高中数学必修1—必修5重难点大突破,速来看!!
高中数学必修1-5常考难点
高中数学必修1-5常考难点必修一第一章:集合和函数的基本概念这一章的易错点,都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就会丢分。
次一级的知识点就是集合的韦恩图、会画图,掌握了这些,集合的“并、补、交、非”也就解决了。
还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。
在第一轮复习中一定要反复去记这些概念,最好的方法是写在笔记本上,每天至少看上一遍。
第二章:基本初等函数——指数、对数、幂函数三大函数的运算性质及图像函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。
关于这三大函数的运算公式,多记多用,多做一点练习,基本就没问题。
函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。
对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考点。
另外指数函数和对数函数的对立关系及其相互之间要怎样转化等问题,需要着重回看课本例题。
第三章:函数的应用这一章主要考是函数与方程的结合,其实就是函数的零点,也就是函数图像与X 轴的交点。
这三者之间的转化关系是这一章的重点,要学会在这三者之间灵活转化,以求能最简单的解决问题。
关于证明零点的方法,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这些难点对应的证明方法都要记住,多练习。
二次函数的零点的Δ判别法,这个需要你看懂定义,多画多做题。
必修二第一章:空间几何三视图和直观图的绘制不算难,但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张平面图中慢慢在脑海中画出实物,这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推(建议用纸做一个立方体来找感觉)。
在做题时结合草图是有必要的,不能单凭想象。
后面的锥体、柱体、台体的表面积和体积,把公式记牢问题就不大。
人教版高中数学必修1-5说课稿[1]
必修一说课目录集合的含义与表示I《函数及其表示》说课稿III函数的单调性V函数的奇偶性(说课稿)VIII指数函数X对数函数说课稿XII《幂函数》说课稿XIV方程根与函数的零点说课稿XVI集合的含义与表示一.教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。
另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
二.目标分析:教学重点.难点重点:集合的含义与表示方法. 难点:表示法的恰当选择.教学目标l.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号; (3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.三. 教法分析1. 教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2. 教学手段:在教学中使用投影仪来辅助教学.四.过程分析(一)创设情景,揭示课题1.教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。
(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?引导学生互相交流. 与此同时,教师对学生的活动给予评价.2.活动:(1)列举生活中的集合的例子;(2)分析、概括各实例的共同特征由此引出这节要学的内容。
设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫(二)研探新知,建构概念1.教师利用多媒体设备向学生投影出下面7个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国; (4)所有的正方形;(5)海南省在2004年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)国兴中学2004年9月入学的高一学生的全体.2.教师组织学生分组讨论:这7个实例的共同特征是什么?3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母,,,a b c d …表示.设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神(三)质疑答辩,发展思维1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.教师组织引导学生思考以下问题:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流. 让学生充分发表自己的建解.3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.4.教师提出问题,让学生思考(1)如果用A 表示高—(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一(4)班的一位同学,那么,a b 与集合A 分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈.如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉.(2)如果用A 表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A 的关系分别是什么?请用数学符号分别表示.(3)让学生完成教材第6页练习第1题.5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A 组第1题.6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:(1)要表示一个集合共有几种方式?(2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么?(3)如何根据问题选择适当的集合表示法?使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
高一数学必修课程中的重点难点及突破策略
高一数学必修课程中的重点难点及突破策略在高一数学的必修课程中,学生们面临着新的知识体系和学习挑战。
了解其中的重点难点,并掌握有效的突破策略,对于学生们顺利完成学业、打下坚实的数学基础至关重要。
一、函数概念与性质函数是高一数学必修课程中的核心内容之一。
重点:理解函数的定义,包括定义域、值域和对应关系;掌握常见函数的性质,如单调性、奇偶性、周期性等。
难点:对于抽象函数的理解和应用,以及函数性质的综合运用。
突破策略:通过大量的实例来理解函数的概念,比如日常生活中的温度随时间的变化、路程与时间的关系等。
对于抽象函数,可以通过具体的函数模型进行类比和分析。
在学习函数性质时,要结合函数图像进行直观理解,多做练习题,从简单到复杂,逐步提高综合运用能力。
二、指数函数与对数函数这部分内容是函数的重要拓展。
