垂直关系

合集下载

垂直关系

垂直关系

基础知识梳理
如果一条直线与一个平面内的无数条直线垂直, 则这条直线和这个平面是否垂直? 【思考·提示】 不一定垂直,若平面内一组 平行线与直线l垂直,但直线l与平面的关系是不确定 的.
基础知识梳理
2.平面与平面垂直 (1)定义:如果两个相交平面的交线与 第三个平面 垂直 ,且这两个平面与第三个 平面相交所得的两条交线 互相垂直 ,就称 这两个平面互相垂直.
基础知识梳理
(2)判定定理:如果一个平面过另一 个平面的一条垂线,则这两个平面互相 垂直. 其符号语言为:a⊥β,a⊂α⇒α⊥β . (3)性质定理:如果两个平面互相垂 直,那么在一个平面内垂直于它们交线 的直线垂直于另一个平面. 其符号语言为: α⊥β,α∩β=l,a⊂ . α,a⊥l⇒a⊥β
三基能力强化
用线线垂直或面面垂直转化,除此外, 构造等腰三角形证垂直及利用勾股定理 求长度之间的关系证明垂直,甚至借助 矩形相邻边的垂直等,都是可能用到的 方法.
练习
1.如图所示,在直 四棱柱ABCD-A1B1C1D1 中,DB=BC,DB⊥AC, 点M是棱BB1上一点. (1)求证:B1D1∥面A1 BD; (2)求证:MD⊥AC; (3)试确定点M的位置, 使得平面DMC1⊥平面CC1 D1D.
由正方体性质得AC⊥BD,AC⊥B1B, ∴AC⊥平面B1BD, ∴AC⊥B1D, 又F为A1D的中点, ∴AF⊥A1D,又AF⊥A1B1, ∴AF⊥平面A1B1D, ∴AF⊥B1D,又AF、 AC为平面ACF内的相交直线. ∴B1D⊥平面ACF. 即B1H⊥平面ACF. 【点评】 证明线面垂直,往往利
1.直线a⊥直线b,a⊥平面β, 则b与β的位置关系是________ . b⊂β或b∥β 解析:由垂直和平行的有关性质 可知b⊂β或b∥β. 答案:b⊂β或b∥β

数学中的垂直关系

数学中的垂直关系

数学中的垂直关系在数学中,垂直关系是指两条或两个以上的线段、线或面相互交叉、交汇或相切形成的关系。

垂直关系在几何学和三角学中起着重要的作用,它们常常用于解决各种实际问题,例如建筑设计、测量和角度计算等。

本文将从不同层面介绍数学中的垂直关系。

一、平面几何中的垂直关系在平面几何中,我们经常遇到垂直线段、垂直线和垂直平面。

垂直线段是指两条线段相交时形成的90度角。

例如,在长方形中,对角线互相垂直。

而垂直线是指两条直线相交时形成的90度角,例如垂直交叉的两条直角边。

垂直平面则是指两个相交平面中的互相垂直的线。

垂直关系在平面几何中有着广泛的应用。

例如,在建筑设计中,为了确保一墙壁垂直于地面,工程师需要使用测量工具和数学原理来判断垂直关系。

此外,在绘图和图形设计中,垂直关系也是重要的基础概念,它能够帮助我们绘制准确的图形和图表。

二、三角学中的垂直关系在三角学中,垂直关系常常用于描述三角形内部和外部的角度关系。

对于一个直角三角形来说,两条直角边是互相垂直的,而斜边与直角边也是垂直的。

利用垂直关系,我们可以进行各种角度计算和测量。

垂直关系在三角学中的应用非常广泛。

例如,在导航和测量领域,通过测量太阳的高度角和方位角,我们可以确定地球上的位置和方向。

此外,在工程设计和建筑施工中,垂直线和垂直平面的概念也得到了广泛应用。

通过合理运用垂直关系,我们能够确保建筑物的垂直度,提高施工精度。

三、数学中的垂直关系的性质垂直关系具有一些重要的性质和特点。

首先,垂直线或线段上的点到另一条线上的点的连线都是垂直的。

其次,如果两条直线分别与第三条直线垂直,那么它们互相垂直。

此外,垂直关系还具有垂直线与水平线的关系。

垂直线与水平线是两种互相垂直的线。

它们在二维坐标系中可以用斜率的倒数来表示。

四、垂直关系的实际应用垂直关系在日常生活和各个领域都有着广泛的应用。

在建筑设计中,垂直关系用于确保墙壁、柱子和楼梯等结构物的垂直度和平衡性。

在地图绘制和导航中,垂直关系用于确定地球上的位置和方向,如GPS系统中的测距原理。

几何中垂直的关系

几何中垂直的关系

(一)空间中的垂直关系1. 两条直线互相垂直线线垂直分为共面与不共面。

不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。

2. 直线与平面垂直(1)定义:直线与平面垂直是指直线和平面相交且和这个平面过交点的任何直线都垂直。

这里的“任何直线”能代表平面内的所有直线.需要注意的是:无数条直线不能代表所有直线,即一条直线垂直于一个平面内的无数条直线,直线不一定与平面垂直,因为这无数条直线可以是互相平行的。

(2)直线与平面垂直的判定方法①定义:②判定定理:③推论:(3)直线与平面垂直的性质①定理:如果两条直线都垂直于同一个平面,那么这两条直线平行,即:②定义:若线面垂直,则这条直线垂直于这个平面内的任一条直线,即:③垂直于同一条直线的两个平面平行。

