x轴,BP//y轴,∴四边形OEPF是矩形,S△EOP=S△FOP,
∵S△BOE=S△AOF=k=6,∴S△AOP=S△BOP,故②正确;
③过P作PM⊥BO,垂足为M,过P作PN⊥AO,垂足为N,
∵S△AOP=OA•PN,S△BOP=BO•PM,S△AOP=S△BOP,AO=BO,
∴PM=PN,∴PO平分∠AOB,即OP为∠AOB的平分线,故③正确;
④设P(a,b),则B(a,)、A(,b),
S△BOP=BP•EO==4,
∴ab=4,
S△ABP=AP•BP==8,
故④错误,
综上,正确的为②③,
故选B.
【点睛】本题考查了反比例函数的综合题,正确添加辅助线、熟知反比例函数k的几何意义是解题的关键. 4.若点,,在反比例函数的图像上,则,,的大小关系是()
A. B. C. D.
【来源】天津市2018年中考数学试题
【答案】B
点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.
5.在平面直角坐标系中,分别过点,作轴的垂线和,探究直线和与双曲线的关系,下列结论中错误
..的是
A. 两直线中总有一条与双曲线相交
B. 当=1时,两条直线与双曲线的交点到原点的距离相等
C. 当时,两条直线与双曲线的交点在轴两侧
D. 当两直线与双曲线都有交点时,这两交点的最短距离是2
【来源】江西省2018年中等学校招生考试数学试题
【答案】D
【点睛】本题考查了垂直于x轴的直线与反比例函数图象之间的关系,利用特定值,分情况进行讨论是解本题的关键,本题有一定的难度.
6.已知点、都在反比例函数的图象上,则下列关系式一定正确的是()
A. B. C. D.
【来源】江苏省扬州市2018年中考数学试题
【答案】A
【解析】分析:根据反比例函数的性质,可得答案.
详解:由题意,得
k=-3,图象位于第二象限,或第四象限,
在每一象限内,y随x的增大而增大,
∵3<6,
∴x1<x2<0,
故选A.
点睛:本题考查了反比例函数,利用反比例函数的性质是解题关键.
7.给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随。

相关文档
最新文档