重点:掌握指数函数和对数函数的图像与性质,理解它们之间的互逆关系。
难点:指数函数和对数函数的运算,以及它们在实际问题中的应用。
突破策略:熟练掌握指数和对数的运算规则,通过绘制函数图像,观察其特点,如定义域、值域、单调性等。
在实际应用方面,要学会将实际问题转化为数学模型,运用函数的知识进行求解。
三、三角函数三角函数是高中数学的重要组成部分。
重点:理解三角函数的定义,掌握正弦、余弦、正切函数的图像和性质。
难点:三角函数的诱导公式、恒等变换以及解三角形。
突破策略:利用单位圆来理解三角函数的定义,通过周期性和对称性来记忆函数的性质。
对于诱导公式,要通过推导和反复练习来掌握。
在解三角形问题中,要灵活运用正弦定理和余弦定理,结合三角形的内角和定理进行求解。
四、向量向量为解决几何问题提供了新的方法和思路。
重点:向量的概念、线性运算和数量积。
难点:向量的共线、共面问题以及向量在几何中的应用。
突破策略:从物理中的矢量概念引入向量,理解向量的几何意义和代数运算。
通过练习来熟悉向量的运算规则,对于共线、共面问题,可以通过向量的线性表示来解决。
人教版高中数学必修一知识点与重难点
人教版高中数学必修一————各章节知识点与重难点第一章集合与函数概念1.1 集合1.1.1集合的含义与表示【知识要点】1、集合的含义一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。
2、集合的中元素的三个特性〔1〕元素确实定性;〔2〕元素的互异性;〔3〕元素的无序性2、“属于〞的概念我们通常用大写的拉丁字母A,B,C, ……表示集合,用小写拉丁字母a,b,c, ……表示元素如:如果a是集合A的元素,就说a属于集合A 记作 a∈A,如果a不属于集合A 记作 a A3、常用数集及其记法非负整数集〔即自然数集〕记作:N;正整数集记作:N*或 N+ ;整数集记作:Z;有理数集记作:Q;实数集记作:R4、集合的表示法〔1〕列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
〔2〕描述法:用集合所含元素的公共特征表示集合的方法称为描述法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2}〔3〕图示法〔Venn图〕【重点】集合的根本概念和表示方法【难点】运用集合的三种常用表示方法正确表示一些简单的集合【知识要点】1、“包含〞关系——子集一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A⊆B2、“相等〞关系如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B A B B A且⇔⊆⊆3、真子集如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A⊂B(或B⊃A)4、空集不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集.【重点】子集与空集的概念;用Venn图表达集合间的关系【难点】弄清元素与子集、属于与包含之间的区别【知识要点】1、交集的定义一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作“A交B〞),即A∩B={x| x∈A,且x∈B}.2、并集的定义一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。
人教版高一数学必修一知识点难点总结分享(共5篇)
人教版高一数学必修一知识点难点总结分享第1篇集合有以下性质若A包含于B,则A∩B=A,A∪B=B集合的表示方法集合常用大写拉丁字母来表示,如:A,B,C…而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c…拉丁字母只是相当于集合的名字,没有任何实际的意义。
将拉丁字母赋给集合的方法是用一个等式来表示的,例如:A={…}的形式。
等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。
常用的有列举法和描述法。
1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。
{1,2,3,……}2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。
{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0 4.自然语言常用数集的符号:(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N;不包括0的自然数集合,记作N_(2)非负整数集内排除0的集,也称正整数集,记作Z+;负整数集内也排除0的集,称负整数集,记作Z-(3)全体整数的集合通常称作整数集,记作Z(4)全体有理数的集合通常简称有理数集,记作Q。
Q={p/q|p∈Z,q∈N,且p,q互质}(正负有理数集合分别记作Q+Q-)(5)全体实数的集合通常简称实数集,记作R(正实数集合记作R+;负实数记作R-)(6)复数集合计作C集合的运算:集合交换律A∩B=B∩AA∪B=B∪A集合结合律(A∩B)∩C=A∩(B∩C)(A ∪B)∪C=A∪(B∪C)集合分配律A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)集合德.摩根律集合Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB集合“容斥原理”在研究集合时,会遇到有关集合中的元素个数问题,我们把有限集合A的元素个数记为card(A)。
高中数学课本内容及其重难点
北师大版高中数学必修一·第一章集合(考点的难度不是很大,是高考的必考点)·1、集合的基本关系·2、集合的含义与表示·3、集合的基本运算(重点)(2课时)·第二章函数·1、生活中的变量关系·2、对函数的进一步认识·3、函数的单调性(重点)·4、二次函数性质的再研究(重点)·5、简单的幂函数(5课时)·第三章指数函数和对数函数·1、正整数指数函数·2、指数概念的扩充·3、指数函数(重点)·4、对数·5、对数函数(重点)·6、指数函数、幂函数、对数函数增减性(重点)(3课时)·第四章函数应用·1、函数与方程·2、实际问题的函数建模(2课时)北师大版高中数学必修二·第一章立体几何初步·1、简单几何体·2、三视图(重点)·3、直观图(1课时)·4、空间图形的基本关系与公理(重点)·5、平行关系(重点)·6、垂直关系(重点)·7、简单几何体的面积和体积(重点)·8、面积公式和体积公式的简单应用(重点、难点)(4课时)·第二章解析几何初步·1、直线与直线的方程·2、圆与圆的方程·3、空间直角坐标系(4课时)北师大版高中数学必修三·第一章统计·1、统计活动:随机选取数字·2、从普查到抽样·3、抽样方法·4、统计图表·5、数据的数字特征(重点)·6、用样本估计总体·7、统计活动:结婚年龄的变化·8、相关性·9、最小二乘法(3课时)·第二章算法初步·1、算法的基本思想·2、算法的基本结构及设计(重点)·3、排序问题(重点)·4、几种基本语句(2课时)·第三章概率·1、随机事件的概率(重点)·2、古典概型(重点)·3、模拟方法――概率的应用(重点、难点)(4课时)北师大版高中数学必修四·第一章三角函数·1、周期现象与周期函数·2、角的概念的推广·3、弧度制·