④过一点和已知平面垂直的直线只有一条。

⑤过一点和已知直线垂直的平面只有一个。

⑥若于A,,则。

(4)学习中应注意的问题直线与平面垂直的一般定义是根据线段的所有垂直平分线构成的集合来给出的。

需要注意,如果一条直线垂直于一个平面,那么它就和平面内任意一条直线垂直。

用直线和平面垂直的判定定理来证明时,需特别注意平面内的两条相交直线,否则会产生错误。

3. 平面与平面互相垂直(1)定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直。

平面α、β互相垂直,记作α⊥β。

画两个互相垂直的平面,把直立平面的竖边画成和水平面的横边垂直,如图1,2所示。

(2)两个平面垂直的判定定理:若一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

实质:线面垂直,则面面垂直。

表示式为:。

(3)两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

符号表示:说明:要特别注意定理中这一条件,这一条件易被我们忽略,而少了这一条件,定理的结论是不成立的。

(4)证明面面垂直的常用思路:①利用两平面垂直的定义。

立体几何中的垂直关系

立体几何中的垂直关系

§1立体几何中的垂直关系一知识梳理1.直线与平面垂直(1)定义一般地,如果直线l 与平面α内的任何一条直线都垂直,那么称直线l 与平面α垂直,记作l ⊥α.直线l 称为平面α的垂线,平面α称为直线l 的垂面,它们唯一的公共点称为垂足.注意:过一点有且只有一条直线与一个平面垂直,过一点有且只有一个平面与一条直线垂直.(2)判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.(3)性质定理垂直于同一个平面的两条直线平行.2.直线与平面所成的角一条直线l 与一个平面α相交,但是不与这个平面垂直,这条直线叫做这个平面的斜线,斜线与平面的交点A 叫做斜足.过斜线上斜足以外的一点P 向平面α引垂线P O ,过垂足O 和斜足A 的直线AO 叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的角,叫做这条直线与这个平面所成的角.APlαO 3.半平面一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都叫作半平面.4.二面角(1)定义从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面.(2)表示如图1,棱为AB ,面分别为α,β的二面角记作二面角α−AB −β.有时为了方便,也可在α,β内(棱以外的半平面部分)分别取点P ,Q ,将这个二面角记作二面角P −AB−Q .图1ABOl βα图2(3)平面角如图2,在二面角α−l −β的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角.二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度.二面角的平面角θ的取值范围是0◦⩽θ⩽180◦.平面角是直角的二面角叫做直二面角.5.平面与平面垂直(1)定义两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.(2)判断定理如果一个平面经过另外一个平面的一条垂线,那么两个平面互相垂直.(3)性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.二例题精讲考点一线面垂直与面面垂直的判定定理例1.下列命题中,正确的序号是.若直线l 与平面α内的无数条直线垂直,则l ⊥α; 若直线l 与平面α内的一条直线垂直,则l ⊥α; 若直线l 不垂直于平面α,则α内没有与l 垂直的直线; 若直线l 不垂直于平面α,则α内也可以有无数条直线与l 垂直; 过一点和已知平面垂直的直线有且只有一条.例2.如果直线l ,m 与平面α,β,γ满足:β∩γ=l ,l α,m ⊆α和m ⊥γ,那么必有()A.α⊥γ且l ⊥mB.α⊥γ且mβC.mβ且l ⊥mD.αβ且α⊥γ例3.若三条直线OA ,OB ,OC 两两垂直,则直线OA 垂直于()A.平面OABB.平面OACC.平面OBCD.平面ABC例4.如图,在正方体ABCD −A 1B 1C 1D 1中.(1)求证:AC ⊥平面B 1D 1DB ;(2)求证:BD 1⊥平面ACB 1.AA 1D 1DB 1C 1BC例5.如图,在三棱锥P −ABC 中,P A ⊥平面ABC ,∠ABC =90◦.求证:BC ⊥平面P AC .PBCA 例6.如图,在三棱锥P −ABC 中,P A =PB ,△ABC 是等边三角形,O 是AB 中点.求证:AB ⊥平面P OC .PBCA O例7.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,AP =AB =2,BC =2√2,E ,F 分别是AD ,P C 的中点.证明:P C ⊥平面BEF.例8.如图所示,在四棱锥S −ABCD 中,底面四边形ABCD 是平行四边形,SC ⊥平面ABCD ,E 为SA 的中点.求证:平面EBD ⊥平面ABCD.B1C1中,侧棱垂直于底面,∠ACB=90◦,AC=例9.如图,三棱柱ABC−A1AA1,D是棱AA1的中点.求证:平面BDC1⊥平面BDC.2方法总结使用直线与平面垂直的判定定理的关键是在平面内找到两条相交直线都与已知直线垂直,即把线面垂直转化为线线垂直来解决.证明线线垂直常见的方法(1)线面垂直的定义.(2)几何体本身的垂直关系.(3)等腰三角形的三线合一.(4)勾股定理逆定理.证明线面垂直的方法(1)线面垂直的定义.(2)线面垂直的判定定理.(3)如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.(4)如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.由面面垂直的判定定理知,要证两个平面互相垂直,关键是证明其中一个平面经过另一个平面的垂线.练1.如果一条直线垂直于一个平面内的: 三角形的两边; 梯形的两边; 圆的两条直径; 正五边形的两边.能保证该直线与平面垂直的是.练2.如图,已知P A垂直于⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,求证:BC⊥平面P AC.练3.如图,Rt△ABC所在平面外有一点S,且SA=SB=SC,点D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.练4.如图,在四面体ABCD中,CB=CD,AD⊥BD,且E,F分别是AB,BD的中点.求证:平面EF C⊥平面BCD.考点二线面垂直与面面垂直的性质定理例1.给出下列说法:垂直于同一条直线的两个平面互相平行;垂直于同一个平面的两条直线互相平行;一条直线在平面内,另一条直线与这个平面垂直,则这两条直线垂直.其中正确说法的个数是()A.0B.1C.2D.3例2.已知直线l⊥平面α,直线m⊆平面β.有下列四个说法:αβ⇒l⊥m;α⊥β⇒l m;l m⇒α⊥β;l⊥m⇒αβ.其中正确的说法是()A. B. C. D.B1C1D1中,EF与异面直线AC,A1D都垂直相交.求证:EF例3.如图所示,在正方体ABCD−ABD1.例4.如图,在三棱锥P−ABC中,P A⊥平面ABC,平面P AB⊥平面P BC.求证:BC⊥AB.例5.如图,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC=√2,等边三角形ADB以AB为轴转动.(1)当平面ADB⊥平面ABC时,求CD;(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.例6.如图,在四棱锥P−ABCD中,底面ABCD是∠DAB=60◦且边长为a的菱形,侧面P AD为正三角形,其所在平面垂直于底面ABCD.(1)求证:AD⊥P B;(2)若E为边BC的中点,能否在棱P C上找到一点F,使得平面DEF⊥平面ABCD,并证明你的结论方法总结证明线线平行时,可以利用线面垂直的性质定理.证明线面垂直,一种方法是利用线面垂直的判定定理,另一种方法是利用面面垂直的性质定理.已知面面垂直,故可考虑面面垂直的性质定理.利用面面垂直的性质定理证明线面垂直的问题时,要注意以下三点:(1)两个平面垂直;(2)直线必须在其中一个平面内;(3)直线必须垂直于它们的交线.立体几何中的垂直关系有三类:线线垂直、线面垂直、面面垂直.处理垂直问题时,要注意三者之间的内在联系.转化思想是立体几何中解决垂直问题的重要思想.垂直关系的转化如下:练1.若平面α⊥平面β,且平面α内的一条直线α垂直于平面a内的一条直线b,则()A.直线α必垂直于平面βB.直线b必垂直于平面αC.直线a不一定垂直于平面βD.过a的平面与过b的平面垂直练2.如图,α∩β=l,P A⊥α,P B⊥β垂足分别为A,B,a⊆α,a⊥AB.求证:a l.练3.如图,四棱锥的底面是矩形,侧面V AB⊥底面ABCD,且V B⊥平面V AD.求证:平面V BC⊥平面V AC.考点三线面角与二面角例1.在长方体ABCD−A1B1C1D1中,AB=AD=1,AA1=2,直线AC1与平面ABB1A1所成角的正切值等于.例2.如图,空间四边形ABCD中,平面ABD⊥平面BCD,∠BAD=90◦,∠BCCD=90◦,且AB=AD,则AC与平面BCD所成角的等于.例3.如图,在正方体ABCD−A1B1C1D1中,求二面角B−A1C1−B1的正切值.例4.已知D,E分别是正三棱柱ABC−A1B1C1的侧棱AA1和BB1上的点,且A1D=2B1E=B1C1.求过D,E,C1的平面与棱柱的下底面A1B1C1所成的二面角的大小.方法总结求线与面的夹角时,关键是找出或作出它们的夹角,再在三角形中进行计算.求二面角的大小关键是要找出或作出平面角.再把平面角放在三角形中,利用解三角形得到平面角的大小或三角函数值,其步骤为作角,证明,计算.练1.已知正四棱锥的高为3,底面对角线的长为2√6,求侧面与底面所成的二面角.练2.在直三棱柱ABC −A 1B 1C 1中,AB =1,AC =2,AA 1=3,∠BAC =60◦,则直线B 1C 与平面AA 1B 1B 所成角的正切值为.三课后作业1.过两点与一个已知平面垂直的平面()A.有且只有一个B.有无数个C.有且只有一个或无数个D.可能不存在2.对于直线m ,n 和平面α,β,能得出α⊥β的一个条件是()A.m ⊥n ,m α,nβB.m ⊥n ,α∩β=m ,n ⊆αC.mn ,n ⊥β,m ⊆αD.mn ,m ⊥α,n ⊥β3.已知平面α⊥平面β,α∩β=l ,点P ∈l 给出下面四个结论:过P 与l 垂直的直线在α内; 过P 与β垂直的直线在α内; 过P 与l 垂直的直线必与α垂直; 过P 与β垂直的平面必与l 垂直.其中正确的命题是()A.B.C.D.4.设m,n是两条不同的直线,α,β是两个不同的平面()A.若m⊥n,nα,则m⊥αB.若mβ,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α5.在三棱锥P−ABC中,已知P C⊥BC,pc⊥AC,点E,F,G分别是所在棱的中点,则下面结论中错误的是()A.平面EF G平面P BCB.平面EF G平面ABCC.∠BP C是直线EF与直线P C所成的角D.∠F EG是平面P AB与平面ABC所成二面角的平面角6.如图所示,在三棱锥P−AB C中,P A⊥平面ABC,∠BAC=90◦,则二面角B−P A−C的大小为.7.如图所示,P A⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数有.8.正四面体的侧面与底面所成的二面角的余弦值是.9.如图,在三棱锥P−ABC中,侧面P AC⊥底面ABC,且∠P AC=90◦,P A=1,AB=1,则P B=.10.已知平面α⊥平面β,在α,β的交线上取线段AB=4cm,AC,BD分别在平面α和β内,它们都垂直于AB,并且AC=3cm,BD=12cm,则CD的长为.11.如图,四边形ABCD是边长为a的菱形,P C⊥平面ABCD,E是P A的中点,求证:平面BDE⊥平面ABCD.12.如图,在四棱锥P−ABCD中,P A⊥平面ABCD,AB⊥AD,AC⊥CD,∠ABC=60◦且P A=AB=BC,E是P C的中点.求证:(1)CD⊥AE;(2)P D⊥平面ABE.。

空间中的垂直关系

空间中的垂直关系

8. 5 空间中的垂直关系1.线线垂直如果两条直线所成的角是______ ( 无论它们是相交还是异面),那么这两条直线互相垂直.2.直线与平面垂直(1)定义:如果直线I与平面a内的任意一条直线都垂直,我们就说__________________________ ,记作_______ .直线I叫做______________ ,平面a叫做_______________ .直线与平面垂直时,它们惟一的公共点P叫做________ .垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的______________ .(2)判定定理:一条直线与一个平面内的________________ 都垂直,则该直线与此平面垂直.推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.用符号表示: a // b,(3)__________________________________________ 性质定理:垂直于同一个平面的两条直线 .3.直线和平面所成的角平面的一条斜线和它在平面上的射影所成的 ___________ ,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°勺角.任一直线与平面所成角B的范围是 ____________ .4.二面角的有关概念(1)二面角:从一条直线出发的________________________ 叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作 ______________ 的两条射线,这两条射线所成的角叫做二面角的平面角.二面角的范围是 _______________ .5.平面与平面垂直(1)定义:一般地,两个平面相交,如果它们所成的二面角是_________________ ,就说这两个平面互相垂直.(2)判定定理:一个平面过另一个平面的__________ ,则这两个平面垂直.(3)性质定理:两个平面垂直,则一个平面内垂直于_____ 的直线与另一个平面垂直.自查自纠1.直角2.(1)直线I与平面a互相垂直I丄a平面a的垂线直线I 的垂面垂足距离(2)两条相交直线(3)平行3.锐角[0;90°4.(1)两个半平面所组成的图形(2)垂直于棱[0 ° 180°]5.(1)直二面角(2)垂线(3)交线0 (2017江西宜春四校联考)下列命题中错误的是( )A •如果平面a 丄平面3那么平面 a 内一定存在直线平行于平面 3B.如果平面 a 不垂直于平面 3,那么平面a 内一定不存在直线垂直于平面3C. 如果平面 a 丄平面 Y 平面3丄平面 Y a Q 3 =丨,那么I 丄平面 丫 D .如果平面a 丄平面3那么平面a 内所有直线都垂直于平面 3解:对于选项A ,可在a 内作直线平行于交线即可, A 正确;对于选项B ,假设在a 内存在直线垂直于平面 3则a 丄3这与已知矛盾,所以原命题成立,B 正确;对于选项C ,因为平面a 丄平面Y 所以在平面 丫内存在一条直线m 丄a 所以m i l.同理可知在平面 丫内存在直线n 丄3 n 丄I.若直线m , n 重合,则面a 与3重合或平 行,这与已知矛盾,所以直线 m , n 相交,又I 丄m , I 丄n ,所以I 丄面Y C 正确;对于选项 D ,易知a 与3的 交线I 并不垂直于面 3, D 错误.故选D.° (2017甘肃马营中学月考)若m 、n 是两条不同的直线,a 、3 丫是三个不同的平面,则下列命题中的真命题是( )A .若 m? 3 ,a 丄 3 ,贝U m 丄aB .若 aCl Y= m , 3C Y = n , m / n ,贝U a/ 3 C .若 m ± 3, m //a则a 丄3D .若 a 丄Y a 丄 3则 3-L Y解:若m? 3 , a 丄3 ,贝y m 与a 的关系可能平行也可能相交或 m? a ,贝y A 为假命题;选项 B 中,a 与3选C.而不充分条件.故填必要不充分.❺(2017重庆八中适应性考试)在正四面体P-ABC 中,D , E , F 分别是AB , BC , CA 的中点,下面四个结论 中正确的是 _________________ . ① BC //平面PDF ; ② DF 丄平面FAE ;③ 平面PDF 丄平面 ABC ; ④平面PAE 丄平面 ABC.解:由DF // BC 可得BC //平面PDF ,故①正确;若PO 丄平面ABC ,垂足为O ,贝U O 在AE 上,贝U DF 丄PO , 又DF 丄AE ,故DF 丄平面FAE ,故②正确;由PO 丄平面ABC , PO?平面PAE ,可得平面 FAE 丄平面 ABC , 故④正确,平面PDF 不过PO ,故③不正确.故填①②④.A . A 1E 丄 DC 1B . A 1E 丄 BDC . A 1E 丄 BC 1D . A 1E 丄AC解:由正方体的性质,得 A 1B 1 丄 BC 1 , BQ 丄 BC 1 ,所以 BG 丄平面 A 1B 1CD ,又 A 1E?平面 A 1B 1CD ,所以 A 1E 丄BC 1 ,故选C.(2017全国卷川)在正方体 ABCD-A i B i C i D i 中, E 为棱CD 的中点,贝U()❹ 若I , m 是两条不同的直线, m 垂直于平面a ,则"I 丄m ”是"I // a”的 _____________ 条件.解:若I 丄m , m 丄平面a,贝y I //a 或I? a ;若I //a, m 丄平面a,贝U I 丄m ,所以"I 丄m ”是"I // a”的必要 可能平行也可能相交,则B 为假命题;选项 D 中3与丫也可能平行或相交(不一定垂直),则D 为假命题.»为类解析触类旁邂类型一线线垂直问题EB 如图,在四棱台ABCD-A I B I C I D I中,D i D丄平面ABCD,底面ABCD是平行四边形,AB= 2AD, AD =A1B1,Z BAD = 60°(1)证明:AA i 丄BD ;⑵证明:CC i//平面A I BD.证明:(1)因为D I D丄面ABCD,且BD?面ABCD,所以D i D丄BD.又因为AB = 2AD,/ BAD = 60°在厶ABD 中,由余弦定理得BD2= AD2+ AB2—2AD ABcos60°= 3AD2,所以AD2+ BD2= AB2所以AD丄BD.又因为AD n D I D = D,所以BD丄面ADD i A i.又AA I?面ADD I A I,所以AA I±BD.(2)连接AC, A i C i,设AC n BD = E,连接A I E.i因为四边形ABCD为平行四边形,所以EC = ^AC.由棱台定义及AB = 2AD = 2A i B i知A i C i // EC且A i C i = EC,所以四边形A I ECC I为平行四边形.所以CC i// A I E.又因为A I E?面A I BD, CC i?面ABD,所以CC I // 面A I BD.【点拨】本题主要考查线线、线面位置关系•第(i)问证明线线垂直,其实质是通过证明线面垂直,再化归为线线垂直;第(2)问证明线面平行,需转化为证明线线平行,由于面A I BD中没有与CC I平行的直线,故需作辅助线.(20i7武汉市武钢第三子弟中学月考)如图,三棱柱ABC-A i B i C i 中,CA= CB , AB = AA i , / BAA i= 60°.f(i)证明:AB 丄A I C ;⑵若AB= CB = 2, A I C = .6,求三棱柱ABC-A i B i C i的体积. 解:⑴证明:取AB的中点O,连接OC, OA i, A I B.因为CA = CB,所以0C丄AB.由于AB = AA i,/ BAA i= 60° °故厶AA i B为等边三角形,所以OA i丄AB.因为OC A OA i= 0,所以AB丄平面OA i C.又A i C?平面OA i C,故AB丄A i C.⑵由题设知△ ABC与厶AA i B都是边长为2的等边三角形,所以OC = OA i = .3. 又A i C = ■.6,贝U A i C2= OC2+ OA i,故OA i丄OC.因为OC A AB= O,所以OA i丄平面ABC, OA i为三棱柱ABC-A i B i C i的高.乂△ ABC 的面积S SBC= , 3,故三棱柱ABC-A i B i C i 的体积为V = S^ABC X OA i = 3.类型二线面垂直问题GE 如图,四棱锥P-ABCD中,PA丄底面ABCD , AB丄AD,点E在线段AD上,且CE // AB.(i)求证:CE丄平面PAD ;⑵若PA= AB= i , AD = 3, CD =运,/ CDA = 45° 求四棱锥P-ABCD 的体积. 解:(1)证明:因为PA丄底面ABCD , CE?平面ABCD,所以PA丄CE.因为AB丄AD, CE / AB,所以CE丄AD.又PA A AD = A,所以CE丄平面PAD.(2)由(1)可知CE丄AD.在Rt △ ECD 中,CE = CD sin45 = 1, DE = CD c os45°= 1, 又因为AB = 1,贝U AB = CE.又CE // AB, AB丄AD,所以四边形ABCE为矩形,四边形ABCD为梯形.因为AD = 3,所以BC = AE= AD —DE = 2,1 1 5S ABCD = 2(BC + AD) AB =彳(2 + 3)X 1 = §,1 1 5 5VP-ABCD=3SABCD'PA=3x只1=6.于是四棱锥P-ABCD的体积为|.【点拨】证明线面垂直的基本思路是证明该直线和平面内的两条相交直线垂直,亦可利用面面垂直的性质定理来证明;第(2)问的难点在于求底面四边形ABCD的面积,注意充分利用题设条件,先证明底面ABCD是直角梯形,从而求出底面面积,最后求体积.(2017锦州市第二高级中学月考)如图,在正方体ABCD-A i B i C i D i中,E, F , P, Q, M, N分别是棱AB, AD , DD i, BB i, “B i, AQ i 的中点•求证:⑴直线BC i〃平面EFPQ ;⑵直线AC」平面PQMN.证明:(1)如图,连接AD i,由ABCD-A i B i C i D i是正方体,知AD i II BC i, 因为F , P分别是AD, DD i的中点,所以FP II AD i,从而BC i I FP.而FP?平面EFPQ,且BC i?平面EFPQ , 故直线BC i I平面EFPQ.⑵如图,连接AC, BD,贝U AC丄BD.由CC i丄平面ABCD , BD?平面ABCD,可得CC i丄BD .又AC A CC i = C,所以BD丄平面ACC i A i.而AC i?平面ACC i A i,所以BD丄AC i.因为M, N分别是A i B i, A i D i的中点,所以MN I BD,从而MN丄AC i. 同理可证PN丄AC i.又PN A MN = N,所以直线AC i±平面PQMN.类型三面面垂直问题GO)如图所示,在长方体ABCD-A i B i C i D i中,AB = AD = i, AA i= 2, M是棱CC i的中点.B C又A1B1Q B I M = B i,由①②得BM丄平面A I B I M.而BM?平面ABM,所以平面ABM丄平面A i B i M.【点拨】求异面直线所成的角,一般方法是通过平移直线,把异面问题转化为共面问题,通过解三角形求出所构造的角;证明面面垂直,可转化为证明线面垂直,而线面垂直又可以转化为证明线线垂直,在证明过程中,需充分利用规则几何体本身所具有的几何特征简化问题,有时还需应用勾股定理的逆定理,通过计算来证明垂直关系,这在高考题中是常用方法之一.变式.(2017武汉市第四十三中学月考)如图,在五棱锥P-ABCDE 中,PA丄平面ABCDE , AB// CD,/ ABC=45° AB= 2 2, BC = 2AE = 4,三角形PAB是等腰三角形.求证:平面PCD丄平面PAC.证明:因为/ABC = 45° AB= 2 2, BC = 4,所以在△ ABC 中,由余弦定理得,AC2= (2 _ 2)2+ 42-2 X 2_2X 4COS45 = 8,解得AC= 2 ,2,所以AB2+ AC2= 8 + 8 = 16= BC2,即卩AB丄AC,又PA丄平面ABCDE,所以PA丄AB.又FA n AC = A,所以AB丄平面PAC,又AB // CD,所以CD丄平面FAC. 又因为CD?平面PCD,所以平面PCD丄平面PAC.类型四垂直综合问题EE (2017大连经济技术开发区一中月考)如图1,在等腰直角三角形ABC中,/ A = 90° BC= 6, D, E分别是AC ,AB上的点,CD = BE= 2,O为BC的中点.将厶ADE沿DE折起,得到如图2所示的四棱锥A'B-DE ,其中AO = 3.(1)证明:A'O丄平面BCDE ;⑵求二面角A'C--B的平面角的余弦值.解:(1)证明:在图1中,易得OC = 3, AC = 3,2, AD = 2 2.如图示,连接OD , OE,在△ OCD中,由余弦定理可得OD = OC2+ CD2- 2OC CDcos45°= , 5•由翻折不变性可知AD = 2 _2,易得AO2+ OD2= AD2,所以A ‘0丄OD•同理可证A O丄OE.又因为OD n OE = O,所以A O丄平面⑵过O作OH丄CD交CD的延长线于H,连接A H,因为A ‘O丄平面BCDE,易知A H丄CD,所以/ A HO为二面角A‘ C--B的平面角.结合图1可知,H为AC中点,又O为BC中点,故OH = ^AB= 节,从而A H = OH2+ OA 2=亠3°, 所以cos/ A ‘ HO=-°^ =丘A ‘ H 5 '所以二面角A'CD-B 的平面角的余弦值为亠5【点拨】本题主要考查线面垂直及二面角的计算等.