4、正弦函数(重点)·5、余弦函数(重点)·6、正切函数(重点)·7、函数的图像(重点)·8、同角三角函数的基本关系(重点、难点)(5课时)·第二章平面向量·1、从位移、速度、力到向量·2、从位移的合成到向量的加法(重点)·3、从速度的倍数到数乘向量(重点)·4、平面向量的坐标(重点)·5、从力做的功到向量的数量积(重点)·6、平面向量数量积的坐标表示(重点)·7、向量应用举例(难点)(5课时)·第三章三角恒等变形(重点)·1、两角和与差的三角函数·2、二倍角的正弦、余弦和正切·3、半角的三角函数·4、三角函数的和差化积与积化和差·5、三角函数的简单应用(难点)(4课时)北师大版高中数学必修五·第一章数列·1、数列的概念·2、数列的函数特性·3、等差数列(重点)·4、等差数列的前n项和(重点)·5、等比数列(重点)·6、等比数列的前n项和(重点)·7、数列在日常经济生活中的应用(6课时)·第二章解三角形(重点)·1、正弦定理与余弦定理正弦定理·2、正弦定理·3、余弦定理·4、三角形中的几何计算(难点)·5、解三角形的实际应用举例(6课时)·第三章不等式·1、不等关系·1.1、不等式关系·1.2、比较大小(重点)2,一元二次不等式(重点)·2.1、一元二次不等式的解法(重点)·2.2、一元二次不等式的应用【4课时】·3、基本不等式(重点)3.1基本不等式·3.2、基本不等式与最大(小)值4线性规划(重点)·4.1、二元一次不等式(组)与平面区(重点)·4.2、简单线性规划(重点)·4.3、简单线性规划的应用(重点、难点)【3课时】选修1-1第一章常用逻辑用语1命题2充分条件与必要条件(重点)2.1充分条件2.2必要条件2.3充要条件3全称量词与存在量词3.1全称量词与全称命题3.2存在量词与特称命题3.3全称命题与特称命题的否定4逻辑联结词“且’’‘‘或…‘非(重点)4.1逻辑联结词“且4.2逻辑联结词“或4.3逻辑联结词‘‘非【1.5课时】第二章圆锥曲线与方程(重点)1椭圆1.1椭圆及其标准方程1.2椭圆的简单性质2抛物线2.1抛物线及其标准方程2.2抛物线的简单性质3曲线3.1双曲线及其标准方程3.2双曲线的简单性质【8课时】第三章变化率与导数(重点)1变化的快慢与变化率2导数的概念及其几何意义2.1导数的概念2.2导数的几何意义3计算导数(重点)4导数的四则运算法则(重点)4.1导数的加法与减法法则4.2导数的乘法与除法法则第四章导数应用(重点)4.1导数的加法与减法法则4.2导数的乘法与除法法则【6课时】选修1-2第一章统计案例1回归分析1.1回归分析1.2相关系数1.3可线性化的回归分析2独立性检验(重点、重点)2.1条件概率与独立事件2.2独立性检验2.3独立性检验的基本思想2.4独立性检验的应用(重点、难点)【4课时】第二章框图(重点,高考必考点)1流程图2结构图【1.5课时】第三章推理与证明1归纳与类比1.1归纳推理1.2类比推理2数学证明3综合法与分析法3.1综合法3.2分析法4反证法【2课时】第四章数系的扩充与复数的引入1数系的扩充与复数的引入1.1数的概念的扩充1.2复数的有关概念(重点)2复数的四则运算(重点、高考必考点)2.1复数的加法与减法2.2复数的乘法与除法【1.5课时】选修2-1第一章常用逻辑用语1命题2充分条件与必要条件3全称量词与存在量词4逻辑联结词“且”“或”“非”&…&…(重点)【1.5课时】第二章空间向量与立体几何(重点,在解决立体几何方面有很大的帮助)第三章1从平面向量到空间向量第四章2空间向量的运算第五章3向量的坐标表示和空间向量基本定理第六章4用向量讨论垂直与平行第七章5夹角的计算第八章6距离的计算【6课时】第三章圆锥曲线与方程(重点、高考大题必考知识点)1椭圆1.1椭圆及其标准方程1.2椭圆的简单性质2抛物线2.1抛物线及其标准方程2.2抛物线的简单性质3双曲线3.1双曲线及其标准方程3.2双曲线的简单性质4曲线与方程4.1曲线与方程4.2圆锥曲线的共同特征4.3直线与圆锥曲线的交点【8课时】选修2-2第一章推理与证明(重点)1归纳与类比2综合法与分析法3反证法4数学归纳法【2课时】第二章变化率与导数(重点)1变化的快慢与变化率2导数的概念及其几何意义2.1导数的概念2.2导数的几何意义3计算导数4导数的四则运算法则4.1导数的加法与减法法则4.2导数的乘法与除法法则5简单复合函数的求导法则【2课时】第三章导数应用(重点)1函数的单调性与极值1.1导数与函数的单调性1.2函数的极值(重、难点)2导数在实际问题中的应用2.1实际问题中导数的意义2.2最大、最小值问题(重、难点)【5课时】第四章定积分1定积分的概念1.1定积分背景-面积和路程问题(重点)1.2定积分2微积分基本定理3定积分的简单应用(重点)3.1平面图形的面积3.2简单几何体的体积【4课时】第五章数系的扩充与复数的引入(重点)1数系的扩充与复数的引入1.1数的概念的扩展1.2复数的有关概念2复数的四则运算2.1复数的加法与减法2.2复数的乘法与除法【2课时】选修2-3第一章计数原理(重点)1.分类加法计数原理和分步乘法计数原理1.1分类加法计数原理1.2分步乘法计数原理2.排列(重点、难点)2.1排列的原理2.2排列数公式3.组合3.1组合及组合数公式3.2组合数的两个性质4.简单计数问题5.二项式定理(重、难点)5.1二项式定理5.2二项式系数的性质【8课时】第二章概率(重点)1.离散型随机变量及其分布列2.超几何分布3.条件概率与独立事件4.二项分布5.离散型随机变量均值与方差5.1离散型随机变量均值与方差(一)5.2离散型随机变量均值与方差(二)6.正态分布6.1连续型随机变量6.2正态分布【4课时】第三章统计案例1.回归分析1.1回归分析1.2相关系数1.3可线性化的回归分析2.独立性检验(重点)2.1独立性检验2.2独立性检验的基本思想2.3独立性检验的应用【2课时】选修3-1第一章数学发展概述第二章数与符号第三章几何学发展史第四章数学史上的丰碑----微积分第五章无限第六章数学名题赏析选修3-2选修3-3第一章球面的基本性质1.直线、平面与球面的我诶制关系2.球面直线与球面距离第二章球面上的三角形1.球面三角形2.球面直线与球面距离3.球面三角形的边角关系4.球面三角形的面积【2课时】第三章欧拉公式与非欧几何1.球面上的欧拉公式2.简单多面体的欧拉公式3.欧氏几何与球面几何的比较选修4-1第一章直线、多边形、圆(重点)1.全等与相似2.圆与直线3.圆与四边形【2课时】第二章圆锥曲线1.截面欣赏2.直线与球、平面与球的位置关系3.柱面与平面的截面4.平面截圆锥面5.圆锥曲线的几何性质【3课时】选修4-2第一章平面向量与二阶方阵1平面向量及向量的运算2向量的坐标表示及直线的向量方程3二阶方阵与平面向量的乘法第二章几何变换与矩阵1几种特殊的矩阵变换2矩阵变换的性质第三章变换的合成与矩阵乘法1变换的合成与矩阵乘法2矩阵乘法的性质第四章逆变换与逆矩阵1逆变换与逆矩阵2初等变换与逆矩阵3二阶行列式与逆矩阵4可逆矩阵与线性方程组第五章矩阵的特征值与特征向量1矩阵变换的特征值与特征向量2特征向量在生态模型中的简单应用选修4-4第一章坐标系1平面直角坐标系2极坐标系3柱坐标系和球坐标系第二章参数方程1参数方程的概念2直线和圆锥曲线的参数方程3参数方程化成普通方程4平摆线和渐开线选修4-5第一章不等关系与基本不等式(重点)l不等式的性质2含有绝对值的不等式(难点)3平均值不等式4不等式的证明5不等式的应用第二章几个重妻的不等式1柯西不等式2排序不等式3数学归纳法与贝努利不等式选修4-6第一章带余除法与书的进位制1、整除与带余除法2、二进制第二章可约性1、素数与合数2、最大公因数与辗转相除法3、算术基本定理及其应用4、不定方程第三章同余1、同余及其应用2、欧拉定理还在更新。