(2016全国卷I )如图,在以A , B , C , D , E , F 为顶点的五面体中,(1)证明:平面 ABEF 丄平面EFDC ;⑵求二面角E-BC-A 的余弦值.解:(1)证明:由已知可得 AF 丄DF , AF 丄FE ,又DF n FE = F ,所以AF 丄平面EFDC . 又AF?平面ABEF ,故平面ABEF 丄平面EFDC.⑵过D 作DG 丄EF ,垂足为 G ,由(1)知DG 丄平面ABEF.以G 为坐标原点, G F 的方向为x 轴正方向,|GF|为单位长,建立如图所示的空间直角坐标系 G -xyz.由(1)知/DFE 为二面角 D-AF-E 的平面角,故 / DFE = 60° 贝U DF = 2, DG可得 A(1 , 4, 0), B(-3,4, 0), E( — 3, 0, 0), D(0, 0, .3).由已知得,AB // EF ,所以 AB //平面 EFDC.又平面 ABCD n 平面 EFDC = CD ,故 AB / CD , CD // EF.由BE // AF ,可得BE 丄平面EFDC ,所以/CEF 为二面角C-BE-F 的平面角,故/CEF = 60°从而可得C(— 2,0, 3),连接 AC ,则 (1 , 0, . 3), EB = (0, 4, 0), AC = (— 3,— 4,3), AB = (— 4, 0, 0).设n = (x , y , z)是平面BCE 的法向量,贝Un EC =0,'x + T 3z = 0,厂即'所以可取n = (3, 0,—*3).InEB = 0,仆 0,m AC = 0,设m 是平面ABCD 的法向量,则m AB = 0,同理可取 m = (0, 3, 4),1. 判断(证明)线线垂直的方法 (1) 根据定义;(2) 如果直线a // b , a 丄c ,贝U b 丄c ;⑶如果直线 a 丄面a, c? a ,贝U a 丄c ;折叠要注意不变量;作二面角,往往要通过作垂线来实现.面ABEF 为正方形,AF = 2FD ,贝U cos 〈n , m >n m|n ||2「19 19 结合图形,得二面角 E-BC-A 的余弦值为一2 .'19/ AFD = 90° 且二面角揭示规漳⑷向量法:两条直线的方向向量的数量积为零.2.证明直线和平面垂直的常用方法(1)利用判定定理:两相交直线a, b? a , a丄c, b± c? c丄a;(2)a // b, a丄 a ? b± a ;⑶利用面面平行的性质:a// 3, a丄a ? a± 3 ;⑷利用面面垂直的性质:a丄3, a A 3 =m, a? a , a丄m? a丄3 ;a丄丫,3丄Y, a A 3 =m? m X 丫.3.证明面面垂直的主要方法(1)利用判定定理:a丄3, a? a ? a丄3 ;(2)用定义证明.只需判定两平面所成二面角为直二面角;(3)如果一个平面垂直于两个平行平面中的一个,则它也垂直于另一个平面:a// 3, a丄丫? 3丄丫.4.平面与平面垂直的性质的应用当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线, 把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.5.注意线线垂直、线面垂直、面面垂直间的相互转化判定定理判定定理线线垂直J *线面垂直・〜面面垂直性质定理性蜃定理6.线面角、二面角求法求这两种空间角的步骤:根据线面角的定义或二面角的平面角的定义,作(找)出该角,再解三角形求出该角,步骤是作(找)?证?求(算)三步曲.也可用射影法:设斜线段AB在平面a内的射影为A B AB与a所成角为0,贝U COS B 厂B厂I|AB|设厶ABC在平面a内的射影三角形为△ A B C 平面ABC与a所成角为0则COS 0 = S: B CS A ABC@|底翻科劃b查漏补缺折展延伸1.(2016浙江)已知互相垂直的平面 a , 3交于直线I •若直线m, n满足m// a, n丄3 ,则()A . m / lB . m / n C. n丄I D. m± n解:由题意知aA A l,所以l? 3 •因为n丄3所以n丄I•故选C.2.已知a, 3为两个不同的平面,I为直线,若a丄3, a A 3 = I,则()A .垂直于平面3的平面一定平行于平面aB.垂直于直线I的直线一定垂直于平面aC.垂直于平面3的平面一定平行于直线ID .垂直于直线I的平面一定与平面a, 3都垂直解:由面面垂直的判定定理可知,垂直于直线I的平面一定与平面a, 3都垂直.故选D.3.设m, n是两条不同的直线, a , 3是两个不同的平面.下列命题中正确的是()A .若a丄 3 m? a , n? 3 ,贝U m± nB.若a// 3 m? a , n? 3 ,则m// nC.若m l n , m? a , n? 3 ,贝U a丄3D .若m±a,m / n ,n / 3 ,贝U a丄3解:若a丄B, m? a , n?卩,贝U m与n可能平行、相交或异面,故A错;若a//®, m? a , n?卩,则m与n可能平行,也可能异面,故B错;若m丄n, m? a , n? B ,贝U a与®可能相交,也可能平行,故C错;对于D项,由m丄a, m / n,得n丄a,又知n // B,故a丄B,所以D项正确.故选D.4.(2017沈阳市第一中学月考)设平面a与平面B相交于直线m,直线a在平面a 内,直线b在平面B内,且b丄m,则"a丄B'是"a丄b”的( )A .充分不必要条件B.必要不充分条件C.充要条件D .既不充分也不必要条件解:当a丄B时,由面面垂直的性质定理知b丄a,则b丄a.所以“a丄B”是“a丄b”的充分条件.而当a? a ,且a // m时,因为b丄m,所以b丄a,而此时平面a与平面B不一定垂直.所以“a丄B”不是“ a丄b ”的必要条件.故选A.5.(2015福建质量检查)如图,AB是圆O的直径,VA垂直圆O所在的平面,C是圆周上不同于A, B的任意一点,M , N分别为VA, VC的中点,则下列结论正确的是( )CA . MN // ABB.MN与BC所成的角为45°C.OC X平面VACD .平面VAC丄平面VBC解:依题意,MN // AC,又直线AC与AB相交,因此MN与AB不平行,A错误;注意到AC丄BC,因此MN 与BC所成的角是90°, B错误;注意到直线OC与AC不垂直,因此OC与平面VAC不垂直,C错误;由于BC丄AC, BC丄VA,因此BC丄平面VAC.又BC?平面VBC,所以平面VBC丄平面VAC, D正确.故选D.6. (2017瓦房店市高级中学月考)如图,在正方形SGG2G3中,E, F分别是G1G2, G2G3的中点,D是EF的中点,现沿SE, SF及EF把这个正方形折成一个几何体,使G1, G2, G3三点重合于点G,这样,下列五个结论:(1)SG丄平面EFG ;(2)SD丄平面EFG ;(3)GF丄平面SEF;(4)EF丄平面GSD;(5)GD丄平面SEF.正确的是( )A. (1)和⑶B. ⑵和⑸C. (1)和⑷D. ⑵和⑷解因为正方形中折叠前后都有SG丄GE, SG丄GF,所以SG丄平面EFG.(1)正确,(2)错误:因为SG丄GF, SG丄GD,所以GF并不垂直于SF, GD并不垂直于SD,即卩⑶(5)错误.因为EF丄GD , EF丄SG, GD n SG= G ,所以EF丄面GSD.(4)正确.故选C.7.在正方体ABCD-A 'B 'C 'D中,过对角线BD '的一个平面交AA于E,交CC于F,贝U①四边形BFDE 一定是平行四边形;②四边形BFD E有可能是正方形;③四边形BFD E在底面ABCD内的投影一定是正方形;④平面BFD E有可能垂直于平面BB D.以上结论正确的为____________ .(写出所有正确结论的编号)解:根据两平面平行的性质定理可得BFD E为平行四边形,①正确;若四边形BFD E是正方形,则BE丄ED ', 又A ' D '丄EB, A ' D ' n ED ' = D ',所以BE丄面ADD A ',与已知矛盾,②错;易知四边形BFD E在底面ABCD内的投影是正方形ABCD,③正确;当E, F分别为棱AA ', CC '的中点时,EF // AC,又AC丄平面BB D, 所以EF丄面BB D,④正确.故填①③④.8.(2017沈阳市回民中学月考)ABCD是正方形,P为平面ABCD外一点,且PA丄平面ABCD,则平面PAB,平面PBC,平面PCD,平面PAD,平面ABCD这五个平面中,互相垂直的平面有 _________________ 对.解:因为PA丄平面ABCD,所以平面PAD丄平面ABCD,平面PAB丄平面ABCD.又因为AD丄平面FAB,所以平面FAD丄平面PAB,同理可得平面PBC丄平面PAB,平面PAD丄平面PCD,故互相垂直的平面有5对.故填5.9.(2017钟祥市实验中学月考)如图,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD = a, PA = PC =■, 2a.求证:(1)PD 丄平面ABCD ;⑵平面PAC丄平面PBD.证明:⑴因为PD = a, DC = a, PC= 2a,所以PC2= PD2+ DC2,所以PD 丄DC.同理可证PD丄AD,又AD n DC = D ,所以PD丄平面ABCD.⑵由⑴知PD丄平面ABCD ,所以PD丄AC,而四边形ABCD是正方形,所以AC丄BD,又BD n PD = D,所以AC丄平面PDB.同时AC?平面PAC ,所以平面PAC丄平面PBD.10. (2017谷城县第一中学月考)如图所示,在四棱锥P-ABCD中,PA丄底面ABCD , AB丄AD , AC丄CD,/ABC = 60° PA = AB = BC, E 是PC 的中点.证明:⑴CD丄AE;(2)PD丄平面ABE.证明:⑴ 因为PA丄底面ABCD , CD?平面ABCD,所以PA丄CD.因为AC丄CD , FA Q AC = A,所以CD丄平面FAC.而AE?平面PAC,所以CD丄AE.(2)由FA= AB= BC ,Z ABC= 60 °可得AC = PA•因为E是PC的中点,所以AE丄PC.由⑴知AE丄CD,且PC Q CD = C,所以AE丄平面PCD.而PD?平面PCD,所以AE丄PD.因为PA丄底面ABCD,所以PA丄AB.又因为AB丄AD且PA Q AD = A,所以AB丄平面PAD,而PD?平面PAD,所以AB丄PD.又因为AB Q AE= A,所以PD丄平面ABE.11. (2017 天津)如图,在四棱锥P- ABCD 中,AD 丄平面PDC , AD // BC, PD 丄PB, AD = 1 , BC = 3, CD = 4, PD = 2.AP 5因为PD丄平面PBC,故PF为DF在平面PBC上的射影,所以/ DFP为直线DF和平面PBC所成的角.由于AD // BC, DF // AB,故BF = AD = 1 ,由已知,得CF = BC- BF = 2.又AD 丄DC ,故BC 丄DC ,在Rt△ DCF 中,DF2= DC2+ CF2= 42+ 22= 20, DF = 2 5,所以在Rt△ DPF 中可得sin/ DFP = DD二亠5所以,直线AB与平面PBC所成角的正弦值为—.5(1)求三棱锥P-ABC的体积;(2)证明:在线段PC上存在点M,使得AC丄BM,并求MC的值.解:⑴由题设AB= 1, AC = 2,/ BAC = 60°, 可得S A ABC=I' AB - AC • sin60 °= ^3.由PA丄平面ABC,可知PA是三棱锥P-ABC的高,又PA = 1,所以三棱锥P-ABC的体积⑵证明:在平面ABC内,过点B 作BN丄AC,垂足为N.在平面FAC内,过点N作MN // PA,交PC于点M ,连接BM •由FA丄平面ABC知FA丄AC,又MN // PA,所以MN丄AC•又BN丄AC, BN P MN = N, BN?平面MBN ,MN?平面MBN,所以AC丄平面MBN.又BM?平面MBN,所以AC丄BM.I 3 PM AN 1在Rt△BAN中,AN=ABcos/BAC=2 从而NC=AC-AN乜由MN〃PA,得MM=AN二./ BAC= 60 °V=3 ABC,PA=卡. (2015安徽)如图,三棱锥AB= 1 , AC= 2,(1) 求异面直线A i M和C i D i所成的角的正切值;⑵证明:平面ABM丄平面A i B i M.解:⑴因为C i D i I B i A i,所以/ MA i B i为异面直线A i M和C i D i所成的角,因为A i B i丄平面BCC i B i,所以/ A i B i M =90°而A i B i= i , B i M = . B i C?+ MC i= 2,故tan/ MA i B i = = .2.A iB i(2) 证明:由A i B i丄平面BCC i B i, BM?平面BCC i B i,得"B i丄BM •①由(i)知,B i M = 2,又BM = BC1 2+ CM2= .2, B i B= 2,B i M2+ BM2= B i B2,从而BM 丄B i M.②(1) 求异面直线AP与BC所成角的余弦值;(2) 求证:PD丄平面PBC;⑶求直线AB与平面PBC所成角的正弦值.解:(1)如图,由已知AD // BC,故/DAP或其补角即为异面直线AP与BC所成的角.因为AD丄平面PDC,所以AD丄PD.在Rt△ PDA 中,由已知,得AP = AD1 2+ PD2= 5.故cos/ DAP = AD =血.所以,异面直线AP与BC所成角的余弦值为-?.5⑵证明:因为AD丄平面PDC,直线PD?平面PDC,所以AD丄PD.又因为BC // AD,所以PD丄BC.又PD丄PB,所以PD丄平面PBC.⑶过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.。

垂直关系

垂直关系

空间中的垂直关系●知识梳理线面垂直1.如果一条直线与平面相交并且与平面内的所有直线都垂直,那么就说这条直线与这个平面垂直.2.直线与平面垂直的判定:如果一条直线与平面内的两条相交直线都垂直,那么这条直线与这个平面垂直.3.直线与平面垂直的性质:如果两条直线都与同一个平面垂直,那么这两条直线平行.面面垂直1.两个平面垂直的定义:如果两个平面所成的二面角是直二面角,那么这两个平面互相垂直.2.两个平面垂直的判定定理:如果一个平面经过另一个平面的垂线,那么这两个平面垂直.3.两个平面垂直的性质定理:如果两个平面垂直,那么过其中一个平面内的一点作它的交线的垂线与另一个平面垂直.【基础练习】1.m、n表示直线,α、β、γ表示平面,给出下列四个命题,其中正确命题为①α∩β=m,n α,n⊥m,则α⊥β②α⊥β,α∩γ=m,β∩γ=n,则m⊥n③α⊥β,α⊥γ,β∩γ=m,则m⊥α④m⊥α,n⊥β,m⊥n,则α⊥βA.①②B.②③C.③④D.②④答案:C2.“直线l 垂直于平面α内的无数条直线”是“l α⊥”的 必要 条件。

3.如果两个平面同时垂直于第三个平面,则这两个平面的位置关系是 平行或相交 。

4.在正方体中,与正方体的一条对角线垂直的面对角线的条数是 6 。

5.两个平面互相垂直,一条直线和其中一个平面平行,则这条直线和另一个平面的位置关系是平行、相交或在另一个平面内 。

6.在正方体1111ABCD A BC D -中,写出过顶点A 的一个平面__AB 1D 1_____,使该平面与正方体的12条棱所在的直线所成的角均相等(注:填上你认为正确的一个平面即可,不必考虑所有可能的情况)。

7.设正方体ABCD —A 1B 1C 1D 1的棱长为1,则(1)A 点到CD 1的距离为________; (2)A 点到BD 1的距离为________;(3)A 点到面BDD 1B 1的距离为_____________; (4)A 点到面A 1BD 的距离为_____________; (5)AA 1与面BB 1D 1D 的距离为__________.答案:(1)26(2)36(3)22(4)33(5)22【范例导析】例1.如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .(1)证明PA //平面EDB ; (2)证明PB ⊥平面EFD . 解析:本小题考查直线与平面平行,直线与平面垂直基础知识,考查空间想象能力和推理论证能力.证明:(1)连结AC ,AC 交BD 于O ,连结EO .∵底面ABCD 是正方形,∴点O 是AC 的中点 在PAC ∆中,EO 是中位线,∴PA // EO 而⊂EO 平面EDB 且⊄PA 平面EDB , 所以,PA // 平面EDB(2)∵PD ⊥底面ABCD 且⊂DC 底面ABCD ,∴DC PD ⊥∵PD =DC ,可知PDC ∆是等腰直角三角形,而DE 是斜边PC 的中线, ∴PC DE ⊥. ①同样由PD ⊥底面ABCD ,得PD ⊥BC .∵底面ABCD 是正方形,有DC ⊥BC ,∴BC ⊥平面PDC . 而⊂DE 平面PDC ,∴DE BC ⊥. ②由①和②推得⊥DE 平面PBC . 而⊂PB 平面PBC ,∴PB DE ⊥ 又PB EF ⊥且E EF DE = ,所以PB ⊥平面EFD .例2.如图,△ABC 为正三角形,EC ⊥平面ABC ,BD ∥CE ,CE =A CCA=2 BD,M是EA的中点,求证:(1)DE=DA;(2)平面BDM⊥平面ECA;(3)平面DEA⊥平面ECA。

线线垂直的判定定理公式

线线垂直的判定定理公式

线线垂直的判定定理公式
线线垂直的判定定理公式是在几何学中常见的判定方法,用于判断两条线是否垂直于彼此。

在平面几何中,垂直是指两条直线或线段在其交点处所成的角度为90度,也就是直角的情况。

垂直的判定定理公式可以帮助我们快速判断两条线段是否垂直,而不必通过测量角度的方式来确定。

在几何学中,线线垂直的判定定理公式有多种形式,其中最常见的是垂直线性定理和垂直的判定定理。

1. 垂直线性定理:如果两条直线的斜率乘积为-1,则这两条直线是垂直的。

具体而言,如果直线L1的斜率为m1,直线L2的斜率为m2,且m1 × m2 = -1,则直线L1与直线L2是垂直的。

这个定理的证明思路是:两条直线的斜率之积为-1,意味着这两条直线的斜率互为倒数,即相互垂直。

这个定理常用于判断直线方程的垂直关系。

2. 垂直的判定定理:如果两条直线的直线方程中的斜率的乘积为-1,或者其中一条直线的直线方程为垂直线(斜率不存在的直线),则这两条直线是垂直的。

这个定理的思路是:直线的斜率为存在的直线,如果两条直线的斜率的乘积为-1,或者一条直线的斜率不存在,那么这两条直线是垂直的。

这个定理更为直观,直接从直线的斜率出发判断垂直关系。

垂直线性定理和垂直的判定定理是线线垂直的判定定理公式的两种常见形式,它们为我们判断线段的垂直关系提供了简便的方法。

在实际的几何问题中,我们可以根据直线的斜率或直线的方程来快速判断线段的垂直性,而无需通过角度的测量来确定。

这些定理的理解和应用,有助于我们更好地理解几何学中的垂直关系,提高问题的解决效率。

两直线垂直关系公式

两直线垂直关系公式

两直线垂直关系公式两直线垂直关系公式是数学中研究直线之间相互垂直关系的重要内容,其应用广泛。

在不同数学领域,不同的表达方式可以用来描述两条直线之间的相互垂直关系。

本文将从不同角度详细讨论两直线垂直关系公式,并对其进行总结和应用。

直线的垂直关系是指两条直线互相正交,即两条直线的斜率乘积为-1、在平面直角坐标系中,通过两条直线的斜率就可以判断两条直线是否垂直。

设直线L1的斜率为k1,直线L2的斜率为k2,若k1*k2=-1,则直线L1和L2垂直。

当直线的表达形式为y = mx + b时,斜率k为直线的系数m。

因此,对于一条直线y = m1x + b1和另一条直线y = m2x + b2来说,如果满足m1 * m2 = -1,则两条直线垂直。

这是直线垂直关系的最常见的表达方式,但是在不同情况下还有其他表达方式,如以下几种情况:1.直线的特殊斜率情况:斜率为0和无穷大。

如果一条直线的斜率为0,那么与该直线垂直的直线的斜率将为无穷大。

反之,如果一条直线的斜率为无穷大,那么与该直线垂直的直线的斜率将为0。

可以根据这一关系,找到直线的垂直线。

2.直线的表示方程:一般直线方程A1x+B1y+C1=0和A2x+B2y+C2=0。

对于两条直线的一般式方程,如果满足A1*A2+B1*B2=0,则两条直线垂直。

3.直线的向量方向:通过直线的方向向量来判断两条直线的垂直关系。

如果一条直线的方向向量为(a,b),另一条直线的方向向量为(c,d),那么两条直线垂直的条件是a*c+b*d=0。

总结起来,两直线垂直的公式可以有以下几种表达方式:1.斜率公式:直线L1的斜率k1和直线L2的斜率k2满足k1*k2=-1时,L1和L2垂直。

2.一般式公式:直线L1的一般式方程A1x+B1y+C1=0和直线L2的一般式方程A2x+B2y+C2=0满足A1*A2+B1*B2=0时,L1和L2垂直。

3.方向向量公式:直线L1的方向向量为(a,b),直线L2的方向向量为(c,d)时,满足a*c+b*d=0时,L1和L2垂直。

空间中的垂直关系

空间中的垂直关系

空间中的垂直关系1.线线垂直判断线线垂直的方法:所成的角是直角,两直线垂直;垂直于平行线中的一条,必垂直于另一条。

三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那麽它也和这条斜线的射影垂直 推理模式: ,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭。

注意:⑴三垂线指PA ,PO ,AO 都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理⑵要考虑a 的位置,并注意两定理交替使用。

2.线面垂直定义:如果一条直线l 和一个平面α相交,并且和平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直其中直线l 叫做平面的垂线,平面α叫做直线l 的垂面,直线与平面的交点叫做垂足。

直线l 与平面α垂直记作:l ⊥α。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

3.面面垂直两个平面垂直的定义:相交成直二面角的两个平面叫做互相垂直的平面。

两平面垂直的判定定理:(线面垂直⇒面面垂直)如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面。

题型1:线线垂直问题例1.如图1所示,已知正方体ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 、L 、M 、N 分别为A 1D 1,A 1B 1,BC ,CD ,DA ,DE ,CL 的中点,求证:EF ⊥GF 。