(完整)高中数学各年级重难点分析
高中数学知识总结
1.课程内容:
必修课程由5个模块组成:
必修1:集合、函数概念与基本初等函数(指、对、幂函数)
必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
理科学习
选修2-1:常用逻辑用语、圆锥曲线与方程、空间中的向量与立体几何。
选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入。
选修2-3:计数原理、统计案例、概率。
选修4-5:不等式选讲。
文科学习
选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1-2:统计案例、推理与证明、数系的扩充与复数的引入、框图。
选修2—1:常用逻辑用语、圆锥曲线与方程、。
人教版高中数学必修一《函数的应用》重难点解析(含答案)
人教版数学必修一第三章《函数的应用》重难点解析第三章 课文目录 3.1 函数与方程3.2 函数模型及其应用重点:1.通过用“二分法”求方程近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.2.认识指数函数、对数函数、幂函数等 函数模型的增长差异,体会直线上升、指数爆炸、对数增长的差异. 难点:1.在利用“二分法”求方程近似解的过程中,对给定精确度的近似解的计算. 2.如何选择适当的函数模型分析和解决 实际问题.一、方程的根和函数的零点1.函数的零点给出三个具体函数的图象——设置问题研究情景,通过对函数图像的观察,归纳出结论:一元二次方程()002≠=++a c bx ax 的根,就是相应的二次函数()02≠++=a c bx ax y 的图象与x 轴的交点的横坐标。
我们把使()0=x f 的实数x 叫做函数()x f y =的零点。
注意函数的零点与方程的根间的联系和区别,二者不能混为一谈。
例1 函数322--=x x y 的零点是( )A .31=-=x x 或B .()()030,1,或-C .31-==x x 或D .()()030,1,或- 函数的零点与方程的根——形数的结合的典范。
利用学生熟悉的二次函数的图象和性质,为理解函数的零点提供直观认识,为判定零点是否存在和求零点提供支持,使函数零点的求解与函数的变化建立联系。
为判断方程()0=x f 实数根的个数,只需观察函数()x f y =的图象与x 轴交点的个数——方程根的研究转化为函数零点的研究。
例2 判断方程062ln =-+x x 实根的个数。
2.函数零点存在的判定引导学生观察图象连续的函数的变化情况,让学生通过连续的函数值的变化情况认识到:当函数值由正变为负时必定经过一个零点; 当函数值由负变为正时必定经过一个零点。
由此概括得到函数零点存在的判定方法。
如果函数()x f y =在区间[]b a ,上的图象是连续不断的一条曲线,并且有()()0<⋅b f a f ,那么,函数()x f y =在区间()b a ,内有零点,即存在()b a c ,∈,使得()0=c f ,这个c 也就是方程()0=x f 的根。
高中数学必修1-5知识点归纳及公式大全
必修 1 数学知识点会合间的基本运算1 、 一般地,由全部属于会合 A 或会合 B 的元素构成的会合,称为会合 A 与B 的并集.记作: A B .2 、 一般地,由属于会合 A且属于会合 B 的全部元素构成的会合,称为A 与B 的交集 .记作: AB子集:对随意 x A ,都有 xB ,则称 A 是 B 的子集。
记作 A B 真子集:若 A 是 B 的子集,且在 B 中起码存在一个元素不属于 A ,则 A 是 B 的真子集,记作 AB 会合相等:若:AB, BA ,则A B自然数集: N 正整数集: N *整数集: Z 有理数集: Q 实数集: R奇偶性1 、 f x f x ,那么就称函数 fx 为偶函数 .偶函数图象对于 y 轴对称 .2 、 fxf x ,那么就称函数f x 为奇函数 .奇函数图象对于原点对称 .第二章、基本初等函数(Ⅰ) §、指数与指数幂的运算1、 一般地,假如 x na ,那么 x 叫做 a 的 n 次方根。
此中 n 1,n N .2、 当 n 为奇数时, n a na ;当 n 为偶数时, n a n a .n1⑴ a mma n am n N *m;⑵n0 ;0, ,,1aan n⑴ arasar sa 0, r , s Q ;⑵ a rsarsa 0, r , s Q ⑶ ab ra rb ra 0,b 0, r Q .§、指数函数及其性质1、 记着图象: ya x a 0, a1复合函数的单一性 : 同增异减三、二次函数 y = ax 2 +bx + c ( a0 )的性质1、极点坐标公式:b , 4ac b 2 , 对称轴:xb ,最大(小)值: 4ac b 22a 4a2a 4a2.二次函数的分析式的三种形式 (1)一般式 (3)两根式f ( x) ax 2 bx c(a 0) ; (2)极点式 f ( x) a( x h)2 k (a 0) ; f ( x) a( x x 1 )( x x 2 )(a 0) .§、对数与对数运算1、 a xN log a N x ;2、 a log a Na .3、 log a 1 0 ,log a a 1.4、当 a0, a 1, M0, N0 时:⑴log a MNlog a M log a N ;⑵ log a M log a M log a N ;⑶ log a M n nlog a M .N换底公式:log c b1log a b a 0, a 1, c 0, c 1, b 0 .;log a b a 0, a 1, b 0, b 1 .log c a log b a记着图象:y log a x a 0, a1§、幂函数1、几种幂函数的图象:1、幂的运算法例:( 1) a m a n = a m + n,( 2)a m a n a m n,(3)( a m)n= a m n(4)( ab )n= a n b nna n n n1( 5)a(6) a 0= 1 ( a ≠0)()an1() a m m a n()amb b n7a n89m a n必修 2 数学知识点⑴圆柱侧面积;S侧面 2 r l⑵圆锥侧面积:S侧面r l⑶圆台侧面积: S侧面r l R l⑷体积公式:V柱体S h; V锥体1S h ;V台体1S上S上S下S下 h 33⑸球的表面积和体积:S球 4 R2,V球4R3. 3第三章:直线与方程y2y1 1、倾斜角与斜率:k tanx2x12、直线方程:⑴点斜式:y y0k x x0⑵斜截式:y kx b⑶两点式:y y1x x1 y2y1x2x1⑷一般式:Ax By C0⑴ l 1 // l 2A1B2A2B1 ;B1C2B2 C1⑵ l1和 l 2订交A1B2A2B1;⑶ l1和 l 2重合A1 B2A2B1 ;B1C2B2 C1⑷ l 1l 2A1 A2B1B20 .5、两点间距离公式:P1 P2x2x12y2y12 6、点到直线距离公式:3、对于直线:d Ax0By0CA2B2l1 : y k1x b1 , l 2 : y k2 x b2有:⑴ l 1 // l 2k1k 2 ;b1b2⑵ l 1和 l 2订交k1k2⑶ l 1和 l 2重合k1k 2 ;b1b2⑷ l 1 l 2k1 k21.4、对于直线:l1 : A1x B1 y C10,有:l 2 : A2 x B2 y C20第四章:圆与方程1、圆的方程:⑴标准方程:x a 2y b 2r 2⑵一般方程: x 2y 2Dx Ey F0.2、两圆地点关系: d O1O2⑴外离: d R r ;⑵外切: d R r ;⑶订交: R r d R r ;⑷内切: d R r ;⑸内含: d R r .3、空间中两点间距离公式:P1 P2x2x12y2y12z2z12必修 4 数学知识点第一章、三角函数2、l.