例2.如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC ,D 、E 分别为BB 1、AC 1的中点,证明:ED 为异面直线BB 1与AC 1的公垂线。

垂直关系知识点总结

垂直关系知识点总结

垂直关系知识点总结在数学中,垂直关系是指两条直线或向量相交且相交点的角度为90度。

垂直关系是几何中非常重要的概念,它在计算几何、向量、三角函数等领域都有着广泛的应用。

本文将对垂直关系的基本概念、性质、相关定理及其应用进行总结。

一、垂直关系的基本概念1.垂直线段:在平面几何中,如果两条线段的端点可以连成垂直直角,那么这两条线段就是垂直的。

两条垂直线段的特点是它们的端点组成的角是90度。

2.垂直平面:在空间几何中,如果一个平面与另一个平面相交,且它们相交的直线为垂直线,则这两个平面为垂直平面。

3.垂直向量:在向量的概念中,如果两个向量的点积为0,则这两个向量是垂直的。

4.垂直角:在直角坐标系中,如果两条线的斜率乘积为-1,则这两条线是垂直的,它们的夹角为90度。

二、垂直关系的性质1.垂直线段的性质:两条垂直线段的长度乘积等于它们的端点之间的距离的平方。

2.垂直平面的性质:两个垂直平面的法线向量互相垂直。

3.垂直角的性质:垂直角的度数为90度。

4.垂直向量的性质:如果两个向量垂直,则它们的点积为0。

5.坐标系中的垂直关系:在直角坐标系中,两条相交直线的斜率乘积为-1,即两条直线的斜率互为倒数。

三、垂直关系的相关定理1.垂直平分线定理:如果一条直线垂直于两条平行线,则它们的交点到两条平行线的距离相等。

2.垂直平分角定理:如果一条直线垂直于两条相交直线,并且把这两条相交直线的交点分成相等的两部分,则这条直线是这两条相交直线的平分线。

3.垂直高线定理:在直角三角形中,垂直于斜边的高线等于三角形两直角边之一的乘积除以斜边的长度。

4.垂直平方定理:在直角三角形中,斜边上任意一点到斜边的垂直高线和三角形两直角边的平方之和等于斜边的平方。

5.垂直向量的判定定理:两个非零向量垂直的充分必要条件是它们的点积为0。

四、垂直关系的应用1.建筑领域:在建筑设计中,经常需要考虑建筑物的垂直关系,如墙壁、柱子、楼梯等的垂直度对建筑物的稳定性、美观性等有重要影响。

垂直关系

垂直关系
2 2 2a
A′ α A
B′
在Rt△BB′A′中,
AB BA2 BB2 2a2 a2 a
3:已知PA 平面ABC,AB是 C是圆周上的一点, ( 1 )求证:BC 平面PAC
O的直径,
(2)若AE PC于E , AF PB于F , 求证:PB 平面AEF
(2) BC 平面PAC BC AE AE 平面PAC PC AE BC PC C BC 平面PBC PC 平面PBC
E
F
AE AF A PB 平面PEF AE 平面PEF AF 平面PEF
面面垂直
定义——如果两个平面所成的二面角是直 二面角,则这两个平面垂直。 判定定理——如果一个平面经过另一个平 面的一条垂线,则这两个平面互相垂直。 性质定理——如果两个平面垂直,则在一 个平面内垂直于它们的交线的直线垂直于 另一个平面。
有关垂直关系的证明方法:
1、线线垂直
(1)利用线面垂直的定义 (2)利用三垂线定理及其逆定理 (3)在相应的三角形中利用勾股定理求解
课堂小结
三垂线定理 线线垂直
线面垂直 的定义
线面垂直 面面垂直的 性质定理
线面垂直的 判定定理
面面垂直
面面垂直的 判定定理
E
F
证明: (1) PA 平面ABC PA BC BC 平面ABC AB是 O的直径 BC AC PA AC A BC 平面PAC PA 平面PBC AC 平面PAC
AE 平面PBC AE PB PB 平面PBC AF PB
(4)利用向量法

垂直的定义及概念

垂直的定义及概念

垂直的定义及概念在几何学中,垂直是一个重要的概念,用来描述两条线段或平面之间的关系。

当两条线段或平面互相交叉,并且形成直角时,我们就可以说它们是垂直的。

垂直关系是空间中最基本和最常见的关系之一,它在建筑、工程、几何学和物理学等领域都有广泛的应用。

垂直关系的概念可以由直观的方式理解,在直角坐标系中,垂直的线段是互相交叉,并形成90角的线段或平面。

直角是几何学中最基本的角度之一,它由两条互相垂直的线段所形成。

垂直关系可以直观地通过两个线段的交叉方式来识别。

另外,两个平面也可以是垂直的,当且仅当它们的法向量垂直。

几何学中的垂直关系可以通过数学的方法进行精确定义。

在二维平面中,我们可以通过两个线段的斜率来判断其是否垂直。

如果两个线段的斜率的乘积为-1,则它们是垂直的。

在三维空间中,我们可以通过两个平面的法向量是否垂直来判断它们是否垂直。

垂直关系在几何学中起到了重要的作用。

首先,垂直线段或平面是直角三角形和矩形等图形的基础。

垂直线段和平面的存在使得我们可以利用它们的性质来解决各种几何问题。

其次,在建筑和工程领域,垂直关系被广泛应用于测量和设计。

例如,在建筑设计中,我们会使用垂直线来确保墙壁和地板之间的垂直关系,以保持建筑的结构稳定。

此外,在物理学中,垂直关系也被用来描述力的作用方向和重力的影响等。

垂直关系还有一些重要的性质和特点。

首先,垂直线段或平面上的任意一点到另一个线段或平面上的点的连线都是垂直的。

其次,如果两个线段或平面的关系是垂直的,那么它们之间的夹角是90,即两个向量的点积为0。

此外,两个垂直的线段的长度之积等于它们的斜率之积为-1。

这些性质和特点使得我们可以更好地理解和应用垂直关系。

在解决几何学问题时,我们可以通过使用垂直关系来简化问题。

例如,在求解三角形的面积时,我们可以将底边延长到使其与另一边垂直相交,以便计算高度。

同样,在求解矩形的面积时,我们可以使用垂直关系将矩形分解为两个直角三角形,从而简化计算过程。

垂直于同一直线的两条直线位置关系

垂直于同一直线的两条直线位置关系

垂直于同一直线的两条直线位置关系一、直线的垂直关系1. 两条直线垂直的定义直线上的一点作为顶点,以该点为中心的两条射线,如果它们互相垂直,则称这两条射线互相垂直。

在平面几何中,两条直线是垂直的,指的是它们的倾斜角是 90 度的关系。

2. 垂直直线的性质垂直直线之间的交角为 90 度。

根据垂直的定义,两条垂直直线至少有一个公共垂直。

3. 如何判断两条直线是否垂直判断两条直线是否垂直可以通过它们的斜率来进行。

如果两条直线的斜率相乘等于 -1,那么这两条直线是垂直的。

当两条直线的斜率分别为 m1 和 m2 时,如果满足 m1 * m2 = -1,则这两条直线是垂直的。

二、垂直直线的位置关系1. 直线和其垂线任意一条直线上的点到另一条直线的垂线距离是最短的,垂线上的点到任意直线上的点的连线都和该直线垂直。

2. 直线和直线组成的角两条垂直直线组成的角被称为直角。

直角是一个等于 90 度的角。

3. 垂直平分线一个线段的中垂线是一个与该线段垂直,并将该线段等分的线段。

4. 垂直平行线两条不在同一直线上的直线,如果它们的斜率均相乘等于 -1,则这两条直线是垂直平行线。

5. 垂直直线的几何性质垂直直线所包含的角是直角,垂直直线可以互相垂直平分。

三、实际应用1. 垂直直线的应用在建筑工程中,垂直直线是非常重要的,例如在建筑设计中,墙壁应该垂直于地面,以确保建筑的结构稳固。

2. 直角坐标系在数学中常用的直角坐标系中,垂直直线经常被用来表示坐标轴。

3. 衡量角度在工程测量中,垂直直线可用于测量角度大小,例如在道路修建中,交叉路口的直角转弯设计。

结语垂直于同一直线的两条直线的位置关系在几何学中具有重要意义,它们不仅在理论上具有严谨的定义和性质,而且在实际应用中也有着广泛的应用。

我们应该充分理解这一概念,才能更好地应用于实际生活和工作中。

垂直于同一直线的两条直线位置关系是平面几何中一个重要而基础的概念。

在前面的文章中,我们已经讨论了垂直直线的定义、性质以及其在实际生活中的应用。

空间几何中的平行与垂直

空间几何中的平行与垂直

空间几何中的平行与垂直在空间几何中,平行和垂直是两个重要的概念。

平行关系指的是两条直线或两个平面永远不会相交,在同一个平面内保持固定的距离;而垂直关系是指两条直线或两个平面相交时,彼此之间的夹角为90度。

平行和垂直关系在几何学中有广泛的应用,不仅帮助我们理解空间的结构和形态,也在实际生活中发挥着重要的作用。

1. 平行关系在空间几何中,平行关系是指两条直线或两个平面永远不会相交的关系。

当两条直线或两个平面的方向向量相等或相互垂直时,它们可以被认为是平行的。

1.1 直线的平行当两条直线的方向向量相等时,它们被称为平行直线。

我们可以使用向量的方法来判断两条直线是否平行。

假设有两条直线 l₁和 l₂,它们的方向向量分别为 a₁和 a₂。

若 a₁和 a₂相等,则 l₁和 l₂平行。

1.2 平面的平行两个平面是平行的,当且仅当它们的法向量相等或者互相垂直。

设两个平面的法向量分别为 n₁和 n₂,若 n₁和 n₂相等,则这两个平面平行。

平行关系在几何学中有许多应用。

例如,在平行四边形中,对角线之间的线段互相平分,每条对角线将平行四边形分成两个全等的三角形。

另外,在建筑设计中,平行关系也被广泛应用,如平行的墙壁或平行的连廊等。

2. 垂直关系垂直关系是指两条直线或两个平面相交时,彼此之间的夹角为90度。

垂直关系在空间几何中非常重要,常常用于求解角度,确定垂直平面等问题。

2.1 直线的垂直两条直线 l₁和 l₂垂直的充分必要条件是它们的方向向量的内积为0。

如果 l₁的方向向量 a₁和 l₂的方向向量 a₂满足 a₁·a₂=0,则 l₁和 l₂垂直。

2.2 平面的垂直两个平面P₁和P₂垂直的充分必要条件是它们的法向量相互垂直。

设平面 P₁的法向量为 n₁,平面 P₂的法向量为 n₂,若 n₁·n₂=0,则 P₁和 P₂垂直。

垂直关系在几何学中有许多应用。

例如,在直角三角形中,两条直角边互相垂直。

此外,垂直关系还可以应用于地理测量、建筑设计等领域。

空间中的垂直关系

空间中的垂直关系

空间中的垂直关系1.两条直线互相垂直定义:如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直.2.直线与平面垂直(1)直线与平面垂直的定义:如果一条直线和一个平面相交于点O,并且和这个平面内过交点(O)的任何直线都垂直,就说这条直线和这个平面互相垂直.(2)直线与平面垂直的判定定理及其推论:文字语言图形语言符号语言判定定理如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直⎭⎪⎬⎪⎫a⊂αb⊂αa∩b=Ol⊥al⊥b⇒l⊥α推论1如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面⎭⎪⎬⎪⎫a∥ba⊥α⇒b⊥α推论2如果两条直线垂直于同一个平面,那么这两条直线平行⎭⎪⎬⎪⎫a⊥αb⊥α⇒a∥b3. 平面与平面垂直(1)平面与平面垂直的定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得两条交线互相垂直,就称这两个平面互相垂直.(2)平面与平面垂直的判定定理:文字语言图形语言符号语言判定定理如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直⎭⎪⎬⎪⎫l⊥αl⊂β⇒α⊥β(3)平面与平面垂直的性质定理:文字语言图形语言符号语言性质定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面⎭⎪⎬⎪⎫α⊥βl ⊂βα∩β=al ⊥a⇒l ⊥α1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线l 与平面α内的无数条直线都垂直,则l ⊥α.( ) (2)若直线a ⊥平面α,直线b ∥α,则直线a 与b 垂直. ( ) (3)直线a ⊥α,b ⊥α,则a ∥b . ( ) (4)若α⊥β,a ⊥β⇒a ∥α. ( ) (5)a ⊥α,a ⊂β⇒α⊥β.( )2. (2013·广东)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A .若α⊥β,m ⊂α,n ⊂β,则m ⊥nB .若α∥β,m ⊂α,n ⊂β,,则m ∥nC .若m ⊥n ,m ⊂α,n ⊂β,则α⊥βD .若m ⊥α,m ∥n ,n ∥β,则α⊥β3. 设a ,b ,c 是三条不同的直线,α,β是两个不同的平面,则a ⊥b 的一个充分条件是( )A .a ⊥c ,b ⊥cB .α⊥β,a ⊂α,b ⊂β C .a ⊥α,b ∥αD .a ⊥α,b ⊥α4. 将图1中的等腰直角三角形ABC 沿斜边BC 的中线折起得到空间四面体ABCD (如图2),则在空间四面体ABCD 中,AD 与BC 的位置关系是( )A .相交且垂直B .相交但不垂直C .异面且垂直D .异面但不垂直5. α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同的直线,给出四个论断:①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α,以其中三个论断作为条件,剩余的一个论断作为结论,写出你认为正确的一个命题:____________________________.A 组 专项基础训练(时间:40分钟)一、选择题1.已知m是平面α的一条斜线,点A∉α,l为过点A的一条动直线,那么下列情形可能出现的是() A.l∥m,l⊥αB.l⊥m,l⊥αC.l⊥m,l∥αD.l∥m,l∥α2. 如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB的中点,PM垂直于△ABC所在平面,那么()A.P A=PB>PCB.P A=PB<PCC.P A=PB=PCD.P A≠PB≠PC3.在空间内,设l,m,n是三条不同的直线,α,β,γ是三个不同的平面,则下列命题中为假命题的是()A.α⊥γ,β⊥γ,α∩β=l,则l⊥γB.l∥α,l∥β,α∩β=m,则l∥mC.α∩β=l,β∩γ=m,γ∩α=n,若l∥m,则l∥nD.α⊥γ,β⊥γ,则α⊥β或α∥β4.正方体ABCD—A′B′C′D′中,E为A′C′的中点,则直线CE垂直于()A.A′C′B.BDC.A′D′D.AA′又∵BD∥B′D′,∴BD⊥CE.5. 如图所示,直线P A垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面P AC的距离等于线段BC的长,其中正确的是()A.①②B.①②③C.①D.②③二、填空题6.已知P为△ABC所在平面外一点,且P A、PB、PC两两垂直,则下列命题:①P A⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC.其中正确的个数是________.7.在正三棱锥P-ABC中,D,E分别是AB,BC的中点,有下列三个论断:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE.其中正确论断的序号为________.8.已知平面α,β和直线m,给出条件:①m∥α;②m⊥α;③m⊂α;④α∥β.当满足条件________时,有m⊥β.(填所选条件的序号)三、解答题9.在如图所示的几何体中,四边形ABCD是直角梯形,AD∥BC,AB⊥BC,AD=2,AB=3,BC=BE=7,△DCE是边长为6的正三角形.(1)求证:平面DEC⊥平面BDE;(2)求点A到平面BDE的距离.B组专项能力提升1.已知平面α与平面β相交,直线m⊥α,则() A.β内必存在直线与m平行,且存在直线与m垂直B.β内不一定存在直线与m平行,不一定存在直线与m垂直C.β内不一定存在直线与m平行,但必存在直线与m垂直D.β内必存在直线与m平行,不一定存在直线与m垂直2.(2012·江苏)如图,在长方体ABCD-A1B1C1D1中,AB=AD=3 cm,AA1=2 cm,则四棱锥A-BB1D1D的体积为________ cm3.3.如图,已知六棱锥P-ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).。

空间几何中的垂直关系

空间几何中的垂直关系

空间几何中的垂直关系垂直关系是空间几何中的重要概念之一,它与直线和平面的相互关系密切相关。

本文将就空间几何中的垂直关系进行详细探讨。

一、垂直关系的定义和性质在空间几何中,我们称两条直线或一个直线和一个平面相互垂直,当且仅当它们的夹角为90度(或称直角)。

垂直关系具有以下性质:1. 垂直关系是相对的:两条直线或一个直线和一个平面相互垂直,可以理解为它们相互垂直的方向互为补角,即互为垂线。

2. 垂直关系具有传递性:如果直线AB垂直于直线BC,那么直线AB也将垂直于直线AC。

这个性质可以通过夹角定义和垂线的性质进行推导。

3. 平面与直线的垂直关系:当一条直线与一个平面垂直时,它与该平面的任意直线均垂直。

这一性质为建立空间几何中的垂直关系提供了便利。

4. 垂直关系与平行关系之间的关系:如果两个平面相互垂直,那么它们的任意一条公共直线与这两个平面都垂直;反之,如果两个平面的任意一条公共直线与这两个平面都垂直,那么这两个平面互相垂直。

二、垂直关系的应用垂直关系在几何学和实际生活中都有广泛的应用。

以下列举了几个常见的应用场景:1. 建筑学中的垂直关系:在建筑设计与施工中,垂直关系是十分重要的,用来确保建筑结构的稳定和整体美观。

例如,墙面的垂直性要求、柱子与楼梯之间的垂直关系等都是基于几何理论的。

2. 地质学中的垂直关系:地层与地层之间的垂直关系是地质学家研究地壳演化和地层分析的基础。

通过研究地质层的垂直关系,可以推断出地层的变动和地质历史的变迁。

3. 数学建模中的垂直关系:在数学建模中,垂直关系被广泛应用于平面几何、三维几何以及向量分析等学科中。

它在描述和解决实际问题时,起到了重要的作用。

4. 导航和测量中的垂直关系:在导航和测量领域,垂直关系被用于确定方向、角度和高度。

例如,地球上的经线与纬线垂直相交,使得我们可以准确测量位置和方向。

三、总结空间几何中的垂直关系是一种重要的几何概念,它与直线和平面之间的关系密不可分。

帮你解读“垂直关系”

帮你解读“垂直关系”

帮你解读“垂直关系”垂直关系是一种重要的线面位置关系,也是高考考查的重点,垂直关系在高考中考查一般有两种方式:一是考查垂直关系的定义、判定及性质,即通过有关命题的真假判定,直接考查有关的判定定理及性质定理;二是以空间几何体为载体,证明各种垂直关系,下面对垂直关系中的知识点帮同学们解读如下:一、直线与平面垂直1.空间中两直线垂直的定义:如果两条直线相交于一点或经过平移后相交于点,并且交角为直角,则称这两条直线互相垂直.2.直线与平面垂直的定义:一条直线和一个平面相交,并且和这个平面内过交点的任何直线都垂直,就说这条直线和这个平面垂直.这条直线叫做平面的垂线.这个平面叫做直线的垂面,交点叫做垂足.垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段.垂线段的长度叫做这个点到平面的距离.3.如果一条直线垂直于一个平面,那么它就和平面内的任意一条直线垂直.符号表示:说明:①和平面垂直的直线是直线和平面相交的一种特殊形式;②可作为线线垂直的判定定理。

4.直线和平面垂直的画法画直线和平面垂直时,通常要把直线画成和表示平面的平行四边形的一边垂直,如图,记作。

5.直线和平面垂直的判定定理如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直。

符号表示:注意:定理中的关键词语是“两条相交直线”,应用此定理时,主要是设法在平面内找到两条相交直线。

推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面。

6.直线和平面垂直的性质定理如果两条直线垂直于同一平面,那么这两条直线平行。

7.两个结论(1)过一点有且只有一条直线和已知平面垂直;(2)过一点有且只有一个平面和已知直线垂直。

8.拓宽:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离。

二、平面与平面垂直1.两平面垂直的定义如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线相互垂直,就称为这两平面互相垂直。