§、随意角r1、正角、负角、零角、象限角的观点.3、弧长公式:l n RR .2、与角终边同样的角的会合:1802k , k Z .n R 21 lR .4、扇形面积公式:S§、弧度制3602 1、把长度等于半径长的弧所对的圆心角叫做 1 弧度§、随意角的三角函数1、设是一个随意角,它的终边与单位圆交于点P x, y,那么:2、设点A x0, y0为角终边上随意一点,那么:(设 r x02y02)siny 0, cosx 0 , tan y0 .rrx 03、 sin , cos , tan在四个象限的符号和三角函数线的画法.4、 引诱公式一:sin 2k sin ,§、同角三角函数的基本关系式cos 2k cos , (此中: k Z )、 平方关系: sin 22tan2ktan .1cos1.sin2 、 商数关系: tan.cos§、三角函数的引诱公式 1 、 引诱公式二:sin sin , coscos ,tantan .2 、引诱公式三:§、两角和与差的正弦、余弦、正切公式1 、 coscos cos sin sin2 、 sinsin cos cos sin3 、 sin sin coscos sin4 、 tan tan tan .1 tan tan5 、 tantan tan .1 tan tan§、二倍角的正弦、余弦、正切公式1 、 sin 22 sin cos,变形: sincos 12 sin 2 .2 、 cos2cos 2 sin 22 cos 211 2sin 2,变形 1: cos 21 cos2 ,2 变形 2: sin21 cos2 .2 3 、 tan 22 tan.1 tan2sin sin ,cos cos ,tantan .3、引诱公式四:sin sin ,cos cos ,tantan .4、引诱公式五:sincos ,2cossin .25、引诱公式六:sincos ,2cossin .2必修 5 数学知识点函数正弦函数余弦函数正切函数图象定义域R R{x| x ≠ +k π,k∈ Z}2值域[-1,1][-1,1]R周期性2π2ππ奇偶性奇函数偶函数奇函数增区间 [- π +2kπ , 2k π]减区间 [2k π ,π+2k π ]增区间 [-+2kπ ,( k ∈Z )增区间+2kπ ]单一性22(-+k π , +k π) 3减区间 [+2kπ ]22 +2kπ ,( k∈ Z ) 22对称轴x =+ k π( k∈ Z )x = k π ( k ∈ Z )无2对称中( kπ ,0 ) ( k ∈ Z )(+ k π ,0 )( k ∈ Z )( k ,0 ) ( k ∈ Z )心22二、平面向量1、向量的模计算公式:( 1)向量法: | a | =a a2 a;( 2)坐标法:设a =( x,y),则 |a | =x 2y 2 2、单位向量的计算公式:( 1)与向量a =( x,y)同向的单位向量是x,y;x2x2y 2y 2( 2)与向量a =( x,y)反向的单位向量是x,y;x2y 2x 2y 23、平行向量规定:零向量与任一直量平行。
高中数学必修1-5知识点总结
高一数学必修1知识网络 集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。
高中数学必修1函数难题突破(含解析)
1必修I 重点、难点突破----------函数的性质、图象、思想的综合应用一、函数综合问题概述必修I 第一章我们学习了函数的基本性质:单调性与奇偶性,第二章我们学习了三个基本初等函数,第三章我们学习了函数零点以及函数模型。
将以上知识综合起来命题,这样的题目叫做函数综合题。
综合题的特点:1、解决一道题需要掌握多个知识点;2、解决一道题需要找到多个知识的联系点。
3、运算往往较复杂。
5、这类问题一般以初等函数(尤其是指数对数)为载体,运用函数思想、方程思想、转化思想结合函数性质配以图象解决。
二、函数综合问题举例例1、已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c【解析】:因为f (x )的图象关于直线x =1对称.由此可得f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝ ⎛⎭⎪⎫52>f (e),∴b >a >c .例2、若函数为奇函数,则使不等式成立的 的取值范围是( )A. B.C. D.【解析】: 函数为奇函数,,即,不等式,即不等式,在上单调递减, , , 故选B.例3、已知函数的图象关于原点对称,其中为常数.求的值;当时,恒成立,求实数的取值范围;若关于的方程在上有解,求的取值范围.【解析】:函数的图象关于原点对称,函数为奇函数,,即在定义域内恒成立,所以,即在定义域内恒成立, 所以,解得:或舍,所以,当时,,时,恒成立,;由得:,即,即,即在上有解,在上单调递减,,则的值域是,.即k的取值范围为.例4、已知定义域为R的函数,是奇函数.2Ⅰ求a,b的值;Ⅱ若对任意的,不等式恒成立,求k的取值范围.【解析】:Ⅰ因为是奇函数,所以,即,, 又由知.所以,.经检验,时,是奇函数.Ⅱ由Ⅰ知,易知在上为减函数.又因为是奇函数,所以等价于,因为为减函数,由上式可得:.即对一切有:,从而判别式.所以k的取值范围是.例5、已知函数为R上的偶函数,为R上的奇函数,且.求,的解析式;若函数在R上只有一个零点,求实数a的取值范围.【解析】::因为,,,由得,.由.得:,令,则,即方程只有一个大于0的根, 当时,,满足条件;当方程有一正一负两根时,满足条件,则,,3当方程有两个相等的且为正的实根时,则,,舍时,,综上:或.例6、设函数若关于x的方程恰好有六个不同的实数解,则实数a的取值范围为A. B.C. D.【解析】:函数的图象如图,关于x的方程恰好有六个不同的实数解,令,则有两个在的不同的解,所以,解得.故选A.三、函数综合问题训练41.已知函数满足,若函数与图象的交点为,,,,则( )A. 0B. mC. 2mD. 4m【解析】:函数满足,即为,可得关于点对称,函数,即的图象关于点对称,即有为交点,即有也为交点,为交点,即有也为交点, 则有.故选B.2.已知函数则函数的零点个数为( )A. 1B. 3C. 4D. 6【解析】:令,当时,,解得,,当时,,解得,综上解得,,,令,作出图象如图所示:由图象可得当无解,有3个解,有1个解,56综上所述函数 的零点个数为4,故选C .3. 已知函数 是定义域为R 的偶函数,当 时,,若关于x 的方程 ,有且只有7个不同实数根,则实数a 的取值范围是 A.B.C.D.【解析】:由题意, 在 和 上是减函数,在 和 上是增函数, 时,函数取极大值1, 时,取极小值,时, ,关于x 的方程 、 有且只有7个不同实数根, 设 ,则方程 必有两个根 , ,其中 ,,,则. 故选A .已知函数,函数 ,其中 ,若函数 恰有4个零点,则b 的取值范围是( ) A.B.C.D.【解析】: ,,由 ,得 , 设 , 若 ,则 , ,则,若,则,,则,若,,,则即,作出函数的图象如图:当时,,当时,,故当时,,有两个交点,当时,,有无数个交点,由图象知要使函数恰有4个零点,即恰有4个根,则满足,故选D.4.已知函数且在上的最大值与最小值之和为20,记.求a的值;证明;求的值.【解析】:函数且在上的最大值与最小值之和为20,而函数且在上单调递增或单调递减,,得,或舍去,证明:,由知,,, ,7.5.函数当时求该函数的值域;若对于恒成立,求m的取值范围.【解析】:解, 令,时,,此时,当时,y取最小值,当时,y取最大值1,即函数的值域为:;若对于恒成立,令,即对恒成立,对恒成立,易知在上单调递增,,.6.已知,函数.当时,解不等式;若关于x的方程的解集中恰有一个元素,求a的值;设,若对任意,函数在区间上的最大值与最小值的差不超过1,求a的取值范围.【答案】解:当时,不等式化为:,,化为:,解得,经过验证满足条件,因此不等式的解集为:.方程即,,化为:,若,化为,解得,经过验证满足:关于x的方程的解集中恰有一个元素1.8若,令,解得,解得经过验证满足:关于x的方程的解集中恰有一个元素1.综上可得:或.,对任意,函数在区间上单调递减,,,化为:,,,在上单调递减,时,取得最大值,..的取值范围是.9。
高中数学课程顺序及重难点和高考考点
高中数学课程顺序及重难点和高考考点引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有4个系列:系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。
系列3:由6个专题组成。
选修3—1:数学史选讲。
选修3—2:信息安全与密码。
选修3—3:球面上的几何。
选修3—4:对称与群。
选修3—5:欧拉公式与闭曲面分类。
选修3—6:三等分角与数域扩充。
系列4:由10个专题组成。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—3:数列与差分。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
选修4—6:初等数论初步。
选修4—7:优选法与试验设计初步。
选修4—8:统筹法与图论初步。
选修4—9:风险与决策。
选修4—10:开关电路与布尔代数。
2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算。
人教版高中数学必修1--第五章 章末回顾与提升
高中数学 必修 第一册
返回导航
第五章 三角函数
已知 α 为第三象限角,且
sin
32π-αcos π2 -αtan (-α+π)
sin π2 +αtan (2π-α)
x-
3 2
(1+cos
2x)=12
sin
2x-
3 2
cos 2x-
3 2
=sin
2x-π3
-
3 2
,
因此 f(x)的最小正周期为π,最大值为2-2 3 .
高中数学 必修 第一册
返回导航
第五章 三角函数
(2)当 x∈π6 ,23π
π 时,0≤2x- 3
≤π,从而
π 当 0≤2x- 3
π ≤2
π ,即 6
高中数学 必修 第一册
返回导航
第五章 三角函数
解析:∵函数 f(x)=sin 2x+π4 +cos 2x+π4 = 2 sin 2x+π4 +π4 = 2 sin 2x+π2 = 2 cos 2x,
高中数学 必修 第一册
返回导航
第五章 三角函数
∴f(-x)= 2 cos (-2x)= 2 cos 2x=f(x),y=f(x)为偶函数,故选 项 A 正确;令 2kπ≤2x≤π+2kπ(k∈Z),解得 kπ≤x≤π2 +kπ (k∈Z),可得函数 y=f(x)在0,π2 单调递减,所以选项 B 正确;
第五章 三角函数
[训练 1] 已知角 α 的顶点与原点重合,始边与 x 轴的非负半轴重合,终边 在射线 y=2x(x≥0)上.
高一上册数学必修一知识点归纳
高一上册数学必修一知识点归纳1.高一上册数学必修一知识点归纳1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A(A②真子集:如果A(B,且A(B那就说集合A是集合B的真子集,记作AB(或BA)③如果A(B,B(C,那么A(C④如果A(B同时B(A那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集2.高一上册数学必修一知识点归纳一、函数的单调性1、函数单调性的定义2、函数单调性的判断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法二、函数的奇偶性和周期性1、函数的奇偶性和周期性的定义2、函数的奇偶性的判定和证明方法3、函数的周期性的判定方法三、函数的图象1、函数图象的作法(1)描点法(2)图象变换法2.意象变换包括意象:平移变换、展开变换、对称变换和折叠变换。
常见考法该部分是段和高考必不可少的部分,是段和高考的重点和难点。
有选择题,填空题和解答,题比较难。
在解题上,可以结合高中数学的每一章,多为高级题。
更应注意函数的单调性、极大值和图像。
误区提醒1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。
2.单调区间必须用区间来表示,不能用集合或不等式来表示。
单调区间一般写成开区间,不考虑端点问题。
3、在多个单调区间之间不能用“或”和“”连接,只能用逗号隔开。
4.判断函数的奇偶性,首先要考虑函数的定义域。
如果函数的定义域关于原点不是对称的,那么函数一定是奇函数或偶函数。
5、像作为函数,一般是先简化解析式,再用追点法或像变换法确定像作为函数。
高一数学必修一教学重点难点
高一数学必修一教学重点难点一、教学任务及对象1、教学任务本节课的教学任务是针对高一学生进行数学必修一的重点难点内容的教学。
主要围绕数学基础知识,如函数、三角函数、数列等,以及相应的解题方法和技巧进行深入讲解。
通过本节课的学习,使学生掌握数学核心概念,提高解决问题的能力,并为后续数学学习打下坚实基础。
2、教学对象教学对象为高中一年级学生,他们在初中阶段已经具备了一定的数学基础,但在高中数学的学习过程中,可能会遇到一些理解上的困难和挑战。
因此,在教学过程中,需要关注学生的学习情况,针对不同学生的特点和需求,进行有针对性的教学,使他们在掌握知识的同时,提高自身的数学思维能力。
同时,鼓励学生积极参与课堂讨论,培养他们主动探究、合作学习的能力。
二、教学目标1、知识与技能(1)理解并掌握数学必修一中的核心概念,如函数的定义、性质、图像,以及三角函数、数列的基本概念和性质。
(2)学会运用数学知识解决实际问题,特别是运用函数、三角函数、数列等知识解决高中阶段的数学题目。
(3)掌握数学解题方法和技巧,如换元法、代入法、构造法等,提高解题速度和准确性。
(4)通过数学知识的学习,培养学生的逻辑思维、抽象思维和创新能力。
2、过程与方法(1)采用启发式教学方法,引导学生主动探究、发现和解决问题,提高学生自主学习的能力。
(2)注重课堂讨论,鼓励学生发表自己的观点,培养学生的沟通能力和合作精神。
(3)通过典型例题的分析与讲解,帮助学生总结解题方法,形成自己的解题思路。
(4)利用多媒体、教具等教学资源,丰富教学手段,提高学生的学习兴趣。
3、情感,态度与价值观(1)培养学生对数学学科的兴趣和热爱,激发他们学习数学的内在动力。
(2)引导学生树立正确的数学观念,认识到数学在科学技术、日常生活等领域的重要作用。
(3)培养学生面对困难和挑战时,具有坚持不懈、勇于探索的精神。
(4)通过数学学习,培养学生的审美情趣,使他们感受到数学的简洁、优美和严谨。