关于两直线垂直一般公式

关于两直线垂直一般公式

关于两直线垂直一般公式两条直线垂直的一般公式是数学中的重要概念之一。

直线的垂直关系指的是两条直线之间的夹角为90度,也就是互相垂直。

在几何学和物理学中,垂直关系经常出现,并且在实际问题中有着广泛的应用。

在平面几何中,两条直线垂直的判定条件有多种。

其中一种常见的方法是通过两条直线的斜率来判断。

如果两条直线的斜率的乘积等于-1,则说明它们互相垂直。

具体而言,设直线L1的斜率为k1,直线L2的斜率为k2,则L1和L2垂直的条件可以表示为k1*k2=-1。

除了斜率法外,还可以通过直线的方程来判断两条直线是否垂直。

设直线L1的方程为a1x+b1y+c1=0,直线L2的方程为a2x+b2y+c2=0,则L1和L2垂直的条件可以表示为a1a2+b1b2=0。

在实际问题中,垂直关系的应用非常广泛。

例如,在建筑设计中,为了确保建筑物的结构稳定,墙壁、柱子和地面之间的垂直关系必须得到严格控制。

另外,在电磁学中,磁力线和等势线之间的垂直关系是电场和磁场分布的重要性质。

除了直线之间的垂直关系外,直线与平面之间也存在垂直关系。

直线与平面垂直的条件是直线上的任意向量与平面的法向量垂直。

具体而言,设直线L的方程为ax+by+cz+d=0,平面P的法向量为n=(n1,n2,n3),则L与P垂直的条件可以表示为an1+bn2+cn3=0。

在三维几何中,垂直关系的判定方法更加多样。

例如,两个平面垂直的条件是它们的法向量互相垂直。

设平面P1的法向量为n1=(n11,n12,n13),平面P2的法向量为n2=(n21,n22,n23),则P1和P2垂直的条件可以表示为n11n21+n12n22+n13n23=0。

此外,在三维空间中,两条直线垂直的条件是它们的方向向量互相垂直。

总结起来,两条直线垂直的一般公式在数学中起着重要的作用。

通过斜率法和方程法,我们可以判断直线之间的垂直关系。

在实际问题中,垂直关系广泛应用于建筑设计、物理学和电磁学等领域。

2.3垂直关系的判定与性质

2.3垂直关系的判定与性质
证明:过点A作AE⊥PB,垂足 P 为E, ∵平面PAB⊥平面PBC, 平面PAB∩平面PBC=PB, A ∴AE⊥平面PBC ∵BC 平面PBC ∴AE⊥BC ∵PA⊥平面ABC,BC 平面ABC ∴PA⊥BC ∵PA∩AE=A,∴BC⊥平面PAB B
C
【变式 3】 如图所示,PA⊥平面 ABC,PA= 2,AB=1,BC = 3,AC=2, 求证:平面 PBC⊥平面 PAB.
B
理论迁移
例1 如图,⊙O在平面α内,AB 是⊙O的直径,PA⊥α,C为圆周上 不同于A、B的任意一点,求证: 平面PAC⊥平面PBC.
P
C A O
B
例2 如图,四棱锥P-ABCD的底面 为矩形,PA⊥底面ABCD,PA=AD,M 为AB的中点,求证:平面PMC⊥平面 PCD.
P
F
E
D A M
B
(1)证明:∵ AB是⊙O的直径, P C是圆周上不同于A,B的任 意一点 ∴∠ACB=90°∴BC⊥AC C 又∵平面PAC⊥平面ABC, 平面PAC∩平面ABC=AC, A BC平面ABC O ∴BC⊥平面PAC (2)又∵ BC 平面PBC ,∴平面PBC⊥平面PAC
B
练习2:如图,已知PA⊥平面ABC, 平面PAB⊥平面PBC,求证:BC⊥平面PAB
A
O
D
C
B
三.随堂练习:
1.如图,直四棱柱ABCD ABCD (侧棱与底面垂直 的棱柱称为直棱柱)中,底面四边形 ABCD 满足什么 条件时AC B D ?
A D
底面四边形 ABCD 对角 线相互垂直.
B
C
A D B
C
2. 在空间四边形ABCD中,AB=AD,CB=CD,

垂直关系

垂直关系

一、 空间中的垂直关系(包括线面垂直,面面垂直)1、 直线与直线垂直定义:两条直线所成的角为︒90,则称两直线垂直,包括两类:相交垂直与异面垂直。

2、 直线与平面垂直①定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。

符号表述:若任意,a α⊂都有l a ⊥,且l α⊄,则l α⊥.②判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直,a b a b O l l l al b ααα⊂⎫⎪=⎪⎪⊄⇒⊥⎬⎪⊥⎪⊥⎪⎭(线线垂直⇒线面垂直)③性质:(1)如果一条直线和一个平面垂直,那么这条直线和这个平面内的任意一条直线都垂直,l a l a αα⊥⊂⇒⊥(线面垂直⇒线线垂直);(2)如果两条平行直线中的一条垂直于一个平面,那么另一条直线也垂直于同一个平面 a ∥b ,a ⊥α⇒b ⊥α(3)垂直于同一个平面的两条直线平行 ,//a b a b αα⊥⊥⇒; ④证明或判定线面垂直的依据:(1)定义(反证);(2)判定定理(常用);(3)//a b b a αα⎫⇒⊥⎬⊥⎭(较常用);(4)//a a αββα⎫⇒⊥⎬⊥⎭;(5)⎪⎪⎭⎪⎪⎬⎫⊥⊂=⋂⊥ba ab αβαβα(面面垂直⇒线面垂直)(常用);⑤三垂线定理及逆定理:(I )斜线定理:从平面外一点向这个平面所引的垂线段与斜线段中,PO α⊥(1)斜线相等⇔射影相等;(2)斜线越长⇔射影越长;(3)垂线段最短。

【如图】PB PC OB OC =⇔=;PA PB OA OB >⇔> (II )三垂线定理及逆定理:已知PO α⊥,斜线PA 在平面α内的射影为OA ,a α⊂,①若a OA ⊥,则a PA ⊥——垂直射影⇒垂直斜线,此为三垂线定理;②若a PA ⊥,则a OA ⊥——垂直斜线⇒垂直射影,此为三垂线定理的逆定理;三垂线定理及逆定理的主要应用:(1)证明异面直线垂直;(2)作、证二面角的平面角;(3)作点到线的垂线段;【如图】3.线面相交:A l =⋂α①直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2 已知:bα,c α,b∩c=E, β∩γ=a,c⊥β,d⊥γ。 a 求证:a⊥α。
β
γ
α
b
E
c
证明: ∵ ∴ ∵ ∴ ∵
b⊥β, β∩γ=a, b⊥a ; c⊥γ,β∩γ=a, c⊥a ; β b∩c=E, bα, cα, b α ∴ a⊥α。
a
γ
E
c
例3 已知:正方体 中,AC是面对角线, D′ BD’是与AC 异面的 A′ 体对角线。 求证:AC⊥BD’
返回
二、直线和平面垂直的判定定理 如果一条直线和一个平面 内的两条相交直线都垂直,那 么这条直线垂直于这个平面。
三、线面垂直判定定理的证明
已知:m α,n α,m ∩ n = B,l ⊥ m, l ⊥ n。 求证: l ⊥α。
l
B m
α
n
l
l
B m
α
n
l
B m
α
n
l
B m
α
n
g
l
l
AE=A’E
B m
α
g
n D
C
E
A’
A
l
AE=A’E AB=A’B
B m
α
g
n D
C
E
A’
A
l
AE=A’E AB=A’B
B g
α
E
A’
A
l
AE=A’E AB=A’B
B
l ⊥g
E
α
g
A’

直线和平面垂直的判定定理
如果一条直线和一个平面 内的两条相交直线都垂直,那 么这条直线垂直于这个平面。
注:m α nα m∩n=B l⊥m l⊥n
C′ B ′ C
D A
B
证明: 连接BD ∵正方体ABCD-A’B’C’D’ ∴DD’⊥正方体ABCD A’ ∵AC、BD 为对角线 ∴AC⊥BD ∵DD’∩BD=D ∴AC⊥△D’DB ∴AC⊥BD’ A
D’ B’ D
C’
C
B
A
l
B m
α
g
n D
C
E
A’

l ⊥α
小结
这个定理还说明这样一个事实,的确 存在着和一个平面内一切直线都垂直的直 线,从而得证了直线和平面垂直的合理性。 这个定理不仅提供了判定直线和平面 垂直得一种方法,而且还是证明直线和直 线互相垂直的一种常用的方法,即要想证 明a⊥b,只需证a与b所在平面内的两条相 交直线垂直(或证b与a所在平面内的两条 相交直线垂直)。
练习
1、如果一条直线垂直于平面内的一条直线, 能否判断这条直线和这个平面垂直?
2、如果一条直线垂直于平面内的两条直线, 能否判断这条直线和这个平面垂直? 3、如果一条直线垂直于平面内的无数条直 线,能否判断这条直线和这个平面垂直?
练习
4、如果三条直线共点、且两两垂直,其中 任一条直线是否垂直于另两条直线确定的 平面?为什么? 5、如果一条直线垂直于一个三角形的两边, 能否断定这条直线和三角形的第三条边垂 直?为什么?
B m
α
g
n
g
l
AB=A’B
A
B m
α
g
n
A’
l
AB=A’B
A
B m
α
g
n
A’
l
A
AB=A’B
B m
α
g
n
A’
l
A
B m
α
g
n
A’
A
l
B m
α
g
n D
C
E
A’
A
l
B m
α
g
n D
C
E
A’
A
l
l ⊥m
B m
α
g
n D
C
E
A’
A
l
l ⊥m
B m
α
C A’
l ⊥m
A
l
AC=A’C
B m
α
6.1 直线与平面垂直的判定
一、直线与平面垂直的定义
• 如果一条直线 l 和一个平面α内的任意一 条直线都垂直,我们就说直线 l 和平面α 互相垂直,记作 l ⊥α。(如图) • 直线 l 叫做平面α的垂线。 • 平面α叫做直线 l 的垂面。 • 直线 l 和平面α的交点叫做垂足。
l
P
α
注:画直线与水平平面垂直时,要把直线画 成和表 示平面的平行四边形横边垂直。
例1 如果两条平行直线中的一条垂直于一 个平面,那么另一条也垂直于同一个平面。 (此定理可看作线面垂直的判定公理二) a b 已知:a∥b,a ⊥α 求证:b⊥α α
m
n
证明:在平面α内作两条相交直线m,n ∵ a⊥α
∴ a⊥m ,a⊥n
∵ b∥a ∴ b⊥m ,b⊥n ∴ b⊥α α
a
b m
n

B m
α
g
n D
C
E
A’
A
l
B m
α
g
n D
C
E
CD=CD
A’
A
l
△ACD≌△A’CD
B m
α
g
n D
C
E
A’
A
l
∠ACE=∠A’CE
m
α
B g n D
C
E
A’
AC=A’C CE=CE
A
l
B m
α
g
n D
C
E
A’
A
l
B m
α
g
n D
C
E
A’
△ACE≌△A’CE
A
相关文档
最新文档