高中数学必修1-5知识点+公式大全-最新最全
全部覆盖数学必修1至5的所有知识点以及相关公式,方便复习和及时总结,祝大家能取得好的成绩!!!数学必修1-5常用公式及结论必修1: 一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性(2)集合的分类;有限集,无限集 (3)集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意x A ∈,都有 x B ∈,则称A 是B 的子集。
记作A B ⊆真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集, 记作A ≠⊂B 集合相等:若:,A B B A ⊆⊆,则A B =3. 元素与集合的关系:属于∈ 不属于:∉ 空集:φ4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为 AB交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为AB补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个;6.常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R 二、函数的奇偶性1、定义: 奇函数 <=> f (– x ) = – f ( x ) ,偶函数 <=> f (–x ) = f ( x )(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 二、函数的单调性1、定义:对于定义域为D 的函数f ( x ),若任意的x 1, x 2∈D ,且x 1 < x 2① f ( x 1 ) < f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) < 0 <=> f ( x )是增函数② f ( x 1 ) > f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) > 0 <=> f ( x )是减函数 2、复合函数的单调性: 同增异减三、二次函数y = ax 2+bx + c (0a ≠)的性质1、顶点坐标公式:⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22, 对称轴:a bx 2-=,最大(小)值:a b ac 442-2.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠. 四、指数与指数函数 1、幂的运算法则: (1)a m• a n= am + n,(2)nm n m aa a -=÷,(3)( a m ) n = am n(4)( ab ) n= an• b n(5) n n nb a b a =⎪⎭⎫ ⎝⎛(6)a 0 = 1 ( a ≠0)(7)n n a a 1=- (8)m n mna a =(9)m n m naa 1=-2、根式的性质(1)na =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.4、指数函数y = a x(a > 0且a ≠1)的性质:(1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)5.指数式与对数式的互化: log b a N b a N =⇔=(0,1,0)a a N >≠>. 五、对数与对数函数 1对数的运算法则:(1)a b= N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b= b (5)a log a N = N(6)log a (MN) = log a M + log a N (7)log a (NM) = log a M -- log a N(8)log a N b= b log a N (9)换底公式:log a N =aNb b log log(10)推论 log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). (11)log a N =aN log 1(12)常用对数:lg N = log 10 N (13)自然对数:ln A =log e A (其中 e = 2.71828…) 2、对数函数y = log a x (a > 0且a ≠1)的性质: (1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)六、幂函数y = x a的图象:(1) 根据 a 的取值画出函数在第一象限的简图 .例如: y = x 221x x y ==11-==x xy七.图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位, 得到函数b a x f y +-=)(的图象; 规律:左加右减,上加下减 八. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+. 九、函数的零点:1.定义:对于()y f x =,把使()0f x =的X 叫()y f x =的零点。
高中数学必修一其实只有几个重点内容,看完你就懂了
高中数学必修一其实只有几个重点内容,看完你就懂了1、集合的概念与运算在这一节中,学生需要掌握的是:集合中元素的性质,集合的表示,集合之间的关系,集合运算中常见的结论。
俗话说万事开头难,但这部分的收集不仅是在高一,对以后三年的数学学习也有深远的影响。
还融入了各种知识模块,其考试方法往往结合其他重要知识综合提问,学生要特别注意。
2、函数的概念与函数求值在高中数学的学习中,函数是我们研究的重点对象之一。
本节首先要了解函数的概念,映射,分段函数,函数运算。
其次,要掌握基本功能的概念、形象和评价方法,为下面深层次的功能相关板块做铺垫。
3、函数的单调性与奇偶性函数的单调性和奇偶性以及函数的最大值和最小值是学习函数的一个重要方面,也是考试中经常考查的内容。
本节要求学生熟悉几种特殊函数的单调性,掌握判断函数单调性的常用方法,对复合函数的单调性有初步的了解。
同时要掌握奇函数偶函数的图像对称关系,判断函数奇偶性的一般方法,函数奇偶性的应用,函数奇偶性与周期性的关系,函数奇偶性与单调性的综合应用。
4、二次函数的图像和性质该部分要求学生掌握二次函数的概念、图像特征、对称性和单调性,以及求二次函数在给定区间内的最大值和二次函数的综合应用。
5、指数与对数学生需要掌握指数函数和对数函数的图像和性质,方程的类型和解法,与指数函数和对数函数相关的复变函数,指数函数和对数函数的综合。
此外,指数、对数公式的运算、变形、求值、化简也占据了非常重要的位置,是以后学习很多数学问题的必备工具,需要扎实的基本功作为后盾。
6、函数的图像变换及其应用本节要求学生能够掌握基本函数的图像和特征,熟练运用基本函数的图像解决问题,掌握图像的方法。
7、函数的零点与方程的根如小标题所介绍的,这个板块的主要内容是函数的零点和方程的根,以及零点的求解和零点的个数。
在高考中,主要的题型是选择题和填空题。
考察了指数和对数方程的解和函数零点的判断,还以解题的形式考察了二次方程的根的分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修1—必修5重难点大突破,速来看!!
数学重点内容概括
必修一
第一章:集合和函数的基本概念。
错误基本都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就是五分没了。
次一级的知识点就是集合的韦恩图,会画图,集合的“并、补、交、非”也就解决了,还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。
高三生在一轮复习中一定要反复去记这些概念,最好的方法是写在笔记本上,每天至少看上一遍。
第二章:基本初等函数。
指数、对数、幂函数三大函数的运算性质及图像。
函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。
关于这三大函数的运算公式,多记多用,多做一点练习基本就没多大问题。
函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。
对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考常错点。
另外指数函数和对数函数的对立关系及其相互之间要怎样转化问题也要了解清楚。
第三章:函数的应用。
主要就是函数与方程的结合。
其实就是方程的实根,即函数的零点,也就是函数图像与X轴的交点。
这三者之间的转化关系是这一章的重点,要学会在这三者之间
的灵活转化,以求能最简单的解决问题。
关于证明零点的方法,这是这一章的难点,几种证明方法都要记得,多练习强化。
二次函数的零点的Δ判别法,这个倒不算难。
必修二
第一章:空间几何。
三视图和直观图的绘制不算难。
但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张平面图中慢慢在脑海中画出实物。
这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推。
有必要的还要在做题时结合草图,不能单凭想象。
后面的锥体柱体台体的表面积和体积,把公式记牢问题就不大。
做题表求表面积时注意好到底有几个面,到底有没有上下底这类问题就可以。
第二章:点、直线、平面之间的位置关系。
这一章除了面与面的相交外,对空间概念的要求不强,大部分都可以直接画图,这就要求学生要多看图,自己画草图的时候要严格注意好实线虚线,这是个规范性问题。
关于这一章的内容,牢记直线与直线、面与面、直线与面相交、垂直、平行的
几大定理及几大性质,同时能用图形语言、文字语言、数学表达式表示出来。
只要这些全部过关这一章就解决了一大半。
这一章的难点在于二面角这个概念,难度在于对这个概念无法理解,即知道有这个概念,但就是无法在二面里面做出这个角。
对这种情况只有从定义入手,先要把定义记牢,再多做多看,这个没有什么捷径可走。
第三章:直线与方程。
这一章主要讲斜率与直线的位置关系。
只要搞清楚直线平行、垂直的斜率表示问题就不大了。
需要格外注意的是当直线垂直时斜率不存在的情况,这是常考点。
另外直线方程的几种形式,记得一般公式会用就行,要求不高。
点与点的距离、点与直线的距离、直线与直线的距离,记住公式,直接套用。
第四章:圆与方程。
能熟练的把一般式方程转化为标准方程,通常的考试形式是等式的一遍含根号,另一边不含,这时就要注意开方后定义域或值域的限制;通过点到点的距离、点到直线的距离与圆半径的大小关系判断点与圆、直线与圆、圆与圆的位置关系。
另外注意圆的对称性引起的相切、相交直线的多种情况,这也是常考点。
必修三
总的来说这一本书难度不大,只是比较繁琐,需要有耐心的去画图去计算。
程序框图与三种算法语句的结合,及框图的算法表示。
秦九韶算法是重点,要牢记算法的公式。
统计就是对一堆数据的处理,考试也是以计算为主,会从条形图中计算出中位数等数字特征,对于回归问题,只要记住公式,也就是个计算问题。
概率,主要就只几何概型、古典概型。
集合概型只要会找表示所求事件的长度面积等;古典概型只要能表示出全部事件就可以。
必修四
第一章:三角函数。
考试必考题。
诱导公式和基本三角函数图像的一些性质只要记住会画图就行,难度在于三角函数形函数的振幅、频率、周期、相位、初相,及根据最值计算A、B
的值和周期,及恒等变化时图像及性质的变化,这一知识点内容较多,需要多花时间,首先要记忆,其次要多做题强化练习,只要能踏踏实实去做,也不难掌握,毕竟不存在理解上的难度。
第二章:平面向量。
个人觉得这一章难度较大,这也是我掌握最差的一章。
向量的运算性质及三角形法则平行四边形法则难度都不大,只要在计算的时候记住要同起点的向量。
向量共线和垂直的数学表达,这是计算当中经常要用的公式。
向量的共线定理、基本定理、数量积公式。
难点在于分点坐标公式,首先要准确记忆。
向量在考试过程一般不会单独出现,常常是作为解题要用的工具出现,用向量时要首先找出合适的向量,个人认为这个比较难,常常找不对。
有同样情况的同学建议多看有关题的图形。
第三章:三角恒等变换。
这一章公式特别多。
和差倍半角公式都是会用到的公式,所以必须要记牢。
由于量比较大,记忆难度大,所以建议用纸写之后贴在桌子上,天天都要看。
而且三角函数变换都有一定的规律,记忆的时候可以结合起来去记。
除此之外,就是多练习。
要从多练习中找到变换的规律,比如一般都要化简等等。
这一章也是考试必考,所以一定要重点掌握。
必修五
第一章:解三角形。
掌握正弦余弦公式及其变式和推论和三角面积公式即可。
第二章:数列。
考试必考。
等差等比数列的通项公式、前n项和及一些性质。
这一章属于学起来
很容易,但做题却不会做的类型。
考试题中,一般都是要求通项公式、前n项和,所以拿到题目之后要带有目的的去推导。
第三章:不等式。
这一章一般用线性规划的形式来考察。
这种题一般是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图。
然后再根据实际问题的限制要求求最值。
选修部分
选修中的简单逻辑用语、圆锥曲线和导数:
逻辑用语只要弄懂充分条件和必要条件到底指的是前者还是后者,四种命题的真假性关系,逻辑连接词,及否命题和命题的否定的区别,考试一般会用选择题考这一知识点,难度不大;圆锥曲线一般作为考试的压轴题出现。
而且有多问,一般第一问较简单,是求曲线方程,只要记住圆锥曲线的表达式难度就不大。
后面两到三问难打一般会很大,而且较费时间。
所以不建议做。
这一章属于学的比较难,考试也比较难,但是考试要求不高的内容;导数,导数公式、运算法则、用导数求极值和最值的方法。
一般会考察用导数求最值,会用导数公式就难度不大。
以上就是高中数学重点及常考的内容。